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Abstract

We show in this paper that in a domain Ω ⊂ R2 with some regularity, a function
u ∈ SBD(Ω) with u, e(u) ∈ L2 and H1(Ju) < +∞ can be approximated with
a sequence un with relatively closed jump set Jun in Ω, such that un and e(un)

respectively converge to u and e(u) in L2 (strong) while limn→∞H1(Jun) = H1(Ju).
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1 Introduction

Special Bounded Deformation displacements have been introduced by Ambrosio, Bellettini,
Dal Maso, Coscia [4, 8] to represent displacements in linearized elasticity problems with
discontinuities (that may model cracks in the material). Given u ∈ Ω, where Ω is an
open subset of RN , one says that a displacement u : Ω → RN has bounded deformation
whenever the symmetric part of the distributional derivative E(u) = (Du + DuT )/2 is
a bounded Radon measure. In this case, it is proven in [4] that the measure E(u) can
be decomposed into three parts, one absolutely continuous with respect to the Lebesgue
measure dx, denoted by e(u) dx, and two other that are singular: a jump part, carried by
the recti�able (N − 1)�dimensional set Ju of points where the function u as two di�erent
approximate limits u+ and u−, together with a normal vector νu, and a �Cantor part�,
which vanishes on Borel sets of �nite HN−1 measure.
∗CEREMADE - UMR 7534 du CNRS - Université de Paris Dauphine � moving to CMAP (UMR

7641), Ecole Polytechnique, France.
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The space SBD(Ω) is de�ned as the space of the bounded deformation functions u
such that the Cantor part of E(u) vanishes, so that this measure can be written

E(u) = e(u)(x) dx + (u+(x)− u−(x))� νu(x)HN−1 Ju(x) (1)

where HN−1 Ju is the (N−1)�dimensional Hausdor� measure restricted to Ju and a�b
denotes the symmetrized tensor product (a⊗ b+ b⊗ a)/2.

These functions are useful in the theory of brittle crack evolution, following a model
proposed by Francfort and Marigo [22, 23]. One can de�ne a �Mumford-Shah��like po-
tential energy of the form E(u) =

∫
Ω
W (e(u)) dx + HN−1(Ju), with W some linearized

elasticity bulk energy, and roughly de�ne a discrete evolution with timestep δt > 0 by
letting, for every n ∈ N, un be a minimizer of E(u) among all u with u = g(nδt) and
Jun ⊃ Jun−1 , where g(t) is a given boundary displacement and the second condition ex-
presses the fact that the fracture is irreversible and can only grow. At this point, several
problems arise. Does each minimization problem have a solution? Does there exist some
limit evolution as δt ↓ 0? Some of these issues are addressed in [3, 18, 16, 21, 17], for
variants of this problem (scalar versions, topological restrictions on the cracks, nonlinear
elasticity). However, in the case of linearized elasticity, a study of this problem is still out
of reach for many technical reasons. Interesting also would be to �nd a way to numerically
minimize energy E, in order to simulate crack growth. In [11], such experiments have been
conducted, that are based on a Ambrosio and Tortorelli [6, 7] approximation of energy E,
in the case where W is a positive de�nite quadratic form of the deformation e(u). But
the Γ�convergence of this approximation to E is not known. A major issue is in the proof
of the Γ�limsup: in Ambrosio and Tortorelli's works, it relies strongly on the fact that
any function in SBV (Ω) with �nite Mumford-Shah energy

∫
|∇u|2 + HN−1(Su) can be

approximated by functions un such that the jump set Sun
is closed. No such result exists

up to now for SBD functions.

In this paper we propose an approach to prove such a property, and show, only in
dimension N = 2 and forW with quadratic growth, that provided Ω is bounded and ∂Ω is
locally a subgraph, any u ∈ SBD(Ω)∩L2(Ω; R2) with E(u) < +∞ can be approximated (in
L2) by a sequence un such that lim supn→∞

∫
Ω
W (e(un)) dx+H1(Jun

) ≤
∫
Ω
W (e(u)) dx+

H1(Ju). It turns out that the jump set Jun
that we build is included in a �nite union

of closed connected C1 curves, whose total length goes to H1(Ju) as n → ∞. The proof
we give is probably valid in any dimension, up to a few modi�cations, however, one step
requires an inequality that depends strongly on the dimension, and that we only have
proven in dimension 2 (see Appendix A).

Using a SBD semicontinuity result proven in [8], we deduce the convergence of e(un)

to e(u) in L2�strong, and the convergence of H1(Jun
) to H1(Ju). On the other hand, we

do not know whether the sequence (un)n≥1 we build can be uniformly bounded in BD.

As a consequence we deduce the Γ�convergence of an Ambrosio and Tortorelli [6, 7]
approximation of the elasticity Mumford Shah functional (in 2D), with an L∞ constraint.
This justi�es in part the numerical computations presented in [11].
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2 Mathematical preliminaries

In this section we recall some of the results of [4] and [8] on BD and SBD functions that
will be useful for our analysis. We assume that the corresponding properties for BV and
SBV functions are known to the reader, we refer to [5] for a good monograph on the topic.

2.1 Main notations.

In this paper, we will denote by dx the Lebesgue measure in RN , N ≥ 1 (we will sometimes
also denote |E| =

∫
E
dx the measure of the set E), while Hn, n ≤ N , is the n�dimensional

Hausdor� measure (see for instance [20]). Given E,F ∈ RN , we denote by E4F =

(E \ F ) ∪ (F \ E) their symmetric di�erence. In RN , a · b =
∑N

i=1 aibi is the Euclidean
scalar product, and we denote the norm by |a| =

√
a · a. For any a ∈ RN , a⊥ = {x ∈ RN :

a · x = 0} is the hyperplane (if a 6= 0) orthogonal to a. B(x, r) = {y ∈ RN : |x− y| < r}
is the (open) ball of center x and radius r, and B(x, r) = {|y − x| ≤ r} is its closure.
The notation ωN stands for the volume of the unit ball in RN , |B(0, 1)|, and one has
NωN = HN−1(SN−1), where SN−1 = ∂B(0, 1).

We will also let SN×N be the (N(N+1)/2)�dimensional vector space of the symmetric
N × N matrices. For A a matrix of size N × N , we let |A| =

√
Tr (AAT ) (AT is the

transpose of A and TrA its trace)�this de�nes the standard Euclidean norm in the space
of all N × N matrices. If a, b ∈ RN , the tensor product a ⊗ b is the matrix (aibj)N

i,j=1

while a � b ∈ SN×N , the symmetrized tensor product, is (a ⊗ b + b ⊗ a)/2. Notice that
|a||b|/

√
2 ≤ |a� b| ≤ |a||b|.

2.2 BD functions.

As mentionned in the introduction, the space BD(Ω) of displacements with bounded de-
formation in Ω ⊂ RN is the set of u ∈ L1(Ω; RN ) such that the symmetrized distributional
gradient

E(u)i,j =
1
2

(Diuj +Djui)

(i, j = 1, . . . , N) is a bounded Radon measure in Ω (a matrix�valued measure with �nite
total variation). We refer to [4] and the references herein for more details on this space,
which has been introduced in order to describe plastic deformations in a solid.

Given u in BD(Ω), one says that x ∈ Ω has one�sided limits u−(x) and u+(x) at x,
with respect to the direction νu(x) ∈ SN−1, if the rescaled functions uρ(y) := u(x + ρy),
y ∈ B(0, 1), converge in L1(B(0, 1); RN ) to

u0(y) =

 u+(x) if y · νu(x) > 0 ,

u−(x) if y · νu(x) < 0 ,

as ρ → 0. If u+(x) 6= u−(x), then the triplet (u+(x), u−(x), νu(x)) is unique up to a
change of sign of νu(x) together with a permutation of u+(x) and u−(x). In this case, we
say that x ∈ Ju, the jump set of u. (If u+(x) = u−(x) then x is a Lebesgue point of u,
with Lebesgue limit u+ = u−, and νu(x) is arbitrary.)
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It is shown in [4, Prop. 3.5] that Ju is a countably (HN−1, N − 1)�recti�able Borel
set: there exists (Γi)∞i=1 a sequence of C1 hypersurfaces covering almost all of Ju, that is,
HN−1 (Ju \ (∪∞i=1Γi)) = 0.

At HN−1�almost all x ∈ Ju, νu(x) is an approximate normal to Ju, characterized by

νu(x) = ±νΓi
(x) at HN−1�a.e. x ∈ Ju ∩ Γi.

2.3 Structure of E(u). SBD functions.

The structure of the distributional deformation E(u) of u is described in Section 4 of [4]:
one has (see Def. 4.1, Thm. 4.3, Prop. 4.4)

E(u) = e(u) dx + (u+ − u−)� νuHN−1 Ju + Ec(u)

where:

• e(u) ∈ L1(Ω;SN×N ) is the Radon-Nikodym derivative of E(u) with respect to the
Lebesgue measure dx. It is called the approximate symmetric di�erential of u, and
is characterized (Lebesgue�) almost everywhere in Ω by

lim
ρ→0

1
ρN

∫
B(x,ρ)

|u(y)− u(x)− (e(u)(y − x)) · (y − x)|
|y − x|2

dy = 0.

• The measure Ec(u) (the �Cantor part�) vanishes on any Borel set B ⊂ Ω which is
σ��nite with respect to HN−1.

The space SBD(Ω) is de�ned as the set of all displacements u ∈ BD(Ω) such that
Ec(u) = 0. It means that the singular part (with respect to the Lebesgue measure) of the
derivative of u is entirely carried by the jump set Ju. An important compactness result is
given by [8, Thm. 1.1]: it is shown that if a sequence (un)n≥1 in SBD(Ω) is such that

sup
n≥1

∫
Ω

|un| dx +
∫

Jun

|(un)+− (un)−| dHN−1(x) +
∫

Ω

W (e(un)) dx + HN−1(Jun) < +∞

for some nonnegative bulk energy W with lim|A|→∞W (A)/|A| = +∞, then, up to a
subsequence, there exists u ∈ SBD(Ω) such that un → u in L1

loc(Ω; RN ), e(un) ⇀ e(u)

weakly in L1(Ω;SN×N ), E(un) ∗
⇀ E(u) weakly−∗ as a bounded measure and HN−1(Ju) ≤

lim infn→∞HN−1(Jun). We will need a variant of this result, where the a priori bound
on the measures |E(un)| is replaced by the knowledge that un converges to u ∈ SBD(Ω).
Since we will need the result only when W is a particular quadratic form of e(u), a case in
which the proof is quite simpler than in [8], in order to make this paper more self-contained
we will give a short proof of our variant (Lemma 5.1 in Section 5).

2.4 Slicing properties.

Essential to the proofs in this paper are the slicing properties of SBD functions, that
allow to characterize them by means of SBV functions on lines. If u ∈ SBD(Ω), e ∈
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SN−1 and z ∈ e⊥, we denote by ue
z(s) the function u(z + se) · e, that is de�ned on

Ωe
z = {s ∈ R : z + se ∈ Ω}. We also let Je

u = {x ∈ Ju : [u(x)] · e 6= 0} (where [u(x)]

denotes the jump u+(x) − u−(x)). Then, from the Structure Theorem [4, Thm. 4.5], we
have that for HN−1�a.e. z ∈ e⊥, the function ue

z is in SBV (Ωe
z) (unless Ωe

z is empty),
(e(u)(z + se)e) · e = (ue

z)
′(s) a.e. in Ωe

z, Sue
z

= {s ∈ R : z + se ∈ Je
u}, and for all s ∈ Sue

z
,{

u+(z + se) · e, u−(z + se) · e
}

=
{
(ue

z)
+(s), (ue

z)
−(s)

}
.

One has that ∫
e⊥
H0(Sue

z
) dHN−1(z) =

∫
Je

u

|νu(x) · e| dHN−1(x),

while
1

2ωN−1

∫
SN−1

dHN−1(e)
∫

e⊥
H0(Sue

z
) dHN−1(z) = HN−1(Ju).

Notice that HN−1(Ju \ Je
u) = 0 for HN−1�a.e. e ∈ SN−1 (see [4], eqn. (4.5)).

3 Some technical lemmas

Here we will show some technical results that will be useful in the rest of the paper.
Throughout the whole paper Ω will be an open subset of RN , usually bounded and

with some regularity. Given A an open subset of RN , c > 0 and u ∈ SBD(A), we let

Ec(u,A) =
∫

A

W (e(u)(x)) dx + cHN−1(Ju)

while
Ec(u,A) =

∫
A

W (e(u)(x)) dx + cHN−1(Ju).

Here the closure Ju is intended as the essential closure in R2 (not A) of the set Ju, that is,
the smallest closed set in R2 that contains Ju up to a H1�negligible set. (Ju is supposed
to be a subset of A, if u is the restriction to A of a SBD function de�ned in a larger set,
it has to be replaced with Ju ∩ A.) When c = 1, we denote Ec by simply E, and Ec by
E. The function W : RN×N → R is a quadratic form, which is positive de�nite on the
subspace SN×N of symmetric matrices.

The next (obvious) lemma allows us to approximate an SBD function locally on a
�nite open covering of a set and then glue together the approximations.

Lemma 3.1 Let Ω, (Ai)k
i=1 be open subsets of RN such that Ω ⊂ ∪k

i=1Ai. Let u ∈
SBD(Ω), and assume that for each i = 1, . . . , k, there exists a sequence (ui

n)n≥1 in

SBD(Ai∩Ω) such that limn→∞ ‖u−ui
n‖L2(Ai∩Ω;RN ) → 0. Let `i = lim supn→∞E(ui, Ai∩

Ω). Then there exists (un)n≥1 a sequence in SBD(Ω) with ‖u−un‖L2(Ω;RN ) → 0 and such

that lim supn→∞E(un,Ω) ≤
∑k

i=1 `i.

Proof. The idea is to consider a partition of unity (ϕi)k
i=1 on Ω subject to the (Ai)k

i=1:
each ϕi is C∞, nonnegative, compactly supported in Ai and

∑k
i=1 ϕi(x) = 1 for all x ∈ Ω.
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Then, we let un =
∑k

i=1 ϕiu
i
n. Clearly, ‖un − u‖2L2(Ω;RN ) ≤

∑k
i=1

∫
Ai∩Ω

ϕi|ui
n − u|2 → 0

as n→∞. Let us explain why lim supn→∞E(un,Ω) ≤
∑k

i=1 `i. One has

e(un) =
k∑

i=1

ui
n �∇ϕi + ϕie(ui

n) ,

Jun ⊂
k⋃

i=1

Jui
n
.

We �rst deduce that HN−1(Jun
) ≤

∑k
i=1HN−1(Jui

n
). Then, since

∑k
i=1∇ϕi = ∇1 = 0,

we can rewrite the �rst equation

e(un) =
k∑

i=1

(ui
n − u)�∇ϕi + ϕie(ui

n).

W is a nonnegative quadratic form, so that for any ε > 0 and A,B ∈ SN×N , W (A+B) ≤
(1 + ε)W (A) + (1 + 1/ε)W (B). Using also the convexity of W , we �nd that∫

Ω

W (e(un)) ≤
k∑

i=1

k
1 + ε

ε

∫
Ω

W
(
(ui

n − u)�∇ϕi

)
dx + (1 + ε)

∫
Ω

ϕiW (e(ui
n)) dx.

We deduce

E(un,Ω) ≤ (1 + ε)
k∑

i=1

E(ui
n, Ai ∩ Ω) + c

k∑
i=1

∫
Ai∩Ω

|ui
n − u|2 dx

where c is some constant depending on ε, k and supi,x |∇ϕi(x)|. Letting n → ∞ we get
lim supn→∞E(un,Ω) ≤ (1 + ε)

∑k
i=1 `i, and since ε is arbitrary we get the thesis.

We will say that Ω, a bounded open set of RN , satis�es �assumption (H)� if

(H)


At every boundary point x ∈ ∂Ω, there exist coordinates
(ξ1, . . . , ξN ) and a continuous function f : RN−1 → R such that
near x, Ω coincides with the subgraph {ξN < f(ξ1, . . . , ξN−1)}.

We now show the following approximation lemma, that allows to extend sligthly out of
an open set Ω satisfying (H) a function in SBD(Ω), without perturbing much its energy.

Lemma 3.2 Assume Ω satis�es (H) and u ∈ SBD(Ω)∩L2(Ω; RN ), with E(u,Ω) < +∞.

Then, for any ε > 0, there exists Ω′ with Ω ⊂⊂ Ω′ and u′ with ‖u′ − u‖L2(Ω;RN ) ≤ ε, such

that ∫
Ω′
W (e(u′)) dx ≤

∫
Ω

W (e(u)) dx+ ε and HN−1(Ju′) ≤ HN−1(Ju) + ε. (2)

In order to prove this result we �rst need the following lemma.

Lemma 3.3 Let Ω, (Ai)k
i=1 be open subsets of RN such that Ω ⊂ ∪k

i=1Ai. Let µ be

positive, �nite Borel measure on RN . Then for each ε > 0, there exists a partition of

unity in Ω subject to the (Ai)k
i=1, that is, functions (ϕi)k

i=1 with each ϕi ∈ C∞(Ai),

nonnegative, compactly supported in Ai and that satisfy
∑k

i=1 ϕi(x) = 1 for all x ∈ Ω,

such that µ
(
∪k

i=1supp {0 < ϕi < 1}
)
≤ ε.
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Proof. For any open set A ⊂ RN let us denote As = {x ∈ A : dist (x,RN \ A) >

s}. One �rst �nds positive numbers (si)k
i=1 such that Ω ⊂ ∪k

i=1(Ai)si
and µ(∪k

i=1Ai \
(Ai)si

) ≤ ε. Let i0 ∈ {1, . . . , k}, and assume we have found the si for i < i0 with
Ω ⊂ (∪i<i0(Ai)si) ∪ (∪i≥i0Ai)) and µ(Ai \ (Ai)si) ≤ ε/k for each i < i0. Let δ > 0 be the
distance between the disjoint compact sets Ω\Ai0 and Ω\[(∪i<i0(Ai)si

) ∪ (∪i>i0Ai)]. Since⋂
s>0Ai0 \ (Ai0)s = ∅, lims→0 µ(Ai0 \ (Ai0)s) = 0. One can therefore choose si0 ∈ (0, δ)

such that µ(Ai0 \ (Ai0)si0
) ≤ ε/k. The fact that si0 < δ yields that Ω \ (Ai0)si0

is still
disjoint from Ω\[(∪i<i0(Ai)si) ∪ (∪i>i0Ai)], in other words Ω ⊂ (∪i≤i0(Ai)si)∪(∪i>i0Ai)).

Now, for each i = 1, . . . , k − 1, one easily �nds a C∞ function ψi with 0 ≤ ψi ≤ 1,
suppψi ⊂⊂ Ai and ψi = 1 in a neighborhood of (Ai)si

(for instance, by mollifying the
characteristic function of (Ai)si/2). We have {0 < ψi < 1} ⊂⊂ Ai\(Ai)si

. We let ϕ1 = ψ1,
ϕi = ψi(1−

∑
j<i ϕj) for i = 2, . . . , k. These functions are clearly C∞.

It is clear that suppϕi ⊂⊂ Ai for every i. Let us show by induction that
∑

j≤i ϕj ∈
[0, 1], and is 1 on ∪j≤i(Ai)si

. It will yield in particular that ϕi = ψi+1(1−
∑

j<i ϕj) ∈ [0, 1].
If i = 1, these properties are clear by construction of ϕ1 = ψ1. If i ≥ 2 and these properties
are true for i − 1, then

∑
j≤i ϕj =

∑
j<i ϕj + ψi(1 −

∑
j<i ϕj) is a convex combination

of 1 and ψi ∈ [0, 1]. Hence it is in [0, 1]. Moreover, it takes the value 1 whenever either∑
j<i ϕj = 1, or ψi = 1, so that it is 1 on ∪j≤i(Ai)si

. If i = k, since Ω ⊂ ∪k
i=1(Ai)si

, we
get that

∑k
i=1 ϕi(x) = 1 for all x ∈ Ω.

We have shown that (ϕi)k
i=1 is a partition of unity on Ω subject to the covering

(Ai)k
i=1, now, it is easy to show that ∪k

i=1supp {0 < ϕi < 1} ⊆ ∪k
i=1Ai \ (Ai)si

, so that
µ
(
∪k

i=1supp {0 < ϕi < 1}
)
≤ ε.

Proof of Lemma 3.2. To prove the lemma we �rst consider a �nite covering A1, . . . , Ak of
∂Ω with open sets such that in each Ai, there is a direction ei ∈ SN−1 and a continuous
function f : (ei)⊥ → R such that Ai ∩Ω is represented by the subgraph {x · ei < f(x− (x ·
ei)ei)}. In such a Ai we will de�ne the function ui

t, for t > 0, as ui
t(x) = u(x− tei), which

is de�ned slightly outside of Ω (in Ai), more precisely, on Ai ∩ (Ω + [0, t)ei), for t small
enough. (By convention we extend it with the value zero in the rest of Ai.) It is standard
that ui

t → u in L2(Ai; RN ) as t → 0, where u is extended with the value 0 outside of Ω.
Let us observe that, also, e(ui

t) → e(u) in L2(Ai;SN×N ) as t → 0, extending again e(ui
t)

(respectively, e(u)) with 0 out of Ω + [0, t)ei (respectively, Ω).

We choose A0 ⊂⊂ Ω such that Ω ⊂ ∪k
i=0Ai, and for conveniency we let for any t > 0,

u0
t = u in A0. Then we �x ε > 0 and invoke Lemma 3.3, with the measure HN−1 Ju

(which is a bounded Borel measure on RN ), to �nd a partition of unity ϕ0, . . . , ϕk subject
to the (Ai)k

i=0, with HN−1
(
(Ju ∩

(
∪k

i=0supp {0 < ϕi < 1}
))

≤ ε/(2(k + 1)).

Given t̄ = (t1, . . . , tk) ∈ Rk with each ti > 0, small, we let ut̄ = uϕ0 +
∑k

i=1 u
i
ti
ϕi, it is

a function in SBD(Ωt̄) where Ωt̄ = A0 ∪ (∪k
i=1(Ai ∩ (Ω + [0, ti)ei)) strictly contains Ω. It

is easy to check that ut̄ → u in L2(Ω; RN ), as t̄→ 0. Let us estimate
∫
Ωt̄
W (e(ut̄)) dx and

HN−1(Jut̄
).

One has, using the fact that
∑k

i=0∇ϕi = 0 inside Ω, whereas (by convention) u = 0
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outside Ω,

e(ut̄) =
k∑

i=1

(ui
ti
− u)�∇ϕi +

k∑
i=0

ϕie(ui
ti

)

(letting for instance t0 = 0, remember that u0
t = u for all t). The �rst part,

∑k
i=1(u

i
ti
−u)�

∇ϕi, converges to 0 in L2(∪k
i=1Ai;SN×N ) as t̄ goes to 0. The second part,

∑k
i=0 ϕie(ui

ti
),

converges strongly to e(u) in L2(∪k
i=0Ai;SN×N ). Hence e(ut̄) → e(u) as t̄→ 0. We deduce

that if t̄ is small enough,∫
Ωt̄

W (e(ut̄)) dx ≤
∫

Ω

W (e(u)) dx + ε.

Now, Jut̄
⊂ ∪k

i=0(Jui
ti
∩ suppϕi). Since the measure HN−1 Jui

ti
obviously converges

to HN−1 Ju as ti → 0, and since each suppϕi is closed, one has

lim sup
t̄→0

HN−1(Jut̄
) ≤

k∑
i=0

lim sup
ti→0

HN−1 Jui
ti

(suppϕi) ≤
k∑

i=0

HN−1 Ju(suppϕi).

But
k∑

i=0

HN−1 Ju(suppϕi) ≤

HN−1(Ju) + (k + 1)HN−1
(
Ju ∩

(
∪k

i=0supp {0 < ϕi < 1}
))

,

so that it is less than HN−1(Ju) + ε/2. Hence if t̄ is small enough, one has

HN−1(Jut̄
) ≤ HN−1(Ju) + ε.

Choosing Ω′ = Ωt̄, u′ = ut̄ for a very small t̄ hence shows the thesis of Lemma 3.2.

4 A �rst result with a bad constant

In this section, the dimension of the space is �xed to N = 2, and we will consider only the
following bulk energy:

W (A) = Tr (AAT ) +
1
2
(Tr (A))2 , (3)

de�ned for any 2× 2 matrix A.
We prove the following theorem.

Theorem 1 Assume Ω satis�es (H) and let u ∈ SBD(Ω)∩L2(Ω; R2), such that E(u,Ω) <

+∞. Then, there exists a sequence (un) of displacements in SBD(Ω) ∩ L2(Ω; R2), with

‖un − u‖L2(Ω;R2) → 0, such that each Jun
is essentially closed in Ω (that is, H1(Ju ∩ Ω \

Ju) = 0), while each un is in H1(Ω \ Jun ; R2), with the estimate

lim sup
n→∞

E(un,Ω) ≤ Ec0(u,Ω) (4)

where c0 is a universal constant (c0 = 8
√

4 + 2
√

2). For each n, the set Jun
is included in

a �nite union of closed segments. If ‖u‖L∞ < +∞, one can ensure that ‖un‖L∞ ≤ ‖u‖L∞

for all n.
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Proof. The proof is based on a discretization argument, similar to what is used in [14,
Sec. 3.3] (see also [24]), together with an interpolation argument that is inspired from [13].
Let u ∈ SBD(Ω) ∩ L2(Ω; R2). We �x ε > 0 and consider Ω′ and u′ given by Lemma 3.2.
(Observe that if u is bounded, then the u′ built in Lemma 3.2 is also clearly bounded by
‖u‖L∞ .)

We consider a system of coordinates (e1, e2) such that for all e ∈ {e1, e2, e1−e2, e1+e2},
H1({x ∈ Ju′ : [u′(x)] · e = 0}) = 0 (almost any e1 ∈ S1 suits), and a small discretization
step h > 0 (in practice, less than dist (∂Ω, ∂Ω′)/2

√
2). Given y ∈ [0, 1)2, we will denote

by uy
h(ξ) the discretization of u′ given by uy

h(ξ) = u′(hy + ξ) for any ξ ∈ hZ2 ∩ (Ω′ − hy).
For any τ ∈ R2, we also denote, by Jτ the set ∪x∈Ju

[x, x− τ ] (the union of the translates
of −sτ of Ju, for s ∈ [0, 1]). We let D = {e1, e2, e1 − e2, e1 + e2} be a set of directions of
interactions, and for each e ∈ D and ξ ∈ hZ2 we set lye,h(ξ) = χJhe(hy+ ξ) ∈ {0, 1}, where
χJhe is the characteristic function of Jhe.

Given uy
h, l

y
h = (lye,h)e∈D, we de�ne a discrete energy

Ey
h(uy

h, l
y
h) = h2

∑
e∈D

∑
ξ

((uy
h(ξ + he)− uy

h(ξ)) · e)
|e|4h2

2

(1− lye,h(ξ)) + β
lye,h(ξ)
|e|h

(5)

where the sum on the ξ runs on all the points ξ ∈ hZ2 such that both hy+ξ and hy+ξ+he

are in Ω′. Here the parameter β > 0 will be �xed later on.
Let us compute the average of Ey

h(uy
h, l

y
h) over y ∈ [0, 1)2:∫

[0,1)2
Ey

h(uy
h, l

y
h) dy =

∑
e∈D

∫
[0,h)2

dy
∑

ξ

((u′(y + ξ + he)− u′(y + ξ)) · e)
|e|4h2

2

(1− χJhe(y + ξ))

+ β
χJhe(y + ξ)

|e|h

This is less than (letting x = ξ + y)

∑
e∈D

∫
Ω′∩Ω′−he

((u′(x+ he)− u′(x)) · e)
|e|4h2

2

(1− χJhe(x)) + β
χJhe(x)
|e|h

dx . (6)

For each e ∈ D, we will make a change of variable x = z + se′ where e′ = e/|e|. The
integral above becomes (to simplify we denote dHN−1(z) by dz)

∫
z∈e⊥

dz

∫
Ie

z,h

((u′(z + (s+ h|e|)e′)− u′(z + se′)) · e′)
|e|2h2

2

(1− χJhe(z + se′))

+ β
χJhe(z + se′)

|e|h
ds

where Ie
z,h = {s ∈ R : z + se′, z + (s+ h|e|)e′ ∈ Ω′} (we also denote Ie

z = Ie
z,0).

As mentionned in section 2.4, for almost all z the function ue
z : s 7→ u′(z+ se′) · e′ is in

SBV (Ie
z ), and its jump set Sue

z
is given by {s ∈ Ie

z : z + se′ ∈ Ju′ and [u′(z + se)] · e′ 6=
0}. Moreover, since

∫
Ω′
W (e(u′)) dx + H1(J ′u) < +∞, one checks easily that this jump
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set is �nite for almost any z, and that ue
z has regularity H1 in the complement of its

jump set (this will be justi�ed in the sequel). In particular, if χJhe(z + se′) = 0, then
Sue

z
∩ [s, s+ h|e|] 6= 0 and

((u′(z + (s+ h|e|)e′)− u′(z + se′)) · e′)2

= (ue
z(s+ h|e|)− ue

z(s))
2 ≤ h|e|

∫ s+h|e|

s

(
∂ue

z

∂s
(t)
)2

dt .

We deduce that∫
Ie

z,h

((u′(z + (s+ h|e|)e′)− u′(z + se′)) · e′)
|e|2h2

2

(1− χJhe(z + se′)) ds

≤
∫

Ie
z

(
∂ue

z

∂s
(t)
)2

dt .

On the other hand,∫
Ie

z,h

χJhe(z + se′)
|e|h

ds ≤ 1
|e|h

∣∣{s ∈ Ie
z : [s− h|e|, s] ∩ Sue

z
6= ∅
}∣∣

which is less than H0(Sue
z
). We �nd that the integral in (6) is dominated by

∫
z∈e⊥
dz

(∫
Ie

z

(
∂ue

z

∂s
(t)
)2

dt+ βH0(Sue
z
)

)
=
∫

Ω′
((e(u′)e′) · e′) dx+ β

∫
Ju′

|νu′ · e′| dH1.

It turns out that our choice of W satis�es W (A) =
∑

e∈D((Ae′) · e′)2 for any A ∈ S2×2,
hence the sum of these integrals over all e ∈ D is∫

Ω′
W (e(u′)(x)) dx + β

∫
Ju′

h(νu′(x)) dH1(x)

which thus provides a bound for
∫
[0,1)2

Ey
h(uy

h, l
y
h) dy. Here h(p) = |p · e1| + |p · e2| + (|p ·

(e1 + e2)|+ |p · (e1 − e2)|)/
√

2. We notice that (1 +
√

2)|p| ≤ h(p) ≤
√

4 + 2
√

2|p| for all
p ∈ R2, in particular, we have, letting β′ =

√
4 + 2

√
2β,∫

[0,1)2
Ey

h(uy
h, l

y
h) dy ≤

∫
Ω′
W (e(u′)) dx + β′H1(Ju′) (7)

This inequality guarantees that, for y in a subset of positive measure of (0, 1)2, the discrete
energy Ey

h(uy
h, l

y
h) is less than

∫
Ω′
W (e(u′)) + β′H1(Ju′). The idea, at this point, is to

interpolate the discrete data uy
h, l

y
h in order to �nd a displacement with energy close to

Ey
h(uy

h, l
y
h). But in doing so, we also need to ensure that the interpolates will converge to

u′ in L2(Ω; R2) as h → 0. In order to achieve this property, we introduce the function
∆(x) = (1− |x · e1|)+(1− |x · e2|)+ (here t+ = max(t, 0)) and to any discretization (uy

h) of
u′ we associate the displacement

wy
h(x) =

∑
ξ∈hZ2∩Ω′

uy
h(ξ)∆

(
x− ξ

h
− y

)
.
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Notice that since Ω ⊂⊂ Ω′, it is well de�ned for x ∈ Ω as soon as h is small enough. We
have (using

∑
ξ ∆((x− ξ)/h− y) = 1 at every x)

∫
[0,1)2

dy

∫
Ω

|u′(x)− wy
h(x)|2 dx

=
∫

[0,1)2
dy

∫
Ω

 ∑
ξ∈hZ2∩Ω′

∆
(
x− ξ

h
− y

)
(u′(x)− u′(hy + ξ))

2

dx

≤
∫

[0,1)2
dy

∫
Ω

∑
ξ∈hZ2∩Ω′

∆
(
x− ξ

h
− y

)
|u′(x)− u′(hy + ξ)|2 dx ,

and, letting z = (x− ξ)/h− y, we get∫
[0,1)2

dy

∫
Ω

|u′(x)− wy
h(x)|2 dx ≤

∫
(−1,1)2

∆(z) dz
∫

Ω

|u′(x)− u′(x− hz)|2 dx .

Since for all z,
∫
Ω
|u′(x) − u′(x − hz)|2 dx → 0 as h → 0 (and is uniformly bounded

by 2‖u′‖2L2), we deduce that limh→0

∫
[0,1)2

dy
∫
Ω
|u′ − wy

h|2 dx = 0. Hence, there is a
subsequence (hk)k≥1 of h (with hk ↓ 0 as k →∞), and a measurable set A ⊂ [0, 1)2 with
Lebesgue measure 1, such that for each y ∈ A, limk→∞ ‖u′ − wy

hk
‖L2(Ω;R2) = 0. Now, we

observe that (7) yields (using Fatou's lemma)∫
[0,1)2

lim inf
k→∞

Ey
hk

(uy
hk
, lyhk

) dy ≤
∫

Ω′
W (e(u′)) dx + β′H1(Ju′) ,

so that we can �nd y ∈ A with the additional property

lim inf
k→∞

Ey
hk

(uy
hk
, lyhk

) ≤
∫

Ω′
W (e(u′)) dx + β′H1(Ju′) .

Hence, extracting another subsequence (hkl
)l≥1 from (hk)k≥1, we �nd a sequence of dis-

cretizations (uy
hkl
, lyhkl

)l≥1 with both


lim
l→∞

‖u′ − wy
hkl
‖L2(Ω;R2) = 0 and

lim
l→∞

Ey
hkl

(uy
hkl
, lyhkl

) ≤
∫

Ω′
W (e(u′)) dx+ β′H1(Ju′) .

(8)

In the sequel, we will �x y to this particular value (and consequently drop the correspond-
ing superscripts), and simply denote by (h)h>0 the subsequence (hkl

)l≥1.

We now are able to achieve the proof of Theorem 1. We say that the square ξ + hy +

[0, h)2, ξ ∈ hZ2, is a �jump square� at scale h if any of the �line processes� le1,h(ξ), le2,h(ξ),
le1+e2,h(ξ), le1,h(ξ+he2), le1−e2,h(ξ+he2), le2,h(ξ+he1) is equal to 1. Then, we de�ne the
displacement vh : Ω → R2 by letting vh(x) = wh(x) whenever x does not belong to a jump
square, and 0 otherwise. Such a vh is clearly in SBD(Ω). Its jump set Jvh

is contained in
the union of the boundaries of the jump squares, which is a closed set.

Le us estimate the energy of vh. First, the length H1(Jvh
) is bounded by 4h × Kh

where Kh is the total number of jump squares at scale h. But for any of these squares
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C = ξ + hy + [0, h)2, one has

hβ

(
le1,h(ξ) + le2,h(ξ) + le1,h(ξ + he2) + le2,h(ξ + he1)

2

+
le1−e2,h(ξ + he2) + le1+e2,h(ξ)√

2

)
≥ h

β

2
,

(since at least one of all these le,h's is 1). The left-hand side expression is the contribution
of the square C to the second part h2

∑
e∈D

∑
ξ β

le,h(ξ)
|e|h of the energy Eh(uh, lh) de�ned

in (5). Hence if we choose β = 8, summing on all the jump squares we �nd that

H1(Jvh
) ≤ h2

∑
e∈D

∑
ξ

β
le,h(ξ)
|e|h

.

Let us observe that the total area of the jump squares is h2Kh, and repeating the same
arguments we �nd that, thanks to (8), it is O(h).

On the other hand, if C = ξ + hy + [0, h)2 is not a �jump square�, then Lemma A.1 in
Appendix A shows that

∫
C
W (e(vh)) dx is less than

h2

(
((uh(ξ + he1)− uh(ξ)) · e1)

2h2

2

+
((uh(ξ + h(e1 + e2))− uh(ξ + he2)) · e1)

2h2

2

+
((uh(ξ + he2)− uh(ξ)) · e2)

2h2

2

+
((uh(ξ + h(e1 + e2))− uh(ξ + he1)) · e2)

2h2

2

+
((uh(ξ + h(e1 + e2))− uh(ξ)) · (e1 + e2))

4h2

2

+
((uh(ξ + he2)− uh(ξ + he1)) · (e2 − e1))

4h2

2
)

which is exactly the contribution of the square C to the �rst part (the �bulk part�) of
energy (5). On a jump square C,

∫
C
W (e(vh)) dx = 0. We �nd therefore that, having

chosen β = 8,∫
Ω

W (e(vh)) dx+H1(Jvh
) ≤ Eh(uh, lh) ≤

∫
Ω′
W (e(u′)) dx+ β′H1(Ju′).

Here, β′ = 8
√

4 + 2
√

2. Now, we observe that ‖vh − wh‖2L2(Ω;R2) is less than the integral∫
Jh∩Ω

w2
h dx, where Jh is the union of the jump squares at scale h, and since |Jh| = O(h)

and wh converges strongly in L2(Ω; R2), we �nd that ‖vh −wh‖L2(Ω;R2) → 0 as h→ 0, so
that vh also goes to u′ in L2(Ω; R2) as h→ 0.

Therefore, if h is small enough, the displacement vh will satisfy

‖vh − u‖L2(Ω;R2) ≤ ‖vh − u′‖L2(Ω;R2) + ‖u′ − u‖L2(Ω;R2) ≤ 2ε ,

E(vh,Ω) ≤
∫

Ω′
W (e(u′)) dx+ β′H1(Ju′) ≤ Ec0(u,Ω) + 2ε

with c0 = β′. This proves Theorem 1 (the �nal assertion is clear from the construction).
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5 The main result

Now, using Theorem 1, a localization argument, and Lemma 3.1, we will deduce the fol-
lowing Theorems 2 and 3. The �rst one shows that any u ∈ SBD(Ω) can be approximated
in L2(Ω; R2) with displacements un, such that lim supn→∞E(un,Ω) ≤ E(u,Ω), for our
particular choice of the quadratic form W . The second one is a corollary of the �rst and
of a variant of [8, Thm. 1.1] (Lemma 5.1 below), that ensures that there is in fact strong
convergence in L2(Ω;S2×2) of the approximate deformations e(un) to e(u), hence con-
vergence of the energies E(un,Ω) to E(u,Ω) for any other choice of the positive-de�nite
quadratic form W .

Theorem 2 Assume Ω satis�es (H) and let u ∈ SBD(Ω)∩L2(Ω; R2), such that E(u,Ω) <

+∞. Then, there exists a sequence (un) of displacements in SBD(Ω) ∩ L2(Ω; R2), with

‖un − u‖L2(Ω;R2) → 0, such that each Jun is closed in Ω, contained in a �nite union of

closed connected pieces of C1 curves, un ∈ H1(Ω \ Jun
; R2), and

lim sup
n→∞

E(un,Ω) ≤ E(u,Ω) . (9)

Moreover, if ‖u‖L∞ < +∞, one can ensure that ‖un‖L∞ ≤ ‖u‖L∞ for all n.

Proof. We �rst recall that Ju is (H1, 1)�recti�able in the sense of Federer [20] (see [4]),
which means that there exists a countable union of C1 curves (Γi)∞i=1 such that H1(Ju \
∪∞i=1Γi) = 0. For each i ≥ 1, we can de�ne a set

Si =
{
x ∈ Ju ∩ Γi \ ∪j<iSj : lim

ρ→0

H1(Ju ∩B(x, ρ))
2ρ

= 1 and

lim
ρ→0

H1(Ju ∩ Γi ∩B(x, ρ))
2ρ

= 1
}
,

that is, the set of points where Ju has H1�density 1, as well as density 1 along the smooth
curve Γi (and i is the �rst index such that it happens). We have that H1(Ju \∪∞i=1Si) = 0

(since H1�almost all points in Ju have H1�density 1, and H1�almost all points in Ju ∩ Γi

have density 1 along Γi). Observe that if x ∈ Si, then limρ→0H1(Ju∩B(x, ρ)\Γi)/(2ρ) = 0.
If we �x ε > 0, then for every i, at each x ∈ Si, for almost all ρ that is small enough,

we have that B(x, ρ) ⊂ Ω, H1(Ju4Γi ∩ B(x, ρ)) ≤ 2ερ, H1(Ju ∩ B(x, ρ)) ≥ 2(1 − ε)ρ,
H1(Ju ∩ ∂B(x, ρ)) = 0, and, as well, that Γi separates B(x, ρ) in exactly two connected
components, each one being a domain satisfying the property (H) (this is true simply
because Γi is C1, so that it is almost a diameter of B(x, ρ) as ρ goes to zero).

Now, if we invoke Besicovitch's covering theorem (with the measure H1 ∪∞i=1 Si, cf
[19, Cor. 1 p. 35]), then we �nd a covering (Bj)∞j=1 of H1�almost all of ∪∞i=1Si, of such
closed balls (we denote by xj the center of Bj and ρj its radius). Since

∑∞
j=1H1(Ju∩Bj) =

H1(Ju) < +∞1 there exists k with
∑

j>k H1(Ju ∩ Bj) < ε. For each Bj , j = 1, . . . , k,
there is an index i such that H1(Ju4Γi ∩ Bj) ≤ 2ερj ≤ ε/(1 − ε)H1(Ju ∩ Bj). We can

1Remember H1(Ju ∩ ∂Bj) = 0, so that H1(Ju ∩Bj) = H1(Ju ∩Bj) for all j.
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invoke Theorem 1 in each of the two components of Bj \ Γi, to �nd a sequence (uj
n)n≥1

converging to u in L2(Bj ; R2), such that

lim sup
n→∞

∫
Bj

W (e(uj
n)) dx + H1(Juj

n
∩Bj \ Γi) ≤

∫
Bj

W (e(u)) dx + c0H1(Ju ∩Bj \ Γi) .

This yields

lim sup
n→∞

∫
Bj

W (e(uj
n)) dx + H1(Juj

n
∩Bj)

≤
∫

Bj

W (e(u)) dx + H1(Ju ∩Bj) + c0
ε

1− ε
H1(Ju ∩Bj) .

On the other hand, for t > 0, let At = {x ∈ R2 : dist (x,Ω \ ∪k
j=1Bj) < t}. Since

H1(Ju∩(∩t>0At)) = H1(Ju\∪k
j=1Bj) ≤ ε, if t is small enough, we have thatH1(Ju∩At) ≤

2ε. Also At ∩ Ω satis�es (H). Hence there exists (u0
n)n≥1 in SBD(At ∩ Ω), converging to

u in L2(At ∩ Ω; R2) with

lim sup
n→∞

∫
At∩Ω

W (e(u0
n)) dx + H1(Ju0

n
) ≤

∫
At∩Ω

W (e(u)) dx + 2c0ε .

Invoking Lemma 3.1 with the covering At, (Bj)k
j=1 of Ω and the sequences (uj

n)n≥1, j =

0, . . . , k, we �nd a sequence (un)n≥1 that converges to u in L2(Ω; R2) such that

lim sup
n→∞

E(un,Ω) ≤ E(u,Ω) + 2c0ε + c0
ε

1− ε
H1(Ju) .

Since ε is arbitrary, a standard diagonalization argument shows Theorem 2. Notice that
here again, if u is bounded, then un is bounded with same bound.

Theorem 3 Assume Ω satis�es (H) and let u ∈ SBD(Ω)∩L2(Ω; R2), such that E(u,Ω) <

+∞. Then, there exists a sequence (un) of displacements in SBD(Ω) ∩ L2(Ω; R2), with

‖un − u‖L2(Ω;R2) → 0, such that each Jun
is closed in Ω, contained in a �nite union of

closed connected pieces of C1 curves, un ∈ H1(Ω \ Jun
; R2), and

(i) e(un) → e(u) strongly in L2(Ω;S2×2),

(ii) limn→∞H1(Jun
) = limn→∞H1(Jun

) = H1(Ju).

Again, if ‖u‖L∞ < +∞, one can ensure that ‖un‖L∞ ≤ ‖u‖L∞ for all n.

Proof. We will show in fact that the sequence given by Theorem 2 enjoys the desired
properties. For this we need the following (simpler) variant of the semicontinuity result of
Theorem 1.1 in [8], where no assumption is made on supn ‖un‖BD, but we assume instead
that un → u in L2(Ω; RN ), and consider only completely isotropic quadratic forms of e(u).
We state the lemma in any dimension N , replacing W with

W (A) =
1

NωN

∫
SN−1

((Aξ) · ξ)2 dHN−1(ξ)

which de�nes a quadratic form of A ∈ SN×N , that is positive de�nite. This extends to
any dimension the de�nition (3) (up to a factor 4).
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Lemma 5.1 (cf [8, Thm. 1.1]) Let Ω be an open subset of RN . Assume (un)n≥1 is a

sequence in SBD(Ω) ∩ L2(Ω; RN ) such that supn≥1

∫
Ω
W (e(un)) dx +HN−1(Jun

) < +∞
and un converges strongly in L2(Ω; RN ) to some u ∈ SBD(Ω). Then

(i) e(un) ⇀ e(u) weakly in L2(Ω;SN×N ),

(ii) HN−1(Ju) ≤ lim infn→∞H1(Jun
).

Proof. The proof reproduces essentially the proof of [8] in a simpler situation (see also [2]),
and we will sketch it brie�y.

We will show that for any smooth function ϕ ∈ C∞c (Ω;SN×N ) and any λ > 0, one has∫
Ω

W (e(u) + ϕ) dx + λHN−1(Ju) ≤ lim inf
n→∞

∫
Ω

W (e(un) + ϕ) dx+ λHN−1(Jun
). (10)

The lemma will follow. Indeed, if (10) holds, we have

HN−1(Ju) ≤ lim inf
n→∞

HN−1(Jun) +
1
λ

∫
Ω

W (e(un) + ϕ) dx

≤ lim inf
n→∞

HN−1(Jun
) +

1
λ

lim sup
n→∞

∫
Ω

W (e(un + ϕ)) dx .

Sending λ to +∞ we get point (ii) of the lemma.
The same argument, sending this time λ to 0, shows that∫

Ω

W (e(u+ ϕ)) dx ≤ lim inf
n→∞

W (e(un + ϕ)) dx . (11)

Upon extracting a subsequence, we can assume that e(un) ⇀ σ in L2(Ω;SN×N ). But (11)
yields, if we denote by B( · , · ) the symmetric quadratic form associated to W (such that
W (ε) = B(ε, ε)),∫

Ω

B(e(u), ϕ) dx ≤
∫

Ω

B(σ, ϕ) dx +
1
2

(
lim inf
n→∞

∫
Ω

W (e(un)) dx−
∫

Ω

W (e(u)) dx
)
.

Since ϕ is arbitrary, we easily deduce
∫
Ω
B(e(u), ϕ) dx =

∫
Ω
B(σ, ϕ) dx for all smooth ϕ,

which implies σ = e(u), and shows point (i) of the lemma.
It remains to show (10). Given v ∈ SBD(Ω), ξ ∈ SN−1 and z ∈ ξ⊥, we denote by vξ

z(s)

the function v(z+ sξ) · ξ, de�ned on the open (possibly empty) set Ωξ
z = {s : z+ sξ ∈ Ω}.

For all ξ and almost all z ∈ ξ⊥, the function vξ
z(s) is in SBV (Ωξ

z). Moreover, we can write
(to simplify we denote dHN−1(ξ) by dξ and dHN−1(z) by dz, and denote by ϕξ

z(s) the
function s 7→ (ϕ(z + sξ)ξ) · ξ )∫

Ω

W (e(v) + ϕ) dx =
1

NωN

∫
SN−1

dξ

∫
ξ⊥
dz

∫
Ωξ

z

(
(vξ

z)
′(s) + ϕξ

z(s)
)2
ds

whereas (see [4, 8])

HN−1(Jv) =
1

2ωN−1

∫
SN−1

dξ

∫
ξ⊥
H0(Svξ

z
) dz .

Since ∫
Ω

|un − u|2 dx =
1

NωN

∫
SN−1

dξ

∫
ξ⊥
dz

(∫
Ωξ

z

|(un)ξ
z − uξ

z|2 ds
)
,
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upon extracting a subsequence (still denoted by (un)), one can assume that (un)ξ
z → uξ

z

strongly in L2(Ωξ
z) for a.e. ξ ∈ SN−1 and for a.e. z ∈ ξ⊥ (we �rst identify ξ⊥ to RN−1 to

get the convergence for a.e. (z, ξ) ∈ SN−1 × RN−1).
Using Fatou's lemma, one sees that for every λ > 0 (denoting κ = NωN/(2ωN−1)),∫
SN−1

dξ

∫
ξ⊥
dz lim inf

n→∞

(∫
Ωξ

z

(
((un)ξ

z)
′(s) + ϕξ

z(s)
)2
ds+

λκ

2
H0
(
S(un)ξ

z

))
≤ (NωN ) lim inf

n→∞

∫
Ω

W (e(un) + ϕ) dx+ λHN−1(Jun
) < +∞ .

For almost every ξ and z, hence, one sees that

lim inf
n→∞

∫
Ωξ

z

(
((un)ξ

z)
′(s) + ϕξ

z(s)
)2
ds +

λκ

2
H0
(
S(un)ξ

z

)
< +∞,

and we can apply Ambrosio's Theorem [2, Thm 2.1] of (compactness and) semicontinuity
in GSBV (Ωξ

z) to deduce that∫
Ωξ

z

(
(uξ

z)
′(s) + ϕξ

z(s)
)2
ds +

λκ

2
H0
(
Suξ

z

)
≤ lim inf

n→∞

∫
Ωξ

z

(
((un)ξ

z)
′(s) + ϕξ

z(s)
)2
ds +

λκ

2
H0
(
S(un)ξ

z

)
.

Integrating again over ξ and z, we �nd (10). Lemma 5.1 is proven.

Proof of Theorem 3. Consider the sequence given by Theorem 2. By Lemma 5.1, one has

� e(un) ⇀ e(u) in L2(Ω;S2×2),

�
∫
Ω
W (e(u)) dx ≤ lim infn→∞

∫
Ω
W (e(un)) dx,

� HN−1(Ju) ≤ lim infn→∞H1(Jun
).

Thanks to (9), we deduce that point (ii) of the thesis of the theorem holds, as well as
limn→∞

∫
Ω
W (e(un)) dx =

∫
Ω
W (e(u)). This yields also the strong convergence of e(un)

to e(u), that is, point (i) of the thesis. This shows Theorem 3.

Remark 5.2 As mentioned before, the main drawback of our proof is that it does not

provide any global bound in BD(Ω) of the approximating sequence (un)n≥1. On the other

hand, one sees from the construction that each un is Lipschitz continuous on Ω\Jun
, with

continuous limits on ∂Ω on both sides of the jump Jun
.

Remark 5.3 Strictly speaking, we have not shown that each u ∈ SBD(Ω) can be ap-

proximated by a un such that Jun is closed in Ω, but more precisely, by a un such that

there exists a closed set Jn, �nite union of closed, connected pieces of C1 curves, with

Jun
⊂ Jn ∩ Ω and H1(Jn) → H1(Ju). However, if really needed, an in�nitesimal pertur-

bation of each un could be made in order to ensure Jun = Jn ∩Ω (again, up to a negligible

set), yielding H1(Jun
∩ Ω \ Jun

) = 0.

Remark 5.4 If the boundary of Ω is oscillating rapidly it might happen that, in our

construction, H1(Jun
) > H1(Jun

) (although one always have H1(Jun
∩Ω\Jun

) = 0). The

essential point is that H1(Jun) converges to H1(Ju).
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6 An application

Here, in order to illustrate the interest of Theorem 3, we show how it yields the extension
to the SBD case of a now �classical� Γ�convergence result in SBV , proven by Ambrosio
and Tortorelli [6, 7, 5].

We show the following result (here W is any positive-de�nite quadratic form on S2×2):

Theorem 4 Let Ω ⊂ R2 be a Lipschitz-regular open set. Let M > 0. For ε > 0 let us

de�ne the functional, for (u, v) ∈ L2(Ω; R2)× L2(Ω)

Eε(u, v) =


∫

Ω

(v2 + ηε)W (e(u)) dx +
∫

Ω

ε|∇v|2 +
(1− v)2

4ε
dx

if (u, v) ∈ H1(Ω; R2)×H1(Ω) and ‖u‖L∞ ≤M ;

+∞ otherwise,

(12)

with ηε = o(ε) as ε→ 0. Then, as ε→ 0, Eε Γ�converges (in L2(Ω; R2)× L2(Ω)) to

E(u, v) =


∫

Ω

W (e(u)) dx + H1(Ju) if u ∈ SBD(Ω), v = 0,
and ‖u‖L∞ ≤M ;

+∞ otherwise.

(13)

Proof. The proof of most of this result is now standard [6, 7, 1, 15]. We just sketch the proof
of the Γ�lim inf inequality, following an approach of Braides and Solci [12] (cf also [9]).
We choose uj , vj that converge to some u, v in L2, and such that supj≥1Eεj

(uj , vj) < +∞,
where (εj) is a sequence that goes to 0. First, we notice that we must have v = 1 (since∫
Ω
(1−vj)2 dx ≤ cεj). We write that

∫
Ω
εj |∇vj |2 +(1−vj)2/(4εj) dx ≥

∫
Ω
|1−vj ||∇vj | dx,

so that, using the coarea formula,

Eεj
(uj , vj) ≥

∫ 1

0

ds

(∫
{vj>s}

2sW (e(uj)) dx + (1− s)H1(∂∗{vj > s})

)
.

(∂∗{vj > s} denotes the reduced boundary of the �nite perimeter set {x : vj(x) > s},
see [19, 20].) Then, we need to adapt [10, Lemma 2] to the SBD case (with uniform L∞

bound M), with the assumption that uj → u in L2(Ω; R2), following essentially the lines
of the proof we gave of Lemma 5.1. We will deduce that for almost each s ∈ (0, 1),∫

Ω

2sW (e(u)) dx+ 2(1− s)H1(Ju)

≤ lim inf
j→∞

∫
{vj>s}

2sW (e(uj)) dx + (1− s)H1(∂∗{vj > s}) .

Integrating over s ∈ (0, 1) and using Fatou's lemma, we get the inequality E(u, v) ≤
lim infj→∞Eεj

(uj , vj).
To prove the Γ�lim sup inequality, we �rst notice that because of Theorem 3, we just

need to prove it for a (u, v) with v = 0 and u ∈ SBD(Ω) with H1(Ju) < +∞, replacing
H1(Ju) by H1(Ju) in the energy (assuming also Ju is recti�able). Then, a standard
diagonalization argument will yield the result. We follow the approach in [9]. We notice
that

lim
s→0

|{x ∈ R2 : dist (x, Ju) < s}|
2s

= H1(Ju).
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Indeed, the left�hand side of this equality is the Minkowsky contents of the set Ju, which
is known to coincide with the 1�dimensional Hausdor� measure for closed and recti�able
subsets of R2 [5, 20].

We let d(x) = dist (x, Ju), and f(s) = |{x ∈ Ω : d(x) < s}| for all s > 0. We have
lim sups→0 f(s)/(2s) ≤ H1(Ju). Let αε < ε be a small parameter (that goes to 0 and will
be precised later on). We let, for every ε > 0, vε(x) = 1−exp(−(d(x)−αε)/2ε) if d(x) > αε,
vε(x) = 0 otherwise, while uε(x) = u(x) if d(x) ≥ αε, uε(x) = (2d(x)/αε − 1)u(x) if
αε > d(x) ≥ αε/2, and uε(x) = 0 if d(x) < αε/2. This uε is in H1(Ω). It is clear that
vε → 0 as ε→ 0, while uε → u (in L2). On the other hand,∫

Ω

(v2
ε + ηε)W (e(uε)) dx ≤ (1 + ηε)

∫
Ω

W (e(u)) dx + c
∣∣∣{αε

2
< d < αε

}∣∣∣ ηεM

α2
ε

2

= (1 + ηε)
∫

Ω

W (e(u)) dx + O

(
ηε

αε

)
.

We see that if ηε = o(αε), then the limit of the right-hand side is
∫
Ω
W (e(u)) dx. Let us

estimate the other term of Eε(uε, vε). One has∫
Ω

ε|∇vε|2 +
(1− vε)

4ε

2

=
1
2ε

∫
{d>αε}

e−
d−αε

ε dx =
1
2ε

∫ +∞

αε

e−
s−αε

ε H1(∂{d > s}) ds.

Since f(s) =
∫ s

0
H1(∂{d > t}) dt, integrating by parts we get that this integral is

− 1
2ε
f(αε) +

1
2ε2

∫ ∞

αε

f(s)e−
s−αε

ε ds = −αε

ε

f(αε)
2αε

+
∫ ∞

0

(αε

ε
+ t
) f(αε + εt)

2(αε + εt)
e−t dt .

Since
∫∞
0
te−t dt = 1 and lim supε→0 f(αε + εt)/(2(αε + εt)) ≤ H1(Ju), the lim sup of the

above expression is not greater than H1(Ju) as soon as αε = o(ε). Hence, choosing αε =
√
εηε, we have both ηε = o(αε) and αε = o(ε), and we deduce lim supε→0Eε(uε, vε)) ≤∫

Ω
W (e(u)) dx + H1(Ju).

Remark 6.1 A more carefully written proof would show that it is possible to take αε =

O(ε), which is interesting from a numerical analysis point of view.

Remark 6.2 One shows also easily that if (uε, vε)ε>0 is such that supε>0Eε(uε, vε) <

+∞, then some subsequence (uεj
, vεj

)j≥1 will converge in L2. To do so, one notices that

one can select for each ε a level sε ' 1/2 such that supε>0H1(∂∗{vε > sε}) < +∞. Then,

we apply the compactness result in [8, Thm. 1.1] to the functions u′ε = uε χ{vε>s}, which

are uniformly bounded in BD(Ω) thanks to the L∞ bound in the de�nition (12) of Eε.

A A simple inequality

The following lemma is essential in the proof of Theorem 1. Given U = (uα
i,j) α=1,2

i, j = 0, 1
∈ R8,

we associate a displacement u(x1, x2) by letting

u(x1, x2) =

 ∑
i,j=0,1

uα
i,j∆(x1 − i, x2 − j)


α=1,2
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where ∆(x1, x2) = (1−|x1|)+(1−|x2|)+. We can de�ne a positive quadratic form of U by
letting Q1(U) =

∫
(0,1)2

W (e(u)) dx1dx2 where W is given by (3). Another quadratic form
is given by the formula

Q2(U) =
1
2
(
(u1

1,0 − u1
0,0)

2 + (u1
1,1 − u1

0,1)
2 + (u2

0,1 − u2
0,0)

2 + (u2
1,1 − u2

1,0)
2
)

+
1
4
(
(u1

1,1 + u2
1,1 − u1

0,0 − u2
0,0)

2 + (u1
0,1 − u2

0,1 − u1
1,0 + u2

1,0)
2
)
.

We show the following result.

Lemma A.1 Q1 ≤ Q2

Proof. There are several ways to show this inequality, however, we did not �nd any that is
really satisfactory. Indeed, this lemma is the only point in the proof of Theorem 1 that is
not straightforward to extend in higher dimension (Theorems 2 and 3 would then also easily
follow in any dimension). In fact, given a �xed dimension N , it is possible to show the N�
dimensional version of this result, by a �straightforward� matrix calculation (that we will
perform here in dimension 2). However, the matrices that are involved are of dimension
(N2N ) × (N2N ), and it would be much nicer to �nd some general and systematic proof
of the result not depending on the dimension. A possible approach would be to consider
a general discrete energy Q

(
(u(ξ))ξ∈{0,1}N

)
de�ned on the values u(ξ) at the vertices ξ of

the unit cube (with some reasonable properties, nonnegative, invariant by addition of a
constant, maybe quadratic, maybe with other symmetries, etc...), scale it appropriately to
de�ne a discrete energy at scale h > 0 in the unit cube, consider its Γ�limit (for instance in
H1-weak), which should be of the form

∫
(0,1)N W (∇u) dx, and then show that if u(x) is the

function
∑

ξ∈{0,1}N u(ξ)ΠN
i=1(1− |xi − ξi|)+ then

∫
(0,1)N W (∇u) dx ≤ Q

(
(u(ξ))ξ∈{0,1}N

)
.

We believe that such a result should hold, for a reasonably large class of functions Q.
Since we do not know how to prove such a result, let us just compute the matrices

A1 and A2 of Q1 and Q2 and compare them. In order to do so we will use the following
ordering of the 8 coe�cients of U :

U = (u1
0,0, u

1
1,0, u

1
0,1, u

1
1,1, u

2
0,0, u

2
0,1, u

2
1,0, u

2
1,1).

Then, because of the symmetries, we see that for i = 1, 2,

Ai =

(
Bi Ci

CT
i Bi

)

where Bi, Ci are 4× 4 matrices (Bi is symmetric). A2 is easy to compute:

B2 =
1
4


3 −2 0 −1

−2 3 −1 0

0 −1 3 −2

−1 0 −2 3

 and C2 =
1
4


1 0 0 −1

0 1 −1 0

0 −1 1 0

−1 0 0 1

 .

To compute A1, we need to compute the scalar products
∫
(0,1)2

Ae(wi) : e(wj), where
(wi)8i=1 are the basis functions de�ning u (u(x) =

∑8
i=1 uiwi(x)), and A is the tensor
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associated to the quadratic form W , that is, such that Aσ = σ + (1/2)(Trσ)I for any
σ ∈ S2×2. The Table 1 gives the 8 functions wi, their symmetrized gradients e(wi) and
the corresponding Ae(wi).

i wi e(wi) Ae(wi)

1

(
(1− x1)(1− x2)

0

) (
−(1− x2) − 1−x1

2

− 1−x1
2 0

)
1
2

(
−3(1− x2) −(1− x1)

−(1− x1) −(1− x2)

)

2

(
x1(1− x2)

0

) (
1− x2 −x1

2

−x1
2 0

)
1
2

(
3(1− x2) −x1

−x1 1− x2

)

3

(
(1− x1)x2

0

) (
−x2

1−x1
2

1−x1
2 0

)
1
2

(
−3x2 1− x1

1− x1 −x2

)

4

(
x1x2

0

) (
x2

x1
2

x1
2 0

)
1
2

(
3x2 x1

x1 x2

)

5

(
0

(1− x1)(1− x2)

) (
0 − 1−x2

2

− 1−x2
2 −(1− x1)

)
1
2

(
−(1− x1) −(1− x2)

−(1− x2) −3(1− x1)

)

6

(
0

(1− x1)x2

) (
0 −x2

2

−x2
2 1− x1

)
1
2

(
1− x1 −x2

−x2 3(1− x1)

)

7

(
0

x1(1− x2)

) (
0 1−x2

2
1−x2

2 −x1

)
1
2

(
−x1 1− x2

1− x2 −3x1

)

8

(
0

x1x2

) (
0 x2

2
x2
2 x1

)
1
2

(
x1 x2

x2 3x1

)

Table 1: The basis (wi)8i=1 and its derivatives

Using
∫ 1

0

x(1 − x) dx = 1/6,
∫ 1

0

x2 dx =
∫ 1

0

(1 − x)2 dx = 1/3, and
∫

(0,1)2
x1x2 dx =

1/4, we deduce easily that

B1 =
1
12


8 −5 1 −4

−5 8 −4 1

1 −4 8 −5

−4 1 −5 8

 and C1 = C2 .

Hence A2 −A1 has the form

A2 −A1 =

(
B2 −B1 0

0 B2 −B1

)
.
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The matrix B2 −B1, given by

B2 −B1 =
1
12


1 −1 −1 1

−1 1 1 −1

−1 1 1 −1

1 −1 −1 1

 ,

has eigenvalues 0 (with multiplicity 3) and 1/3: it is nonnegative, which shows the lemma.
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