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Abstract. Nonlinear equality and inequality constrained optimization problems with uncertain parameters
can be addressed by a robust worst-case formulation that is, however, difficult to treat computationally. In
this paper we propose and investigate an approximate robust formulation that employs a linearization of the
uncertainty set. In case of any norm bounded parameter uncertainty, this formulation leads to penalty terms
employing the respective dual norm of first order derivatives of the constraints. The main advance of the paper
is to present two sparsity preserving ways for efficient computation of these derivatives in the case of large
scale problems, one similar to the forward mode, the other similar to the reverse mode of automatic differen-
tiation. We show how to generalize the techniques to optimal control problems, and discuss how even infinite
dimensional uncertainties can be treated efficiently. Finally, we present optimization results for an example
from process engineering, a batch distillation.

Key words. Nonlinear Programming – Robust Optimization – Optimal Control

1. Introduction

In this paper we consider uncertain nonlinear programming problems of the form

min
x∈Rnx ,u∈Rnu

f0(x, u) s.t.

{

fi(x, u) ≤ 0 for i = 1, . . . , nf ,

gj (x, u, p) = 0 for j = 1, . . . , nx .
(1)

with an uncertain parameter vector p ∈ R
np , and smooth real valued functions f0, f1,

. . . , fnf
, g1, . . . , gnx . We partition the optimization variables into the vectors x and u,

and the number of equality constraints equals the dimension of x. We assume the jacobian
∂g
∂x

to be invertible everywhere, so that we can regard the variables x as an implicit

function of u and p. This division into “states” x and “controls” u arises naturally in

model based optimization, where the equalities g(x, u, p) = 0 often contain discretized

ordinary or partial differential equations, such that we are in particular interested in the

case nx ≫ 1.

Following a classical approach to address uncertainty, we assume we have some

knowledge about the parameter p in the sense that it is restricted to be in a generalized

ball

P := {p ∈ R
np | ‖ p − p̄ ‖ ≤ 1} (2)

defined by using a suitable norm ‖·‖ in R
np . This norm may e.g. be chosen to be a scaled

Hölder q−norm (1 ≤ q ≤ ∞), ‖p‖ = ‖A−1p‖q , with an invertible np ×np−matrix A.
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This definition of the uncertainty set includes the case of a confidence ellipsoid for

a Gaussian random variable p with the expectation value p̄, the variance-covariance

matrix �, and a scalar γ > 0 depending on the desired confidence level:

Pellipsoid =

{

p ∈ R
np

∣
∣
∣

∥
∥
∥
∥

1

γ
�− 1

2 (p − p̄)

∥
∥
∥
∥

2

≤ 1

}

.

It also includes the case of known upper and lower bounds pl, pu for the parameters,

that leads to the box

Pbox =

{

p

∣
∣
∣ pl ≤ p ≤ pu

}

=

{

p

∣
∣
∣

∥
∥
∥
∥
∥

diag

(
pu−pl

2

)−1(

p −
pl+pu

2

)
∥
∥
∥
∥
∥

∞

≤ 1

}

.

Note that any product P = Pa × Pb of two such sets can be expressed by employing the

maximum ‖ p‖ = ‖ (pT
a , pT

b )T ‖ = max{‖pa‖a, ‖pb‖b} of the two respective norms as

a norm.

1.1. Robust counterpart formulation

In order to incorporate the uncertainty in the optimization problem formulation, we

choose the classical worst-case formulation of (1). For this aim we assume that the

optimizer, who chooses u first, has “nature” as an adverse player who chooses after-

wards p and x. Whatever u the optimizer chooses, for each of the functions fi(x, u),

i = 0, 1, . . . , nf , the worst possible value, φi(u), is chosen by the adverse player:

φi(u) := max
x∈Rnx ,p∈R

np
fi(x, u) s.t.

{

g(x, u, p) = 0,

‖p − p̄‖ ≤ 1.
(3)

Note that the adverse player “nature” is restricted by both the model equations g(x, u, p)

= 0 and the norm bound on p. Employing the functions φi(u) we arrive at the following

worst-case formulation that is often referred to as the “robust counterpart” of (1) (cf.

Ben-Tal and Nemirovskii [1]):

(RC) min
u∈Rnu

φ0(u) s.t. φi(u) ≤ 0 for i = 1, . . . , nf . (4)

Due to its bi-level structure, this optimization problem is difficult to solve numerically

for general nonlinear functions.

1.2. Expectation value optimization

Alternatively to the worst-case assumption we may also assume that the adverse player

“nature” chooses p (and therefore also x) according to an equal probability distribution

on P, i.e. for any function c(x, u) and fixed u we have

Ex{c(x, u)} =

∫

p∈P
c(g−1(u, p), u)dp

∫

p∈P
dp

,
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where g−1 is the hypothetical inverse function of g with respect to x that solves uniquely

g(g−1(u, p), u, p) = 0 for all u, p.

We may then aim to minimize the expectation value Ex{c(x, u)} of the generalized

cost function

c(x, u) := f0(x, u) +

{

0 if fi(x, u) ≤ 0 for i = 1, . . . , nf ,

∞ else.

that penalizes constraint violations by infinite costs. It is straightforward to see that the

expectation value Ex{c(x, u)} is infinity for any u that does not satisfy φi(u) ≤ 0 for

all i = 1, . . . , nf . Therefore, the problem minu∈Rnu Ex{c(x, u)} can equivalently be

written as

min
u∈Rnu

Ex{f0(x, u)} s.t. φi(u) ≤ 0 for i = 1, . . . , nf . (5)

We refer to this optimization problem – that differs from the robust counterpart (4) only

in the objective – as the “expectation value robust counterpart” of (1). It is equally

difficult to solve this problem numerically for general nonlinear problems.

2. Approximation of the robust counterparts

In order to avoid the bi-level structure of the robust counterparts (4) (resp. (5)), we pro-

pose in this paper to replace the functions φi , i = 0, . . . , nf , by approximations φ̃i that

can much easier be evaluated and that will be defined below. The idea is to replace the

robust counterpart (4) by the approximation

(ARC) min
u∈Rnu

φ̃0(u) s.t. φ̃i(u) ≤ 0 for i = 1, . . . , nf . (6)

Likewise, the “expectation value robust counterpart” (5) will be approximated by

min
u∈Rnu

f̃0(u) s.t. φ̃i(u) ≤ 0 for i = 1, . . . , nf , (7)

with a suitable approximation f̃0(u) of Ex{f0(x, u)}.

2.1. Worst-case approximation by linearization

Our approximation of the worst-case functions φi(u) is based on a linearization idea that

has been developed within the authors’ workgroup [2] and has already been applied for

design of robust optimal experiments, see Körkel et al. [10]. Independently, the idea had

also been proposed by Ma and Braatz [15] and was applied for robust optimal control

of batch processes by Nagy and Braatz [16]. By inspecting the expression (3) for the

functions φi(u), we linearize both the model equations g(x, u, p) = 0 and the func-

tion fi(x, u), for given u, at a point (x̄, u, p̄) satisfying g(x̄, u, p̄) = 0, where p̄ is the

nominal parameter.
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We then approximate φi(u) by φ̃i(u), defined by the convex optimization problem

φ̃i(u) := max
�x∈Rnx ,�p∈R

np
fi(x̄, u) +

∂fi

∂x
(x̄, u)�x,

s.t.
∂g
∂x

(x̄, u, p̄)�x +
∂g
∂p

(x̄, u, p̄)�p = 0,

‖�p‖ ≤ 1.

(8)

It is well known that this optimization problem can be solved analytically:

Lemma 1. The convex optimization problem (8) has the optimal value

φ̃i(u) = fi(x̄, u) +

∥
∥
∥
∥
∥
−

(
∂g

∂p
(x̄, u, p̄)

)T(
∂g

∂x
(x̄, u, p̄)

)−T(
∂fi

∂x
(x̄, u)

)T
∥
∥
∥
∥
∥

∗

. (9)

Here we use the dual norm to ‖ · ‖, namely the mapping

‖ · ‖∗ : R
np → R,

a �→ ‖a‖∗ := max
p∈R

np
aT p s.t. ‖p‖ ≤ 1. (10)

Proof. We solve (8) by eliminating �x, which yields the expression

φ̃i(u) = fi(x̄, u) + max
�p∈R

np

∂fi

∂x
(x̄, u)

(

−

(
∂g

∂x
(x̄, u, p̄)

)−1
∂g

∂p
(x̄, u, p̄)

)

�p,

s.t. ‖�p‖ ≤ 1.

Remark. It is well known that for any scaled Hölder q−norm ‖p‖ = ‖Ap‖q (A invert-

ible, 1 ≤ q ≤ ∞), the dual norm is ‖a‖∗ = ‖A−1a‖ q
q−1

(for q = 1 we define
q

q−1
:= ∞

and for q = ∞,
q

q−1
:= 1), as was observed in the context of worst-case analysis by Ma

and Braatz [15] and independently within the authors’ workgroup [2]. For ‖ · ‖ being

the maximum of two norms ‖ · ‖a and ‖ · ‖b, i.e. ‖ p‖ = max{‖pa‖a, ‖pb‖b} , the dual

is the sum of the dual norms, ‖ p‖∗ = ‖p‖a, ∗ + ‖p‖b, ∗, and vice versa. Therefore, the

dual norm can explicitly be given for those norms that we typically use to define our

uncertainty sets.

2.2. The approximated robust counterpart

The optimization problem (6), which we call the “approximated robust counterpart”

of (1), can explicitly be formulated as follows:

min
u∈Rnu, x̄∈Rnx

f0(x̄, u) +

∥
∥
∥
∥
∥

(
∂g

∂p

)T(
∂g

∂x

)−T(
∂f0

∂x

)T
∥
∥
∥
∥
∥

∗

(11)

(ARC) s.t. fi(x̄, u) +

∥
∥
∥
∥
∥

(
∂g

∂p

)T(
∂g

∂x

)−T(
∂fi

∂x

)T
∥
∥
∥
∥
∥

∗

≤ 0 (12)

i = 1, . . . , nf ,

and g(x̄, u, p̄) = 0. (13)

Here, all derivatives are evaluated at (x̄, u, p̄). Note that they depend on the controls u

and are thus subject to optimization.
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2.2.1. Remark on higher order approximations: Instead of using only linear terms in

the approximation (8), one might try to employ higher order Taylor series expansions

of the mapping fi(g
−1(u, p), u) with respect to the uncertain parameters p. This has

been suggested for robustness analysis by Ma and Braatz [15] who also present ways for

computing polynomial time lower and upper bounds for the solution of the nonconvex

worst-case problems in the case of second and third order expansions. However, these

computations are considerably more expensive than the simple analytic expression (9) to

the linearized worst-case problem (8), and they do not allow for similar smooth structure

exploiting NLP formulations as they will be presented in Section 3 of this paper for the

first order case.

2.3. Expectation value approximation by linearization

For the approximation (7) of the “expectation value robust counterpart” (5) we use the

same linearization at the point (x̄, u, p̄) satisfying g(x̄, u, p̄) = 0, and approximate

Ex{f0(x, u)} by

f̃0(u) := Ep

{

f0(x̄, u) +
∂f0

∂x
(x̄, u)

(

−

(
∂g

∂x
(x̄, u, p̄)

)−1
∂g

∂p
(x̄, u, p̄)

)

(p − p̄)

}

.

Because of symmetry of the probability distribution of p around p̄, this evaluates to

f̃0(u) = f0(x̄, u).

Therefore, the “expectation value robust counterpart approximation” (7) looks the same

as the robust counterpart approximation (11)–(13) apart from the fact that the second

term in the objective (11) – the dual norm penalty – is dropped.

3. Numerically efficient problem formulations

The above formulation (11)–(13) of the approximated robust counterpart suffers the

drawback that problem structure inherent in the model equations g(x, u, p) = 0 like

sparsity is likely to get lost, due to the explicit appearance of the inverse. We propose two

equivalent formulations, that are computationally more convenient than (11)–(13), and

that differ in the way they represent the required derivatives. Both formulations retain

sparsity, which is very important for application to large scale systems. They bear some

similarity to the “forward” and “reverse” mode of automatic differentiation, respectively,

cf. Griewank [9].

3.1. Formulation 1: direct sensitivity equations

The first variant uses a straightforward approach to define the required derivative matrix

D(x̄, u, p̄) :=

(

−

(
∂g

∂x
(x̄, u, p̄)

)−1
∂g

∂p
(x̄, u, p̄)

)

.
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Note that this “sensitivity” matrixD(x̄, u, p̄) can be interpreted as the jacobian
∂g−1

∂p
(u, p̄)

of the inverse function of g. Introducing D ∈ R
nx×np as an additional variable into the

problem (11)–(13), we obtain:1

min
u∈Rnu, x∈Rnx, D∈R

nx×np
f0(x, u) +

∥
∥
∥
∥
∥
DT

(
∂f0

∂x
(x, u)

)T
∥
∥
∥
∥
∥

∗

(14)

(ARC-D) s.t. fi(x, u) +

∥
∥
∥
∥
∥
DT

(
∂fi

∂x
(x, u)

)T
∥
∥
∥
∥
∥

∗

≤ 0, (15)

i = 1, . . . , nf ,

g(x, u, p̄) = 0, (16)

and
∂g

∂x
(x, u, p̄) D +

∂g

∂p
(x, u, p̄) = 0. (17)

Note that the last equation (17) is a matrix equation in R
nx×np .

3.2. Formulation 2: adjoint sensitivities

The second formulation does not use the sensitivity matrix D ∈ R
nx×np , but instead an

“adjoint sensitivity” matrix � ∈ R
nx×(1+nf ), that is defined as

�(x̄, u, p̄) :=

(

−
∂f

∂x
(x̄, u)

(
∂g

∂x
(x̄, u, p̄)

)−1
)T

.

Here, f (x, u) = (f0(x, u), . . . , fnf
(x, u)). Introducing � ∈ R

nx×(1+nf ) as an addi-

tional variable into the problem, and denoting the column vectors of � by λ0, . . . , λnf

we obtain

min
u∈Rnu, x∈Rnx, �∈R

nx×(1+nf )
f0(x, u) +

∥
∥
∥
∥
∥

(
∂g

∂p
(x, u, p)

)T

λ0

∥
∥
∥
∥
∥

∗

(18)

(ARC-A) s.t. fi(x, u) +

∥
∥
∥
∥
∥

(
∂g

∂p
(x, u, p)

)T

λi

∥
∥
∥
∥
∥

∗

≤ 0 (19)

i = 1, . . . , nf ,

g(x, u, p̄) = 0, (20)

and

(
∂g

∂x
(x, u, p̄)

)T

� +

(
∂f

∂x
(x, u)

)T

= 0. (21)

Note that the last equation (21) is a matrix equation in R
nx×(1+nf ). This adjoint formu-

lation may be preferred if the number np of uncertain parameters significantly exceeds

the number nf of inequality constraints.

1 For notational convenience we drop the bar over the variable x from now on.
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3.3. Addressing non-smoothness of the dual norms

In expressing the approximated robust counterparts via the direct or adjoint sensitivity

formulations we avoided the explicit use of matrix inversions in order to preserve spar-

sity in the problem. However, the formulated problems have non-smooth objective resp.

inequality constraints, due to the appearance of the dual norm. Therefore, if they shall

be addressed by standard Newton-Lagrange algorithms for the solution of smooth non-

linear programming problems (cf. Nocedal and Wright [17]), further precaution needs

to be taken.

3.3.1. Slack formulation for ℓ1 or ℓ∞ norms: Fortunately, the non-smoothness can

be removed by introduction of slack variables, for scaled ℓ1 or ℓ∞ norms, or mixtures

thereof. As an example let us assume the primal norm was a scaled maximum norm

‖p‖ = ‖A−1p‖∞ (expressing box uncertainty), such that the dual norm is given by

‖p‖∗ = ‖Ap‖1 (22)

By introducing slack vectors si ∈ R
np , i = 0, . . . , nf and defining e := (1, . . . , 1)T ∈

R
np we can formulate the approximated robust counterpart (11)–(13) as the following

nonlinear program

min
u, x,s0,... ,snf

f0(x, u) + eT s0 (23)

s.t. fi(x, u) + eT si ≤ 0, i =1,. . . ,nf , (24)

−si ≤ A

(
∂g

∂p
(x, u, p̄)

)T(
∂g

∂x
(x, u, p̄)

)−T(
∂f

∂x
(x, u)

)T

≤ si, i =0,. . . ,nf , (25)

and g(x, u, p̄) = 0. (26)

A similar formulation via slacks also exists for the maximum norm, and of course for

the direct or adjoint sensitivity formulations. The resulting nonlinear programs have

only smooth problem functions and can be solved by standard methods of nonlinear

programming.

3.3.2. Euclidean norm: For all scaled Hölder norms ‖p‖∗ = ‖Ap‖r with 1 < r < ∞,

there is no slack formulation to transform the problem into a smooth NLP. This is in

particular true for the important case r = 2, the self-dual Euclidean norm, which is used

to express ellipsoidal uncertainty. However, for this norm there is only one non-differ-

entiable point, namely the zero vector p = 0. Therefore one might hope that a standard

Newton-Lagrange NLP algorithm is able to solve (ARC), the approximated robust coun-

terpart problem (11)–(13), without any modification, despite the non-differentiability.

This approach was successfully applied for robust optimal design of experiments by

Körkel et al. [10], and it is also employed in the application example at the end of this

paper. However, while neglecting the non-differentiability works well for many practi-

cally relevant problems, it is important to note that there also exist interesting problems

where the optimal solution lies exactly at the non-differentiable point. This occurs when

it is both possible and optimal to choose the controls u such as to avoid the (linearized)
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dependence of the objective or some inequality constraint function on the uncertain

parameters altogether, i.e., by making one or more of the “total derivative” terms

dfi

dp
:=

∂fi

∂x

(
∂g

∂x

)−1
∂g

∂p
=

∂fi

∂x
D = λT

i

∂g

∂p

zero in the optimal solution.

This situation frequently occurs e.g. in robust linear programming, wheref0, . . . , fnf

are linear functions and g is without loss of generality of the form g(x, u, p) = −x

+ A(p)u + b(p), with A(·) and b(·) affine in p. Fortunately, for robust linear program-

ming there exist well developed solution methods from the field of conic programming,

see e.g. Ben-Tal and Nemirovskii [1] or Boyd and Vandenberghe [4]. It is easy to show

that for uncertain robust linear programs the linearized formulation (11)–(13) coincides

with the exact robust counterpart (4), and that a robust linear program with ellipsoidal

uncertainty set can be cast as a second order cone program.

For general nonlinear problems with ellipsoidal uncertainty, hovever, the approxi-

mated robust counterpart (11)–(13) falls into a subclass of nonlinear semidefinite pro-

gramming. To be specific, when the dual norm is a scaled Euclidean norm ‖p‖∗ =

‖Ap‖2, it can be formulated as a smooth nonlinear problem with (nonsmooth) second

order cone constraints.

It can be hoped that the ongoing development of algorithms for the general class

of nonlinear semidefinite programming (cf. [5, 7, 8, 11, 12]), will facilitate the reliable

numerical solution of this type of large-scale nonlinear conic optimization problem.

4. Generalization to optimal control of uncertain systems

We will briefly describe how the direct and adjoint approximated robust counterpart

formulations can be generalized to the context of optimal control problems. For this aim

we regard a simplified optimal control problem in ordinary differential equations on the

(variable) time horizon [0, T ] of the following form:

min
T ,u(·),x(·)

f0(x(T ), T ) (27)

s.t.
dx

dt
(t) = G(x(t), u(t)), ∀t ∈ [0, T ], (28)

x(0) = x0(p), (29)

fi(x(T ), T ) ≤ 0, i = 1, . . . , nf . (30)

We regard the horizon length T and the control profile u : [0, T ] → R
nu as decision

variables and the trajectory x : [0, T ] → R
nx as the dependent variables. The latter

are chosen by “nature”, which is only restricted by the model equations (28), the initial

value constraint (29), and the norm bound ‖p − p̄‖ ≤ 1 on the parameters p ∈ R
np .

The above problem class is fairly general and includes in particular uncertain param-

eter dependent ODE dx
dt

(t) = G(x(t), u(t), p̃) (add some trivial differential equations
dp̃
dt

= 0 and let the initial value p̃(0) = p be chosen by nature).

We show two equivalent ways to approximate the robust counterpart of the above

optimal control problem, first a direct and second an adjoint sensitivity formulation.
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4.1. Direct approximate robust counterpart formulation

Analogous to the direct sensitivity formulation (14)–(17) of the approximated robust

counterpart, we obtain the following optimal control problem formulation, where the

time dependent system state x(t) ∈ R
nx is augmented by a time dependent sensitivity

matrix D(t) ∈ R
nx×np .

min
T ,u(·),x(·),D(·)

f0(x(T ), T ) +

∥
∥
∥
∥
∥
D(T )T

(
∂f0

∂x
(x(T ), T )

)T
∥
∥
∥
∥
∥

∗

(31)

s.t. fi(x(T ), T ) +

∥
∥
∥
∥
∥
D(T )T

(
∂fi

∂x
(x(T ), T )

)T
∥
∥
∥
∥
∥

∗

≤ 0, (32)

i = 1, . . . , nf ,

dx

dt
(t) = G(x(t), u(t)), ∀t ∈ [0, T ], (33)

x(0) = x0(p), (34)

dD

dt
(t) =

∂G

∂x
(x(t), u(t))D(t), ∀t ∈ [0, T ], (35)

D(0) =
∂x0

∂p
(p). (36)

Note that the matrix D(t) ∈ R
nx×np can be regarded as the derivative

D(t) =
dx(t)

dx(0)

∂x0

∂p
(p),

where we denote by dx(t)
dx(0)

the linearized dependence of the state x(t) at time t on the

initial state x(0). This type of direct sensitivity formulation was e.g. suggested by Nagy

and Braatz [16], who applied it to robust optimization of batch processes.

4.2. Adjoint approximate robust counterpart formulation

Analogous to the adjoint sensitivity formulation (18)–(21) we can alternatively formu-

late an optimal control problem where the time dependent system state x(t) ∈ R
nx

is augmented by (nf + 1) time dependent adjoint sensitivities λi(t) ∈ R
nx , that we

combine in the matrix �(t) = (λ0(t)| · · · |λnf
(t)) ∈ R

nx×(nf +1):

min
T ,u(·),x(·),�(·)

f0(x(T ), T ) +

∥
∥
∥
∥
∥

(
∂x0

∂p
(p)

)T

λ0(0)

∥
∥
∥
∥
∥

∗

(37)

s.t. fi(x(T ), T ) +

∥
∥
∥
∥
∥

(
∂x0

∂p
(p)

)T

λi(0)

∥
∥
∥
∥
∥

∗

≤ 0, i=1, . . . , nf , (38)

dx

dt
(t) = G(x(t), u(t)), ∀t ∈ [0, T ], (39)
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x(0) = x0(p), (40)

d�

dt
(t) = −

(
∂G

∂x
(x(t), u(t))

)T

�(t), ∀t ∈ [0, T ], (41)

�(T ) =

(
∂f

∂x
(x(T ), T )

)T

. (42)

The adjoint differential equations (41) with the terminal boundary condition (42) are

well known in optimal control theory, albeit in a different context (for the formulation of

necessary optimality conditions). In our context, the matrix variable �(t) ∈ R
nx×(nf +1)

can be interpreted as an adjoint sensitivity:

�(t)T =
∂f

∂x
(x(T ), T )

dx(T )

dx(t)
,

where we define dx(T )
dx(t)

to be the linearized dependence of the final state x(T ) on the

intermediate state x(t) at time t . Using this definition, we can derive the terminal condi-

tion (42) by noting that dx(T )
dx(T )

= I. Likewise, the adjoint differential equation (41) can

be deduced as follows. For the fixed matrix �(T )T
dx(T )
dx(0)

holds

0 =
d

dt

(

�(T )T
dx(T )

dx(0)

)

=
d

dt

(

�(T )T
dx(T )

dx(t)

dx(t)

dx(0)

)

(43)

=
d

dt

(

�(T )T
dx(T )

dx(t)

)
dx(t)

dx(0)
+ �(T )T

dx(T )

dx(t)

d

dt

(
dx(t)

dx(0)

)

(44)

=
d�(t)T

dt

dx(t)

dx(0)
+ �(t)T

d

dt

(
dx(t)

dx(0)

)

(45)

=
d�(t)T

dt

dx(t)

dx(0)
+ �(t)T

∂G

∂x
(x(t), u(t))

dx(t)

dx(0)
(46)

⇔

0 =
d�(t)T

dt
+ �(t)T

∂G

∂x
(x(t), u(t)). (47)

This adjoint formulation may be preferred to the direct one if the number np of uncertain

parameters is considerably larger than the number nf + 1 of objective and inequality

constraint functions.

4.2.1. Remark on time dependent disturbances: The adjoint method can even be used

to approximate the case of time dependent (i.e., infinite dimensional) disturbances w(t),

where the differential equation (28) is replaced by

dx

dt
(t) = G(x(t), u(t)) + w(t), ∀t ∈ [0, T ], (48)

and we have a norm bound on the function w : [0, T ] → R
nx , e.g. of the form

max
t∈[0,T ]

‖w(t)‖w ≤ 1, (49)
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with an arbitrary norm ‖ · ‖w in R
nx . Such a problem formulation can be used to express

uncertainty in the model equations. While it is difficult to address this problem class

with the direct sensitivity formulation, a generalization of the adjoint formulation is

straightforward. To incorporate the additional uncertainty, we simply have to add the

additional penalty terms

∫ T

0

‖λi(t)‖w,∗dt, i = 0, . . . , nf , (50)

to the existing dual norm penalties in Eqs. (37) and (38). Here, ‖·‖w,∗ is the dual norm to

‖·‖w. To justify this formulation, we regard the linearized dependence of fi on variations

in p and w(t), t ∈ [0, T ]:

�fi(�p, �w(·)) = λi(0)T
∂x0

∂p
(p)�p +

∫ T

0

λi(t)
T �w(t)dt

︸ ︷︷ ︸

=:〈λi ,�w〉

. (51)

Now, as before in Eq. (8) for the finite dimensional setting, we consider the worst-case

max
�p,�w(·)

�fi(�p, �w(·)) s.t. max

(

‖�p‖, max
t∈[0,T ]

‖�w(t)‖w

)

≤ 1,

which evaluates indeed to the sum of the two dual norms:

=

∥
∥
∥
∥
λi(0)T

∂x0

∂p
(p)

∥
∥
∥
∥

∗

+

∫ T

0

‖λi(t)‖w,∗dt,

where the second dual norm is dual to the maximum norm employed in Eq. (49) with

respect to the L2-scalar product used in Eq. (51).

Equally, if the time dependent disturbances are bounded directly by an L2-norm (that

corresponds to a confidence region for uncorrelated disturbances w(t)), i.e., if

√

1

T

∫ T

0

‖w(t)‖2
wdt ≤ 1, (52)

the additional norm penalties in Eqs. (37) and (38) become

√

T

∫ T

0

‖λi(t)‖2
w,∗dt, i = 0, . . . , nf , (53)

because this is the dual of the norm (52) with respect to the L2-scalar product used in

Eq. (51).

5. Application example: batch distillation

In order to illustrate the proposed approximation technique we consider an example from

chemical engineering, a batch distillation process. Aim of the process is to separate a

mixture of two components and to produce distillate with a purity of at least 99% and

to maximize the produced quantity of distillate.
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Fig. 1. Sketch of the batch distillation column

5.1. Process model

The batch distillation, that is sketched in Figure 1, is modelled as follows: the reboiler

content M0 with composition x0 (molar percentage of the lighter component) is heated,

such that vapour with equilibrium composition y(x0) is produced, with a constant molar

flux V = 100. We assume a simple expression for the vapour equilibrium in the form

y(x) := x(1+α)
x+α

, cf. Figure 2. The vapour flux V is assumed to be constant throughout all

trays of the column. It is totally condensed at the top, and a liquid molar flux L = R
1+R

V

is fed back into the column, where the “reflux ratio” R is controlled. L is also assumed to

be constant throughout the column. The remainder of the condensed liquid flux, V − L

with composition xC , is collected within the distillate container with molar holdup MD

and composition xD . We collect the following ordinary differential equations:

Ṁ0 = −V + L, ẋ0 =
1

M0
(Lx1 − Vy(x0) + (V − L)x0) (54)

for the reboiler, and

ẋi =
1

m
(Lxi+1 − Vy(xi) + Vy(xi−1) − Lxi) i = 1, . . . , N, (55)
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Fig. 2. The dependence of the equilibrium vapour concentration y on the liquid concentration x, for different
values of α

for the tray concentrations (where m = 0.1 is the molar holdup of each tray assumed

to be constant, and N = 5). For the condenser concentration xC , that we identify with

xN+1, we obtain

ẋN+1 =
V

mC

(y(xN ) − xN+1), (56)

where mC = 0.1 is the constant molar holdup of the condenser, and for the distillate

container we obtain

ṀD = V − L, ẋD =
V − L

MD

(xN+1 − xD) . (57)

As we want to include the uncertainty in α in formally the same way as described above,

we add the trivial equation α̇ = 0.

5.2. Uncertain optimization problem

Summarizing the states in x = (M0, x0, x1, . . . , xN+1, MD, xD, α)T and setting

u = R, we obtain equations ẋ = G(x, u) in the form above. The objective is given

by f0(x(T ), T ) := T − MD(T ), and the only inequality constraint by f1(x(T ), T ) :=

0.99−xD(T ) ≤ 0. Nominal initial values are M0 = 100, x0 = 0.5, x1 = . . . = xN+1 =

xD = 1, MD = 0.1, and α = 0.2. Uncertainty is present in the parameter α as well as

in the initial feed composition x0(0), and we assume
√

(
α − 0.2

0.1

)2

+

(
x0(0) − 0.5

0.05

)2

≤ 1. (58)
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This corresponds to independent relative errors of a size of 50% for α and 10% for

x0(0). In Figure 2 the effect of the considered variations in α on the vapour equilibrium

curve y(x) is illustrated. We consider the expectation value robust counterpart formu-

lation, i.e., the optimization is performed for the nominal objective and the linearized

worst-case constraint.

In addition to the setup presented above, there are bounds 0 ≤ R ≤ 15 on the

controlled reflux ratio u = R.

5.3. Optimization results

Since the number of uncertain parameters np = 2 is not considerably greater than

the number nf = 1 of uncertain constraints, the approximated robust counterpart is

formulated in form of the direct sensitivity equations, (31)–(36). For the solution of

this boundary constrained optimal control problem we employ the software package

MUSCOD-II [13, 14] that is based on the direct multiple shooting method [3]. This

method is particularly suitable for nonlinear optimal control problems with boundary

and state constraints and has already been successfully applied to similar (but non-robust)

batch distillation problems [6]. The control profile is approximated by continuous piece-

wise linear interpolation using 15 equally spaced intervals on the variable time horizon

[0, T ].

For comparison, first the nominal solution is computed and shown in Figure 3. The

employed time is T = 1.3 while the produced distillate is MD(T ) = 51.0, leading to

an objective of -49.7. In the middle row on the right it can be seen that the lower bound

of 99% on xD(T ) is active. At the bottom row the linearized dependence of xD(t) on

a unit variation in α respectively in x0(0) is shown. Inspecting the last graph one can

conclude that for an initial composition x0(0) that is reduced by 0.05, the final distillate

composition xD(T ) may be reduced by approximately 1.5 × 0.05 = 0.075 = 7.5%.

This means that in the linearized worst-case a purity of only 99.0% − 7.5% = 91.5%

may occur.

This is in contrast to the approximated robust solution shown in Figure 4. Here, the

sensitivities on the uncertain parameters are considerably reduced (by 50% respectively

90%, as seen in the middle row), at the cost of a slightly increased objective of -49.0,

with longer duration T = 1.4 and less produced distillate MD(T ) = 50.4. Note that the

nominal distillate composition in the middle row at the right is increased to 99.8%, to

allow for a safety back-off with respect to the remaining uncertainty. Thus, the approx-

imated robust optimization has two effects: it reduces the dependence of the constraint

on the uncertain parameters, and provides some slack for safety. Both are achieved at

little extra cost in the objective.

6. Conclusions

We have presented techniques for the numerically efficient formulation of approximated

robust counterparts of nonlinear optimization problems. We assume that the optimizer

chooses the controls u first, before an adverse player chooses the uncertain parameters
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Fig. 3. The nonrobust solution of the batch distillation problem
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Fig. 4. The approximate robust solution of the batch distillation problem
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p and states x, restricted by a norm bound ‖p − p̄‖ ≤ 1 on disturbances on p and

by the model equations g(x, u, p) = 0. By linearizing the model equations at a point

corresponding to the nominal parameter value p̄ and the chosen controls u, the worst-

case can approximately be computed, and a numerically tractable approximation of the

robust counterpart is obtained. The resulting optimization problem contains norms on

the first order derivatives in its objective and constraints [15, 16, 2, 10].

The main advance of the paper are two equivalent formulations for the efficient

numerical solution of this problem, the direct and the adjoint approximated robust coun-

terpart. They have similarity to the forward mode respectively to the backward mode of

automatic differentiation. The second, adjoint formulation is advantageous in the pres-

ence of many uncertain parameters and few inequality constraints. We also explored the

consequences of the appearance of the dual norms in objective and constraints that leads

to nonlinear conic programming problems.

We have shown how to generalize the two methods to optimal control problems in

ODE, and discussed how the adjoint formulation could even be used to address infinite

dimensional uncertainty in the form of time dependent disturbances. Finally, we pre-

sented a batch distillation process as an application example. It is illustrated that the

approximated robust optimization leads to a solution profile that shows both, a reduced

dependence of the constraints on the uncertain parameters, and a safety back-off to

guarantee (linearized) worst-case feasibility.
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distillation with recycled waste cuts. AIChE Journal 48 (12), 2869–2874 (2002)
7. Fares, B., Noll, D., Apkarian, P.: Robust control via sequential semidefinite programming. SIAM Journal

on Control and Optimization 40 (6), 1791–1820 (2002)
8. Freund, R.W., Jarre, F.,Vogelbusch, C.:A sequential semidefinite programming method and an application

in passive reduced-order modeling, 2005, (submitted)
9. Griewank, A.: Evaluating derivatives: principles and techniques of algorithmic differentiation. SIAM,

Philadelphia 2000
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