ESAIM: COCV ESAIM: Control, Optimisation and Calculus of Variations
April 2004, Vol. 10, 224-242
DOI: 10.1051/cocv:2004001

AN APPROXIMATION THEOREM FOR SEQUENCES OF LINEAR STRAINS
AND ITS APPLICATIONS

KEWEI ZHANG !

Abstract. We establish an approximation theorem for a sequence of linear elastic strains approaching
a compact set in L' by the sequence of linear strains of mapping bounded in Sobolev space WP, We
apply this result to establish equalities for semiconvex envelopes for functions defined on linear strains
via a construction of quasiconvex functions with linear growth.
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1. INTRODUCTION AND MAIN RESULTS

This paper establishes an approximation theorem for sequences of linear elastic strains approaching a compact
set in the space of symmetric matrices. We apply the result to the study of equality of various semiconvex
envelopes for functions defined on the space of linear strains. We show that under a simple coercivity condition,
Q.(f) = C(f) if and only if R.(f) = C(f), where Q.(f) and R.(f) are the quasiconvex and rank-one convex
envelopes of f on linear strains respectively. Before we state our main results, let us introduce some notation.

For A € M"™*™ — the space of n X n real matrices with the standard Euclidean inner product on R”z, we let
e(A) = (A+AT)/2, where A” is the transpose of A. If u is a smooth mapping from a domain  C R" to R", we
call e(Du(x)) the linear elastic strain of u where Du is the gradient of u. Let M? and (M?)* be the subspaces
of symmetric and skew-symmetric matrices in M"*" respectively, we see that e(A) = Pyn(A), where Pyrx is
the orthogonal projection from M™*™ onto M. Let dist(Y, K) = inf xex |Y — X | be the distance function from
Y € M} to a closed set K C M. The following is our approximation theorem.

Theroem 1. Let Q C R™ be a Lipschitz domain and u; € C§°(2,R™) such that

lim [ dist(e(Duj(z)), Br(0))dz =0, (1.1)

)= J0

where Br(0) is the closed ball in M centered at O with radius R. Then there is a subsequence (uj;,) of (u;),
and a sequence of Lipschitz mappings v : R™ — R™ such that for every 1 < p < oo,

/ le(Dvg)[Pdz < C(n,p) < +o0, and klim le(Duj,, ) — e(Dvg)|dx = 0. (1.2)
n —00 O
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Note to Theorem 1. As kindly pointed to me by I. Fonseca and the referee, there is an alternative proof of
Theorem 1 by using A-qausiconvexity. Further details can be found in the remark after the proof of Theorem 1.

Corollary 1. Let (vg) be the sequence of Lipschitz mappings given by Theorem 1. Then for each 1 < p < oo,
there are a skew-symmetric matriz A(p)r € (M")* and some x), € R™ satisfying [, A(p)r(z — xx)dz = 0 such
that the sequence wy : 0 — R™ defined by

1
- ——— y _ 0
wi(T) = vk meas(@) /ka(y)dy k(p)(x =), T €
is bounded in W1P(Q,R"),
/ | Dwy|Pdz < C/ le(Dwy)|Pdz < Co(p) < 400, / widz =0, (1.3)
Q Q Q

where C, Co(p) are positive constants independent of k and

lim /Q le(Du,, ) — e(Dwy)|dz = 0. (1.4)

k—o00

In Theorem 1, the ball Bg(0) can be replaced by any compact set K C M. Theorem 1 and Corollary 1 are
motivated from an approximation result in [38] for VVO1 o1 approximating sequences of gradients approaching
a compact set in MN*" by a bounded W1 > sequence. The statements of Theorem 1 and Corollary 1 are
almost optimal in the sense that they are false if p = 400 [24]. The main tool for establishing Theorem 1
is a generalized version of Liu’s Luzin type theorem [25] to the space of bounded deformations BD(2) [12].
Combining the result in [12] with some classical estimates for standard singular integral operators [30] enables
us to prove Theorem 1. Corollary 1 then follows from Poincaré’s inequality and Korn’s inequality [20].

The following is our main application of Theorem 1 and Corollary 1 to equalities of some semiconvex en-
velopes for functions defined on linear strains. The study of quasiconvex functions defined on linear elastic
strains is closely related to the variational approach to material microstructure by using geometrically linear
models [9,10,18]. Functions defined on M? with linear growth are important in the theory of plasticity [3,21,35].
For a continuous function f : M — R bounded below, let Q.(f) and R.(f) be the quasiconvex and rank-one
convex envelopes of f respectively (see Sect. 2 for definitions). We denote by C(f) the convex envelope of f.

Theroem 2. Suppose f : M — R is continuous and satisfies, for A € M

fA4)
alm AT +o0. (1.5)

Then Q.(f) = C(f) if and only if Re(f) = C(f).

Theorem 2 was established for functions f : MY*" — R [43] under the coercivity condition (1.5) for
A € MN*"_ The difference between Theorem 2 and that in [43] is that in the present situation, the function
X — f(e(X)) is not coercive in the sense of (1.5) for X € M™™. A weaker version of Theorem 2 was
proved in [44], via an elementary argument for functions defined on linear strains under the assumption that
F(A) = e AP —1).

The following result on the construction of quasiconvex functions on linear strains with linear growth will be
used indirectly to establish Theorem 2 through some of its implications. The construction itself is of independent
interest and its proof depends on Theorem 1 and Corollary 1.

Theroem 3. Suppose F : M — R is quasiconvez on linear strains and is bounded below. Assume that 0 <
F(Y)<Co(L+1|YP) for Y € M7, and that for some real o > 0, the sub-level set Ko :={Y € M? : F(Y) < a}

S
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is compact. Then, for every 1 < p < +oo, the quasiconvex function on linear strains Q. dist” (A, K,), A € M
satisfies

ColY|P — C1 < Q. dist? (Y, K,) < Ca(1 4 [Y]P) (1.6)
forY € M} and
Ky ={Y e M} : Q.dist’(Y, K,,) = 0}, (1.7)

where Cy, C1, Co are positive constants and Q. dist? (Y, K,) is the quasiconvex envelope on linear strains of the
p-distance function dist? (Y, K,).

We need the following results on various semiconvex hulls of linear strains for compact sets in M} and their
properties to establish Theorem 2. For the MV *™ version of these results, see [33,37,39]. We define two types
of quasiconvex hulls on linear strains for closed subsets of M.

Definition 1.1. Let K C M} be closed, for 1 < p < 0o, we defined the strong p-quasiconvex hull Q;(K) and
weak p-quasiconvex hull Q;(K ) respectively as

Qp(K) = {X € M7, f(A) < sup f(Y), f quasiconvex on linear strains , 0 < f(A4) < C(1+ |A|p)} - (1.8)
YeK

Qu(K) ={A e M, Qcdist’(A, K) =0}

and the strong p-rank-one convex hull of linear strains as

RS(K) = {X € M?, f(A) < sup f(Y), frank-one convex on linear strains , 0 < f(A4) < Cf(1+ |A|p)} :
YeK
(1.9)

Clearly, one has RY(K) C Qp(K) C Qp(K), R (K) C Ry (K) and Qp(K) C Qg(K) for 1 < g <p < oco. We
can also show that Qg (K) C Q¢(K) (see Proof of Th. 3 and (4.1)).

In order to state Theorem 5, we need to define the so-called closed lamination convex hull LE(K) on linear
strains for a compact set K C M7 as follows [44].

Notice that the subspace (M)* of skew-symmetric matrices does not have rank-one matrices. We say that
A € M! is a compatible linear strain if span[A] & (M?)* has rank-one matrices. For example, the identity
matrix I € M} is incompatible. Two linear strains A, B € M are called compatible if A — B is a compatible
linear strain and we call {A, B} a compatible pair. Clearly, A € M7 is compatible if and only if {0, A} is a
compatible pair. This definition of compatibility is equivalent to that in [22], that is, A, B € M are compatible
if either A — B is a rank-one matrix or A — B is of rank two and the two non-zero eigenvalues have opposite
signs.

A set K C M is called lamination convex on linear strains if for every compatible pair {A, B} C K, one
has {tA+ (1 —¢)B, 0 <t <1} C K. For a compact set K C M, the closed lamination convex hull on linear
strains LE¢(K) is the smallest closed lamination convex set on linear strains that contains K.

The closed laminated convex hull for a compact set K C M~ *" was defined in [40] motivated from [28]. It
is easy to see that K C Lg(K) C Ry (K) C Qp(K) C C(K).

Theroem 4. Let K C M7 be non-empty and compact. Then 1 < p < oo,
Qy(K) = Qp(K) = Q1(K). (1.10)

The following result is an implication of the results established in [44]. For the convenience of the reader, we
give a proof in the Appendix.

Theroem 5. Let K C MY be compact. Then LE(K) = C(K) if and only if Q5(K) = C(K).
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From Theorem 4 we see that we may replace Q5 by any @, for 1 < p < co. Also R§(K) = C(K) if and only
if Q5(K) = C(K).

In Section 2, we give notation and preliminaries which are needed for establishing our main results. We
prove Theorem 1 and Corollary 1 in Section 3. In Section 4 we establish Theorems 2-4 by applying Theorem 1
directly or indirectly followed by some examples. In the Appendix we give a proof of Theorem 5 and establish
an elementary result Lemma 4.1 which is needed in the proof of Theorem 3.

2. NOTATION AND PRELIMINARIES

Throughout the rest of this paper € denotes a bounded open subset of R”. We denote by M™*™ the space
of real N x n matrices, with norm |P| = (tr PTP)*/2. In this paper we are mainly interested in the case when
N =n > 2. Welet C§°(Q2,R™) be the space of smooth functions ¢ : @ — R"™ having compact support in .
We denote the Lebesgue spaces LP(Q, R") and Sobolev spaces W1(Q, R™) and W, ¥ (€, R") for vector-valued
functions u :  — R™ as usual [2]. As in Section 1, we let M? and (M?)* be the subspaces of symmetric
and skew-symmetric matrices respectively. We see that these two subspaces are orthogonal to each other. For
X e M™", welet e(X) = (X +X7)/2 = Pyr(X) where Py is the orthogonal projection from M™*™ to M.
We denote weak convergence of sequences by —. The Lebesgue measure of a measurable set S in R™ is meas(.S)
while the complement of a set S C R™ is S¢. We use various C’s to denote positive constants such as C(n,p). In
later sections, two C(n, p)’s in the same line may not be the same. They just mean positive constants depending
only on n and p.

We define the p-distance function from Y € M” to a set K C M? by dist”?(Y, K) := infscx |[Y — AP. The
following are some results we need later.

Definition 2.1. (See [4,26].) A continuous function f : MN*" — R is quasiconvex if
[ £P+ Do) ds = F(P)meas(v)
U
for every P € MN*" ¢ € C$°(U;RY), and every bounded open subset U C R™ . A function f: MV*" — R is

rank-one convex if for any A, B € MV *" with B a rank-one matrix, the function ¢t — f(A + tB) is convex.

It is well-known now that quasiconvexity implies rank-one convexity [4,11,26] while the converse is not
true [32]. To construct quasiconvex functions, we need the following

Definition 2.2. (See [11].) Suppose f : MN*" — R is a continuous function. The quasiconvex envelope
(rank-one convex envelope, respectively) Q(f) (R(f) respectively) of f is defined by

Q(f) =sup{g < f; g quasiconvex}, R(f) = sup{g < f; g rank-one convex}-

It is well-known [11] that C(f) < Q(f) < R(f) < f and the quasiconvex envelope @ f can be calculated by

QFP)= imf —

P + Do(x)) dz, 2.1
peCee(RN) meas(2) /Qf( + D)) dz (2.1)
where 2 C R™ is a bounded domain. In particular the infimum in (2.1) is independent of the choice of Q.

For a continuous function f : M? — R, we say that f is quasiconvex (rank-one convex respectively) on
linear strains, if the function F' : M™*™ — R defined by F(X) = f(e(X)) is a quasiconvex (rank-one convex
respectively) function.
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We define the quasiconvex envelope Q.(f) and rank-one convex envelope R.(f) on linear strains for a con-
tinuous function f : M — R by

Q.(f) =sup{g < f; g quasiconvex on linear strains}

R.(f) =sup{g <, f; g rank-one convex on linear strains}-

The following simple statement is easy to prove.

Proposition 2.1. For a continuous function f : M? — R, let F(X) = f(e(X)) for X € M™*™. Then
QF(X)) = Qe(f(e(X))).

Proof. Clearly Q.(f(e(X))) < Q(F(X)) =sup{g < f; g quasiconvex }. However, if we let D C R™ be the unit
cube, then

Q(F(X)) = inf /DF(X+D¢>)dx: inf )/Df(e(X—i—qu))dx = h(e(X)),

PeCe (D;R™) peCE (D;R™

depending only on e(X). Note that X — h(e(X)) = Q(F(X)) is quasiconvex, hence h is quasiconvex on linear
strains and h < f. By definition, A < Q.(f). The proof is finished. d

We will use the following theorem concerning the existence and properties of Young measures [5,19, 34].

Proposition 2.2. Let (z;) be a bounded sequence in L'(Q;R®). Then there exist a subsequence (z;,) of (z;)
and a family (vz)zcq of probability measures on R®, depending measurably on x € Q, such that

fl) = [ SN, i Lh(@)

for every continuous function f: R® — R such that (f(z;,)) is sequentially weakly relatively compact in L*(Q).

If the sequence z; is in the form z; = Du,, where Q C R™ is open and bounded, and (u;) is a bounded
sequence in WHP(Q, RY) for some 1 < p < oo, then the corresponding Young measure v, is called p-gradient
Young measures (see [10,19,23]). The Young measure is trivial if v, is a Dirac measure for a.e. z. In this case
there exists a function w such that v, is the Dirac measure at Du(x), and up to a subsequence, Duy — Du
almost everywhere.

One of the restrictions of p-gradient Young measures [19] is that for every quasiconvex function f : MN*" —
R, satisfying | f(X)| < C(1 +|X|?) when 1 < p < o0,

/Mm fNdvy > f (/MM )\dum) (2.2)

for almost every = € Q, (see for example, [8,10,19]).
For r > 0 and z € R”, let B,(z) = {y € R" : |y — 2| < r} and meas(B,(x)) = wyr™, we have ([30]),

Definition 2.3. (The Maximal Function) Let f € L} (R"), we define

loc

1
() =sp s [ sl

where w,, is the volume of the n dimensional unit ball.
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We have the following weak-(1,1) and strong-(p, p) estimates [30][p. 5, Th. 1(b)]:
Proposition 2.3. If f € L(R"), then for every A > 0,

meas({z € R™ : (Mf)(z) > A}) < @ /}R ] da.

If f € LP(R™) for 1 < p < o0, there is a constant C(n,p) > 0 such that
(M )r@ny < CRflle@n),

which also implies the weak-(p,p) estimate

C(n,p)

meas({z € R" : (M f)(z) > A\}) < v /Rn | £]P de.

The following results on convolution operators can be found in ([30], Ch. II., Ths. 3 and 4)

Proposition 2.4. Let K : R® — R be a 0-homogeneous function, smooth with mean value zero on the unit
sphere S"~1. Then for f € LP(R™), 1 < p < oo, define

T.(f) () = /| Ew=2) pyay,  e>o. Then

—x|>e |y - :L'|n
a) there exists a constant A, > 0 independent of € > 0 so that
p
ITe(H)llze@ny < Apll fllr@ny, 1 <p<oo;

(b) lime—oTe(f) = T(f) ewists in LP(R™) norm (1 < p < 0o) while lime_.o Te(f)(x) exists for almost every
xz € R™ when 1 <p < oo and

1Tl Le@ny < Apllfllze@wny, 1 <p < oc;

(c) let T*(f)(z) = supeso |Te(f)(z)|. If f € L*(R™), then the mapping f — T*(f) is of weak type-(1,1),

that is,
n . C(n)

meas({z € R" : (T*f)(z) > A\}) < B |f] de, for all A > 0; (2.3)

RTL

(d) if 1 <p < oo, then [|[T*(f)||Lr@n)y < Ap|l fllLr(rny, which implies the weak-(p,p) estimate

C

meas({z € R™ : (T"f)(z) > \}) < (;;p)/ I[P da. (2.4)
]R'n.

The following are some useful estimates for functions in the space of bounded deformations BD(2) and
BD(R™) [3,12,21]. To simplify the statements, we only state the results for functions in W1! which is contained
in BD.

Let R be the class of rigid motions in R", that is, affine functions of the form Az + d with A skew-symmetric
n X n matrix and d € R™. The following Poincaré type inequality is in [21] for functions in BD(f2), however,
we only consider functions in WH(Q,R") C BD(Q).

Proposition 2.5. Let Q C R™ be a bounded, connected open set with Lipschitz boundary and let R : BD(2) — R
be a continuous linear mapping which leaves the elements of R fized. Then there exists a constant C(2, R) >0
such that

/ |u — R(u)|dz < C(Q,R)/ le(Du)|dz, for allu € Wh1(Q, R™).
Q Q
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When Q C R™ is an open ball, there is a precise representation of the rigid motion R(u) given by the following
result [3] (we still state it for W functions).

Proposition 2.6. Let u € WHI(R™, R"), x € R" and € > 0. Then there exist a vector d.(e(Du))(x) and a
skew-symmetric matriz A.(e(Du))(zx), such that

[, 1) = AP0 @)y ) — dele(Du) @y < OO [ e(Duty)idy

Bc(z)

where C(n) > 0 is a constant. Furthermore d.(-) and Ac(-) can be represented as singular integrals

aPw =3 [ Aot o,

—z|>e nwn|y - $|n

l,m=1 ly
. n i (y— )
AD(F)(z) = / Ry AUEE .
l,mZ:1 ly—z|>€ anly — x|”+2

where F € LP(R™, MT), with 1 < p < 0o, A and T" are third and forth order smooth tensors with zero average
on S" 1, and A is 0-homogeneous and I' 2-homogeneous respectively.

If we define A*(F)(x) = sup..q|Ac(F)(z)|, we see from Proposition 2.5 that A* have the weak-(1,1),
strong-(p, p) and weak-(p, p) estimates for F' € LP(R™, M), 1 < p < o0.

The following is a simple variation of ([12], Th. 3.1) — the Luzin type theorem for BD functions. In the
original statement in [12], it was stated for the case A = 7 with our notation. However, by examining the proof,
it is easy to see that the following can be deduced by using the original proof. We also notice that S, = ) in
our setting, where S, is the singular part of u (see [3]).

Proposition 2.7. Let u € C°(R™, R™). We define for any A >0 and 7 > 0
E* = {z € R", M(e(Du))(x) < A}, H™ ={xcR", A*(e(Du))(z) < 7},
where A* is defined as above. Then there is a Lipschitz mapping vy r : R™ — R™ such that
[oxr(@) —ur-W) < Cn)A+7)lz —yl, =, yeR”

such that u(x) = vy -(z) on Wy, =E*NHT.
We conclude this section by stating a special form of Korn’s inequality ([20], Th. 8):

Proposition 2.8. Let Q C R" be as in Proposition 2.5 and let u € WHP(Q, R"), 1 < p < oo. Then there is a
skew-symmetric matriz A, such that

/ |Du(z) — Ay|Pda < C/ le(Du(z))|Pde,
Q Q
where C > 0 is a constant independent of u and A, .

3. PROOF OF THEOREM 1 AND COROLLARY 1

We prove Theorem 1 through Lemma 3.1 to Lemma 3.5.

Proof of Theorem 1. The idea of the proof is the following. We use Lemma 3.1 and Lemma 3.2 to show
that e(Du;) is “essentially” bounded in L*°. Then for a carefully chosen subsequence u;, we use the Luzin
type theorem for BD functions to obtain a sequence (vi) of Lipschitz mappings such that vi(z) = uj, (2)
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on a large subset W, of Q while the Lipschitz constants of (vj) are unbounded (Lem. 3.3). Then we show
(Lem. 3.4) that the linear strains e(Duvy) of these Lipschitz functions are in fact, bounded in LP by using
the estimates on A* defined in Proposition 2.6 and the maximal function of e(Du;). Finally we prove that
limg oo [, le(Duj, — Dvg)| = 0 (Lem. 3.5).

Lemma 3.1. Under the assumptions of Theorem 1 we have

lim le(Du;(x))|dx = 0, (3.1)
1= J{weq, |e(Du; ()| >2R}

and |e(Du;(x))| is equi-integrable on €.

Proof. Since lim;_.o [, dist(e(Du;(x)), Br(0))dz = 0, we see that

0= lim [ dist(e(Du;(z)), Br(0))dx

j—oo Q

> lim sup dist(e(Du;(z)), Br(0))dz

j—oo /{xesz,|e<Duj<x>>z2R}
> limsup Rmeas ({z € Q, |e(Du;(z))| > 2R}),

j—oo
where we have used the fact that when |e(Du;(z))| > 2R, dist(e(Du;(z)), Br(0)) > R. Next since we have
dist (e(Duty (1)), Br(0)) > [e(Duy(2))] - R, (32)
whenever |e(Du;(x))| > R, we see that

0= lim [ dist(e(Du;(z)), Br(0))dx

J—0 Jo

> lim sup dist(e(Du;(z)), Br(0))dz

J—o0 /{;CEQ,|e(Duj(;c))Z2R}

> limsup/
J—oo J{zeQ, le(Du;(x))|>2R}

(le(Du;(z))| — R) dz,

hence the first conclusion follows. The second claim is easy to prove because Br(0) is compact. In fact, if we
let b; = [, dist(e(Du;(x)), Br(0))dz, then b; — 0 as j — co. For any measurable subset G of 2, we have, from
(3.2) that

b, 2/Gdist(e(Duj(ac)),BR(O))dx2/G|e(Duj(x))|dx—Rmeas(G)

so that [ le(Duj(x))|dz < bj + Rmeas(G). The equi-integrability of |e(Du;(z))| on Q then follows easily from
this inequality. In fact, for any e > 0, if we first choose §1 = ¢/(2R), then there is some N > 0, such that b; < €/2
and [, |e(Duj(x))|dz < € whenever j > N and meas(G) < d;. Let d2 > 0 be such that [, |e(Du;(x))|dz < €
when meas(G) < d3 and 1 < j < N. Now if we take § = min{d, 2}, the second conclusion then follows. O

Now, if
o= | (D () da (33)
{z€Q, le(Du; (x))[>2R}
we see that a; — 0 as j — oo which follows from the proof of Lemma 3.1.

Now we extend u; to be defined on R™ by zero, then we may consider the maximal function M (le(Du;)|) (z)
of le(Du;(x))|. We have
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Lemma 3.2. For A\ > 2R, let

E} ={x € R", M (|le(Duy)|) (z) < A}, hence (E})" = {z € R", M (Je(Duy)|) () > A}
Let a;j be as defined in (3.3), then

meas ((EJA)C> < S(zl);z —0 as j — oo. (3.4)

Proof. The proof of Lemma 3.2 is very similar to that of ([38], Lem. 3.1). We define

(0, if, |f| <2R,
h(t) —{ = 2R, if, |t| > 2R

Then h : R — Ry is a continuous function. We claim that
{z € R", M (le(Du;)]) () = A} € {w € R", M (h(le(Du,)))) (x) = A — 2R}- (3.5)

We prove (3.5) as follows. If M (le(Du;)|) (x) > A, by definition, there is a sequence of positive numbers €; > 0
and rp > 0 with ¢, — 0 as kK — oo such that

1
meas(B, () /B,.,cm e(DusWldy 2 A = ex.

Since
M (D)) ) > s | oy D 0) )y
meaS(llgm (z)) /{yeBTk (z), le(Du;(y))|>2R} qe(Duj(y))' —2R)dy
- meas(fl?rk (z)) /BTk (z) le(Du; (y)ldy = meaS(;m () /{yeBrk (x), le(Duyj(y))|>2R} 2fidy

o ),
meas(By, () JiyeB,, (2), |e(Du; (v))| <2R}

le(Du;(y))|dy > A — ex — 2R.

Passing to the limit £ — oo we obtain M (h(|e(Du;))|) () > A — 2R. Thus (3.5) is proved.
Now from the weak-(1, 1) estimate of the maximal function (Prop. 2.4), we have

C(n
meas ({a € B, 3 (h(e(Dup)) (2) 2 A~ 2R)) < 320 [ hile(Dus)])y
C(n) C(n)
< le(Duj;(y))|dy = a; — 0,
A= 2R Jiyea, je(Du; (v))|22R) ’ A—2R
as j — oo, where a; is defined by (3.3). The proof is finished. O

Since the sequence (a;) defined by (3.3) converges to zero as j — oo, we may find a subsequence (a;, ) such
that

aj, <e D, (3.6)

Recall the operator A*(e(Du)) defined following Proposition 2.6. Now we apply Proposition 2.7 to our se-
quence u;, .
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Lemma 3.3. Let A = 4R in Lemma 3.2 and let 7, = 4kR, for k =1,2,... Let
H; ={zeR", A*(e(Duj,))(x) < 73 }-
Then uj, is a Lipschitz mapping on the set
W, = EJ’»\k NHj, ={x eR" M (le(Duy)|) (z) <A, A*(e(Du;,))(z) < 1}, (3.7)

satisfying
|uji () — u, ()] < C(M)(A+ 7)) |z —y| = C(n)4(1 + k) Rlz —y|. (3.8)

From Lemma 3.3 and Kirszbraun’s theorem [36], there is a Lipschitz extension v of uj;, to R™ such that
vk (2) = vk (y)| < C(n)4(1 + k) Rlz — yl, (3.9)

for all z, y € R™ and
|Dug(z)| < C(n)4(1 + k)R, (3.10)
for almost every € R™ and Duvy(x) = Duj, (x) almost everywhere on Wj, ([16], Lem. 7.7).

Lemma 3.4. There is a constant Cy > 0 independent of vy such that
/ le(Dug()Pdz < Co.

Proof. For a measurable set S C R", we let
Ip(w, S) = /s le(Dw(x))|Pde, 1<p<oo (3.11)
as long as the right hand side of (3.11) is finite. We then have
[ lelDona))Pde = gy BY) = (o W) + Jy(ons (W3, )°)

We see that

Ip(v, Wj,.) = Jp(uj,, Wi,.) < AP meas(Q?) = (4R)? meas(2).
This follows from the fact that Dvy, = Duj, almost everywhere on Wj, , u;, is supported in €2, W;, C E;‘k and
le(Du, (2))] < M(le(Duj, )[)() < A = 4R on EJ.

We also have
Tp(vr, (W5, )) = Jp(vr, (Hj, N E,)°) < (o, (Hz, )* U (E5,)°) < Jp(or, (Hz, )) + Jp(ow, (E5,)°).
Notice that |Dvg(z)| < C(n)4R(k 4+ 1) and A = 4R, we have

C(n,p)RP(k+1)P
(QR)p Ajy,

Tk (E3)°) < [CAR(k + 1)) meas((E} %) <

C(n,p)RP(k + 1)P

SR T S Coup)h 1y < o) (3.12)

IN
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Then from
A*(e(Dujy,))(z) = A*(e1(Duy,) + e2(Duy, ) (2) < A*(e1(Duyy,)) () + A*(e2(Duy, ) (2),

we have

(Hj,)* C{z € R, A%(e1(Duyy))(x) > 71/2} U{x € R", A%(e2(Duy,))(x) = 71 /2}-
Since Duy, is supported in  and e;(Du;, )(z) is a bounded sequence in L>(R"), we have from the weak-(p, p)
estimate of operator A* (Props. 2.4 and 2.6) that

C(n,p)
(75)P

_ C(n,p) »

Since e3(Duy, ) is bounded in L'(R") and is also supported in 2, we apply the weak-(1,1) estimate to opera-
tor A*:

meas ({o € R", A%(er (Du))(@) = me/2) < T2 [ jea(Dus )Py

C(n,p)
P

meas().

C(n
meas ({z € B, A°(ea(Dus (&) 2 7/2)) £ S [ fea(Dug )y
RW,
C(n) C(n) C(n)
B U} Du; ())|dy < =My < 2
4Rk /{xEQ,le(Dug'k(y))|Z4R} oD ())ldy < ARk e = ARkek !
Thus
oy Cp)  Cn)
meas((H;, )¢) < o Tt 0. (3.13)
Consequently,
. . 1+ k\? kot
To(ok, (Hy, )%) < Ol p) RP(1L+ K meas(H,)°) < On,p) [BY (20 ) 4 2| < Clnp,R)

which follows from the simple facts that (k +1)/k <2 for k =1,2,... and k?~!/e**! — 0 as k — oco. Finally,
we sum up these inequalities to obtain

Ip(vg, R™) = Jp(vg, QN W) + Jp (v, (W, )¢) < C(n,p, R) := Cy.
The proof is then finished. O
Note from (3.4) and (3.13), we have meas(W; ) — 0 as k — oo.
Lemma 3.5. Let vg be defined as above, then

lim /Q le(Dvg(x)) — e(Duj, (z))|dz = 0.

k—o0
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Proof of Lemma 3.5. Since e(Dui(z)) = e(Du;, (x)) almost everywhere on Wj, defined by (3.8), we have

[ leDue)) — e(Dus, @)lde < [ Je(Don(e) ~ e(Du, (0)lda
Q (W'k)L
< Jl(Ulm (ij)c) + Jl(ujkaQ \ ij)'

Since meas((W;,)¢) — 0 as j — oo, and Jp(vk, (W}, )°) is bounded, we have, from Holder’s inequality that

0 < Ji(v, (W5,)) < (Jyp(wr, (W, ))'” (meas (W,)9)) 7 — 0,

as k — oo.
By Lemma 3.1, |e(Du;, (z))| is equi-integrable on 2. We see that Ji(uj,, 2\ W,,) — 0 as k — oo. The
conclusion follows. O

Remark. Recently, I. Fonseca and the referee both explained to me that Theorem 1 may also be proved by using
the general theory of A-quasiconvex functions, in particular, the work by Fonseca and Miiller ([15], Cor. 2.18),
where a second order operator A was proposed to treat the linear elastic strain ([15], Ex. 3.10(e)). In fact, for the
orthogonal complement E-+ of a general subspace E C MN*" without rank-one matrices, if K C E* is compact
and dist(Pg (Duj), K) — 0 in L'(Q), is seems a more promising approach by using the A-quasiconvexity
method than the one used here. The only problem is to work out algebraically the operator A (see [15] for
details).

Proof of Corollary 1. By Korn’s inequality (Prop. 2.8), we have

/ |Dvg(x) — Ay, [Pda < C(n,p)/ le(Dvg(z))|Pde. (3.14)
Q Q

Since
1

wg(x) = vg(z) — moas($2) /Q vk (y)dy — Ay, (7 — 21),
where x; € R™ is such that fQ Ay, (x — z)dz = 0, we see from Poincaré’s inequality and (3.14), we see that
(wy) is bounded in W1P(Q R™). Also because e(Dwg(x)) = e(Dv(z)) in Q, the conclusion follows from
Lemma 3.5. O

4. PROOF OF THEOREMS 2—4 AND EXAMPLES

Proof of Theorem 3. Let us consider the quasiconvex function on linear strains Q. dist(4, K,), A € M. We
first prove that K := {A € M, Q.dist(A, K,) = 0} = K,. Obviously we have K, C K. We only need to
show that K C K. Let Ag € K. We have from Proposition 2.1 for quasiconvex envelope on linear strains that
there is a sequence (¢;) C C§°(D,R™) such that

lim dist(Ao + e(Doj(z)), Ko)dz =0,
J—00 D

where D C R™ is the unit cube. Let Ko 4, = {Y — Ao, Y € K,}, then K, 4, is still compact and

lim; o [, dist(e(Dej(x)), Ka,a,)dz = 0. We then have, from Lemma 3.1 that |e(D¢;)| is equi-integrable

on D, hence up to a subsequence (still denoted by the same subscripts) e(D¢;) converges weakly in L*(D). For

each fixed j, we extend ¢; to be defined in R™ as a periodic function and then let

uj(z) = %% (jz)
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for j =1,2,... and for x € D. We see that u; € Cg°(D,R"). Furthermore, |e(Du;)| is equi-integrable in €2, up
to a subsequence e(Du;) — 0 in L*(D, M) as j — 0 and

lim [ dist(e(Du;(x)), Kaq,a,)dx =0.

j—00 D

The properties of u; mentioned above should be well-known and can be verified easily. However, for the
convenience of the reader, we state them in the following slightly general way (Lem. 4.1 below) and give a proof
in the Appendix. Note that we also have [ pe(Dj)dr = 0, hence we only need to prove the claims for each
component of e(D¢;).

Lemma 4.1. Suppose f; = f in L'(D) as j — oo and Jp fidz =0, where D C R™ is the (closed) unit cube.
Then if we extend f; to R™ periodically and let uj(x) = f;(jz), x € D, then (u;) is equi-integrable on D, and
up to a subsequence u; — 0 in L'(D) as j — 0. Furthermore, for any continuous function W : R — R with
linear growth, that is, |W(t)| < C(|t| + 1), we have [, W(f;)dz = [, W (u;)dz.

Proof of Theorem 3 (continued). Now, since lim; . [}, dist(e(Du;(x)), Ka,4,)dz = 0, we see, from Theorem 1
and Corollary 1 that there is a subsequence (uj,) of (u;) and a bounded sequence (wy) in W12P(D,R"™)
(hence |[Dwy|P is equi-integrable on ) such that [[e(Duj,) — e(Dwg )|z (py — 0 as k — oco. We assert that
e(Dwy) — 0in LP as k — oco. If we let v, be the family of Young measures corresponding to Dwy, we have

0= /Mnm e(r)dv, (1) = e </M”><” Tdy“’(T)) ’

which follows from the Young measure representation of the weak limit and the fact that e(+) is a linear mapping
on M"™*™. We also have [} ..., dist(e(7), Ka,4,)dv,(7) = 0 for almost every = € . Hence on the support of v,
Ag +e(r) € Ky, v, — almost everywhere. Let F(®)(Y) = max{F(Y) — a, 0}, then F(®)(.) is still a quasiconvex
function on linear strains with p-th growth at infinity, while |e(Dwy)[? is equi-integrable on D, therefore by the
lower semicontinuity theorem [1] and the Young measure representation, we have, up to a subsequence,

0= /D /Mnxn FO‘(AO + G(T))dl/m (T)dl‘ = klingo ; Fa(AO + e(wk (CE’)))dLL‘

2/ Fe (A0+e(/ le/x))dacz/ FY(Ap)dz > 0.
D Mnxn D

Hence F*(Ap) =0 and Ap € K,.
Finally we show that the quasiconvex function on linear strains Q. dist” (-, K, ) satisfies the requirements (1.5)
and (1.6). We observe that for Y € M7,

(Qe dist(Y, K,))? < Q. dist?(Y, K,). (4.1)

In fact, let ¢; € C5°(D,R™) be a minimizing sequence such that
Qcdist?(e(Y), Ko) = lim [ dist’(Y + e(Dg;), Kq)dz,
J—00 D

where D is the unit cube in R™. For each j > 0, we apply Holder’s inequality to obtain

Q. dist(Y, Ka,) < / Qe dist(Y + e(Dg;), Ko)dx
D

1/p
g/ dist(Y + e(Déy), Ka)da < (/ dist?(Y + e(Dg;), Ka)dx) .
D D



AN APPROXIMATION THEOREM FOR SEQUENCES OF LINEAR STRAINS AND ITS APPLICATIONS 237

Hence (4.1) follows by letting j — oo. We see that the zero set of Q.dist?(Y, K,) is contained in that
of Q. dist(Y, K,) which is K. On the other hand, it is obvious that the zero set of Q dist” (Y, K,) contains K.
The conclusion then follows. O

Proof of Theorem 4. Since by definition, we have Qg (K) C Q5 (K) C Qf(K), we only need to prove that
QI(K) C Q4(K) for every 1 < p < c0.

Let f : M2 — R be quasiconvex on linear strains and 0 < f(Y) < Cp(1 + |Y|P) for Y € M. We let
a = maxyck f(Y) and define K, = {Y € M?, f(Y) < a}, then we see that Qg (K) is the intersection of all
such K. From Theorem 2, we see that

Ko ={Y € M", Q.dist(Y, K,) = 0}-

On the other hand, since it is obviously true that K C K, we have dist(Y, K,) < dist(Y, K) for all Y € M7 so
that 0 < Q. dist(Y, Ka) < Q. dist(Y, K) hence Qf(K) C K, and Qf(K) C Qg (K). The proof is finished. [

The following lemma will be used in the proof of Theorem 2.

Lemma 4.2. Suppose F : M — R is continuous and non-negative with F~1(0) = K a non-empty and
compact set. Furthermore, assume that F' satisfies the coercivity condition limja|_. F(A)/|A| = 4o0. Let

(Qe(F))~1(0) = {A € M, Qe(f(A)) = 0}. Then (Qc(F))~'(0) C Q{(K).
If we take Theorem 4 into account, clearly, Lemma 4.1 also implies (Q.(F))~1(0) C Q5(K) forall 1 <p < oo,

Proof of Lemma 4.2. Let A € (Q(F))~'(0), then there is a sequence ¢; € C§°(D,R™) such that
lim;_, fD F(A+e(D¢j))dz = 0. It is then easy to see, from the coercivity condition that up to a subsequence,
dist(A+e(D¢;), K) — 0 almost everywhere and e(D¢;) is equi-integrable. Hence [}, dist(A+e(D¢;), K)dz — 0
as j — oco. By definition, A € Q$(K), the proof is finished. (I

With the help of Theorems 3-5, we now prove Theorem 2.
Proof of Theorem 2. Since C(f) < Qe(f) < Re(f), we only need to show that if R.(f) # Cf then Q.(f) # Cf.

For f : M — R, let epi(f) = {(A,t) € M x R, f(A) > t} be the epi-graph of f. First we claim that
there is a supporting plane E (see [29]) of epi(C'f) in M such that Ky = epi(R.f) N E is not convex while
CKy = epi(C(f)) N E. If this is not true, we can easily see that R.(f) = C(f) on K = P(K,) = P(C(K))),
where K = P(K,) is the orthogonal projection of Ko C M} x R to M7, so that R.(f) = C(f) (see [29]), and
we reach a contradiction.

Now, we use the supporting plane E to construct a non-negative rank-one convex function F on linear strains,
vanishing exactly on K with superlinear growth (1.5) so that K is also compact.

Since the plane F is the graph of a real-valued affine function L(-) defined on M, we see that R.(f(:))—L(-) >
0and R.(f(A))—L(A) =0if and only if A € K. We also see that K is compact because R.(f) > Cf hence R.(f)
satisfies

- Re(f(4))
e 1A

Let us consider F(A) = R.(f(A)) — L(A), for A € M?. Then X — F(e(X)) is rank-one convex, F' > 0, and
F(A) =0 if and only if A € K, and

= +400. (42)

)
‘A‘IHOO W = +o00. (4.3)

Next we show that Q.(f(P)) > Cf(P) for a certain matrix P € M?, if Q.(F(P)) > 0 holds.
From Proposition 2.1 and the fact that L is affine, we see that

Qe(F () = Qe[Re(f () — L()] = Qe(f () — L(-).
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Therefore, we only need to prove that Q.(F) is not convex. Since F' > 0, it suffices to show that the zero set

of Q.(F)
QeFﬁl(O) = {A € M:a Qe(F(A)) = 0}
is not convex.

From Theorem 5, we see that Q5(K) is not convex because the non-convex set K is the zero set of the
non-negative rank-one convex function F' on linear strains, so it is a closed lamination convex set. We also
notice that C'(f(-)) — L(-) > 0 and C(f(A)) — L(A) = 0 if and only if A € C(K).

Let P € C(K)\ Q5(K). From Theorem 4, we see that Q5(K) = Q$(K) = Q$(K). From Lemma 4.2 we see
further that (Qc(F))~1(0) C Q$(K). Thus Q.(F(P)) > 0 which implies

Qe(F(P)) = Q.(f(P)) = L(P) > 0= Cf(P) - L(P)
and Q.(f(P)) > Cf(P). The proof is finished. O

Now let us examine some examples of quasiconvex functions defined on linear strains with linear growth.

Example 4.1. Let I € M"™*" be the unit matrix. It was proved in [13] following an argument in [31], that for
Ko={—I,I} ¢ M™",

Q dist(e(X), Ko) does not vanish at X = 0, hence Q dist(e(X), Ko) is not convex. In fact, it was established
earlier in [41] that for any closed set K C Ey — the subspace of conformal matrices (or K C Ej5 — the subspace
of anti-conformal matrices) of M?*2, there is a constant ¢ > 0 independent of K such that

Qdist(X, K) > edist(X, K) (4.4)

for all X € M?2*2. This result was generalized in [17] to the case when K C E where E C M~ *" is a subspace
without rank-one matrices, that is

Qdist(X, K) > ¢(F) dist(X, K) (4.5)
where ¢(E) > 0 depends only on E. Therefore the following much improved estimate of the above result in [13]
for Ky can be deduced from these earlier results:

Q. dist(Y, Ko) > c(n)dist(Y, Ko). (4.6)

In the 2 x 2 case we observe that Ko x (M2)+ C Ep, thus from (4.4), we have
Q. dist(e(X), Ko) = Qdist(X, Ko x (M2)4) > edist(X, Ko x (M2)*) = cdist(e(X), Ko). (4.7)
For the n x n case, since it is known [10,22] that the subspace E = span{I} @& (M")+ does not have rank-one

matrices, so, we see from (4.4) that (4.5) holds if we replace Ey by E.

Example 4.2. From a special case of the explicit calculation of the quasiconvex relaxation for the two linear
strain energy [22], we see that the quasiconvex function on linear strains Q. dist?(Y, Kj) satisfies that

Q. dist?(Y, Ky) = dist*(Y, Ko)

when dist?(Y, Ko) is small, where Ko = {—I, [} C M is as defined in Example 4.1. We see that the sub-
level set

Ko ={Y € M, Q. dist?(e(Y), Ko) < a?} = Ba(I) U Bo(—1)
when a > 0 is small, where B, (I) and B, (—I) are closed balls in M centered at I and —I respectively with
radius a. We may also make the two closed balls disjoint. We see that K,2 = Q$(K,2) hence the zero set of
the following quasiconvex function on linear strains with linear growth Q. dist(Y, K,2) is K2 itself.



AN APPROXIMATION THEOREM FOR SEQUENCES OF LINEAR STRAINS AND ITS APPLICATIONS 239

Acknowledgements. This work is partially supported by the Australian Research Council through the ARC Research
Grant Scheme. I would like to thank Irene Fonseca and the referee for helpful suggestions.

APPENDIX

Proof of Lemma 4.1. Since f; — f in L'(D), we have, from Dunford—Pettis Theorem [14], | f;] is equi-integrable
on D. Thus for every e > 0, there is some § > 0, such that [, |f;|dz < e for all j > 0 whenever E C D is
measurable and meas(E) < 6. Welet jE—m = {jz—m, x € E} for m € R™. Then we can decompose jD into j"
unit cubes (D;) whose vertex that is closest to the origin mg, — a vector with integer components between 0
and j™ — 1. Also the intersection between different D,’s is only on the boundary. We have jD = UZ;IDS. Thus,
since f; is now periodic with period D,

[ @it = [ ifGo)lar = / ) ldy

:_Z/m i)y = + Z/J 150 dy.

ENDg)—m;

Since meas(E) < ¢, meas(jE) < j"9, Zizl meas[(jE N Dg) —ms] = meas(jE) < j") and (JEND,)—ms C D.
We may write, for each s, meas[(jE N Ds) — ms] = js0 + 70 where js > 0 is an integer and 0 < ry < 1. Thus

- -
358 <D (58 + 1.0) < §6
s=1 s=1

so that Zill Jjs < j™ We also have meas[(jE N Dy) — mg] < (js + 1)d, hence it is easy to prove that
fi(y)|dy < (js + 1)e, which implies

f(jEI’WDS)fm,S

- Z /]m Iy <2

Therefore |u;| is equi-integrable on D.
Again from Dunford-Pettis Theorem, up to a subsequence u; — u in L'(D) for some u € L*(D). We only
need to show that u = 0 almost everywhere. Since we have assumed that D is closed, for each ¢ € Cy(D), we

consider
[ weata = [ metas = 5 [ riwe (%) a= [ o) (&)(?—m) }) .

Then, from the boundedness of f; in L' (D), the assumption [ p fidz = 0 and the definition of Riemann integral,
we see that fD uj¢dr — 0 as j — oo hence u = 0.

The last claim that [, W(u;(x))dz = [, W(f;(z))dz can be easily checked by changing the variable jz =y
and the periodicity assumption on f;. (I

The following is the proof of Theorem 5 extracted from [44]. We need some preparations.

A quadratic function ¢ : M} — R is called a rank-one convex quadratic function on linear strains if X —
q(e(X) is a rank-one convex quadratic function defined on M™*™. We denote by RC, the set of all rank-one
convex quadratic functions on linear strains.
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Definition A.1. The quadratic rank-one convex hull ¢gr¢(K) of a compact set K C M is defined by

qré¢(K) = {X e M?, q¢(X) < supq(Y), g€ RCe}-
YEK

From the definition of ¢r¢(K), one can easily see that
K C Lg(K) C R3(K) < Q3(K) C ¢r*(K) C C(K).

Therefore if we can prove that ¢r¢(K) = C(K) if and only if L¢(K) = C(K), Theorem 5 will then follows.
Let E C M7 be a linear subspace without compatible matrices, and E' being its orthogonal complement
of E in M. Let

q(A) = [P (A = Ap|Pe(A)P, (A1)

where Pp1 and Pg are orthogonal projections to E+ and E respectively, and Ag > 0 is the largest positive
number such that the quadratic form g is a rank-one convex (so is quasiconvex) on linear strains. The constant Ag
can be defined as follows. Since E does not have compatible strains, F@®(M[)* does not have rank-one matrices.
Note that Pg1(a®b) = Py (e(a®b)) and |Pg1 (a®b)|* > 0 for any nonzero rank-one matrix a®b. Let a, b € R™,
we then define
|[Pe(e(a®b))|?

— = sup T/ ——5 <+ (A.2)

AE  Jal=jpl=1 [PEL(e(a ®D))[?
and Ag > 0 satisfies the requirement.

If E; is a plane in M7 parallel to £ and X € Ej, then

qx(A) = [Ppr (A)* = Ap| Pp(A - X)? (A.3)

is a quadratic rank-one convex function reaching its strict maximum at X in E; with ¢x(X) = 0 and gx(A) <0
for A€ Ep \ {X}. We have

Lemma A.1. Suppose E C M} is a linear subspace without compatible matrices and Ey is a plane parallel
to E. Then any closed subset K C E1 is a quadratic rank-one convex set of linear strains, that is, qr¢(K) = K.

Proof. If K # Ej, then for any X € F; \ K, we consider ¢x defined by (A.3), then ¢x € RC. and ¢x(X) =
0 > supc i qx(A). Therefore X ¢ qre(K). The proof is then finished. O

Proof of Theorem 5. We first show that if E; is a supporting plane (see [29]) of C(K) then
qre(K) n E1 = qT‘e(K N El) (A4)

Let E be the plane in M containing C'(K) with the same dimension as C(K) (see [29]). Obviously, ¢r¢(K N
Ey) C gr*(K)N E;. Let X € gre(K) N Ey. There is an affine function ! defined on M such that [ < 0 on the
open half space in E containing C'(K)\ E1, ! =0 on E; and [ > 0 on the opposite half space to C(K) in E. We
also define Fy(e) = {A € E, dist(A, F1) < ¢, I(A) < 0} which is a set on the same side as C(K) in E, where
dist(A, Ey) is the euclidean distance from A to E;. For any fixed ¢ € RC. we consider, for every integer n > 0
the quadratic function ¢(-) + nl(-) € RC.. Since for any A € K N Ey, I(A) = 0, we have, for every fixed point
X e (ITe(K) ﬂEl,
0(X) = ¢(X) + nl(X) < supa(4) + nl(4)

Since ¢ + nl is continuous and K compact, the maximum is attained at some A, € K, that is, sup,cg[q(A4) +
nl(A)] = q(Ay) + nl(A,), so that ¢(X) < ¢(Ay) + nl(A,). Since K is compact there is a subsequence A4,, —
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Ao € K as k — 0. Notice that I(4,) < 0 for all n. If we let & — oo we see that d; := dist(A,,, F1) — 0.
Otherwise ¢(X) cannot be finite. Now we have

q(X) < q(An,) + nil(An,) < sup{q(A), A€ KN E (o)} (A.5)

Again the “sup” in (A.5) can be reached by, say By, € K N E1(d;), and up to a subsequence By — By € KN E;
as k — oo.

Passing to the limit & — 0 on both side of the inequality ¢(X) < ¢(Bj) and noticing that By € K N Ey, we
have ¢(X) < q(Bo) < supacgng, ¢(A), hence X € ¢r¢(K N Ey), (A.4) is proved. Notice also that C(K)NE; =
C(K N Ey).

Now suppose K C M is compact while LE(K) # C(K), but ¢r¢(K) = C(K). We may assume that K is a
closed laminated convex set. Then among all these K’s there is one for which the affine dimension dim C'(K) > 1
of C(K) is the smallest. For such K we claim that the plane E in M spanned by C'(K') does not have compatible
pairs. Otherwise it is easy to see that there is a supporting plane E; of C'(K) such that Fy N K is still a closed
laminated convex set on linear strains while ¢r¢(KNE;) = ¢r¢(K)NE; = C(K)NE; is convex. This contradicts
to the fact that the dimension dim C'(K) is the smallest. Now since C(K) C E and E does not have compatible
pairs, there is some X € C(K) # K. If we define gx as in Lemma A.1, then there is § > 0, such that
gx(X)=0> -0 =supyecrcp q(A). Hence X ¢ ¢gre(K) and ¢r°(K) # C(K), a contradiction. O
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