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AN APPROXIMATION THEOREM FOR SEQUENCES OF LINEAR STRAINS
AND ITS APPLICATIONS
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Abstract. We establish an approximation theorem for a sequence of linear elastic strains approaching
a compact set in L1 by the sequence of linear strains of mapping bounded in Sobolev space W 1,p. We
apply this result to establish equalities for semiconvex envelopes for functions defined on linear strains
via a construction of quasiconvex functions with linear growth.
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1. Introduction and main results

This paper establishes an approximation theorem for sequences of linear elastic strains approaching a compact
set in the space of symmetric matrices. We apply the result to the study of equality of various semiconvex
envelopes for functions defined on the space of linear strains. We show that under a simple coercivity condition,
Qe(f) = C(f) if and only if Re(f) = C(f), where Qe(f) and Re(f) are the quasiconvex and rank-one convex
envelopes of f on linear strains respectively. Before we state our main results, let us introduce some notation.

For A ∈ Mn×n – the space of n× n real matrices with the standard Euclidean inner product on Rn2
, we let

e(A) = (A+AT )/2, where AT is the transpose of A. If u is a smooth mapping from a domain Ω ⊂ Rn to Rn, we
call e(Du(x)) the linear elastic strain of u where Du is the gradient of u. Let Mn

s and (Mn
s )⊥ be the subspaces

of symmetric and skew-symmetric matrices in Mn×n respectively, we see that e(A) = PMn
s
(A), where PMn

s
is

the orthogonal projection from Mn×n onto Mn
s . Let dist(Y, K) = infX∈K |Y −X | be the distance function from

Y ∈ Mn
s to a closed set K ⊂ Mn

s . The following is our approximation theorem.

Theroem 1. Let Ω ⊂ Rn be a Lipschitz domain and uj ∈ C∞
0 (Ω, Rn) such that

lim
j→∞

∫
Ω

dist(e(Duj(x)), B̄R(0))dx = 0, (1.1)

where B̄R(0) is the closed ball in Mn
s centered at 0 with radius R. Then there is a subsequence (ujk

) of (uj),
and a sequence of Lipschitz mappings vk : Rn → Rn such that for every 1 < p < ∞,∫

Rn

|e(Dvk)|pdx ≤ C(n, p) < +∞, and lim
k→∞

∫
Ω

|e(Dujk
) − e(Dvk)|dx = 0. (1.2)
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Note to Theorem 1. As kindly pointed to me by I. Fonseca and the referee, there is an alternative proof of
Theorem 1 by using A-qausiconvexity. Further details can be found in the remark after the proof of Theorem 1.

Corollary 1. Let (vk) be the sequence of Lipschitz mappings given by Theorem 1. Then for each 1 < p < ∞,
there are a skew-symmetric matrix A(p)k ∈ (Mn

s )⊥ and some xk ∈ Rn satisfying
∫
Ω

A(p)k(x − xk)dx = 0 such
that the sequence wk : Ω → Rn defined by

wk(x) = vk − 1
meas(Ω)

∫
Ω

vk(y)dy − Ak(p)(x − xk), x ∈ Ω

is bounded in W 1,p(Ω, Rn),
∫

Ω

|Dwk|pdx ≤ C

∫
Ω

|e(Dwk)|pdx ≤ C0(p) < +∞,

∫
Ω

wkdx = 0, (1.3)

where C, C0(p) are positive constants independent of k and

lim
k→∞

∫
Ω

|e(Dujk
) − e(Dwk)|dx = 0. (1.4)

In Theorem 1, the ball B̄R(0) can be replaced by any compact set K ⊂ Mn
s . Theorem 1 and Corollary 1 are

motivated from an approximation result in [38] for W 1,1
0 approximating sequences of gradients approaching

a compact set in MN×n by a bounded W 1,∞ sequence. The statements of Theorem 1 and Corollary 1 are
almost optimal in the sense that they are false if p = +∞ [24]. The main tool for establishing Theorem 1
is a generalized version of Liu’s Luzin type theorem [25] to the space of bounded deformations BD(Ω) [12].
Combining the result in [12] with some classical estimates for standard singular integral operators [30] enables
us to prove Theorem 1. Corollary 1 then follows from Poincaré’s inequality and Korn’s inequality [20].

The following is our main application of Theorem 1 and Corollary 1 to equalities of some semiconvex en-
velopes for functions defined on linear strains. The study of quasiconvex functions defined on linear elastic
strains is closely related to the variational approach to material microstructure by using geometrically linear
models [9, 10, 18]. Functions defined on Mn

s with linear growth are important in the theory of plasticity [3,21,35].
For a continuous function f : Mn

s → R bounded below, let Qe(f) and Re(f) be the quasiconvex and rank-one
convex envelopes of f respectively (see Sect. 2 for definitions). We denote by C(f) the convex envelope of f .

Theroem 2. Suppose f : Mn
s → R is continuous and satisfies, for A ∈ Mn

s

lim
|A|→+∞

f(A)
|A| = +∞. (1.5)

Then Qe(f) = C(f) if and only if Re(f) = C(f).

Theorem 2 was established for functions f : MN×n → R [43] under the coercivity condition (1.5) for
A ∈ MN×n. The difference between Theorem 2 and that in [43] is that in the present situation, the function
X → f(e(X)) is not coercive in the sense of (1.5) for X ∈ Mn×n. A weaker version of Theorem 2 was
proved in [44], via an elementary argument for functions defined on linear strains under the assumption that
f(A) ≥ c(|A|2 − 1).

The following result on the construction of quasiconvex functions on linear strains with linear growth will be
used indirectly to establish Theorem 2 through some of its implications. The construction itself is of independent
interest and its proof depends on Theorem 1 and Corollary 1.

Theroem 3. Suppose F : Mn
s → R is quasiconvex on linear strains and is bounded below. Assume that 0 ≤

F (Y ) ≤ C0(1 + |Y |p) for Y ∈ Mn
s , and that for some real α ≥ 0, the sub-level set Kα := {Y ∈ Mn

s : F (Y ) ≤ α}
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is compact. Then, for every 1 ≤ p < +∞, the quasiconvex function on linear strains Qe distp(A, Kα), A ∈ Mn
s

satisfies
C0|Y |p − C1 ≤ Qe distp(Y, Kα) ≤ C2(1 + |Y |p) (1.6)

for Y ∈ Mn
s and

Kα = {Y ∈ Mn
s : Qe distp(Y, Kα) = 0}, (1.7)

where C0, C1, C2 are positive constants and Qe distp(Y, Kα) is the quasiconvex envelope on linear strains of the
p-distance function distp(Y, Kα).

We need the following results on various semiconvex hulls of linear strains for compact sets in Mn
s and their

properties to establish Theorem 2. For the MN×n version of these results, see [33, 37, 39]. We define two types
of quasiconvex hulls on linear strains for closed subsets of Mn

s .

Definition 1.1. Let K ⊂ Mn
s be closed, for 1 ≤ p < ∞, we defined the strong p-quasiconvex hull Qe

p(K) and
weak p-quasiconvex hull Qe

p(K) respectively as

Qe
p(K) =

{
X ∈ Mn

s , f(A) ≤ sup
Y ∈K

f(Y ), f quasiconvex on linear strains , 0 ≤ f(A) ≤ Cf (1 + |A|p)
}
· (1.8)

Qe
p(K) = {A ∈ Mn

s , Qe distp(A, K) = 0};
and the strong p-rank-one convex hull of linear strains as

Re
p(K) =

{
X ∈ Mn

s , f(A) ≤ sup
Y ∈K

f(Y ), f rank-one convex on linear strains , 0 ≤ f(A) ≤ Cf (1 + |A|p)
}
·

(1.9)

Clearly, one has Re
p(K) ⊂ Qe

p(K) ⊂ Qe
p(K), Re

p(K) ⊂ Re
q(K) and Qe

p(K) ⊂ Qe
q(K) for 1 ≤ q ≤ p < ∞. We

can also show that Qe
p(K) ⊂ Qe

q(K) (see Proof of Th. 3 and (4.1)).
In order to state Theorem 5, we need to define the so-called closed lamination convex hull Le

c(K) on linear
strains for a compact set K ⊂ Mn

s as follows [44].
Notice that the subspace (Mn

s )⊥ of skew-symmetric matrices does not have rank-one matrices. We say that
A ∈ Mn

s is a compatible linear strain if span[A] ⊕ (Mn
s )⊥ has rank-one matrices. For example, the identity

matrix I ∈ Mn
s is incompatible. Two linear strains A, B ∈ Mn

s are called compatible if A − B is a compatible
linear strain and we call {A, B} a compatible pair. Clearly, A ∈ Mn

s is compatible if and only if {0, A} is a
compatible pair. This definition of compatibility is equivalent to that in [22], that is, A, B ∈ Mn

s are compatible
if either A − B is a rank-one matrix or A − B is of rank two and the two non-zero eigenvalues have opposite
signs.

A set K ⊂ Mn
s is called lamination convex on linear strains if for every compatible pair {A, B} ⊂ K, one

has {tA + (1 − t)B, 0 ≤ t ≤ 1} ⊂ K. For a compact set K ⊂ Mn
s , the closed lamination convex hull on linear

strains Le
c(K) is the smallest closed lamination convex set on linear strains that contains K.

The closed laminated convex hull for a compact set K ⊂ MN×n was defined in [40] motivated from [28]. It
is easy to see that K ⊂ Le

c(K) ⊂ Re
p(K) ⊂ Qe

p(K) ⊂ C(K).

Theroem 4. Let K ⊂ Mn
s be non-empty and compact. Then 1 ≤ p < ∞,

Qe
p(K) = Qe

p(K) = Qe
1(K). (1.10)

The following result is an implication of the results established in [44]. For the convenience of the reader, we
give a proof in the Appendix.

Theroem 5. Let K ⊂ Mn
s be compact. Then Le

c(K) = C(K) if and only if Qe
2(K) = C(K).



AN APPROXIMATION THEOREM FOR SEQUENCES OF LINEAR STRAINS AND ITS APPLICATIONS 227

From Theorem 4 we see that we may replace Qe
2 by any Qe

p for 1 ≤ p < ∞. Also Re
2(K) = C(K) if and only

if Qe
2(K) = C(K).

In Section 2, we give notation and preliminaries which are needed for establishing our main results. We
prove Theorem 1 and Corollary 1 in Section 3. In Section 4 we establish Theorems 2–4 by applying Theorem 1
directly or indirectly followed by some examples. In the Appendix we give a proof of Theorem 5 and establish
an elementary result Lemma 4.1 which is needed in the proof of Theorem 3.

2. Notation and preliminaries

Throughout the rest of this paper Ω denotes a bounded open subset of Rn. We denote by MN×n the space
of real N × n matrices, with norm |P | = (tr PT P )1/2. In this paper we are mainly interested in the case when
N = n ≥ 2. We let C∞

0 (Ω, Rn) be the space of smooth functions φ : Ω → Rn having compact support in Ω.

We denote the Lebesgue spaces Lp(Ω, Rn) and Sobolev spaces W 1,p(Ω, Rn) and W 1,p
0 (Ω, Rn) for vector-valued

functions u : Ω → Rn as usual [2]. As in Section 1, we let Mn
s and (Mn

s )⊥ be the subspaces of symmetric
and skew-symmetric matrices respectively. We see that these two subspaces are orthogonal to each other. For
X ∈ Mn×n, we let e(X) = (X +XT )/2 = PMn

s
(X) where PMn

s
is the orthogonal projection from Mn×n to Mn

s .
We denote weak convergence of sequences by ⇀. The Lebesgue measure of a measurable set S in Rn is meas(S)
while the complement of a set S ⊂ Rn is Sc. We use various C’s to denote positive constants such as C(n, p). In
later sections, two C(n, p)’s in the same line may not be the same. They just mean positive constants depending
only on n and p.

We define the p-distance function from Y ∈ Mn
s to a set K ⊂ Mn

s by distp(Y, K) := infA∈K |Y − A|p. The
following are some results we need later.

Definition 2.1. (See [4, 26].) A continuous function f : MN×n → R is quasiconvex if

∫
U

f(P + Dφ(x)) dx ≥ f(P )meas(U)

for every P ∈ MN×n, φ ∈ C∞
0 (U ; RN ), and every bounded open subset U ⊂ Rn . A function f : MN×n → R is

rank-one convex if for any A, B ∈ MN×n with B a rank-one matrix, the function t → f(A + tB) is convex.

It is well-known now that quasiconvexity implies rank-one convexity [4, 11, 26] while the converse is not
true [32]. To construct quasiconvex functions, we need the following

Definition 2.2. (See [11].) Suppose f : MN×n → R is a continuous function. The quasiconvex envelope
(rank-one convex envelope, respectively) Q(f) (R(f) respectively) of f is defined by

Q(f) = sup{g ≤ f ; g quasiconvex}, R(f) = sup{g ≤ f ; g rank-one convex}·

It is well-known [11] that C(f) ≤ Q(f) ≤ R(f) ≤ f and the quasiconvex envelope Qf can be calculated by

Qf(P ) = inf
φ∈C∞

0 (Ω;RN )

1
meas(Ω)

∫
Ω

f(P + Dφ(x)) dx, (2.1)

where Ω ⊂ Rn is a bounded domain. In particular the infimum in (2.1) is independent of the choice of Ω.
For a continuous function f : Mn

s → R, we say that f is quasiconvex (rank-one convex respectively) on
linear strains, if the function F : Mn×n → R defined by F (X) = f(e(X)) is a quasiconvex (rank-one convex
respectively) function.
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We define the quasiconvex envelope Qe(f) and rank-one convex envelope Re(f) on linear strains for a con-
tinuous function f : Mn

s → R by

Qe(f) = sup{g ≤ f ; g quasiconvex on linear strains}
Re(f) = sup{g ≤, f ; g rank-one convex on linear strains}·

The following simple statement is easy to prove.

Proposition 2.1. For a continuous function f : Mn
s → R, let F (X) = f(e(X)) for X ∈ Mn×n. Then

Q(F (X)) = Qe(f(e(X))).

Proof. Clearly Qe(f(e(X))) ≤ Q(F (X)) = sup{g ≤ f ; g quasiconvex }. However, if we let D ⊂ Rn be the unit
cube, then

Q(F (X)) = inf
φ∈C∞

0 (D; Rn)

∫
D

F (X + Dφ)dx = inf
φ∈C∞

0 (D; Rn)

∫
D

f(e(X + Dφ))dx := h(e(X)),

depending only on e(X). Note that X → h(e(X)) = Q(F (X)) is quasiconvex, hence h is quasiconvex on linear
strains and h ≤ f . By definition, h ≤ Qe(f). The proof is finished. �

We will use the following theorem concerning the existence and properties of Young measures [5, 19, 34].

Proposition 2.2. Let (zj) be a bounded sequence in L1(Ω; Rs). Then there exist a subsequence (zjk
) of (zj)

and a family (νx)x∈Ω of probability measures on Rs, depending measurably on x ∈ Ω, such that

f(zjk
) ⇀

∫
Rs

f(λ)dνx(λ), in L1(Ω)

for every continuous function f : Rs → R such that (f(zjk
)) is sequentially weakly relatively compact in L1(Ω).

If the sequence zj is in the form zj = Duj , where Ω ⊂ Rn is open and bounded, and (uj) is a bounded
sequence in W 1,p(Ω, RN ) for some 1 < p ≤ ∞, then the corresponding Young measure νx is called p-gradient
Young measures (see [10, 19, 23]). The Young measure is trivial if νx is a Dirac measure for a.e. x. In this case
there exists a function u such that νx is the Dirac measure at Du(x), and up to a subsequence, Duk → Du
almost everywhere.

One of the restrictions of p-gradient Young measures [19] is that for every quasiconvex function f : MN×n →
R, satisfying |f(X)| ≤ C(1 + |X |p) when 1 < p < ∞,

∫
MN×n

f(λ)dνx ≥ f

(∫
MN×n

λdνx

)
(2.2)

for almost every x ∈ Ω, (see for example, [8, 10, 19]).
For r > 0 and x ∈ Rn, let Br(x) = {y ∈ Rn : |y − x| < r} and meas(Br(x)) = ωnrn, we have ([30]),

Definition 2.3. (The Maximal Function) Let f ∈ L1
loc(R

n), we define

(Mf)(x) = sup
r>0

1
ωnrn

∫
Br(x)

|f(y)| dy,

where ωn is the volume of the n dimensional unit ball.
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We have the following weak-(1, 1) and strong-(p, p) estimates [30][p. 5, Th. 1(b)]:

Proposition 2.3. If f ∈ L1(Rn), then for every λ > 0,

meas({x ∈ Rn : (Mf)(x) > λ}) ≤ C(n)
λ

∫
Rn

|f | dx.

If f ∈ Lp(Rn) for 1 < p < ∞, there is a constant C(n, p) > 0 such that

‖(Mf)‖Lp(Rn) ≤ C(n)‖f‖Lp(Rn),

which also implies the weak-(p, p) estimate

meas({x ∈ Rn : (Mf)(x) > λ}) ≤ C(n, p)
λp

∫
Rn

|f |p dx.

The following results on convolution operators can be found in ([30], Ch. II., Ths. 3 and 4)

Proposition 2.4. Let K : Rn → R be a 0-homogeneous function, smooth with mean value zero on the unit
sphere Sn−1. Then for f ∈ Lp(Rn), 1 ≤ p < ∞, define

Tε(f)(x) =
∫
|y−x|≥ε

K(y − x)
|y − x|n f(y)dy, ε > 0. Then

(a) there exists a constant Ap > 0 independent of ε > 0 so that

‖Tε(f)‖Lp(Rn) ≤ Ap‖f‖Lp(Rn), 1 < p < ∞;

(b) limε→0 Tε(f) = T (f) exists in Lp(Rn) norm (1 < p < ∞) while limε→0 Tε(f)(x) exists for almost every
x ∈ Rn when 1 ≤ p < ∞ and

‖T (f)‖Lp(Rn) ≤ Ap‖f‖Lp(Rn), 1 < p < ∞;

(c) let T ∗(f)(x) = supε>0 |Tε(f)(x)|. If f ∈ L1(Rn), then the mapping f → T ∗(f) is of weak type-(1, 1),
that is,

meas({x ∈ Rn : (T ∗f)(x) > λ}) ≤ C(n)
λ

∫
Rn

|f | dx, for all λ > 0; (2.3)

(d) if 1 < p < ∞, then ‖T ∗(f)‖Lp(Rn) ≤ Ap‖f‖Lp(Rn), which implies the weak-(p, p) estimate

meas({x ∈ Rn : (T ∗f)(x) > λ}) ≤ C(n, p)
λp

∫
Rn

|f |p dx. (2.4)

The following are some useful estimates for functions in the space of bounded deformations BD(Ω) and
BD(Rn) [3, 12, 21]. To simplify the statements, we only state the results for functions in W 1,1 which is contained
in BD.

Let R be the class of rigid motions in Rn, that is, affine functions of the form Ax+d with A skew-symmetric
n × n matrix and d ∈ Rn. The following Poincaré type inequality is in [21] for functions in BD(Ω), however,
we only consider functions in W 1,1(Ω, Rn) ⊂ BD(Ω).

Proposition 2.5. Let Ω ⊂ Rn be a bounded, connected open set with Lipschitz boundary and let R : BD(Ω) → R
be a continuous linear mapping which leaves the elements of R fixed. Then there exists a constant C(Ω, R) > 0
such that ∫

Ω

|u − R(u)|dx ≤ C(Ω, R)
∫

Ω

|e(Du)|dx, for all u ∈ W 1,1(Ω, Rn).
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When Ω ⊂ Rn is an open ball, there is a precise representation of the rigid motion R(u) given by the following
result [3] (we still state it for W 1,1 functions).

Proposition 2.6. Let u ∈ W 1,1(Rn, Rn), x ∈ Rn and ε > 0. Then there exist a vector dε(e(Du))(x) and a
skew-symmetric matrix Aε(e(Du))(x), such that∫

Bε(x)

|u(y) − Aε(e(Du))(x)(y − x) − dε(e(Du))(x)|dy ≤ C(n)ε
∫

Bε(x)

|e(Du(y))|dy,

where C(n) > 0 is a constant. Furthermore dε(·) and Aε(·) can be represented as singular integrals

di
ε(F )(x) =

n∑
l,m=1

∫
|y−x|≥ε

Λi
lm(y − x)

nwn|y − x|n Flm(y)dy,

Aij
ε (F )(x) =

n∑
l,m=1

∫
|y−x|≥ε

Γij
lm(y − x)

2wn|y − x|n+2
Flm(y)dy,

where F ∈ Lp(Rn, Mn
s ), with 1 ≤ p < ∞, Λ and Γ are third and forth order smooth tensors with zero average

on Sn−1, and Λ is 0-homogeneous and Γ 2-homogeneous respectively.

If we define A∗(F )(x) = supε>0 |Aε(F )(x)|, we see from Proposition 2.5 that A∗ have the weak-(1, 1),
strong-(p, p) and weak-(p, p) estimates for F ∈ Lp(Rn, Mn

s ), 1 ≤ p < ∞.
The following is a simple variation of ([12], Th. 3.1) – the Luzin type theorem for BD functions. In the

original statement in [12], it was stated for the case λ = τ with our notation. However, by examining the proof,
it is easy to see that the following can be deduced by using the original proof. We also notice that Su = ∅ in
our setting, where Su is the singular part of u (see [3]).

Proposition 2.7. Let u ∈ C∞
0 (Rn, Rn). We define for any λ > 0 and τ > 0

Eλ = {x ∈ Rn, M(e(Du))(x) < λ}, Hτ = {x ∈ Rn, A∗(e(Du))(x) < τ},

where A∗ is defined as above. Then there is a Lipschitz mapping vλ,τ : Rn → Rn such that

|vλ,τ (x) − vλ,τ (y)| ≤ C(n)(λ + τ)|x − y|, x, y ∈ Rn

such that u(x) = vλ,τ (x) on Wλ,τ = Eλ ∩ Hτ .

We conclude this section by stating a special form of Korn’s inequality ([20], Th. 8):

Proposition 2.8. Let Ω ⊂ Rn be as in Proposition 2.5 and let u ∈ W 1,p(Ω, Rn), 1 < p < ∞. Then there is a
skew-symmetric matrix Au such that∫

Ω

|Du(x) − Au|pdx ≤ C

∫
Ω

|e(Du(x))|pdx,

where C > 0 is a constant independent of u and Au.

3. Proof of Theorem 1 and Corollary 1

We prove Theorem 1 through Lemma 3.1 to Lemma 3.5.

Proof of Theorem 1. The idea of the proof is the following. We use Lemma 3.1 and Lemma 3.2 to show
that e(Duj) is “essentially” bounded in L∞. Then for a carefully chosen subsequence ujk

we use the Luzin
type theorem for BD functions to obtain a sequence (vk) of Lipschitz mappings such that vk(x) = ujk

(x)
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on a large subset Wjk
of Ω while the Lipschitz constants of (vk) are unbounded (Lem. 3.3). Then we show

(Lem. 3.4) that the linear strains e(Dvk) of these Lipschitz functions are in fact, bounded in Lp by using
the estimates on A∗ defined in Proposition 2.6 and the maximal function of e(Duj). Finally we prove that
limk→∞

∫
Ω |e(Dujk

− Dvk)| = 0 (Lem. 3.5).

Lemma 3.1. Under the assumptions of Theorem 1 we have

lim
j→∞

∫
{x∈Ω, |e(Duj(x))|≥2R}

|e(Duj(x))|dx = 0, (3.1)

and |e(Duj(x))| is equi-integrable on Ω.

Proof. Since limj→∞
∫
Ω dist(e(Duj(x)), B̄R(0))dx = 0, we see that

0 = lim
j→∞

∫
Ω

dist(e(Duj(x)), B̄R(0))dx

≥ lim sup
j→∞

∫
{x∈Ω, |e(Duj(x))|≥2R}

dist(e(Duj(x)), B̄R(0))dx

≥ lim sup
j→∞

R meas ({x ∈ Ω, |e(Duj(x))| ≥ 2R}) ,

where we have used the fact that when |e(Duj(x))| ≥ 2R, dist(e(Duj(x)), B̄R(0)) ≥ R. Next since we have

dist(e(Duj(x)), B̄R(0)) ≥ |e(Duj(x))| − R, (3.2)

whenever |e(Duj(x))| > R, we see that

0 = lim
j→∞

∫
Ω

dist(e(Duj(x)), B̄R(0))dx

≥ lim sup
j→∞

∫
{x∈Ω, |e(Duj(x))|≥2R}

dist(e(Duj(x)), B̄R(0))dx

≥ lim sup
j→∞

∫
{x∈Ω, |e(Duj(x))|≥2R}

(|e(Duj(x))| − R) dx,

hence the first conclusion follows. The second claim is easy to prove because B̄R(0) is compact. In fact, if we
let bj =

∫
Ω dist(e(Duj(x)), B̄R(0))dx, then bj → 0 as j → ∞. For any measurable subset G of Ω, we have, from

(3.2) that

bj ≥
∫

G

dist(e(Duj(x)), B̄R(0))dx ≥
∫

G

|e(Duj(x))|dx − R meas(G)

so that
∫

G
|e(Duj(x))|dx ≤ bj + R meas(G). The equi-integrability of |e(Duj(x))| on Ω then follows easily from

this inequality. In fact, for any ε > 0, if we first choose δ1 = ε/(2R), then there is some N > 0, such that bj < ε/2
and

∫
G |e(Duj(x))|dx ≤ ε whenever j > N and meas(G) < δ1. Let δ2 > 0 be such that

∫
G |e(Duj(x))|dx ≤ ε

when meas(G) < δ2 and 1 ≤ j ≤ N . Now if we take δ = min{δ1, δ2}, the second conclusion then follows. �
Now, if

aj =
∫
{x∈Ω, |e(Duj(x))|≥2R}

|e(Duj(x))|dx, (3.3)

we see that aj → 0 as j → ∞ which follows from the proof of Lemma 3.1.
Now we extend uj to be defined on Rn by zero, then we may consider the maximal function M (|e(Duj)|) (x)

of |e(Duj(x))|. We have
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Lemma 3.2. For λ > 2R, let

Eλ
j = {x ∈ Rn, M (|e(Duj)|) (x) < λ}, hence

(
Eλ

j

)c
= {x ∈ Rn, M (|e(Duj)|) (x) ≥ λ}·

Let aj be as defined in (3.3), then

meas
((

Eλ
j

)c) ≤ C(n)aj

λ − 2R
→ 0 as j → ∞. (3.4)

Proof. The proof of Lemma 3.2 is very similar to that of ([38], Lem. 3.1). We define

h(t) =
{

0, if , |t| ≤ 2R,
|t| − 2R, if , |t| ≥ 2R.

Then h : R → R+ is a continuous function. We claim that

{x ∈ Rn, M (|e(Duj)|) (x) ≥ λ} ⊂ {x ∈ Rn, M (h(|e(Duj)|)) (x) ≥ λ − 2R}· (3.5)

We prove (3.5) as follows. If M (|e(Duj)|) (x) ≥ λ, by definition, there is a sequence of positive numbers εk > 0
and rk > 0 with εk → 0 as k → ∞ such that

1
meas(Brk

(x))

∫
Brk

(x)

|e(Duj(y))|dy ≥ λ − εk.

Since

M (h(|e(Duj)|)) (x) ≥ 1
meas(Brk

(x))

∫
Brk

(x)

h(|e(Duj(y))|)dy

=
1

meas(Brk
(x))

∫
{y∈Brk

(x), |e(Duj(y))|≥2R}
(|e(Duj(y))| − 2R) dy

=
1

meas(Brk
(x))

∫
Brk

(x)

|e(Duj(y))|dy − 1
meas(Brk

(x))

∫
{y∈Brk

(x), |e(Duj(y))|≥2R}
2Rdy

− 1
meas(Brk

(x))

∫
{y∈Brk

(x), |e(Duj(y))|<2R}
|e(Duj(y))|dy ≥ λ − εk − 2R.

Passing to the limit k → ∞ we obtain M (h(|e(Duj))|) (x) ≥ λ − 2R. Thus (3.5) is proved.
Now from the weak-(1, 1) estimate of the maximal function (Prop. 2.4), we have

meas ({x ∈ Rn, M (h(|e(Duj)|)) (x) ≥ λ − 2R}) ≤ C(n)
λ − 2R

∫
Rn

h(|e(Duj(y))|)dy

≤ C(n)
λ − 2R

∫
{y∈Ω, |e(Duj(y))|≥2R}

|e(Duj(y))|dy =
C(n)

λ − 2R
aj → 0,

as j → ∞, where aj is defined by (3.3). The proof is finished. �
Since the sequence (aj) defined by (3.3) converges to zero as j → ∞, we may find a subsequence (ajk

) such
that

ajk
≤ e−(k+1). (3.6)

Recall the operator A∗(e(Du)) defined following Proposition 2.6. Now we apply Proposition 2.7 to our se-
quence ujk

.
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Lemma 3.3. Let λ = 4R in Lemma 3.2 and let τk = 4kR, for k = 1, 2, . . . Let

Hjk
= {x ∈ Rn, A∗(e(Dujk

))(x) < τk}·

Then ujk
is a Lipschitz mapping on the set

Wjk
= Eλ

jk
∩ Hjk

= {x ∈ Rn M (|e(Duj)|) (x) < λ, A∗(e(Dujk
))(x) < τk}, (3.7)

satisfying
|ujk

(x) − ujk
(y)| ≤ C(n)(λ + τk)|x − y| = C(n)4(1 + k)R|x − y|. (3.8)

From Lemma 3.3 and Kirszbraun’s theorem [36], there is a Lipschitz extension vk of ujk
to Rn such that

|vk(x) − vk(y)| ≤ C(n)4(1 + k)R|x − y|, (3.9)

for all x, y ∈ Rn and
|Dvk(x)| ≤ C(n)4(1 + k)R, (3.10)

for almost every x ∈ Rn and Dvk(x) = Dujk
(x) almost everywhere on Wjk

([16], Lem. 7.7).

Lemma 3.4. There is a constant C0 > 0 independent of vk such that∫
Rn

|e(Dvk(x))|pdx ≤ C0.

Proof. For a measurable set S ⊂ Rn, we let

Jp(w, S) =
∫

S

|e(Dw(x))|pdx, 1 ≤ p < ∞ (3.11)

as long as the right hand side of (3.11) is finite. We then have

∫
Rn

|e(Dvk(x))|pdx = Jp(vk, Rn) = Jp(vk, Wjk
) + Jp(vk, (Wjk

)c).

We see that
Jp(vk, Wjk

) = Jp(ujk
, Wjk

) ≤ λp meas(Ω) = (4R)p meas(Ω).

This follows from the fact that Dvk = Dujk
almost everywhere on Wjk

, ujk
is supported in Ω, Wjk

⊂ Eλ
jk

and
|e(Dujk

(x))| ≤ M(|e(Dujk
)|)(x) ≤ λ = 4R on Eλ

jk
.

We also have

Jp(vk, (Wjk
)c) = Jp(vk, (Hjk

∩ Eλ
jk

)c) ≤ Jp(vk, (Hjk
)c ∪ (Eλ

jk
)c) ≤ Jp(vk, (Hjk

)c) + Jp(vk, (Eλ
jk

)c).

Notice that |Dvk(x)| ≤ C(n)4R(k + 1) and λ = 4R, we have

Jp(vk, (Eλ
jk

)c) ≤ [C(n)4R(k + 1)]p meas((Eλ
jk

)c) ≤ C(n, p)Rp(k + 1)p

(2R)p
ajk

≤ C(n, p)Rp(k + 1)p

(2R)p
e−(k+1) ≤ C(n, p)(k + 1)pe−(k+1) ≤ C(n, p). (3.12)
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To estimate Jp(vk, (Hjk
)c), we write e(Dujk

(x)) = e1(Dujk
(x)) + e2(Dujk

(x)), where

e1(Dujk
(x)) =

{
e(Dujk

(x)), if |e(Dujk
(x))| < 4R,

0, if |e(Dujk
(x))| ≥ 4R;

e2(Dujk
(x)) =

{
e(Dujk

(x)), if |e(Dujk
(x))| ≥ 4R,

0, if |e(Dujk
(x))| < 4R.

Then from

A∗(e(Dujk
))(x) = A∗(e1(Dujk

) + e2(Dujk
))(x) ≤ A∗(e1(Dujk

))(x) + A∗(e2(Dujk
))(x),

we have
(Hjk

)c ⊂ {x ∈ Rn, A∗(e1(Dujk
))(x) ≥ τk/2} ∪ {x ∈ Rn, A∗(e2(Dujk

))(x) ≥ τk/2}·
Since Dujk

is supported in Ω and e1(Dujk
)(x) is a bounded sequence in L∞(Rn), we have from the weak-(p, p)

estimate of operator A∗ (Props. 2.4 and 2.6) that

meas ({x ∈ Rn, A∗(e1(Dujk
))(x) ≥ τk/2}) ≤ C(n, p)

(τk)p

∫
Rn

|e1(Dujk
)(y)|pdy

=
C(n, p)
(4Rk)p

∫
Ω

(4R)pdy ≤ C(n, p)
kp

meas(Ω).

Since e2(Dujk
) is bounded in L1(Rn) and is also supported in Ω, we apply the weak-(1, 1) estimate to opera-

tor A∗:

meas ({x ∈ Rn, A∗(e2(Dujk
))(x) ≥ τk/2}) ≤ C(n)

τk

∫
Rn

|e2(Dujk
(y))|dy

=
C(n)
4Rk

∫
{x∈Ω, |e(Dujk

(y))|≥4R}
|e(Dujk

(y))|dy ≤ C(n)
4Rk

ajk
≤ C(n)

4Rkek+1
·

Thus

meas((Hjk
)c) ≤ C(n, p)

kp
+

C(n)
Rke(k+1)

→ 0. (3.13)

Consequently,

Jp(vk, (Hjk
)c) ≤ C(n, p)Rp(1 + k)p meas((Hjk

)c) ≤ C(n, p)
[
Rp

(
1 + k

k

)p

+
kp−1

ek+1

]
≤ C(n, p, R),

which follows from the simple facts that (k + 1)/k ≤ 2 for k = 1, 2, . . . and kp−1/ek+1 → 0 as k → ∞. Finally,
we sum up these inequalities to obtain

Jp(vk, Rn) = Jp(vk, Ω ∩ Wjk
) + Jp(vk, (Wjk

)c) ≤ C(n, p, R) := C0.

The proof is then finished. �
Note from (3.4) and (3.13), we have meas(W c

jk
) → 0 as k → ∞.

Lemma 3.5. Let vk be defined as above, then

lim
k→∞

∫
Ω

|e(Dvk(x)) − e(Dujk
(x))|dx = 0.
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Proof of Lemma 3.5. Since e(Dvk(x)) = e(Dujk
(x)) almost everywhere on Wjk

defined by (3.8), we have∫
Ω

|e(Dvk(x)) − e(Dujk
(x))|dx ≤

∫
(Wjk

)c

|e(Dvk(x)) − e(Dujk
(x))|dx

≤ J1(vk, (Wjk
)c) + J1(ujk

, Ω \ Wjk
).

Since meas((Wjk
)c) → 0 as j → ∞, and Jp(vk, (Wjk

)c) is bounded, we have, from Hölder’s inequality that

0 ≤ J1(vk, (Wjk
)c) ≤ (Jp(vk, (Wjk

)c)1/p (meas ((Wjk
)c))

p−1
p → 0,

as k → ∞.
By Lemma 3.1, |e(Dujk

(x))| is equi-integrable on Ω. We see that J1(ujk
, Ω \ Wjk

) → 0 as k → ∞. The
conclusion follows. �
Remark. Recently, I. Fonseca and the referee both explained to me that Theorem 1 may also be proved by using
the general theory of A-quasiconvex functions, in particular, the work by Fonseca and Müller ([15], Cor. 2.18),
where a second order operator A was proposed to treat the linear elastic strain ([15], Ex. 3.10(e)). In fact, for the
orthogonal complement E⊥ of a general subspace E ⊂ MN×n without rank-one matrices, if K ⊂ E⊥ is compact
and dist(PE⊥(Duj), K) → 0 in L1(Ω), is seems a more promising approach by using the A-quasiconvexity
method than the one used here. The only problem is to work out algebraically the operator A (see [15] for
details).

Proof of Corollary 1. By Korn’s inequality (Prop. 2.8), we have∫
Ω

|Dvk(x) − Avk
|pdx ≤ C(n, p)

∫
Ω

|e(Dvk(x))|pdx. (3.14)

Since
wk(x) = vk(x) − 1

meas(Ω)

∫
Ω

vk(y)dy − Avk
(x − xk),

where xk ∈ Rn is such that
∫
Ω

Avk
(x − xk)dx = 0, we see from Poincaré’s inequality and (3.14), we see that

(wk) is bounded in W 1,p(Ω, Rn). Also because e(Dwk(x)) = e(Dvk(x)) in Ω, the conclusion follows from
Lemma 3.5. �

4. Proof of Theorems 2–4 and examples

Proof of Theorem 3. Let us consider the quasiconvex function on linear strains Qe dist(A, Kα), A ∈ Mn
s . We

first prove that K := {A ∈ Mn
s , Qe dist(A, Kα) = 0} = Kα. Obviously we have Kα ⊂ K. We only need to

show that K ⊂ Kα. Let A0 ∈ K. We have from Proposition 2.1 for quasiconvex envelope on linear strains that
there is a sequence (φj) ⊂ C∞

0 (D, Rn) such that

lim
j→∞

∫
D

dist(A0 + e(Dφj(x)), Kα)dx = 0,

where D ⊂ Rn is the unit cube. Let Kα,A0 = {Y − A0, Y ∈ Kα}, then Kα,A0 is still compact and
limj→∞

∫
D

dist(e(Dφj(x)), Kα,A0)dx = 0. We then have, from Lemma 3.1 that |e(Dφj)| is equi-integrable
on D, hence up to a subsequence (still denoted by the same subscripts) e(Dφj) converges weakly in L1(D). For
each fixed j, we extend φj to be defined in Rn as a periodic function and then let

uj(x) =
1
j
φj(jx)
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for j = 1, 2, . . . and for x ∈ D. We see that uj ∈ C∞
0 (D, Rn). Furthermore, |e(Duj)| is equi-integrable in Ω, up

to a subsequence e(Duj) ⇀ 0 in L1(D, Mn
s ) as j → 0 and

lim
j→∞

∫
D

dist(e(Duj(x)), Kα,A0)dx = 0.

The properties of uj mentioned above should be well-known and can be verified easily. However, for the
convenience of the reader, we state them in the following slightly general way (Lem. 4.1 below) and give a proof
in the Appendix. Note that we also have

∫
D

e(Dφj)dx = 0, hence we only need to prove the claims for each
component of e(Dφj).

Lemma 4.1. Suppose fj ⇀ f in L1(D) as j → ∞ and
∫

D
fjdx = 0, where D ⊂ Rn is the (closed) unit cube.

Then if we extend fj to Rn periodically and let uj(x) = fj(jx), x ∈ D, then (uj) is equi-integrable on D, and
up to a subsequence uj ⇀ 0 in L1(D) as j → 0. Furthermore, for any continuous function W : R → R with
linear growth, that is, |W (t)| ≤ C(|t| + 1), we have

∫
D W (fj)dx =

∫
D W (uj)dx.

Proof of Theorem 3 (continued). Now, since limj→∞
∫

D dist(e(Duj(x)), Kα,A0)dx = 0, we see, from Theorem 1
and Corollary 1 that there is a subsequence (ujk

) of (uj) and a bounded sequence (wk) in W 1,2p(D, Rn)
(hence |Dwk|p is equi-integrable on Ω) such that ‖e(Dujk

) − e(Dwk)‖L1(D) → 0 as k → ∞. We assert that
e(Dwk) ⇀ 0 in Lp as k → ∞. If we let νx be the family of Young measures corresponding to Dwk, we have

0 =
∫

Mn×n

e(τ)dνx(τ) = e

(∫
Mn×n

τdνx(τ)
)

,

which follows from the Young measure representation of the weak limit and the fact that e(·) is a linear mapping
on Mn×n. We also have

∫
Mn×n dist(e(τ), Kα,A0)dνx(τ) = 0 for almost every x ∈ Ω. Hence on the support of νx,

A0 + e(τ) ∈ Kα, νx – almost everywhere. Let F (α)(Y ) = max{F (Y )−α, 0}, then F (α)(·) is still a quasiconvex
function on linear strains with p-th growth at infinity, while |e(Dwk)|p is equi-integrable on D, therefore by the
lower semicontinuity theorem [1] and the Young measure representation, we have, up to a subsequence,

0 =
∫

D

∫
Mn×n

Fα(A0 + e(τ))dνx(τ)dx = lim
k→∞

∫
D

Fα(A0 + e(wk(x)))dx

≥
∫

D

Fα

(
A0 + e

(∫
Mn×n

τdνx

))
dx =

∫
D

Fα(A0)dx ≥ 0.

Hence Fα(A0) = 0 and A0 ∈ Kα.
Finally we show that the quasiconvex function on linear strains Qe distp(·, Kα) satisfies the requirements (1.5)

and (1.6). We observe that for Y ∈ Mn
s ,

(Qe dist(Y, Kα))p ≤ Qe distp(Y, Kα). (4.1)

In fact, let φj ∈ C∞
0 (D, Rn) be a minimizing sequence such that

Qe distp(e(Y ), Kα) = lim
j→∞

∫
D

distp(Y + e(Dφj), Kα)dx,

where D is the unit cube in Rn. For each j > 0, we apply Hölder’s inequality to obtain

Qe dist(Y, Kα) ≤
∫

D

Qe dist(Y + e(Dφj), Kα)dx

≤
∫

D

dist(Y + e(Dφj), Kα)dx ≤
(∫

D

distp(Y + e(Dφj), Kα)dx

)1/p

.
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Hence (4.1) follows by letting j → ∞. We see that the zero set of Qe distp(Y, Kα) is contained in that
of Qe dist(Y, Kα) which is Kα. On the other hand, it is obvious that the zero set of Q distp(Y, Kα) contains Kα.
The conclusion then follows. �

Proof of Theorem 4. Since by definition, we have Qe
p(K) ⊂ Qe

p(K) ⊂ Qe
1(K), we only need to prove that

Qe
1(K) ⊂ Qe

p(K) for every 1 ≤ p < ∞.
Let f : Mn

s → R be quasiconvex on linear strains and 0 ≤ f(Y ) ≤ Cf (1 + |Y |p) for Y ∈ Mn
s . We let

α = maxY ∈K f(Y ) and define Kα = {Y ∈ Mn
s , f(Y ) ≤ α}, then we see that Qe

p(K) is the intersection of all
such Kα. From Theorem 2, we see that

Kα = {Y ∈ Mn
s , Qe dist(Y, Kα) = 0}·

On the other hand, since it is obviously true that K ⊂ Kα, we have dist(Y, Kα) ≤ dist(Y, K) for all Y ∈ Mn
s so

that 0 ≤ Qe dist(Y, Kα) ≤ Qe dist(Y, K) hence Qe
1(K) ⊂ Kα and Qe

1(K) ⊂ Qe
p(K). The proof is finished. �

The following lemma will be used in the proof of Theorem 2.

Lemma 4.2. Suppose F : Mn
s → R is continuous and non-negative with F−1(0) = K a non-empty and

compact set. Furthermore, assume that F satisfies the coercivity condition lim|A|→∞ F (A)/|A| = +∞. Let
(Qe(F ))−1(0) = {A ∈ Mn

s , Qe(f(A)) = 0}. Then (Qe(F ))−1(0) ⊂ Qe
1(K).

If we take Theorem 4 into account, clearly, Lemma 4.1 also implies (Qe(F ))−1(0) ⊂ Qe
p(K) for all 1 ≤ p < ∞.

Proof of Lemma 4.2. Let A ∈ (Qe(F ))−1(0), then there is a sequence φj ∈ C∞
0 (D, Rn) such that

limj→∞
∫

D F (A+ e(Dφj))dx = 0. It is then easy to see, from the coercivity condition that up to a subsequence,
dist(A+e(Dφj), K) → 0 almost everywhere and e(Dφj) is equi-integrable. Hence

∫
D

dist(A+e(Dφj), K)dx → 0
as j → ∞. By definition, A ∈ Qe

1(K), the proof is finished. �

With the help of Theorems 3–5, we now prove Theorem 2.

Proof of Theorem 2. Since C(f) ≤ Qe(f) ≤ Re(f), we only need to show that if Re(f) �= Cf then Qe(f) �= Cf .
For f : Mn

s → R, let epi(f) = {(A, t) ∈ Mn
s × R, f(A) ≥ t} be the epi-graph of f . First we claim that

there is a supporting plane E (see [29]) of epi(Cf) in Mn
s such that K0 = epi(Ref) ∩ E is not convex while

CK0 = epi(C(f)) ∩ E. If this is not true, we can easily see that Re(f) = C(f) on K = P(K′) = P(C(K′)),
where K = P(K′) is the orthogonal projection of K0 ⊂ Mn

s × R to Mn
s , so that Re(f) ≡ C(f) (see [29]), and

we reach a contradiction.
Now, we use the supporting plane E to construct a non-negative rank-one convex function F on linear strains,

vanishing exactly on K with superlinear growth (1.5) so that K is also compact.
Since the plane E is the graph of a real-valued affine function L(·) defined on Mn

s , we see that Re(f(·))−L(·) ≥
0 and Re(f(A))−L(A) = 0 if and only if A ∈ K. We also see that K is compact because Re(f) ≥ Cf hence Re(f)
satisfies

lim
|A|→∞

Re(f(A))
|A| = +∞. (4.2)

Let us consider F (A) = Re(f(A)) − L(A), for A ∈ Mn
s . Then X → F (e(X)) is rank-one convex, F ≥ 0, and

F (A) = 0 if and only if A ∈ K, and

lim
|A|→∞

F (A)
|A| = +∞. (4.3)

Next we show that Qe(f(P )) > Cf(P ) for a certain matrix P ∈ Mn
s , if Qe(F (P )) > 0 holds.

From Proposition 2.1 and the fact that L is affine, we see that

Qe(F (·)) = Qe[Re(f(·)) − L(·)] = Qe(f(·)) − L(·).
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Therefore, we only need to prove that Qe(F ) is not convex. Since F ≥ 0, it suffices to show that the zero set
of Qe(F )

QeF
−1(0) = {A ∈ Mn

s , Qe(F (A)) = 0}
is not convex.

From Theorem 5, we see that Qe
2(K) is not convex because the non-convex set K is the zero set of the

non-negative rank-one convex function F on linear strains, so it is a closed lamination convex set. We also
notice that C(f(·)) − L(·) ≥ 0 and C(f(A)) − L(A) = 0 if and only if A ∈ C(K).

Let P ∈ C(K) \ Qe
2(K). From Theorem 4, we see that Qe

2(K) = Qe
1(K) = Qe

1(K). From Lemma 4.2 we see
further that (Qe(F ))−1(0) ⊂ Qe

1(K). Thus Qe(F (P )) > 0 which implies

Qe(F (P )) = Qe(f(P )) − L(P ) > 0 = Cf(P ) − L(P )

and Qe(f(P )) > Cf(P ). The proof is finished. �
Now let us examine some examples of quasiconvex functions defined on linear strains with linear growth.

Example 4.1. Let I ∈ Mn×n be the unit matrix. It was proved in [13] following an argument in [31], that for

K0 = {−I, I} ⊂ Mn×n,

Q dist(e(X), K0) does not vanish at X = 0, hence Q dist(e(X), K0) is not convex. In fact, it was established
earlier in [41] that for any closed set K ⊂ E∂ – the subspace of conformal matrices (or K ⊂ E∂̄ – the subspace
of anti-conformal matrices) of M2×2, there is a constant c > 0 independent of K such that

Q dist(X, K) ≥ c dist(X, K) (4.4)

for all X ∈ M2×2. This result was generalized in [17] to the case when K ⊂ E where E ⊂ MN×n is a subspace
without rank-one matrices, that is

Q dist(X, K) ≥ c(E) dist(X, K) (4.5)
where c(E) > 0 depends only on E. Therefore the following much improved estimate of the above result in [13]
for K0 can be deduced from these earlier results:

Qe dist(Y, K0) ≥ c(n) dist(Y, K0). (4.6)

In the 2 × 2 case we observe that K0 × (M2
s )⊥ ⊂ E∂ , thus from (4.4), we have

Qe dist(e(X), K0) = Q dist(X, K0 × (M2
s )⊥) ≥ c dist(X, K0 × (M2

s )⊥) = c dist(e(X), K0). (4.7)

For the n × n case, since it is known [10,22] that the subspace E = span{I} ⊕ (Mn
s )⊥ does not have rank-one

matrices, so, we see from (4.4) that (4.5) holds if we replace E∂ by E.

Example 4.2. From a special case of the explicit calculation of the quasiconvex relaxation for the two linear
strain energy [22], we see that the quasiconvex function on linear strains Qe dist2(Y, K0) satisfies that

Qe dist2(Y, K0) = dist2(Y, K0)

when dist2(Y, K0) is small, where K0 = {−I, I} ⊂ Mn
s is as defined in Example 4.1. We see that the sub-

level set
Kα2 =

{
Y ∈ Mn

s , Qe dist2(e(Y ), K0) ≤ α2
}

= B̄α(I) ∪ B̄α(−I)
when α > 0 is small, where B̄α(I) and B̄α(−I) are closed balls in Mn

s centered at I and −I respectively with
radius α. We may also make the two closed balls disjoint. We see that Kα2 = Qe

1(Kα2) hence the zero set of
the following quasiconvex function on linear strains with linear growth Qe dist(Y, Kα2) is Kα2 itself.
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Appendix

Proof of Lemma 4.1. Since fj ⇀ f in L1(D), we have, from Dunford–Pettis Theorem [14], |fj | is equi-integrable
on D. Thus for every ε > 0, there is some δ > 0, such that

∫
E |fj |dx ≤ ε for all j > 0 whenever E ⊂ D is

measurable and meas(E) ≤ δ. We let jE−m = {jx−m, x ∈ E} for m ∈ Rn. Then we can decompose jD into jn

unit cubes (Ds) whose vertex that is closest to the origin ms, – a vector with integer components between 0
and jn−1. Also the intersection between different Ds’s is only on the boundary. We have jD = ∪jn

s=1Ds. Thus,
since fj is now periodic with period D,

∫
E

|uj(x)|dx =
∫

E

|fj(jx)|dx =
1
jn

∫
jE

|fj(y)|dy

=
1
jn

jn∑
s=1

∫
jE∩Ds

|fj(y)|dy =
1
jn

jn∑
s=1

∫
(jE∩Ds)−ms

|fj(y)|dy.

Since meas(E) ≤ δ, meas(jE) ≤ jnδ,
∑jn

s=1 meas[(jE ∩Ds)−ms] = meas(jE) ≤ jnδ and (jE ∩Ds)−ms ⊂ D.
We may write, for each s, meas[(jE ∩ Ds) − ms] = jsδ + rsδ where js ≥ 0 is an integer and 0 ≤ rs < 1. Thus

jn∑
s=1

jsδ ≤
jn∑

s=1

(jsδ + rsδ) ≤ jnδ

so that
∑jn

s=1 js ≤ jn. We also have meas[(jE ∩ Ds) − ms] ≤ (js + 1)δ, hence it is easy to prove that∫
(jE∩Ds)−ms

|fj(y)|dy ≤ (js + 1)ε, which implies

1
jn

jn∑
s=1

∫
(jE∩Ds)−ms

|fj(y)|dy ≤ 2ε.

Therefore |uj | is equi-integrable on D.
Again from Dunford–Pettis Theorem, up to a subsequence uj ⇀ u in L1(D) for some u ∈ L1(D). We only

need to show that u = 0 almost everywhere. Since we have assumed that D is closed, for each φ ∈ C0(D), we
consider

∫
D

ujφdx =
∫

D

fj(jx)φ(x)dx =
1
jn

∫
jD

fj(y)φ
(

y

j

)
dy =

∫
D

fj(y)

(
jn∑

s=1

φ

(
y

j
− ms

)
1
jn

)
dy.

Then, from the boundedness of fj in L1(D), the assumption
∫

D fjdx = 0 and the definition of Riemann integral,
we see that

∫
D

ujφdx → 0 as j → ∞ hence u = 0.

The last claim that
∫

D W (uj(x))dx =
∫

D W (fj(x))dx can be easily checked by changing the variable jx = y
and the periodicity assumption on fj . �

The following is the proof of Theorem 5 extracted from [44]. We need some preparations.
A quadratic function q : Mn

s → R is called a rank-one convex quadratic function on linear strains if X →
q(e(X) is a rank-one convex quadratic function defined on Mn×n. We denote by RCe the set of all rank-one
convex quadratic functions on linear strains.
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Definition A.1. The quadratic rank-one convex hull qre(K) of a compact set K ⊂ Mn
s is defined by

qre(K) =
{

X ∈ Mn
s , q(X) ≤ sup

Y ∈K
q(Y ), q ∈ RCe

}
·

From the definition of qre(K), one can easily see that

K ⊂ Le
c(K) ⊂ Re

2(K) ≤ Qe
2(K) ⊂ qre(K) ⊂ C(K).

Therefore if we can prove that qre(K) = C(K) if and only if Le
c(K) = C(K), Theorem 5 will then follows.

Let E ⊂ Mn
s be a linear subspace without compatible matrices, and E⊥ being its orthogonal complement

of E in Mn
s . Let

q(A) = |PE⊥(A)|2 − λE |PE(A)|2, (A.1)

where PE⊥ and PE are orthogonal projections to E⊥ and E respectively, and λE > 0 is the largest positive
number such that the quadratic form q is a rank-one convex (so is quasiconvex) on linear strains. The constant λE

can be defined as follows. Since E does not have compatible strains, E⊕(Mn
s )⊥ does not have rank-one matrices.

Note that PE⊥(a⊗b) = PE⊥(e(a⊗b)) and |PE⊥(a⊗b)|2 > 0 for any nonzero rank-one matrix a⊗b. Let a, b ∈ Rn,
we then define

1
λE

= sup
|a|=|b|=1

|PE(e(a ⊗ b))|2
|PE⊥(e(a ⊗ b))|2 < +∞ (A.2)

and λE > 0 satisfies the requirement.
If E1 is a plane in Mn

s parallel to E and X ∈ E1, then

qX(A) = |PE⊥(A)|2 − λE |PE(A − X)|2 (A.3)

is a quadratic rank-one convex function reaching its strict maximum at X in E1 with qX(X) = 0 and qX(A) < 0
for A ∈ E1 \ {X}. We have

Lemma A.1. Suppose E ⊂ Mn
s is a linear subspace without compatible matrices and E1 is a plane parallel

to E. Then any closed subset K ⊂ E1 is a quadratic rank-one convex set of linear strains, that is, qre(K) = K.

Proof. If K �= E1, then for any X ∈ E1 \ K, we consider qX defined by (A.3), then qX ∈ RCe and qX(X) =
0 > supA∈K qX(A). Therefore X /∈ qre(K). The proof is then finished. �

Proof of Theorem 5. We first show that if E1 is a supporting plane (see [29]) of C(K) then

qre(K) ∩ E1 = qre(K ∩ E1). (A.4)

Let E be the plane in Mn
s containing C(K) with the same dimension as C(K) (see [29]). Obviously, qre(K ∩

E1) ⊂ qre(K) ∩ E1. Let X ∈ qre(K) ∩ E1. There is an affine function l defined on Mn
s such that l < 0 on the

open half space in E containing C(K) \E1, l = 0 on E1 and l > 0 on the opposite half space to C(K) in E. We
also define E1(ε) = {A ∈ E, dist(A, E1) ≤ ε, l(A) ≤ 0} which is a set on the same side as C(K) in E, where
dist(A, E1) is the euclidean distance from A to E1. For any fixed q ∈ RCe we consider, for every integer n > 0
the quadratic function q(·) + nl(·) ∈ RCe. Since for any A ∈ K ∩ E1, l(A) = 0, we have, for every fixed point
X ∈ qre(K) ∩ E1,

q(X) = q(X) + nl(X) ≤ sup
A∈K

[q(A) + nl(A)].

Since q + nl is continuous and K compact, the maximum is attained at some An ∈ K, that is, supA∈K [q(A) +
nl(A)] = q(An) + nl(An), so that q(X) ≤ q(An) + nl(An). Since K is compact there is a subsequence Ank

→
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A0 ∈ K as k → 0. Notice that l(An) ≤ 0 for all n. If we let k → ∞ we see that δk := dist(Ank
, E1) → 0.

Otherwise q(X) cannot be finite. Now we have

q(X) ≤ q(Ank
) + nkl(Ank

) ≤ sup{q(A), A ∈ K ∩ E1(δk)}· (A.5)

Again the “sup” in (A.5) can be reached by, say Bk ∈ K ∩E1(δl), and up to a subsequence Bk → B0 ∈ K ∩E1

as k → ∞.
Passing to the limit k → 0 on both side of the inequality q(X) ≤ q(Bk) and noticing that B0 ∈ K ∩ E1, we

have q(X) ≤ q(B0) ≤ supA∈K∩E1
q(A), hence X ∈ qre(K ∩E1), (A.4) is proved. Notice also that C(K)∩E1 =

C(K ∩ E1).
Now suppose K ⊂ Mn

s is compact while Le
c(K) �= C(K), but qre(K) = C(K). We may assume that K is a

closed laminated convex set. Then among all these K’s there is one for which the affine dimension dimC(K) ≥ 1
of C(K) is the smallest. For such K we claim that the plane E in Mn

s spanned by C(K) does not have compatible
pairs. Otherwise it is easy to see that there is a supporting plane E1 of C(K) such that E1 ∩K is still a closed
laminated convex set on linear strains while qre(K∩E1) = qre(K)∩E1 = C(K)∩E1 is convex. This contradicts
to the fact that the dimension dimC(K) is the smallest. Now since C(K) ⊂ E and E does not have compatible
pairs, there is some X ∈ C(K) �= K. If we define qX as in Lemma A.1, then there is δ > 0, such that
qX(X) = 0 > −δ = supA∈K⊂E q(A). Hence X /∈ qre(K) and qre(K) �= C(K), a contradiction. �
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[28] S. Müller and V. Šverák, Attainment results for the two-well problem by convex integration, in Geometric analysis and the
calculus of variations, Internat. Press, Cambridge, MA (1996) 239-251.

[29] R.T. Rockafellar, Convex Analysis. Princeton University Press (1970).
[30] E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970).
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