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Substituting  (A4)  and  (A5)  in  (AI)  and  using  (A2)  to 
eliminate  the  variable h l ,  ( A l )  becomes  the  equation 

F(N, 6,) = 0. (A71 
Eliminating  in  the  same  manner 6 from  (4),  the  solution  of 

(A7)  and  (4) gives through  (A4)  the values Nopt and tOpt .  
Also  in  this  case, the  problem is  well  behaved  (see Fig. 1)  and 
the  solution  of  the  nonlinear  system  can  be  obtained  quickly 
by  the  bisection  method. 

REFERENCES 
[ l ]  D. S. K. Chan  and L.  R. Rabiner,  “Analysis of quantization 

errors  in the direct  form  for  finite  impulse  response  digital 
filters,” IEEE Trans. Audio Electroacoust., vol.  AU-21,  pp. 

[ 21  R.  E. Crochiere  and A. V. Oppenheim,  “Analysis of linear  digital 
networks,” Proc. IEEE, vol. 63, pp.  581-595,  Apr.  1975. 

[3] 0. Herrmann, L. R. Rabiner,  and D. S. K. Chan,  “Practical de- 
sign  rules for optimum  finite  impulse  response  lowpass  digital 
filters,” Bell Syst. Tech. J., vol. 52, pp.  769-799,  July-Aug. 
1977. 

354-365, A u ~ .  1973. 

[5 1 

191 

R.  A.  Gabel, “On the optimal  number  of  FIR  filter  coefficients 
under a memory size constraint,” IEEE Trans. Acoust.,  Speech, 
Signal Processing, vol.  ASSP-26, pp.  366-367, Aug. 1978. 
0. Andrisano  and L. Calandrino,  “Tap  weight  tolerance  effects 
on CCD transversal  filtering,” Alta Freq., vol. 45, pp.  739-746, 
Dec. 1976. 
A. Gersho, B. Gopinath,  and A. M. Odlyzko,  “Coefficient  inac- 
curacy  in  transversal  filtering,” Bell Syst. Tech. J., vol. 58, pp. 
2301-2316, Dec. 1979. 
L.  R. Rabiner  and B. Gold, Theory and Application of Digital 
Signal  Processing. Englewood  Cliffs,  NJ:  Prentice-Hall,  1975. 
R.  D. Baertsch, W. E.  Engeler,  H. S. Goldberg,  G. H. Puckette, 
and J. J.  Tiemann,  “The  design  and  operation  of  practical  charge- 
transfer  transversal  filters,” IEEE J. Solid-state  circuits, vol. 
SC-11,  pp.  65-74,  Feb.  1976. 
U. Heute,  “Necessary  and  efficient  expenditure  for  non-recursive 
digital  fdters  in  the  direct  form,” in Proc. ECCTD ’74, July 1974, 

F. Grenez,  “Reduction of coefficient  wordlength  for  FIR  linear 
phase  digital  filters,”  in Proc. ECCTD ’78, Sept. 1978, pp.  330- 
334. 

quantifi6s,” Ann.  T&kommun., vol. 34,  pp.  33-39,  Feb. 1979. 
Y .  Chen, S. M. Kang, and T. G.  Marshall, “The  optimal design  of 
CCD transversal  filters  using  mixed-integer  programming  tech- 
niques,”  in Proc. IEEE  Int.  Symp. Circuits Syst., 1978, pp. 

_ _  . - .  

pp.  13-19. 

- , “SynthBse  des filtres  numeriques non rBcursifs i coefficients 

748-15 1. 

An Approximation to the Cumulative Distribution 
Function of the Magnitude-Squared 

Coherence  Estimate 

ALBERT  H.  NUTTALL A N D  G. CLIFFORD  CARTER 

Abstract-We investigate a nonlinear  distortion that converts  the 
magnitude-squared  coherence  estimate to a near-Gaussian  random 
variable. In particular, we present simple approximations  for  the mean 
and  variance of this  nonlinearly  distorted  magnitude-squared  coherence 
estimate and fit a Gaussian cumulative  distribution  function  over a wide 
range of  parameters. 
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INTRODUCTION 
In  sonar signal  processing for  detection  and  estimation  the 

magnitude-squared  coherence (MSC) plays  an  important  role. 
Critical to  its  proper use is an  understanding  of  its  underlying 
statistical  properties.  The  cumulative  distribution  function 
(CDF) of the  estimate  of MSC, obtained  by  averaging  over N 
statistically  independent  pieces  of  Gaussian  data,  is  available 
in [ 11 as a sum  of N - 1 hypergeometric  functions.  Direct 
evaluation  of  this  quantity  has  recently  been  simplified  in 
[ 21 ; however, it is  still a tedious  and  time-consuming calcula- 
tion  for large N and  suffers  from  numerical  overflow  and 
underflow  unless  special  care is taken  in  programming.  Further- 
more, no simple  result  for  obtaining  confidence  limits is 
available. 

In  this  correspondence we investigate the suggestion. of 
Fisher [ 3 J and  Jenkins  and  Watts  [4]  that  the  nonlinearity 
arc  tanh (6) converts  the MSC estimate  to a near-Gaussian 
random  variable.  In  particular, we present  simple  approxima- 
tions  for  the  mean  and  variance of this  nonlinearly  distorted 
MSC estimate  and  fit a Gaussian  CDF  over a wide  range  of: 
N ,  the  number  of  pieces  averaged  in the MSC estimate;C,  the 
true  MSC;  and P, the value of the  CDF.  Inversion  of  the 
Gaussian  CDF  affords a simple  way of getting  confidence 
limits  for  specified  probabilities  of  threshold crossings. 

INVESTIGATION OF arc  tanh (6) NONLINEARITY 
Moments 

The  probability  density  function  of  the MSC estimate I!?, as 
given in [ 1 I ,  is 

for O < x < l  and N > 2  (1) 

where N is the  number of pieces  averaged, C is the  true MSC, 
and F is a Gaussian  hypergeometric  function. In this  case F is 
a polynomial  in Cx. 

The  nonlinearly  distorted  version  of  random  variable e, 
which we are  interested  in, is 

D = arc  tanh (fi) = - In 
2 

If the  nonlinear  operation  in (2) results  in a Gaussian random 
variable  for D, then we will be  interested  in  the  mean  and 
variance  of D. This  problem is considered  analytically  in [ 5 ]  ; 
the  only  closed-form  results  that we have  obtained  are  listed 
below.  Let the  mth  moment  of D be denoted by 

p m ( N ,  C) =Dm = d x [ a r c   t a n h ( 6 ) l m p 1 ( x )  I’ (3) 

where  the  overbar  denotes a statistical  average.  Then  for C = 0, 
the  mean of D is 

the  mth  moment is 

and  the  variance  of D, for C = 0, is 
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In  order  to  deduce  the  fundamental  behavior  of  the  mean 
and  variance of D  for C # 0,  we evaluated (3) numerically  in 
[ 5 1. The  main  results of the numerical  investigation  are  listed 
below. We find  mean 

p1 ( N ,  C )  "= arc t a n h ( m )  for C> 0 ( 7) 

where 

B =  - 1 - c2 
2(N- 1) 

and  variance 

u2(N, C )  = ~ 

2(N- 1) 
for C >  0. 

The  imprecise  qualifigr C >  0 reflects  the  fact  that  the  prob- 
abilistic  behavior of C and  D is distinctly  different  for C = 0 
versus C > 0; for  example,  compare (6) and  (9).  In  particu- 
lar,  as N becomes large, (9)  becomes  a  better  approximation 
for  smaller C. The precise  region  where  (7)-(9)  are  valid will 
become  clear  in  later  plots.  The  result  (9) is a  slight  modifica- 
tion of Jenkins  and  Watts  [4]  that  better  fits  the  calculated 
values of variance  and  the  slope of the  CDF  plots.  Its  inde- 
pendence of true MSC value C is striking  and  convenient. 

Probabilistic  Statements 
If D is nearly  a  Gaussian  random  variable  with  mean p1 (N ,  C )  

and  variance u2(N, C), then  the  CDF of D, i.e., the  prob- 
ability  that  D is less than  some  threshold T ,  is given by  the 
approximation 

P 2 ( T )  f Prob {D < T) Z 

where 

(10) 

is the  CDF  for  a  zero-mean  unit-variance  Gaussian  random 
variable. A plot of ( 1  0)  on  normal  probability  paper,  with T 
as the  linear  abscissa,  yields  a  straight  line  with  abscissa- 
intercept p1 and  slope  1 lo, since  the  nonlinear  transformation 
t o  plot  ordinates  in  this  case is the inverse function @-I( ). 

The  exact  CDF of  D is given by 

P 2  ( T )  = Prob {D < T }  = Prob {arc tanh(@) < T )  

= P r o b { t  < tanh2(T)}  =Pl(tanh2(T))  (12) 

Where  we employed  (1)  and  (2)  and  defined PI as the  CDF of 
C 

P1(A) = Prob {e < A }  = dx  p l ( x ) .  JA (13) 
Thus, we can  relate  CDF P 2  to the  known  CDF P1 given in 
[ 1 1 .  Computer  programs  for  the  exact  evaluation of (1 2) 
and (1 3) are given in [ 51. 

The availability of approximation (10) for  the  CDF of ,D 
enables us to  give an  approximation to the  CDF P1 of C, 
namely 

0 .1 .2 .3 .4 .5 .6 7 .8 .9 1 

c 
Fig. 1. Cumulative distribution function of C for N = 16. 

h 

P1(A) = Prob {e < A )  = Prob{D < arc  tanh(fi)} 

= P2 (arc  tanh(fi)) 

arc  tanh fi - p1 

where fll and u are  given  'by  (7)-(9)  and @ is as previously 
defined  in (1 1). 

Furthermore,  we can now solve the inverse  problem of 
determining  a  threshold A for  specified  values  of  CDF P1 and 
for given  parameter  values C and N .  From  (14) we  have 

A Y tanh2(pl ,+ o @ - ' ( P 1 ) )  (1 5) 

where pl and u are  in  (7)-(9).  Simplification of (1 5) results  in 

where 

Plots 
Before  embarking  on  the  plots of exact  CDF Pz of distorted 

random  variable D, as given by  (1  2), we Riot the  exact  CDF P 1  
in  (1 3) of the original  random  variable C ,  as given by 11 1. A 
plot  on  normal  probability  paper  for N = 16 is  given in Fig.  1. 
Plots  for  other values of N are given in [5]. In  this  figure 
each  dotted  straight  line  corresponds to a  Gaussian  random 
xariable  with  mean  and  variance as derived  for MSC estimate 
C in [ 6, p. 201. Thehdiscrepancy  with  the  exact  CDF  (in  solid 
lines)  indicates  that C is not well  approximated  by  a  Gaussian 
random  variable,  especially  for  small N ,  and  for  the small and 
large  values of C and  the  extreme values of probability  near 
0.01  and  0.99. 

Plots of the  exact  CDF P2 of D,  given by  (1  2),  are  presented 
in Figs.  2-4 for N =  16, 32, and 64. Dotted  straight  lines  cor- 
responding  to  a  Gaussian  random variable  satisfying  (7)-(10) 
have  been  drawn  for  every C and N value  being  considered; 
however,  they  have  been  overdrawn  by  the  exact  CDF  (1  2)  in 
some  cases  and  are  not visible. The  agreement  between  exact 
and  Gaussian  CDF's is extremely  good  except  for  very  low 
values of C and N .  Plots  for  additional  values of N are given 
in [ 51 ; however,  for N >  128  the  agreement  between  the 
approximation  and  the  exact  result  are so close as to  be over- 
lapping  for  the  range of parameters  considered  here. 

Notice  that  the curves in Figs.  2-4  are  approximately  parallel 
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D 

Fig.  2.  Cumulative distribution function  of D for N = 16. 
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Fig.  3.  Cumulative distribution function  of D for N = 32. 
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Fig.  4.  Cumulative  distribution  function of D for N = 64. 

straight  lines  over  a  wide  range  and  can,  therefore,  be  inter- 
polated  more easily. Thus,  approximate  probabilistic  relation 
(10)  and  its  inverse (16) are  very  useful  and  accurate  for  a 
wide  range  of C and N ,  encompassing  most of the  useful 
values of these  parameters. 

SUMMARY AND DISCUSSION 
We have  investigated  the  suggestion of Fisher  that  the  non- 

linearity  arc t a n h ( 6 )  converts  the MSC estimate  to  a  near- 
Gaussian  random  variable.  In  particular, we presented  simple 
approximations  for  the  mean  and  variance of this  nonlinearly 
distorted MSC estimate  and  fit  a  Gaussian  CDF  over  a  wide 
range  of: N ,  the  number of  pieces  averaged  in the MSC esti- 
mate; C, the  true MSC; and P, the values of the  CDF.  Inversion 
of the Gaussian  CDF  affords  a  simple  way of getting  confi- 
dence  limits  for  specified  probabilities of threshold  crossings. 

Since  the  arc  tanh(.\/;;)  nonlinear  distortion  takes no account 
of the  known  number N of  pieces  entering  the MSC estimate, 

an  improved  nonlinear  distortion  which  utilizes  this  informa- 
tion is possible  which  will  convert the MSC estimate  to  more 
nearly  a  Gaussian  random  variable  over  a  wider  range  of 
parameters N ,  C ,  and P. Evaluation of confidence  limits re- 
quires  the  inversion of this  nonlinearity;  analytic  inversion is 
not  possible,  but  a  numerical  procedure  converges  rapidly. 
This  more  complicated  procedure is the  subject of a  report  by 
the  first  author [51. 
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Intersection  Filters for General Decimation/Interpolation 

I. PAUL AND J .  W. WOODS 

Abstmct-Optimum  multiple  stopband FIR filters for decimation or 
interpolation by  integer factors have  been  presented  in the literature. 
In this correspondence we extend these  results to the case of general 
decimation/interpolation by rational factors. The resulting filters are 
called  intersection  filters  because their stopbands are intersections of 
the stopbands  required in the case of integer  factors.  Significant  im- 
provement in stopband attenuation is found in many  cases for band- 
limited  signals. 

I. INTRODUCTION:  THE  EFFICIENT  INTERPOLATOR 
The  use  of  FIR digital filters  in  interpolation is  well known 

and  has  been well reported  in  the  literature [ 1 ] - [ 31 . In  these 
papers  the  frequency  domain  representation of the  interpola- 
tion  process is used to designate  appropriate pass and  stopbands 
for  the  FIR digital filters  to  be designed. In our analysis  we 
retain  the  same  approach. 

Let us start  with  the  initial  sequence x ( n )  and  interpolate it 
by  a  rational  factor R = L / M ,  where L and M are  positive,in- 
tegers. Let  the  interpolated  sequence  be y(n) .  Let X ( e I W )  
and Y(eIW)  be the  Fourier  transforms  of x(n) and y ( n ) ,  re- 
spectively. If  we assume that x ( n )  is band  limited  to w,, i.e., 
X ( e l w )  = 0 for w, < IwI < r ,  then X ( e i W )  will have  a  form 
similar to  that  shown  in Fig. l(a)  (specialized  to ws = 7r/2). 
The  standard  method  for  interpolating  a  sequence x ( n )  by  a 
rational  factor  consists of interpolating x ( n )  by  the  integer 
factor L and  then  decimating  the  resulting  sequence w(n)  by 
the  integer  factor M (schematically  shown  in  Fig. 2). W ( e i W ) ,  
the  Fourier  transform of the  intermediate  sequence w(n),  is of 
the  form  shown  in  Fig.  l(b)  (with L = 9 in  this  example).  To 
specify  the  filter H ( e i w )  (Fig. 2 )  we need to  define  two  pa- 
rameters:  the  highest  frequency wl  in X ( e i w )  which  has to  
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