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SUMMARY

We present a new numerical method to solve the heterogeneous anelastic, seismic wave equa-

tions with arbitrary high order accuracy in space and time on three dimensional unstructured

tetrahedral meshes. Using the velocity-stress formulation provides a linear hyperbolic system of

equations with source terms that is completed by additional equations for the anelastic functions

including the stain history of the material. These additional equations result from the rheologi-

cal model of the generalized Maxwell body and permit the incorporation of realistic attenuation

properties of viscoelastic material accounting for the behaviour of elastic solids and viscous ßu-

ids. The proposed method combines the Discontinuous Galerkin (DG) Finite Element method

with the ADER approach using Arbitrary high order DERivatives for ßux calculation. The DG

approach, in contrast to classical Finite Element methods, uses a piecewise polynomial approx-

imation of the numerical solution which allow for discontinuities at element interfaces. There-

fore, the well-established theory of numerical ßuxes across element interfaces obtained by the

solution of Riemann problems can be applied as in the Þnite volume framework. The main

idea of the ADER time integration approach is a Taylor expansion in time in which all time

derivatives are replaced by space derivatives using the so-called Cauchy-Kovalewski procedure

which makes extensive use of the governing PDE. Due to the ADER time integration technique

the same approximation order in space and time is achieved automatically and the method is a

one-step scheme advancing the solution for one time step without intermediate stages. To this

end, we introduce a new unrolled recursive algorithm for efÞciently computing the Cauchy-

Kovalewski procedure by making use of the sparsity of the system matrices. The numerical

convergence analysis demonstrates that the new schemes provide very high order accuracy even

on unstructured tetrahedral while computational cost and storage space for a desired accuracy

can be reduced when applying higher degree approximation polynomials. In addition, we inves-

tigate the increase in computing time, when the number of attenuation mechanisms due to the

generalized Maxwell body are increased. An application to a well-acknowledged test case and

comparisons with analytic and reference solutions, obtained by different well-established nu-

merical methods, conÞrm the performance of the proposed method. Therefore, the development

of the highly accurate ADER-DG approach for tetrahedral meshes including viscoelastic mate-

rial provides a numerical technique to approach three-dimensional wave propagation problems

including realistic attenuation and complex geometry.

Key words: viscoelasticity, attenuation, Discontinuous Galerkin, high order accuracy, unstruc-

tured meshes

1 INTRODUCTION

Modern numerical methods for the simulation of seismic wave propagation are becoming more accurate, can handle complex three-dimensional

geometries and provide increasingly important tools to simulate more realistic ground motion scenarios for seismic risk assessment. There-

fore, second-order effects such as attenuation and dispersion, which strongly affect the seismic wave Þeld, have to be incorporated to correctly

model the wave amplitudes and phases of a fully three-dimensional seismic wave Þeld. A successful approach of modeling realistic atten-
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uation is the approximation of the material as a viscoelastic medium that combines the behaviour of both, elastic solids and viscous ßuids.

Hereby, it is important that the earth�s internal friction, i.e. the measure of attenuation, is nearly constant over a wide seismic frequency range.

This is due to the composition of the earth�s polycristalline material consisting of different minerals. The superposition of these microscopic

physical attenuation processes leads to a ßat attenuation band, see (Liu, Anderson & Kanamori 1976; Stein & Wysession 2003).

The stress-strain relation for a linear isotropic viscoelastic medium is given by the so-called Boltzmann principle (causality principle), that

states that the stress at a given time t depends on the entire strain history until time t, which mathematically is represented by a time convolu-

tion of a relaxation function and the strain rate, as outlined in (Moczo, Kristek & Halada 2004). As the integration of this stress-strain relation

in the time domain is intractable in a numerical computation, Day & Minster (1984) transformed the stress-strain relation in the time domain

into a differential form using Padé approximations. They obtained n differential equations for n additional internal variables, which replace

the convolution integral. These equations have to be solved in addition to the elastic wave equations. Furthermore, the sum of the internal

variables multiplied with anelastic coefÞcients leads to additional viscoelastic terms for the elastic stresses. This way storage requirements

and computing times were signiÞcantly increased.

Emmerich & Korn (1987) improved this approach by considering the rheology of a generalized Maxwell body and showed that their method

is superior in accuracy and computational efÞciency. They chose the relaxation frequencies logarithmically equidistant in the frequency band

of interest and used a least-square method to Þt arbitrary quality factor laws.

Independently, a different approach in (Carcione, Kosloff & Kosloff 1988; Carcione & Cavallini 1994) assumed a generalized Zener body

and introduced additional Þrst order differential equations for memory variables. After these revolutionary publications authors incorporating

realistic viscoelastic attenuation in time domain methods used the concepts of the generalized Maxwell or generalized Zener body. Recent

work by Moczo & Kristek (2005) reviewed both models and showed that indeed both approaches are equivalent.

After Emmerich (1992) applied the viscoelastic models for the P-SV case, Moczo et al. (1997) presented a hybrid two-step method for

simulating P-SV seismic motion in inhomogeneous viscoelastic structures with free surface topography combining discrete-wavenumber

(DW) (Bouchon 1981), Þnite element (FE) (Marfurt 1984) and Þnite-difference (FD) (Moczo & Bard 1993) methods. Later, different work,

e.g. (Day 1998; Day & Bradley 2001; Kristek & Moczo 2003), addressed the basic theoretical and algorithmic aspects of a memory-efÞcient

implementation of realistic attenuation based on a viscoelastic material with material discontinuities mainly for the staggered-grid Þnite

difference approach.

In this paper, we incorporate realistic attenuation by viscoelastic material into the high-order Discontinuous Galerkin (DG) approach. Orig-

inally developed in (Reed & Hill 1973), Dumbser (2005) and Dumbser & Munz (2005a; 2005b) combined the DG method with the ADER

approach of (Toro, Millington & Nejad 2001; Titarev & Toro 2002; Toro & Titarev 2002) for accurate time integration using Arbitrary

high order DERivatives. This new highly accurate numerical method was then introduced for the simulation of seismic wave propagation on

unstructured meshes for two and three space dimensions (Käser & Dumbser 2006; Dumbser & Käser 2006). In this new approach we approx-

imate the unknown solution as well as the additional anelastic functions, provided by the generalized Maxwell body, inside each tetrahedral

element by a polynomial, whose coefÞcients - the degrees of freedom - are advanced in time. Hereby, the solution can be discontinuous across

the element interfaces, which allows to incorporate the well-established ideas of numerical ßux functions from the Þnite volume framework

as shown in (Käser & Dumbser 2006).

The paper is structured as follows. In Section 2 we introduce the system of the three-dimensional anelastic wave equations in velocity-

stress formulation including attenuation due to viscoelasticity. The resulting DG method is brießy explained in Section 3 together with the

ADER time integration approach. However, to avoid repetition we strongly refer to previous work on the purely elastic case in (Dumbser

& Käser 2006). Furthermore, we give a new and more efÞcient formulation for the required Cauchy-Kovalewski procedure. Results of

the numerical convergence rates of the proposed ADER-DG scheme for anelastic wave propagation on tetrahedral meshes are shown in

Section 4. In Section 5 we demonstrate the improvement of the approximation of a frequency-independent Q-law when increasing the

number n of attenuation mechanisms of the generalized Maxwell body. Furthermore, we analyse the additional CPU time requirements for

different orders of accuracy of the ADER-DG schemes. Finally, in Section 6, we present a comparison of our results with those published

after an acknowledged three-dimensional benchmark test of the PaciÞc Earthquake Engineering Research Center (Day, Bielak, Dreger,

Graves, Larsen, Olsen & Pitarka 2003) providing an analytic and a number of reference solutions obtained by well-established codes of other

research institutions. In particular, we compare the results for different orders of accuracy combined with different numbers of attenuation

mechanisms.

2 ANELASTIC WAVE EQUATIONS

The anelastic wave propagation can be described by modifying the constitutive relation, i.e. Hooke�s Law, as shown in (Moczo, Kristek &

Halada 2004) and transforming it into the frequency domain. The relation between stresses �σ = (σxx, σyy, σzz, σxy, σyz, σxz)
T and strains

�ε = (εxx, εyy, εzz, εxy, εyz, εxz)
T in the case of linear viscoelasticity can then be written as

�σi(ω) = Mij(ω)�εj(ω) (1)

where Mij is a matrix including complex, frequency-dependent viscoelastic moduli. In general Mij has 21 independent entries, however,

for the isotropic case they reduce to the two Lamé parameters λ = λ(ω) and µ = µ(ω).
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The rheological model that deÞnes the parameters of Mij has to have a physically feasible expression that, in addition, reproduces the

expected results of stress and strain damping as well as experimental observation of strain response to stress loads. In (Liu, Anderson &

Kanamori 1976) a superposition of different relaxation mechanisms is proposed as a way to fulÞll both conditions. As introduced in (Em-

merich & Korn 1987) and clearly outlined in (Moczo & Kristek 2005) we can express the viscoelastic moduli as a combination of n

mechanisms (so-called Maxwell Bodies) as

λ(ω) = λU
(

1 −

n
∑

ℓ=1

Y λ
ℓ ωℓ

ωℓ + iω

)

, (2)

µ(ω) = µU
(

1 −
n

∑

ℓ=1

Y µ
ℓ ωℓ

ωℓ + iω

)

, (3)

where λU = limω→∞ λ(ω) and µU = limω→∞ µ(ω) are the unrelaxed Lamé parameters as used in purely elastic media. The Y λ
ℓ and Y µ

ℓ

are the anelastic coefÞcients to be determined and ωℓ are the relaxation frequencies of the different mechanisms.

In general, given a viscoelastic modulus, e.g. the shear modulus µ(ω), the quality factor Q(ω) is deÞned as

Q(ω) =
Re(µ(ω))

Im(µ(ω))
. (4)

Inserting the shear modulus µ(ω) from (3) into (4) leads to

Q−1
µ (ω) =

n
∑

ℓ=1

ωℓω + ω2
ℓQ

−1
µ (ω)

ω2
ℓ + ω2

Y µ
ℓ . (5)

The equation (5) can be used to Þt any Q(ω)-law as shown in (Emmerich & Korn 1987; Moczo, Kristek & Halada 2004). Observations

show, that the quality factor Q is approximately constant over a large frequency range of interest for most geophysical applications. They

propose, that good approximations can be obtained by choosing n relaxation frequencies ωℓ, ℓ = 1, ..., n, that cover the frequency range of

interest logarithmically equidistantly. They suggest to use 2n − 1 known values Q(ω̃k) at frequencies ω̃k, k = 1, ..., 2n − 1, with ω̃1 = ω1

and ω̃2n−1 = ωn and solve the overdetermined system in (5) for the anelastic coefÞcients Y µ
ℓ by the least square method. A more detailed

discussion of the choice of frequency ranges and the corresponding sampling frequencies can be found in (Graves & Day 2003).

In practice and analogous to the seismic P- and S-wave velocities, we have quality factors QP and QS that describe the different degree of

attenuation for the different wave types. Therefore, from (5) we can also derive anelastic coefÞcients Y P
ℓ and Y S

ℓ for viscoelastic P- and

S-wave propagation by solving the systems

Q−1
ν (ωk) =

n
∑

ℓ=1

ωℓωk + ω2
ℓQ

−1
ν (ωk)

ω2
ℓ + ω2

k

Y ν
ℓ , with ν = P, S , and k = 1, ..., 2n − 1 . (6)

In the following, however, it is more convenient to express the anelastic coefÞcients in terms of the Lamé parameters λ and µ, which are

obtained by the transformation

Y λ
ℓ =

(

1 +
2µ

λ

)

Y P
ℓ −

2µ

λ
Y S

ℓ , Y µ
ℓ = Y S

ℓ , (7)

following directly from (2) and (3) as the relation of physical parameters, e.g. elastic parameters or velocities, corresponds to the purely

elastic case due to the linearity of the expressions in (2) and (3).

As shown in (Kristek & Moczo 2003; Moczo & Kristek 2005) we deÞne a new set of variables, which are independent on the material

properties, called the anelastic functions
�̄
ϑℓ = (ϑ̄ℓ

xx, ϑ̄ℓ
yy, ϑ̄ℓ

zz, ϑ̄
ℓ
xy, ϑ̄ℓ

yz, ϑ̄
ℓ
xz)

T , which contain the time history of the strain in the form

ϑ̄ℓ
j(t) = ωℓ

∫ t

−∞

εj(τ )e−ωℓ(t−τ) dτ . (8)

Using (8)and applying the inverse Fourier transform to the viscoelastic modulus Mij as outlined in detail in (Moczo & Kristek 2005) the

stress-strain relation (1) can be written in the time domain in the form

σij = λεkkδij + 2µεij −

n
∑

ℓ=1

(λY λ
ℓ ϑ̄ℓ

kkδij + 2µY µ
ℓ ϑ̄ℓ

ij) , with i, j, k ∈ [x, y, z] (9)

where δij is the Kronecker Delta and the equal-index summation convention applies to the index kk. The viscoelastic constitutive relation

in (9) represents the elastic part minus the anelastic part depending on the anelastic coefÞcients Y λ
ℓ and Y µ

ℓ and the anelastic functions

ϑ̄ℓ
ij . The remaining problem is the evolution of the anelastic functions ϑ̄ℓ

ij in (8) in time. In fact, equation (8) is the solution of the partial

differential equation

∂

∂t
ϑ̄ℓ

j(t) + ωℓϑ̄ℓ
j(t) = ωℓεj , (10)

which completes the linear, hyperbolic system of the anelastic wave equations.

However, to express the equation system in the velocity-stress formulation it is convenient to redeÞne the anelastic functions in the form

ϑℓ
j =

∂

∂t
ϑ̄ℓ

j . (11)
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Finally, using the equations of motion, the deÞnition of strain εj and equations (9), (10) and (11) we can formulate the system of the anelastic

wave equations as

∂
∂t

σxx − (λ + 2µ) ∂
∂x

u − λ ∂
∂y

v − λ ∂
∂z

w =
n
∑

ℓ=1

−(λY λ
ℓ + 2µY µ

ℓ )ϑℓ
xx − λY λ

ℓ ϑℓ
yy − λY λ

ℓ ϑℓ
zz ,

∂
∂t

σyy − λ ∂
∂x

u − (λ + 2µ) ∂
∂y

v − λ ∂
∂z

w =
n
∑

ℓ=1

−λY λ
ℓ ϑℓ

xx − (λY λ
ℓ + 2µY µ

ℓ )ϑℓ
yy − λY λ

ℓ ϑℓ
zz ,

∂
∂t

σzz − λ ∂
∂x

u − λ ∂
∂y

v − (λ + 2µ) ∂
∂z

w =
n
∑

ℓ=1

−λY λ
ℓ ϑℓ

xx − λY λ
ℓ ϑℓ

yy − (λY λ
ℓ + 2µY µ

ℓ )ϑℓ
zz ,

∂
∂t

σxy − µ( ∂
∂x

v + ∂
∂y

u) =
n
∑

ℓ=1

−2µY µ
ℓ ϑℓ

xy ,

∂
∂t

σyz − µ( ∂
∂z

v + ∂
∂y

w) =
n
∑

ℓ=1

−2µY µ
ℓ ϑℓ

yz ,

∂
∂t

σxz − µ( ∂
∂z

u + ∂
∂x

w) =
n
∑

ℓ=1

−2µY µ
ℓ ϑℓ

xz ,

ρ ∂
∂t

u − ∂
∂x

σxx − ∂
∂y

σxy − ∂
∂z

σxz = 0 ,

ρ ∂
∂t

v − ∂
∂x

σxy − ∂
∂y

σyy − ∂
∂z

σyz = 0 ,

ρ ∂
∂t

w − ∂
∂x

σxz − ∂
∂y

σyz − ∂
∂z

σzz = 0 ,

∂
∂t

ϑ1
xx − ω1

∂
∂x

u = −ω1ϑ
1
xx ,

∂
∂t

ϑ1
yy − ω1

∂
∂y

v = −ω1ϑ
1
yy ,

∂
∂t

ϑ1
zz − ω1

∂
∂z

w = −ω1ϑ
1
zz ,

∂
∂t

ϑ1
xy − 1

2
ω1(

∂
∂x

v + ∂
∂y

u) = −ω1ϑ
1
xy ,

∂
∂t

ϑ1
yz − 1

2
ω1(

∂
∂z

v + ∂
∂y

w) = −ω1ϑ
1
yz ,

∂
∂t

ϑ1
xz − 1

2
ω1(

∂
∂z

u + ∂
∂x

w) = −ω1ϑ
1
xz ,

...
...

∂
∂t

ϑn
xx − ωn

∂
∂x

u = −ωnϑn
xx ,

∂
∂t

ϑn
yy − ωn

∂
∂y

v = −ωnϑn
yy ,

∂
∂t

ϑn
zz − ωn

∂
∂z

w = −ωnϑn
zz ,

∂
∂t

ϑn
xy − 1

2
ωn( ∂

∂x
v + ∂

∂y
u) = −ωnϑn

xy ,

∂
∂t

ϑn
yz − 1

2
ωn( ∂

∂z
v + ∂

∂y
w) = −ωnϑn

yz ,

∂
∂t

ϑn
xz − 1

2
ωn( ∂

∂z
u + ∂

∂x
w) = −ωnϑn

xz

(12)

where n is the number of mechanisms used to approximate a frequency-independent Q-law and ρ is the density. Note, that each mechanism

adds 6 further equations, i.e. one for each stress component. Therefore, the system of the purely elastic three-dimensional wave equations

consisting of 9 equations increases by 6n equations in the anelastic case, when n mechisms are used.

In the following, we assume that the viscoelastic material is described with the same number n of mechanisms throughout the computational

domain. Therefore, the notation will be identical to previous work (Dumbser & Käser 2006) treating the purely elastic case.

The above system (12) of nv = 9 + 6n variables and equations can be written in the more compact form

∂Qp

∂t
+ Ǎpq

∂Qq

∂x
+ B̌pq

∂Qq

∂y
+ Čpq

∂Qq

∂z
= ĚpqQq. (13)

Note, that the dimensions of the variable vector Q, the Jacobian matrices Ǎ, B̌, Č and the source matrix Ě now depend on the number n of

attenuation mechanisms. To keep the notation as simple as possible and without loss of generality, in the following we assume that the order

of the equations in (13) is such, that p, q ∈ [1, ..., 9] denote the elastic part and p, q ∈ [10, ..., nv], denote the anelastic part of the system

as presented in (12). As the Jacobian matrices Ǎ, B̌ and Č as well as the source matrix Ě are sparse and show some particular symmetry

pattern and as their dimensions may become impractical for notation, we will use the block-matrix syntax.
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Therefore, we decompose the Jacobian matrices as follows:

Ǎ =

[

A 0

Aa 0

]

∈ R
nv×nv , B̌ =

[

B 0

Ba 0

]

∈ R
nv×nv , Č =

[

C 0

Ca 0

]

∈ R
nv×nv , (14)

where A, B, C ∈ R
9×9 are the Jacobians of the purely elastic part as given in (Dumbser & Käser 2006). The matrices Aa, Ba, Ca include

the anelastic part and exhibit themselves a block structure of the form:

Aa =









A1

...

An









∈ R
6n×9, Ba =









B1

...

Bn









∈ R
6n×9, Ca =









C1

...

Cn









∈ R
6n×9, (15)

where each sub-matrix Aℓ, Bℓ, Cℓ ∈ R
6×9, with ℓ = 1, ..., n, contains the relaxation frequency ωℓ of the ℓ-th mechanism in the form:

Aℓ = ωℓ ·



















0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 − 1
2

0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 − 1
2



















, (16)

Bℓ = ωℓ ·



















0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 − 1
2

0 0

0 0 0 0 0 0 0 0 − 1
2

0 0 0 0 0 0 0 0 0



















, (17)

Cℓ = ωℓ ·



















0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 − 1
2

0

0 0 0 0 0 0 − 1
2

0 0



















. (18)

The matrix Ě in (13) representing a reaction source that couples the anelastic functions to the original elastic system can be decomposed as

Ě =

[

0 E

0 E′

]

∈ R
nv×nv , (19)

with E of the block structure

E = [E1, . . . , En] ∈ R
9×6n, (20)

where each matrix Eℓ ∈ R
9×6, with ℓ = 1, ..., n, contains the anelastic coefÞcients Y λ

ℓ and Y µ
ℓ of the ℓ-th mechanism in the form:

Eℓ =

































−λY λ
ℓ − 2µY µ

ℓ −λY λ
ℓ −λY λ

ℓ 0 0 0

−λY λ
ℓ −λY λ

ℓ − 2µY µ
ℓ −λY λ

ℓ 0 0 0

−λY λ
ℓ −λY λ

ℓ −λY λ
ℓ − 2µY µ

ℓ 0 0 0

0 0 0 −2µY µ
ℓ 0 0

0 0 0 0 −2µY µ
ℓ 0

0 0 0 0 0 −2µY µ
ℓ

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

































. (21)

The matrix E′ in (19) is a diagonal matrix and has the structure

E′ =









E′
1 0

. . .

0 E′
n









∈ R
6n×6n , (22)

where each matrix E′
ℓ ∈ R

6×6, with ℓ = 1, ..., n, is itself a diagonal matrix containing only the relaxation frequency ωℓ of the ℓ-th mechanism

on its diagonal, i.e. E′
ℓ = −ωℓ · I with I ∈ R

6×6 denoting the identity matrix.
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3 THE NUMERICAL SCHEME

The computational domain Ω ∈ R
3 is divided into conforming tetrahedral elements T (m) being addressed by a unique index (m). Further-

more, we suppose the matrices Ǎpq, B̌pq, Čpq and Ěpq in (13) to be piecewise constant inside an element T (m).

As outlined in detail in (Dumbser & Käser 2006) for the purely elastic case, the construction of the ADER-DG scheme including viscoelastic

attenuation remains basically the same. However, now we consider a larger linear hyperbolic system of equations and add the source terms

as given in (12) or (13). Therefore, following exactly along the lines in (Dumbser & Käser 2006) and without repeating the rather tedious

derivation of the numerical scheme, we now get the fully discrete one-step ADER-DG scheme of the form

[

(

Q̂
(m)
pl

)n+1

−
(

Q̂
(m)
pl

)n
]

|J |Mkl +

+ 1
2

4
∑

j=1

Ť j
pq

(

Ǎ
(m)
qr +

∣

∣

∣
Ǎ

(m)
qr

∣

∣

∣

)

(Ť j
rs)

−1 |Sj |F
−,j
kl · Iqlmn(∆t)

(

Q̂
(m)
mn

)n

+

+ 1
2

4
∑

j=1

Ť j
pq

(

Ǎ
(m)
qr −

∣

∣

∣
Ǎ

(m)
qr

∣

∣

∣

)

(Ť j
rs)

−1 |Sj |F
+,j,i,h
kl · Iqlmn(∆t)

(

Q̂
(mj)
mn

)n

−

− Ǎ∗
pq |J |K

ξ
kl · Iqlmn(∆t)

(

Q̂
(m)
mn

)n

− B̌∗
pq |J |K

η
kl · Iqlmn(∆t)

(

Q̂
(m)
mn

)n

− Č∗
pq |J |K

ζ
kl · Iqlmn(∆t)

(

Q̂
(m)
mn

)n

=

= |J | Ěpq · Iqlmn(∆t)
(

Q̂
(m)
mn

)n

Mkl

(23)

to evolve the degrees of freedom Q̂
(m)
pl in element T (m) from time level tn to tn+1. We remark that the total number of unknowns in the

viscoelastic case now depends on the number of attenuation mechanisms, such that the index p, q, r, s = 1, ..., nv .

However, in the following let us skip the element index (m) and have a closer look at the matrix
∣

∣Ǎpq

∣

∣ and the rotation matrix Ť j
pq used for

the ßux computation in (23).

Similar to (14) we Þnd that

∣

∣Ǎ
∣

∣ =

[

|A| 0

A|| 0

]

∈ R
nv×nv , (24)

where |A| ∈ R
9×9 is identical to the one of the purely elastic part as given in (Dumbser & Käser 2006) and has the form

|A| =

































cp 0 0 0 0 0 0 0 0

λ/(cpρ) 0 0 0 0 0 0 0 0

λ/(cpρ) 0 0 0 0 0 0 0 0

0 0 0 cs 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 cs 0 0 0

0 0 0 0 0 0 cp 0 0

0 0 0 0 0 0 0 cs 0

0 0 0 0 0 0 0 0 cs

































, (25)

with cp =
√

λ+2µ

ρ
and cs =

√

µ

ρ
the P- and S-wave velocities of the unrelaxed purely elastic material.

The matrix A|| includes the anelastic part and exhibits itself a similar block structure as in (15) of the form:

A|| =









A
||
1

...

A
||
n









∈ R
6n×9, (26)

where each sub-matrix A
||
ℓ ∈ R

6×9, with ℓ = 1, ..., n, contains the local unrelaxed material parameters and the relaxation frequency ωℓ of

the ℓ-th attenuation mechanism in the form:

A
||
ℓ = ωℓ ·



















1/(cpρ) 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 1/(2csρ) 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1/(2csρ) 0 0 0



















. (27)



High Order DG method for Elastic Waves 7

Skipping the index j for the j-th face of a tetrahedral element, and recalling that the anelastic functions ϑℓ are tensors like the stresses the

rotation matrix Ťpq for the full anelastic system in (23) has the form

Ť =







T t 0 0

0 T v 0

0 0 Ta






∈ R

nv×nv , (28)

where T t ∈ R
6×6 is the rotation matrix responsible for the stress tensor rotation as in the purely elastic part and is given as

T t =



















n2
x s2

x t2x 2nxsx 2sxtx 2nxtx

n2
y s2

y t2y 2nysy 2syty 2nyty

n2
z s2

z t2z 2nzsz 2sztz 2nztz

nynx sysx tytx nysx + nxsy sytx + sxty nytx + nxty

nzny szsy tzty nzsy + nysz szty + sytz nzty + nytz

nznx szsx tztx nzsx + nxsz sztx + sxtz nztx + nxtz



















, (29)

with the components of the normal vector �n = (nx, ny , nz)
T and the two tangential vectors �s = (sx, sy , sz)

T and �t = (tx, ty , tz)
T , which

lie in the plane determined by the boundary face of the tetrahedron and are orthogonal to each other and the normal vector �n as shown

in (Dumbser & Käser 2006).

The matrix T v ∈ R
3×3 is the rotation matrix responsible for the velocity vector rotation as in the purely elastic part and is given as

T v =







nx sx tx

ny sy ty

nz sz tz






. (30)

The matrix Ta in (28) is a block diagonal matrix and has the structure

Ta =









T t 0

. . .

0 T t









∈ R
6n×6n , (31)

where each of the n sub-matrices T t is the tensor rotation matrix given in (29).

Using the symmetries of Ǎ,
∣

∣Ǎ
∣

∣ and Ť and the particular composition of the source term matrix Ě as given in (19)- (22), we can separate

the full system in (13) into two parts. We call the Þrst 9 equations the elastic part and the remaining equations 10 to nv the anelastic part.

Therefore, the ßuxes and volume integrals appearing in the discrete formulation of the Discontinuous Galerkin approach in (23) can be

computed separately for each part. However, both parts are still coupled via the Cauchy-Kovalewski procedure of the ADER time integration

approach and the source terms Ě in (13).

In the following Section 3.1 we outline in detail, how this coupling is accomplished with a new, more efÞcient time integration approach in

order to replace the costly multiplication with the four-dimensional tensor Iqlmn(∆t) in (23).

3.1 The ADER Time Discretization

As in (Käser & Dumbser 2006; Dumbser & Käser 2006) we Þrst write the governing PDE (13) in the reference system as

∂Qp

∂t
+ Ǎ∗

pq

∂Qq

∂ξ
+ B̌∗

pq

∂Qq

∂η
+ Č∗

pq

∂Qq

∂ζ
− Ěpq Qq = 0, (32)

with

Ǎ∗
pq = Ǎpq

∂ξ

∂x
+ B̌pq

∂ξ

∂y
+ Čpq

∂ξ

∂z
, (33)

B̌∗
pq = Ǎpq

∂η

∂x
+ B̌pq

∂η

∂y
+ Čpq

∂η

∂z
, (34)

Č∗
pq = Ǎpq

∂ζ

∂x
+ B̌pq

∂ζ

∂y
+ Čpq

∂ζ

∂z
. (35)

We then develop the solution of (32) within one time step into a Taylor series in time up to order N ,

Qp(ξ, η, ζ, t) =

N
∑

k=0

(t − tn)k

k!

∂k

∂tk
Qp(ξ, η, ζ, tn), (36)

which we project onto each basis function in order to get an approximation of the evolution of the degrees of freedom during one time step

from time level n to time level n + 1. We obtain

Q̂pl(t) =

〈

Φn,
N
∑

k=0

(t−tn)k

k!
∂k

∂tk Qp(ξ, η, ζ, tn)

〉

〈Φn, Φl〉
, (37)
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where 〈a, b〉 =
∫

TE

a · b dV denotes the inner product over the reference tetrahedron TE and the division by 〈Φn, Φl〉 denotes the multiplica-

tion with the inverse of the mass matrix. This reduces indeed to division by its diagonal entries since the mass matrix is diagonal due to the

supposed orthogonality of the basis functions Φl.

The k-th time derivative of the entire state vector Qp is obtained via the Cauchy-Kovalewski procedure applied to the governing equation (13)

in the reference system (32), and reads as

∂k

∂tk
Qp =

(

Ǎ∗
pq

∂

∂ξ
+ B̌∗

pq

∂

∂η
+ Č∗

pq

∂

∂ζ
− Ěpq

)k

Qq , (38)

which can be proven by complete induction. One could use a similar algorithm as presented in (Käser & Dumbser 2006; Dumbser & Käser

2006) to compute the Cauchy-Kovalewski procedure explicitly using the tensor Iplqm (∆t), but for a possibly huge system (13) due to a

large number of attenuation mechanisms, this approach turned out to be too slow. Therefore, we use an unrolled recursive procedure in order

to do the Cauchy-Kovalewski procedure, similar as proposed in (Dumbser & Munz 2005c) for the nonlinear case. The unrolled recursive al-

gorithm described in the following becomes especially efÞcient because the matricesǍpq, B̌pq , Čpq and Ěpq are sparse as shown in Section 3.

From (38) we deduce that the k-th time derivative depends on all mixed space derivatives up to order k. We therefore write formally

∂k

∂tk
Qp = Ck

p

(

∂ν

∂ξα∂ηβ∂ζγ
Qq

)

, ∀ (α + β + γ) = ν ≤ k, (39)

insisting on the fact that the operator Ck
p is linear. We then insert (39) into (37) and obtain after integration over the time interval ∆t =

tn+1 − tn

Q̃pl(∆t) =

tn+∆t
∫

t=tn

Q̂pl(t)dt =

〈

Φn,
N
∑

k=0

∆tk+1

(k+1)!
Ck

p

(

∂ν

∂ξα∂ηβ∂ζγ Qq(ξ, η, ζ, tn)
)

〉

〈Φn, Φl〉
. (40)

Making use of the linearity of Ck
p in (39) and inserting the Discontinuous Galerkin approximation for Qp in terms of the basis functions Φ as

given in (Käser & Dumbser 2006; Dumbser & Käser 2006) yields

Q̃pl(∆t) =
N
∑

k=0

∆tk+1

(k + 1)!
Ck

p





〈

Φn, ∂ν

∂ξα∂ηβ∂ζγ Φm(ξ, η, ζ)
〉

〈Φn, Φl〉
Q̂qm(tn)



 , (41)

where the operator Ck
p is applied to each degree of freedom l. We note that the inner products appearing in (41) are computed in the reference

system, they do not depend on the mesh and therefore need to be computed only once.

Instead of using the tensor Iplqm (∆t) in (23) as suggested in (Käser & Dumbser 2006; Dumbser & Käser 2006), we can now substitute this

tensor in (23) by

Iplmn(∆t)
(

Q̂(m)
mn

)n

:= Q̃
(m)
pl (∆t) . (42)

The operator Ck
p from (39) is deÞned recursively as

∂k+1+α+β+γ

∂tk+1∂ξα∂ηβ∂ζγ Qq = −Ǎ∗
pq

∂k+α+1+β+γ

∂tk∂ξα+1∂ηβ∂ζγ Qq − B̌∗
pq

∂k+α+β+1+γ

∂tk∂ξα∂ηβ+1∂ζγ Qq

−Č∗
pq

∂k+α+β+γ+1

∂tk∂ξα∂ηβ∂ζγ+1 Qq −
(

−Ěpq

)

∂k+α+β+γ

∂tk∂ξα∂ηβ∂ζγ Qq .
(43)

To clarify the procedure of the high-order ADER time integration, a FORTRAN code for implementing Ck
p in an unrolled recursive manner

making use of the sparsity of the system matrices may e.g. look like the example presented in Table 1. The ordering of the dimensions of the

array W appearing in this code is as follows: (1) projections onto all test functions, (2) variables of the hyperbolic system, (3) ξ derivatives,

(4) η derivatives, (5) ζ derivatives and (6) time derivatives. We note that in the example code in Table 1 the subarray W (:, :, :, :, :, 0) contains

the projections of all space derivatives onto each test function, which is precisely the argument of the operator Ck
p in (41). The Þnal result of

the operator, i.e. all time-derivatives of all degrees of freedom, is contained in the sub-array W (:, :, 0, 0, 0, :). The other entries of W contain

intermediate results (mixed space-time derivatives) which are produced by the algorithm.
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Table 1. Fortran example code of the unrolled recursive algorithm for the Cauchy-Kovalewski procedure using the sparsity of the system matrices.

TYPE tSparseMatrix ! Type, deÞning a sparse matrix

INTEGER :: n ! Dimension of the original matrix

INTEGER, POINTER :: nNonZero ! Number of non-zero entries

INTEGER, POINTER :: NonZeroIndex1(:) ! Row indices of non-zero elements

INTEGER, POINTER :: NonZeroIndex2(:) ! Column indices of non-zero elements

REAL, POINTER :: NonZero(:) ! Non-zero values

END TYPE tSparseMatrix !

! !

! Subroutine doing the CK Procedure for the linear system with source term: !

! ut + Aux + Buy + Cuz = − (−E) u !

! !

SUBROUTINE CauchyKovalewski Sparse Linear(nDegFr,nVar,N,W,A,B,C,E) !

IMPLICIT NONE !

! Argument list declaration !

INTEGER :: N ! Polynomial order N of the basis functions

INTEGER :: nDegFr ! Number of degrees of freedom (DOF) per element

INTEGER :: nVar ! Number of variables nv of the hyperbolic system

TYPE(tSparseMatrix) :: A,B,C,E ! Sparse system matrices Ǎ∗
pq , B̌∗

pq , Č∗
pq , −Ěpq

! Local Variables !

REAL :: W(nDegFr,nVar,0:N,0:N,0:N,0:N) ! Array of space-time derivatives for all DOF and all variables

REAL :: Tmp(nDegFr,nVar) ! Temporary vector

INTEGER :: k,alpha,beta,gamma ! Loop counters for t, ξ, η, ζ derivatives

INTENT(IN) :: nDegFr,nVar,N, A, B, C, E ! Intent deÞnition for the arguments

INTENT(INOUT) :: W ! W(:,:,:,:,:,0) enters with pure space derivatives

! ! and W(:,:,0,0,0,:) leaves with all time derivatives,

! ! i.e. with the result of the operator Ck
p for all DOF

DO k = 0, (N-1) ! Advance forward in time

DO alpha = 0, (N-1-k) ! Loop over all ξ derivatives

DO beta = 0, (N-1-alpha-k) ! Loop over all η derivatives

DO gamma = 0, (N-1-alpha-beta-k) ! Loop over all ζ derivatives

Tmp(:,:) = 0. ! Initialize temporary vector

CALL SP MATMUL(Tmp,A,W(:,:,alpha+1,beta, gamma ,k ),nVar,nDegFr) ! Multiply with sparse matrix Ǎ∗
pq and subtract

CALL SP MATMUL(Tmp,B,W(:,:,alpha, beta+1,gamma ,k ),nVar,nDegFr) ! Multiply with sparse matrix B̌∗
pq and subtract

CALL SP MATMUL(Tmp,C,W(:,:,alpha, beta, gamma+1,k ),nVar,nDegFr) ! Multiply with sparse matrix Č∗
pq and subtract

CALL SP MATMUL(Tmp,E,W(:,:,alpha, beta, gamma ,k ),nVar,nDegFr) ! Multiply with sparse matrix −Ěpq and subtract

W(:,:,alpha,beta,gamma,k+1) = Tmp(:,:) ! Write result into W array

ENDDO !

ENDDO !

ENDDO !

ENDDO !

END SUBROUTINE CauchyKovalewski Sparse Linear !

! !

! The subroutine SP MATMUL multiplies a sparse matrix A from the left to the transpose !

! of a full matrix B and subtracts the result from the transposed matrix C: !

! Cki = Cki − Aij ∗ Bkj !

! !

PURE SUBROUTINE SP MATMUL(C, A, B, n, m) !

IMPLICIT NONE !

! Argument list declaration !

TYPE(tSparseMatrix) :: A ! Sparse matrix of dimension (n,n)

INTEGER :: n,m ! Matrix dimensions n and m

REAL :: C(m,n) ! Result matrix of dimension (m,n)

REAL :: B(m,n) ! Full matrix of dimension (m,n)

! Local variable declaration !

INTEGER :: i,j,iNonZero ! Loop counters

INTENT(IN) :: n,m,A,B ! Intent deÞnition for the arguments

INTENT(INOUT) :: C ! Intent deÞnition for the arguments

DO iNonZero = 1, A%nNonZero ! Loop over all non-zero entries of A

i = A%NonZeroIndex1(iNonZero) ! Get row index

j = A%NonZeroIndex2(iNonZero) ! Get column index

C(:,i) = C(:,i) - B(:,j)*A%NonZero(iNonZero) ! Multiply and subtract

ENDDO !

END SUBROUTINE SP MATMUL !

ll
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Figure 1. Sequence of discretizations of the computational domain Ω via regularly reÞned tetrahedral meshes, which are used for the numerical convergence

analysis.

4 CONVERGENCE ANALYSIS

In this Section we present the results of a numerical convergence analysis to demonstrate the very high accuracy of the proposed ADER-

DG method on tetrahedral meshes considering viscoelastic attenuation. We show results from second to seventh order ADER-DG schemes,

which are denoted by ADER-DG O2 to ADER-DG O7 respectively. Note, that the same order for time and space accuracy is automatically

obtained.

To determine the convergence orders we solve the three-dimensional seismic wave equations with viscoelastic attenuation in (12) on the

unit-cube as sketched in Figure 1, i.e. on a computational domain Ω = [−1, 1]× [−1, 1]× [−1, 1] ∈ R
3 with periodic boundary conditions.

The homogeneous material parameters are set to

λ = 2, µ = 1, ρ = 1, QP = 20, QS = 10, (44)

throughout the computational domain Ω. The Q-factors are assumed to be frequency independent over the frequency band [0.1, 10] Hz. To

this end, we are using 5 mechanisms as outlined in Section 2 leading to approximations of frequency independent Q-factors QP and QS as

shown in Figure 3. This attenuation properties introduce damping and dispersion of the P- and S-waves.

We know, e.g. from (Stein & Wysession 2003), that the analytical solution to this problem has the form

Qp(x, y, z, t) = Q0
p · ei·(ωt−kxx−kyy−kzz), p = 1, ..., nv (45)

where Q0
p is the initial amplitude vector, ω the wave frequencies to determine, and

�k = (kx, ky , kz)
T = (π, π, π)T . (46)

is the wave number leading to a periodic, plane sinusoidal wave in the unit-cube with the wave front perpendicular to the cube�s space

diagonal.

In the following, we brießy line out, how we determine the wave frequencies ω:

With the assumption, that equation (45) is the analytic solution of the governing equation (13), we calculate the Þrst time and space derivatives

of equation (45) analytically and plug them into equation (13). From there, we can derive the eigen-problem

(Ǎpqkx + B̌pqky + Čpqkz − i · Ěpq) · Q
0
q = ω · Q0

q, p, q = 1, ..., nv. (47)

Solving the eigenproblem (47) gives us the matrix Rpq of right eigenvectors Rp1, ..., Rpnv and the eigenvalues ωp.

Recalling, e.g. from (Toro 1999), that each solution of the linear hyperbolic system (13) is given by a linear combination of the right

eigenvectors, i.e. Qp = Rpqνq, we can compute the coefÞcients as νp = R−1
pq Q0

q via the initial amplitude vector. Now, we can synthesize

the exact solution of the attenuated plane wave in the form

Qp(x, y, z, t) = Rpqcq · ei·(ωqt−kxx−kyy−kzz) . (48)

In the convergence test, we use a plane P-wave and a plane S-wave travelling in opposite directions along the space diagonal �n = (1, 1, 1)T

of the domain Ω as already shown in (Dumbser & Käser 2006). Therefore, the initial condition at t = 0 is given by (48) using the combination
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Table 2. Convergence rates of velocity component v of the ADER-DG O2 up to ADER-DG O7 schemes on tetrahedral meshes with viscoelastic attenuation.

h L∞ OL∞ L2 OL2 Nd I CPU [s]

1.08 · 10−1 5.8427 · 10−3 − 4.9154 · 10−3 − 81920 24 54
7.21 · 10−2 2.5832 · 10−3 2.0 2.1258 · 10−3 2.0 276480 36 237
5.41 · 10−2 1.5283 · 10−3 1.8 1.1675 · 10−3 2.0 655360 46 654
4.33 · 10−2 9.6624 · 10−4 2.0 7.4891 · 10−4 2.0 1280000 58 2554

2.16 · 10−1 5.2416 · 10−3 − 3.3154 · 10−3 − 25600 20 11
1.08 · 10−1 6.1884 · 10−4 3.0 3.4172 · 10−4 3.2 204800 38 141
7.21 · 10−2 1.6466 · 10−4 3.2 1.0371 · 10−4 2.9 691200 58 667
5.41 · 10−2 7.9007 · 10−5 2.6 4.2568 · 10−5 3.0 1638400 76 1884

2.16 · 10−1 5.4019 · 10−4 − 3.2650 · 10−4 − 51200 28 38
1.44 · 10−1 1.4035 · 10−4 3.3 5.7098 · 10−5 4.3 172800 40 167
1.08 · 10−1 4.3849 · 10−5 4.0 1.7294 · 10−5 4.1 409600 54 502
7.21 · 10−2 9.0593 · 10−6 3.9 3.2289 · 10−6 4.1 1382400 80 2349

4.33 · 10−1 1.8628 · 10−3 − 8.2639 · 10−4 − 11200 18 12
2.16 · 10−1 7.6600 · 10−5 4.6 2.2934 · 10−5 5.1 89600 36 153

1.44 · 10−1 9.2101 · 10−6 5.2 2.8075 · 10−6 5.1 302400 52 707
1.08 · 10−1 2.4793 · 10−6 4.6 6.5511 · 10−7 5.0 716800 70 2141

8.66 · 10−1 2.3332 · 10−2 − 5.5446 · 10−3 − 2240 12 5
4.33 · 10−1 3.5278 · 10−4 6.0 9.2971 · 10−5 5.8 17920 22 43
2.16 · 10−1 6.4411 · 10−6 5.8 1.3848 · 10−6 6.0 143360 42 537
1.44 · 10−1 5.8832 · 10−7 5.9 1.1679 · 10−7 6.0 483840 64 2645

8.66 · 10−1 4.4462 · 10−3 − 1.3201 · 10−3 − 3360 14 15
4.33 · 10−1 4.8205 · 10−5 6.5 1.2198 · 10−5 6.7 26880 26 133
2.88 · 10−1 3.3500 · 10−6 6.6 5.8371 · 10−7 7.4 90720 38 581
2.16 · 10−1 4.4073 · 10−7 7.0 7.6456 · 10−8 7.0 215040 50 1694

of only two right eigenvectors (Rp2, ..., Rp9) with the coefÞcients ν2 = ν9 = 1 and zero otherwise.

The total simulation time T is set to T = 0.1s. The CFL number is set in all computations to 50% of the stability limit 1
2N+1

of Runge-

Kutta DG schemes. For a thorough investigation of the linear stability properties of the ADER-DG schemes via a von Neumann analysis

see (Dumbser 2005).

The numerical analysis to determine the convergence orders is performed on a sequence of tetrahedral meshes as shown in Figure 1. The mesh

sequence is obtained by dividing the computational domain Ω into a number of subcubes, which are then subdivided into Þve tetrahedrons

as shown in Figure 1. This way, the reÞnement is controlled by changing the number of subcubes in each space dimension.

We can arbitrarily pick one of the variables of the system of the seismic wave equations (13) to numerically determine the convergence order

of the used ADER-DG schemes. In Table 2 we show the errors for the shear stress component σyz. The errors of the numerical solution Qh

with respect to the exact solution Qe is measured in the L∞-norm and the continuous L2-norm

‖Qh − Qe‖L2(Ω) =
(

∫

Ω

|Qh − Qe|
2 dV

) 1
2

, (49)

where the integration is approximated by Gaussian integration which is exact for a polynomial degree twice that of the basis functions of

the numerical scheme. The L∞-norm is approximated by the maximum error arising at any of these Gaussian integration points. The Þrst

column in Table 2 shows the mesh spacing h, represented by the maximum diameter of the circumscribed spheres of the tetrahedrons. The

following four columns show the L∞ and L2 errors with the corresponding convergence orders OL∞ and OL2 determined by successively

reÞned meshes. Furthermore, we present the total number Nd of degrees of freedom, which is a measure of required storage space during

run-time and is given through the product of the number of total mesh elements and the number Ne of degrees of freedom per element. Ne

depends on the order of the scheme, i.e. the degree N of the polynomial basis functions via Ne(N) = 1
6
(N +1)(N +2)(N +3). In the last

two columns we give the number I of iterations and the CPU times in seconds needed to reach the simulation time T = 0.1s on a Pentium

Xeon 3.6 GHz processor with 4GB of RAM.

In Figure 2 we visualize the convergence results of Table 2 to demonstrate the dependence of the L∞ error with respect to (a) mesh width h,

(b) number of degrees of freedom Nd and (c) CPU. We remark, that in all three plots of Figure 2 we clearly show, that for very high accuracy,

the higher order schemes pay of due to their convergence properties.

In the following, we investigate the accuracy of the approximation of a given, generally constant Q-law with respect to the number of

attenuation mechanisms as described in Section 2.
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Figure 2. Convergence rates of velocity component v of Table 2. The L∞ error is plotted versus (a) the mesh spacing h, (b) the number of degrees of freedom

Nd and (c) the CPU time.

[

Table 3. Computational effort with increasing number of mechanisms of the ADER-DG O2 up to ADER-DG O6 schemes.

n 0 1 2 3 4 5 6 7 8 9 10

O2 1.00 1.38 1.48 1.62 1.68 1.82 1.88 1.95 2.08 2.18 2.27
O3 1.00 1.49 1.70 1.91 2.07 2.28 2.49 2.66 2.82 2.99 3.20
O4 1.00 1.77 2.07 2.43 2.70 2.99 3.34 3.69 4.03 4.47 4.67
O5 1.00 1.92 2.30 2.83 3.27 3.84 4.38 4.83 5.40 5.77 6.32
O6 1.00 1.93 2.44 3.00 3.55 4.13 4.65 5.06 5.82 6.44 6.87

5 QUALITY FACTOR APPROXIMATION

We demonstrate the improvement of the approximation of a frequency-independent Q-law as recognized in the work of (Liu, Anderson &

Kanamori 1976) when increasing the number n of attenuation mechanisms. Furthermore, we analyse the corresponding, additional CPU

time requirements, when different orders of accuracy of the ADER-DG schemes are used in combination with an increasing number of such

mechanisms.

Figure 3 shows, how a constant Q-law can be Þtted by using (a) 2, (b) 3, (c) 5 or (d) 10 attenuation mechanisms on a frequency band of

[0.1, 10]Hz. We point out, that following the lines in (Emmerich & Korn 1987) already 3 attenuation mechanisms approximate a constant,

frequency-independent Q-law with a maximum derivation of around 5%. Using only 2 attenuation mechanisms seems to be a too rough

approximation whereas 5 or more mechanisms already lead to a Q-law approximations which might not even be necessary in most cases.

The inßuence of the number of used attenuation mechanisms on seismograms recorded for an anelastic subsurface model is studied in

Section 6. Table 3 shows the increasing CPU time, when the number n of mechanisms is increased. The CPU times are normalized with

respect to the purely elastic case, where no attenuation is incorporated, i.e. n = 0. We remark, that 3 mechanisms, as typically suggested in

the literature e.g. by Emmerich & Korn (1987) or Moczo et al. (1997), only increase the computational effort between a factor of 1.6 and 3.0

depending on the order of the used ADER-DG scheme. This efÞciency is quite remarkable, in particular, as we treat the anelastic functions,

i.e. the anelastic part of (13) as described in 3, with the same (full) order of accuracy.

6 APPLICATION EXAMPLE

We apply the proposed ADER-DG method on a well-deÞned three-dimensional test problem, which was published in the Þnal report of the

LIFELINES PROGRAM TASK 1A02 (Day, Bielak, Dreger, Graves, Larsen, Olsen & Pitarka 2003) of the PaciÞc Earthquake Engineering

Research Center. The test case is part of a multi-institutional code validation project of a series of different numerical methods employed in

numerical modelling of earthquake ground motion in three-dimensional earth models. Therefore, besides a quasi-analytic solution, simulation

results from four different well-established codes exist and serve as additional reference solutions. The results of these four codes are denoted

by four-character abbreviations indicating the respective institutions:

UCBL (Doug Dreger and Shawn Larsen, University of California, Berkeley/Lawrence Livermore National Laboratory),

UCSB (Kim Olsen, University of California, Santa Barbara),

WCC2 (Arben Pitarka, URS Corporation), and

CMUN (Jacobo Bielak, Carnegie-Mellon University).
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Figure 3. Approximation of frequency independent Q-factors using (a) 2, (b) 3, (c) 5 or (d) 10 mechanisms on a frequency band of [0.1, 10]Hz.

The Þrst three codes use Finite Differences of uniform, structured grids with staggered locations of the velocity and stress components and

fourth order accuracy in space. The CMUN code uses piecewise linear interpolation on unstructured tetrahedral Finite Elements.

The quasi-analytic solution is a frequency-wavenumber solution obtained by a modiÞcation of the method presented in (Luco & Apsel

1983; Apsel & Luco 1983) and is compared to all numerical solutions to evaluate their accuracy. The setup of the test problem LOH.3

(Layer Over Halfspace) is shown in Figure 4(a), where for clarity only one of four symmetrical quarters of the complete computational

domain Ω = [−15000m, 15000m] × [−15000m, 15000m] × [0m, 17000m] is plotted. The material parameters of the attenuating layer

(Medium 1) of the top 1000m over the attenuating halfspace (Medium 2) are given in Table 4.

The seismic source is a point dislocation, represented by a double couple source, where the only non-zero entries of the seismic moment

tensor are Mxy = Myx = M0 = 1018Nm. The location of the point source is (xs, ys, zs) = (0m, 0m, 2000m), i.e. in the center of the xy

plane of the domain Ω in 2000m depth.

The moment-rate time history is given through the source time function

ST (t) =
t

T 2
exp(−

t

T
), (50)

where the smoothness parameter T , controlling the frequency content and amplitude of the source time function, is set to T = 0.1s. We

remark, that details of the discretization of external source terms in the framework of ADER-DG methods are outlined in previous work (Käser

& Dumbser 2006).

The signals are recorded up to a simulation time of 9s by 10 receivers on the free surface as indicated in Figure 4(a). The receiver locations

(xi, yi, zi) = (i · 600m, i · 800m, 0m), for i = 1, ..., 10.

The computational domain Ω is discretized by an unstructured, tetrahedral mesh as shown in Figure 4(b) using 249338 elements. Furthermore,

the mesh is generated in a problem-adapted manner. To this end, in the zone of interest the waves traveling from the source to the receivers

pass through tetrahedral elements with an average edge length of 350m, whereas in other zones the mesh is coarsened up to average edge

lengths of 3000m to reduce the number of total elements and therefore computational cost. We remark that neither the source location nor the

receiver locations have to coincide with nodes of the tetrahedral mesh, as in the ADER-DG framework the numerical solution is represented

by polynomials within each element and therefore can be evaluated at any position within an element (see (Käser & Dumbser 2006)). This

greatly simpliÞes the process of mesh generation and does not restrict the desired ßexibility provided by unstructured meshes. However, the
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Table 4. Material parameters for the LOH.3 test case. Note, that attenuation will cause dispersion of the P- and S-waves such that the given wave speeds refer

to a reference frequency fr = 2.5Hz.

cp(fr)[m/s] cs(fr)[m/s] ρ[kg/m3] λ(fr)[GPa] µ(fr)[GPa] Qp Qs

Medium 1 4000 2000 2600 20.8 10.4 120 40

Medium 2 6000 3464 2700 32.4 32.4 155.9 69.3

1 km
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Figure 4. (a) One of four symmetric quarters is shown for the LOH.3 test case, where a layer of 1km (Material 1) is lying on top of another layer (Material

2). The source is a point dislocation at 2000km depth represented by a moment tensor with the only non-zero components Mxy = Myx. (b) Cut into the

discretization of the LOH.3 model to visualize the problem-adapted tetrahedral mesh, which is reÞned in the quarter under the receiver line to a depth of

6000m.

mesh respects the material interface between Medium 1 and Medium 2 as the faces of the tetrahedral elements are aligned with the material

interface as shown in Figure 4(a) and (b).

In the following, we present the comparison of our results obtained by an ADER-DG O4 and ADER-DG O5 scheme and the four results of

the reference codes (UCBL, UCSB, WCC2 and CMUN) against the analytical solution. Analogous to the LOH.3 test case in the LIFELINES

PROGRAM TASK 1A02 the visual comparisons in Figure 5 show the radial, transversal and vertical components of the seismic velocity Þeld

recorded at receiver 10 at (x10, y10, z10) = (6000m, 8000m, 0m). Additionally, each plot gives the relative seismogram misÞt

E =

nt
∑

j=1

(sj − sa
j )2/

nt
∑

j=1

(sa
j )2, (51)

where nt is number of time samples of the seismogram, sj is the numerical value of the particular seismogram at sample j and sa
j is the

corresponding analytical value. We remark, that for all shown seismograms, the original source was deconvolved and replaced by a Gaussian

of spread 0.05 as described in (Day, Bielak, Dreger, Graves, Larsen, Olsen & Pitarka 2003).

The four reference solutions shown in Figure 5(a)-(d) remarkably differ from each other due to the different ways of incorporating

viscoelastic attenuation. Amplitude errors (e.g. for CMUN) and phase errors (e.g. for UCSB) are quite noticeable. In addition, the results of

UCBL, WCC2 and CMUN produce strong, unphysical oscillations in the transverse component.

The results with the fourth-order ADER-DG O4 scheme in Figure 5(e) using 3 attenuation mechanisms clearly match the analytic solution

better and show lower numbers for the misÞt E. Furthermore, the appearing but rather small errors can even be dramatically decreased

by using the higher order ADER-DG O5 scheme in Figure 5(f). As seen also in the convergence results of Table 2, the ADER-DG O5

simulation took about four time longer than the ADER-DG O4. Unfortunately, run times for the reference solutions are neither given in the
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Figure 5. Comparison of the radial, transverse and vertical velocity components for the LOH.3 test case on receiver 10. The analytical solution (thick line) is

plotted against the numerical one (thin line) obtained by (a) UCBL, (b) UCSB, (c) WCC2, (d) CMUN, (e) ADER-DG O4 with 3 attenuation mechanisms and

(f) ADER-DG O5 with 3 attenuation mechanisms. The relative seismogram misÞt E from equation (51) is given for each trace.
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Figure 6. Comparison of the radial, transverse and vertical velocity components for the LOH.3 test case on receiver 10. The analytical solution (thick line) is

plotted against the numerical one (thin line) obtained by (a) ADER-DG O4 with 3 attenuation mechanisms, (b) ADER-DG O5 with 3 attenuation mechanisms,

(c) ADER-DGO4 with 5 attenuation mechanisms and (d) ADER-DG O5 with 2 attenuation mechanisms. The relative seismogram misÞt E from equation (51)

is given for each trace.

report of (Day, Bielak, Dreger, Graves, Larsen, Olsen & Pitarka 2003) nor could they be found elsewhere. We also remark, that the weak

oscillations after 6sec in our results might be due to reßections from the model boundaries as we are not using sophisticated conditions for

absorbing, non-reßecting boundaries but control them via ßuxes as described in detail in (Käser & Dumbser 2006; Dumbser & Käser 2006).

Figure 6(a)-(d) presents the inßuence of the number of attenuation mechanisms on the seismograms. Using an ADER-DG O4 scheme with 3

or 5 mechanisms basically does not affect the seismogram accuracy as shown in Figure 6(a) and (c). Therefore, 3 mechanisms already seem

to approximate the constant Q-law with sufÞcient accuracy, which agrees with observations made in the literature, e.g. in (Emmerich & Korn

1987; Moczo, Bystricky, Kristek, Carcione & Bouchon 1997). However, results of the ADER-DG O5 schemes with 2 or 3 mechanisms in

Figure 6(b) and (d) clearly demonstrate that 2 mechanisms do not accurately represent a constant Q-law as already mentioned in Section 5.

Hereby we conÞrm, that amplitude and phase errors visible in Figure 6(d) have to be due to the insufÞcient Q-law approximation instead of

lacking accuracy of the numerical scheme itself. Therefore, we claim that in general 3 attenuation mechanisms might be enough to incorporate

viscoelastic attenuation in many cases.

7 CONCLUSION

We have presented the incorporation of realistic attenuation of seismic waves into the new ADER-Discontinuous Galerkin (ADER-DG)

schemes using viscoelastic material. The proposed numerical method can approximate the seismic wave Þeld, i.e. stresses and velocities,

with arbitrarily high order of accuracy in space and time on unstructured three-dimensional tetrahedral meshes. The additional variables, the
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anelastic functions, can be treated similarly in the case of viscoelastic material. Therefore, the linear hyperbolic system of the seismic wave

equations increases with the number of attenuation mechanisms and includes source terms resulting from the approximating viscoelastic

material behaviour by a generalized Maxwell body. However, the introduction of a new Cauchy-Kovalewski procedure for the high order

ADER time integration results in a more efÞcient implementation and therefore does not increase the computation time dramatically when

incorporating viscoelastic attenuation. The convergence results demonstrate the high accuracy of the ADER-DG schemes on tetrahedral

meshes. In addition, the detailed investigation of the required number of attenuation mechanisms agrees with the suggestions in the literature,

that 3 mechanisms seem to be sufÞcient for the accurate incorporation of realistic attenuation. The solution of a well-established benchmark

test with different orders of accuracy of the ADER-DG schemes and the comparison of the obtained results against analytic solutions

clearly shows the dramatic increase in accuracy with respect to reference solutions obtained by other methods. Therefore, the proposed

ADER-DG methods represents a new numerical scheme simulating seismic wave propagation with unforeseen accuracy on unstructured

three-dimensional tetrahedral meshes thoroughly including realistic attenuation due to viscoelasticity.
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