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S U M M A R Y

This article describes the extension of the arbitrary high-order Discontinuous Galerkin (ADER-

DG) method to treat locally varying polynomial degress of the basis functions, so-called

p-adaptivity, as well as locally varying time steps that may be different from one element to an-

other. The p-adaptive version of the scheme is useful in complex 3-D models with small-scale

features which have to be meshed with reasonably small elements to capture the necessary ge-

ometrical details of interest. Using a constant high polynomial degree of the basis functions in

the whole computational domain can lead to an unreasonably high CPU effort since good spa-

tial resolution at the surface may be already obtained by the fine mesh. Therefore, it can be more

adequate in some cases to use a lower order method in the small elements to reduce the CPU

effort without loosing much accuracy. To further increase computational efficiency, we present

a new local time stepping (LTS) algorithm. For usual explicit time stepping schemes the ele-

ment with the smallest time step resulting from the stability criterion of the method will dictate

its time step to all the other elements of the computational domain. In contrast, by using local

time stepping, each element can use its optimal time step given by the local stability condition.

Our proposed LTS algorithm for ADER-DG is very general and does not need any temporal

synchronization between the elements. Due to the ADER approach, accurate time interpola-

tion is automatically provided at the element interfaces such that the computational overhead

is very small and such that the method maintains the uniform high order of accuracy in space

and time as in the usual ADER-DG schemes with a globally constant time step. However, the

LTS ADER-DG method is computationally much more efficient for problems with strongly

varying element size or material parameters since it allows to reduce the total number of

element updates considerably. This holds especially for unstructured tetrahedral meshes that

contain strongly degenerate elements, so-called slivers. We show numerical convergence results

and CPU times for LTS ADER-DG schemes up to sixth order in space and time on irregular

tetrahedral meshes containing elements of very different size and also on tetrahedral meshes

containing slivers. Further validation of the algorithm is provided by results obtained for the

layer over half-space (LOH.1) benchmark problem proposed by the Pacific Earthquake Engi-

neering Research Center. Finally, we present a realistic application on earthquake modelling

and ground motion prediction for the alpine valley of Grenoble.

Key words: ADER approach, Discontinuous Galerkin schemes, elastic waves, local time

stepping, p-adaptivity, tetrahedral meshes.

1 I N T RO D U C T I O N

Large-scale applications in numerical seismology including realistic material properties and complex geometries usually still require a

tremendous effort in model building, mesh generation, computer storage and CPU time. In the past, advancements in the field of mesh

generation have led to automated algorithms that produce unstructured tetrahedral meshes even for very complex geometries. However, the

computational domain may exhibit zones where very small mesh elements are unavoidable in order to resolve the geometrical features of

interest, for example, sedimentary basins, folded and faulted reservoirs or surface topography. Additionally, in other parts of the computational

domain rather large elements might be admissible.
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696 M. Dumbser, M. Käser and E. F. Toro

In general, explicit high-order methods face two main disadvantages for such strongly heterogeneous meshes, in particular, if the

mesh contains mostly large elements and only a few very small elements in a limited zone of interest. First, using the high order ADER

Discontinuous Galerkin (ADER-DG) approach in the entire computational domain is expensive, since the high order of accuracy may not be

needed everywhere. In fact, the small elements might already provide sufficient accuracy due to their fine spatial resolution of the problem.

In this case, the high order ADER Finite Volume (FV) approach (Dumbser et al. 2006b) might be advantageous since the computational cost

on a given mesh is less than for ADER-DG. Secondly, the few smallest elements in the mesh reduce the allowed time step for all elements of

the mesh. Usually, such time step limits apply to all explicit numerical methods because of stability issues.

Furthermore, automatic unstructured mesh generation can lead to extremely small and degenerated tetrahedrons, so-called slivers (Bern

& Eppstein 1992; Joe 1995; Fleischmann et al. 1999). A sliver is characterized by four vertices, that lie almost in a plane and, therefore,

lead to a very flat tetrahedral element of a volume that is almost zero. This phenomenon is well-known in the literature on unstructured 3-D

mesh generation. It often can be avoided, but not always (Cheng et al. 2000; Edelsbrunner & Guoy 2002). However, in the presence of such

degenerate elements the quality of the numerical solution in their vicinity might be reduced and, more importantly, the time step is restricted

severely for explicit numerical methods. In extreme cases, it may even become practically impossible to run a numerical scheme with a

reasonable time step on a mesh containing a sliver element.

In this paper, we propose a new p-adaptive ADER-DG scheme with local time stepping (LTS) to overcome the two above mentioned

problems arising for realistic models of complex geometries. The work represents a crucial extension and improvement of the ADER-DG

scheme for seismic wave propagation problems as introduced in Käser & Dumbser (2006), Dumbser & Käser (2006) and Käser et al. (2007).

Similar to the approach of Houston & Süli (2001), the proposed ADER-DG scheme allows for locally different polynomial degrees of the

numerical approximation inside each element and, therefore, obtains a better balance of accuracy and computational cost.

Furthermore, the new ADER-DG method applies a LTS technique such that in each element the maximum time step can be used according

to the local stability criterion. Due to the ADER time integration approach (Toro et al. 2001; Titarev & Toro 2002; Toro & Titarev 2002) for

high order accurate space–time flux computation, the method remains a time-accurate one-step scheme despite the LTS. LTS in combination

with DG schemes on unstructured 3-D meshes was already proposed by Flaherty et al. (1997). However, they only presented first order results.

LTS for FV methods on unstructured tetrahedral meshes has been developed by Fumeaux et al. (2004). However, their approach does not

go beyond second order in space and time. We remark, that extending these previous approaches to higher order in time, for example, by

using a Runge-Kutta (RK) time stepping method, would be very expensive in terms of memory and CPU time due to the required storage

of the intermediate RK stages. In addition, a time interpolation step is required to synchronize the RK stages between different elements.

Furthermore, the efficiency of RK time discretization schemes drastically decreases, if the order of accuracy becomes greater than four, due

to the so-called Butcher barriers (Butcher 1987) and the number of intermediate RK stages becomes even larger than the formal order of

accuracy.

In contrast, the use of the ADER approach offers two advantages: First, it is a one-step scheme and thus no intermediate RK stages

have to be stored. Secondly, the time interpolation at the element interfaces is provided naturally by the Cauchy-Kovalewski procedure and,

therefore, no additional interpolation is needed. Very recently, a similar DG scheme using the Cauchy-Kovalewski procedure for space–time

expansion and LTS was introduced (Loercher et al. 2007) for nonlinear systems in one space dimension.

The structure of this article is as follows. First, we give a short introduction to the equations governing seismic wave propagation in

Section 2. Then, the p-adaptive ADER-DG scheme with LTS is described for this type of equation in Section 3. A detailed discussion of the

LTS algorithm follows in Section 3.3. To demonstrate the numerical convergence properties of the LTS scheme, results on several types of

meshes are shown in Section 4. Various applications of the proposed scheme are presented in Section 5. The first application deals with the

standard layer over half-space (LOH.1) test case, for which analytical and numerical reference solutions are available. The second test case is

a 3-D extension of the stiff inclusion test case proposed in two space dimensions by LeVeque (2002). Finally, a realistic example of earthquake

modelling and ground motion prediction in the alpine valley of Grenoble is presented, where all features of the p-adaptive ADER-DG scheme

with LTS on unstructured tetrahedral meshes are exploited.

2 E L A S T I C WAV E E Q UAT I O N S

The propagation of waves in an elastic medium is based on the theory of linear elasticity (Bedford & Drumheller 1994; Aki & Richards 2002)

which leads to the following hyperbolic system in velocity–stress formulation:

∂

∂t
σxx − (λ + 2μ)

∂

∂x
u − λ

∂

∂y
v − λ

∂

∂z
w = 0,

∂

∂t
σyy − λ

∂

∂x
u − (λ + 2μ)

∂

∂y
v − λ

∂

∂z
w = 0,

∂

∂t
σzz − λ

∂

∂x
u − λ

∂

∂y
v − (λ + 2μ)

∂

∂z
w = 0,

∂

∂t
σxy − μ

(

∂

∂x
v + ∂

∂y
u

)

= 0,
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ADER-DG with local time stepping and p-adaptivity 697

∂

∂t
σyz − μ

(

∂

∂z
v + ∂

∂y
w

)

= 0,

∂

∂t
σxz − μ

(

∂

∂z
u + ∂

∂x
w

)

= 0,

ρ
∂

∂t
u − ∂

∂x
σxx − ∂

∂y
σxy − ∂

∂z
σxz = 0,

ρ
∂

∂t
v − ∂

∂x
σxy − ∂

∂y
σyy − ∂

∂z
σyz = 0,

ρ
∂

∂t
w − ∂

∂x
σxz − ∂

∂y
σyz − ∂

∂z
σzz = 0.

(1)

Here, λ and μ are the Lamé constants and ρ is the mass density of the material. The normal stress components are given by σxx, σyy

and σzz, and the shear stresses are σxy, σyz and σxz. The components of the particle velocities in x-, y- and z-direction are denoted by

u, v and w, respectively. This system is a natural extension of the 2-D system already used in the seminal papers of Virieux (1984,

1986).

We remark, that for notational simplicity, we skip the time and space dependencies of the variables, that is, for the rest of this paper,

the stresses and velocities are always assumed to be functions of time t ∈ R and space �x = (x, y, z)T ∈ R
3. The physical properties of

the material are functions of space but are constant in time, that is, λ = λ(�x), μ = μ(�x) and ρ = ρ(�x), in order to describe heterogeneous

material.

In the following, we write system (2) in the more compact form

∂ Q p

∂t
+ Apq

∂ Qq

∂x
+ Bpq

∂ Qq

∂y
+ C pq

∂ Qq

∂z
= 0, (2)

where Q p = (σxx , σyy, σzz, σxy , σyz, σxz, u, v, w)T is the vector of the unknown variables of the system. Note, that classical tensor notation

is used, which implies summation over each index that appears twice. The matrices Apq = Apq (�x), Bpq = Bpq (�x) and C pq = C pq (�x) are the

space dependent Jacobian matrices of size p × q, with p, q = 1, . . . , 9, and are given, for example, in Dumbser & Käser (2006). For the

anelastic case including viscoelastic attenuation (see Käser et al. 2007), details on ADER-DG schemes for anisotropic material can be found

in de la Puente et al. (2006).

3 T H E A D E R - D G S C H E M E W I T H p - A DA P T I V I T Y A N D L O C A L T I M E S T E P P I N G

For the construction of the numerical scheme, we consider the general linear hyperbolic system of equations with variable coefficients as

given in (2). The computational domain � ∈ R
3 is divided into conforming tetrahedral elements T (m) being addressed by a unique index (m).

Furthermore, we suppose the matrices Apq, Bpq and Cpq to be piecewise constant inside an element T (m).

3.1 Semi-discrete p-adaptive scheme

The numerical solution of eq. (2) is approximated inside each tetrahedron T (m) by a linear combination of space-dependent but time-independent

polynomial basis functions �l (ξ , η, ζ ) of degree N with support T (m) and with time-dependent degrees of freedom Q̂
(m)
pl (t) as follows:

Q(m)
p (ξ, η, ζ, t) = Q̂

(m)
pl (t)�l (ξ, η, ζ ), (3)

where ξ , η and ζ are the coordinates in a reference coordinate system. The relation between the physical coordinates x–y–z and the reference

coordinate system ξ − η − ζ is a simple linear mapping (see e.g. Dumbser & Käser 2006). This mapping transforms the physical tetrahedron

T (m) to a canonical reference element T E with the four vertices (0, 0, 0), (1, 0, 0) (0, 1, 0) and (0, 0, 1). In eq. (3) the index p stands for the

number of unknowns in the vector Q and l indicates the lth basis function. We use the hierarchical orthogonal basis functions �k as given in

Cockburn et al. (2000). Hierarchical means, that the degrees of freedom are ordered with respect to the polynomial degree, starting with the

lowest degree (zeroth degree polynomials) up to the highest one. In three space dimensions, for an element using basis functions of maximum

degree N , the index l ranges from 1 to the number of degrees of freedom Nd = Nd (N ) = 1
6
(N + 1)(N + 2)(N + 3). For the p-adaptive version

of the scheme, the local degree of the basis polynomials may vary from element to element and thus N becomes a function of the element

number (m). We therefore, write N = N (m) = N (T (m)). We note in particular, that due to the orthogonality of the basis functions, a lower

order polynomial approximation can be obtained from a higher order polynomial approximation by simply setting the degrees of freedom

corresponding to the higher polynomial degrees to zero. This will become important later when computing the fluxes between elements of

different local polynomial degree.

As usual for DG schemes, the governing eq. (2) is multiplied by a test function �k and integrated over each tetrahedral element.

After integration by parts, inserting the DG approximation (3) and after inserting a numerical flux into the appearing boundary integral, the
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698 M. Dumbser, M. Käser and E. F. Toro

semi-discrete formulation of the scheme (see Dumbser & Käser 2006, for more details) in the reference element T E reads as

|J | Mkl · ∂

∂t
Q̂

(m)
pl +

4
∑

j=1

T j
pq

1

2

(

A(m)
qr +

∣

∣A(m)
qr

∣

∣

)

(T j
rs)−1|S j |F−, j

kl · Q̂
(m)
sl

+
4

∑

j=1

T j
pq

1

2

(

A(m)
qr −

∣

∣A(m)
qr

∣

∣

)

(T j
rs)−1|S j |F+, j,i,h

kn · Q̂
(k j )
sn

− A∗
pq |J |K ξ

kl · Q̂
(m)
ql − B∗

pq |J | K
η

kl · Q̂
(m)
ql − C∗

pq |J | K
ζ

kl · Q̂
(m)
ql = 0,

(4)

where |S j| denotes the area of face j. Furthermore, we have

A∗
pq = Apq

∂ξ

∂x
+ Bpq

∂ξ

∂y
+ C pq

∂ξ

∂z
, B∗

pq = Apq

∂η

∂x
+ Bpq

∂η

∂y
+ C pq

∂η

∂z
, C∗

pq = Apq

∂ζ

∂x
+ Bpq

∂ζ

∂y
+ C pq

∂ζ

∂z
. (5)

The mass matrix

Mkl =
∫

TE

�k�l dξ dη dζ, (6)

the stiffness matrices

K
ξ

kl =
∫

TE

∂�k

∂ξ
�l dξ dη dζ, K

η

kl =
∫

TE

∂�k

∂η
�l dξ dη dζ, K

ζ

kl =
∫

TE

∂�k

∂ζ
�l dξ dη dζ, (7)

and the flux matrices

F
−, j

kl

∫

∂(TE ) j

�k

(�ξ ( j)(χ, τ )
)

�l

(�ξ ( j)(χ, τ )
)

dχ dτ, F
+, j,i,h

kn =
∫

∂(TE ) j

�k

(�ξ ( j)(χ, τ )
)

�n

(�ξ (i)
(

χ̃ (h)(χ, τ ), τ̃ (h)(χ, τ )
))

dχ dτ (8)

in (4) can be calculated analytically on the reference element once for the largest polynomial degree arising in the computational domain and

then be stored (see Käser & Dumbser 2006; Dumbser & Käser 2006) for details.

We emphasize that due to the hierarchical orthogonal basis functions, eq. (4) already contains the fully p-adaptive case. One only has

to pay attention for the range of the indices when computing the flux across the element faces. Indices k and l always range from 1 to the

local number of degrees of freedom inside the element (m), that is, 1 ≤ k ≤ Nd[N (m)] and 1 ≤ l ≤ Nd[N (m)]. For the flux contributions

of the neighbour element (k j) across face j, however, the maximum of the polynomial degrees in element (m) and neighbour (k j) has to be

taken. The explanation for this is very simple: in the ADER-DG scheme, the numerical flux is based on the solution of Generalized Riemann

Problems (GRP) at the element interfaces which consist in piecewise polynomial initial conditions separated by a discontinuity at the element

interface (Titarev & Toro 2002). The degree of the GRP is given by the maximum polynomial degree arising on any of the two sides of

the interface since lower degree polynomials are only special cases of higher degree polynomials. Therefore, the index n is inside the range

1 ≤ n ≤ Nd{max[N (m), N (k j )]}. The missing degrees of freedom in the lower order element have to be filled with zeros. This means that the

flux matrices and the stiffness matrices have to be computed up to the maximum polynomial degree arising in the entire computational domain.

Then, for each element, only the corresponding submatrices up to the necessary degree have to be considered. For the flux contributions of

the neighbour elements, these submatrices may be rectangular when fluxes between two elements of different polynomial degree N have to

be computed. For convenience, we store for each element all degrees of freedom up to the maximum polynomial degree arising in the entire

computational domain, setting those degrees of freedom to zero whose degree exceed the local polynomial degree inside the element. This

increases computer storage but simplifies flux computation across elements with different polynomial degree.

Finally, we would like to remark that further details on the construction of the ADER-DG scheme for the elastic wave equations in two

and three space dimensions can be found in Käser & Dumbser (2006), Dumbser & Käser (2006), Käser et al. (2007) and de la Puente et al.

(2006), where also details on the treatment of typical boundary conditions such as free surface and open boundary conditions can be found.

3.2 Local time stepping using the ADER-DG approach

The efficiency of RK time discretization schemes drastically decreases if the order of accuracy becomes greater than four, due to the so-called

Butcher barriers (Butcher 1987), and the number of intermediate RK stages becomes larger than the formal order of accuracy. Therefore, we

apply the ADER approach to the semi-discrete form of the DG scheme (4) in order to achieve the same accuracy of the time discretization

as for the space discretization. Furthermore, time accurate LTS of high order of accuracy would become quite complicated with RK schemes

since inside an LTS approach the intermediate RK time levels of two neighbouring elements do not match in the general case. This makes

accurate temporal interpolation necessary between the elements. Of course, also the LTS version of the proposed ADER-DG approach needs

accurate time interpolation. However, this comes out naturally of the construction of the method thanks to the use of the Cauchy-Kovalewski

procedure which provides an accurate prediction of the evolution of the degrees of freedom in each element during one time step.

The main ingredient of the ADER approach is the solution of the Generalized Riemann Problems (GRP) (Toro et al. 2001), which takes

the form of a Taylor series expansion in time. The Cauchy-Kovalewski procedure is then used to replace the time derivatives in the Taylor

series by space derivatives. Since the state and the spatial derivatives are in general discontinuous at the element interfaces, their value at the

interface is defined solving Riemann problems for the state and the spatial derivatives (see also Toro & Titarev 2002). Formally, the fully

discrete scheme using LTS is the same as the ADER-DG schemes with global time stepping presented in Dumbser & Munz (2005); Käser &

C© 2007 The Authors, GJI, 171, 695–717

Journal compilation C© 2007 RAS

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
7
1
/2

/6
9
5
/6

5
7
1
2
8
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



ADER-DG with local time stepping and p-adaptivity 699

Dumbser (2006); Dumbser & Käser (2006), however the time integration tensor I plqm will have to be computed taking into account the local

time stepping algorithm.

To realize the LTS ADER-DG scheme, each tetrahedron T (m) stores its own local time t(m) and its associated local time step 
t (m). The

stability criterion for the local time step is written as


t (m) <
1

2N + 1
· l

(m)

min

a
(m)
max

, (9)

where l
(m)

min is the diameter of the insphere of tetrahedron T (m) and a(m)
max is the maximum signal speed arising in the tetrahedron. a(m)

max is the

maximum eigenvalue of the Jacobians Apq, B pq and Cpq, which means for the isotropic elastic wave equations a(m)
max = c p , the local seismic

P-wave velocity in tetrahedron T (m).

As usual for ADER-DG schemes, we first write the governing eq. (2) in the reference coordinate system as

∂ Q p

∂t
+ A∗

pq

∂ Qq

∂ξ
+ B∗

pq

∂ Qq

∂η
+ C∗

pq

∂ Qq

∂ζ
= 0. (10)

The kth time derivative as a function of pure space derivatives in the ξ − η − ζ -reference system is the result of the Cauchy-Kovalewski

procedure applied to (10) and is given by

∂k Q p

∂t k
= (−1)k

(

A∗
pq

∂

∂ξ
+ B∗

pq

∂

∂η
+ C∗

pq

∂

∂ζ

)k

Qq . (11)

We then develop the solution of (10) in a Taylor series in time up to local order N = N (m) with respect to the current local time level

t(m),

Q p(ξ, η, ζ, t) =
N (m)
∑

k=0

(

t − t (m)
)k

k!

∂k

∂t k
Q p

(

ξ, η, ζ, t (m)
)

, (12)

and replace time derivatives by space derivatives, using (11). We then introduce the DG approximation (3) and get

Q p(ξ, η, ζ, t) =
N (m)
∑

k=0

(

t − t (m)
)k

k!
(−1)k

(

A∗
pq

∂

∂ξ
+ B∗

pq

∂

∂η
+ C∗

pq

∂

∂ζ

)k

�l (ξ, η, ζ )Q̂ql

(

t (m)
)

. (13)

This approximation can now be projected onto each basis function in order to get an approximation of the evolution of the degrees of freedom

during one local time step, that is, in the time interval t ∈ [t (m) ;t (m) + 
 t (m)] . We obtain

Q̂ pl (t) =

〈

�n,
N (m)
∑

k=0

(t−t (m))k

k!
(−1)k

(

A∗
pq

∂

∂ξ
+ B∗

pq
∂

∂η
+ C∗

pq
∂

∂ζ

)k

�m(ξ, η, ζ )
〉

〈�n, �l〉
Q̂qm

(

t (m)
)

, (14)

where 〈a, b〉 =
∫

TE
a ·b dV denotes the inner product over the reference tetrahedron T E and the division by 〈�n , �l〉 denotes the multiplication

with the inverse of the mass matrix. This reduces indeed to division by its diagonal entries since the mass matrix is diagonal due to the supposed

orthogonality of the basis functions �l .

The most important equations for the LTS algorithm are the update criterion for the elements and the time interval for flux computation.

An element may be updated if and only if the update criterion

t (m) + 
t (m) ≤ min
(

t (k j ) + 
t (k j )
)

∀ k j (15)

is fulfilled with respect to all the direct neighbouring tetrahedrons T (k j ). When an element is updated, fulfilling (15), the numerical fluxes

between two elements T (m) and T (k j ) have to be computed in the time interval

[t1; t2] =
[

max
(

t (m), t (k j )
)

; min
(

t (m) + 
t (m), t (k j ) + 
t (k j )
)]

. (16)

Similar to the global time stepping case presented, for example, in Käser & Dumbser (2006) and Dumbser & Käser (2006), we introduce

the definition
∫ t2

t1

Q̂ pl (t)dt = Iplqm(t0, t1, t2)Q̂qm(t0), (17)

with

Iplqm(t0, t1, t2) =

〈

�n,
N (m)
∑

k=0

(t2−t0)k+1−(t1−t0)k+1

(k+1)!
(−1)k

(

A∗
pq

∂

∂ξ
+ B∗

pq
∂

∂η
+ C∗

pq
∂

∂ζ

)k

�m(ξ, η, ζ )
〉

〈�n, �l〉
, (18)
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700 M. Dumbser, M. Käser and E. F. Toro

where I plqm(t 0, t 1, t 2) formally contains the Cauchy-Kovalewski procedure for the time interval t ∈ [t1; t2] with the Taylor series expanded

about time level t0. With (18), the fully discrete p-adaptive LTS ADER-DG scheme is given under condition (15) by:
[

Q̂
(m)
pl

(

t (m) + 
t (m)
)

− Q̂
(m)
pl

(

t (m)
)]

|J |Mkl

+1

2

4
∑

j=1

T j
pq

(

A(m)
qr +

∣

∣A(m)
qr

∣

∣

)(

T j
rs

)−1|S j |F−, j

kl · Islmo

(

t (m), t1, t2

)

· Q̂(m)
mo

(

t (m)
)

+1

2

4
∑

j=1

T j
pq

(

A(m)
qr −

∣

∣A(m)
qr

∣

∣

)(

T j
rs

)−1|S j |F+, j,i,h

kn · Isnmo

(

t (k j ), t1, t2

)

· Q̂
(k j )
mo

(

t (k j )
)

−A∗
pq |J |K ξ

kl · Iqlmo

(

t (m), t (m), t (m) + 
t (m)
)

· Q̂(m)
mo

(

t (m)
)

−B∗
pq |J |K η

kl · Iqlmo

(

t (m), t (m), t (m) + 
t (m)
)

· Q̂(m)
mo

(

t (m)
)

−C∗
pq |J | K

ζ

kl · Iqlmo

(

t (m), t (m), t (m) + 
t (m)
)

· Q̂(m)
mo

(

t (m)
)

= MV
(m)
pk . (19)

Here, the indices l as well as n and o obey the same range limits as given in detail for the semi-discrete p-adaptive scheme (4). Furthermore,

the times t1 and t2 denote the limits of the flux time interval and are given according to (16). The accurate interpolation of element time

levels needed by a consistent flux computation are done automatically by the Cauchy-Kovalewski procedure using (17) with (18). We note

that the contributions of the stiffness matrices are always computed for the full local time step 
t m since the volume integrals depend only on

element-local information.

However, since the fluxes computed for element T (m) in the interval (16) in general do not cover the entire local time step, all other flux

contributions must be computed by the neighbouring elements when they fulfil the update criterion (15). In other words, the flux integral for

the entire time interval [t (m) ; t (m) + 
t (m)] is split into the element’s own contribution in the subinterval [t 1 ; t 2] and the contributions of the

corresponding neighbour element in the rest of the interval. These neighbour contributions may come from multiple local time steps of the

neighbour. On this behalf, the neighbours add their respective flux contributions to a so-called flux memory variable MV
(m)
pl for tetrahedron

T (m). We stress that the flux memory variables MV
(m)
pl are used to store the flux contributions of the neighbour elements and that they must

not be confounded with the usual memory variables used in order to model anelastic attenuation. At the initial time t = 0 all flux memory

variables are initialized with zero.

After a local element time step has been performed according to (19), the flux memory variable MV
(m)
pk of this element itself is reset to

zero and the increments 
MV
(k j )

pk that have to be added to the flux memory variables of all its neighbours T (k j ) are computed by:

−1

2
T j

pq

(

A
(k j )
qr +

∣

∣A
(k j )
qr

∣

∣

)

(T j
rs)−1|S j |F−,i

kl · Iqlmo

(

t (k j ), t1, t2

)

· Q̂
(k j )
mo

(

t (k j )
)

−1

2
T j

pq

(

A
(k j )
qr −

∣

∣A
(k j )
qr

∣

∣

)

(T j
rs)−1|S j |F+,i, j,h

kn · Iqnmo

(

t (m), t1, t2

)

· Q̂(m)
mo

(

t (m)
)

= 
MV
(k j )

pk , ∀ k j . (20)

Instead of using the tensor given in (18) one can alternatively use the faster algorithm given in the appendix of Käser et al. (2007) and store

the resulting temporal Taylor series for each degree of freedom in each element. This increases computational speed at the expense of higher

memory requirements.

A particular feature of the proposed p-adaptive ADER-DG scheme is its p-adaptivity not only in space, but also in time. This comes in

automatically via the Cauchy-Kovalewski procedure, which automatically matches spatial and temporal accuracy. This would be quite difficult

to obtain with a RK DG scheme since the use of RK schemes with locally different order of accuracy would require additional interpolation at

the element interfaces since the time levels of the intermediate RK stages do not necessarily match. Therefore, we decide to call our ADER-DG

scheme pτ -adaptive, indicating that it adapts the local polynomial degree not only in space but also in time.

3.3 Discussion of the local time stepping algorithm

In this section, we would like to illustrate the algorithm given by (19) and (20) under conditions (15) and (16) in detail on a schematic 1-D

example. Consider five non-equidistantly spaced elements T (1) to T (5) as shown in Fig. 1 with their associated different local time steps 
t(1)

to 
t (5) as plotted in Fig. 1(a). Assume that all elements start at the same common time level t = 0 and that all of them have to reach the

same final output time t = t o. Since for a LTS algorithm the time advancement of the elements will not be sychronous, in the following we

will talk of ‘cycles’, which we define as follows: during one cycle, only the subset of all elements T (m) which fulfills (15) is updated. Turning

back to our example shown in Fig. 1 we see that in the first cycle only elements T (3) and T (5) fulfill the update criterion (15). Thus, in cycle

1 they are allowed to perform an update. In order to compute the fluxes, the values for the neighbouring elements are interpolated via the

Cauchy-Kovalewski procedure thanks to (18) in the intervals given by (16). This is discussed in more detail on the example of element T (3)

and its neighbours in the following. The time intervals in which flux computation is performed according to (16) are [a ; b] on the interface

with neighbour T (2) and [h ; i] on the interface with neighbour T (4). The flux memory variables MV
(2)
pk and MV

(4)
pk of both neighbours are

updated according to (20). In cycle 2, only T (2) and T (5) are allowed to perform an update, see also Fig. 1(c). According to (16), the flux

between T (2) and T (3) has to be computed only in the time interval [b ; c] since the flux in the interval [a ; b] was already computed in cycle 1

by the neighbour element T (3). Since this contribution was stored in the flux memory variable of T (2), it is now correctly taken into account
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ADER-DG with local time stepping and p-adaptivity 701

Figure 1. Illustration of the local time stepping algorithm in one space dimension showing the space–time elements.

during the update step for T (2). The flux contribution of element T (2) to its neighbour T (3) is likewise added to the flux memory variable of

neighbour T (3). Remember that at the end of cycle 2 MV
(2)
pk is reset to zero. In a similar way, T (5) will add its flux contribution to the flux

memory variables of element T (4). In cycle 3 besides T (5) also element T (3) fulfills again condition (15), see Fig. 1(d), and computes the fluxes

in the time interval [c;d] at the interface with neighbour T (2) since the contribution of interval [b;c] was already computed in cycle 2 by T (2)

and stored in MV
(3)
pk . With respect to neighbour T (4) the flux is computed according to (16) in the interval [i;j], contributing obviously to

the update of element T (3) but also to a corresponding update of the flux memory variable MV
(4)
pk . In the following cycle 4, the elements

T (2) and T (5) perform a time update, see Fig. 1(e). The flux time interval at the interfaces between T (2) and T (3) is now [d;e]. T (1) fulfills the

update criterion for the first time in cycle 5, see Fig. 1(f). In cycles 6–8, only the smallest element T (5) is updated since none of the other

elements fulfills the update criterion. This LTS procedure continues in this manner until cycle 22, when all elements have reached the final
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t

x

to

t

x

to

Global time stepping:

100 updates

Local time stepping:

37 updates

T
(1)

T
(2)
T

(3)
T

(4)
T

(5)
T

(1)
T

(2)
T

(3)
T

(4)
T

(5)

Figure 2. Comparison of the resulting space–time meshes using global time stepping (left) and local time stepping (right).

output time to, see Figs 1(f)–(p). A cycle of particular interest is cycle 11, where the adjacent elements T (2) and T (3) fulfil the update criterion

simultaneously because they reach a common local time level, say tc. We want to use this example to illustrate how the local time stepping

works in this special case. At the beginning of the cycle, both elements are at the different local time levels tc − 
t(2) and tc − 
t(3). Suppose

that within cycle 11 the algorithm first considers element T (2) for update. This means, the interface flux will be computed by T (2), updating

the flux memory variable MV
(3)
pk . Element T (2) subsequently reaches time tc. When it is the turn of T (3) to be updated within the same cycle,

the flux at the common interface has already been computed by its neighbour. This is correctly respected by the flux time interval (16) since

t 1 = max [t (2), t (3)] = t c and t 2 = min [t (2) + 
t (2), t (3) + 
t (3)] = t c. The time interval [t 1 ; t 2] = [t c ; t c] becomes singular and, therefore,

no additional flux calculation results from T (3). The same reasoning is true for a different ordering of both elements, that is, if first element

T (3) is scheduled for updating and then element T (2). Note that except for the final time steps and intermediate output times, where all local

element time steps are adjusted in order to reach exactly to, no synchronization is used.

Finally, we would like to illustrate the benefits of the LTS algorithm discussing Fig. 2. On the left we can see the usual element update

procedure for a global time stepping scheme. The time step of all elements is restricted to the smallest one arising in the whole computational

domain. In our example, this is 
t(5) and leads to a total number of 100 element updates. For time-dependent problems, the solution depends

on both space and time and, therefore, when the solution is advanced in time, the final mesh is not only a spatial mesh, but a space–time

mesh. This is illustrated in Fig. 2, where the spatial mesh in x-direction and the temporal mesh in t-direction are shown. Since for a global

time stepping scheme there are no hanging nodes in time, the mesh is called conforming. Instead of 100 element updates, we can also say

that the method uses a space–time mesh with 100 conforming space–time elements. For the LTS scheme the mesh size in time is determined

in an optimal manner since each element can run at its maximum time step allowed by the stability criterion (9). This, however, leads to a

non-conforming mesh with hanging nodes in time. To deal with these hanging nodes, the concept of flux memory variables was introduced

since the flux integral in time is linearly additive. The resulting space–time mesh for the LTS scheme contains only 37 space–time elements.

It is more complicated in structure than the conforming mesh of the global time stepping scheme with 100 space–time elements but leads to

less computational effort.

In contrast to the space–time DG approach (van der Vegt & van der Ven 2002), which is implicit in time and whose basis functions

depend on both space and time, our algorithm remains explicit in time with basis functions depending only on space. The space–time character

of the ADER-DG schemes comes in directly via the Cauchy-Kovalewski procedure and the Taylor series in time in eq. (12). We emphasize

that compared to the space–time DG scheme of van der Vegt & van der Ven (2002) our ADER-DG algorithm needs less basis functions at the

same polynomial degree since on 3-D meshes their approach leads to a 4-D polynomial basis.

We note that the general overhead associated with the LTS algorithm is very low compared to an ADER-DG scheme using global time

stepping. Computations with the serial code on 3-D tetrahedral meshes have shown an overhead of only about 15 per cent. Please note,

however, that the efficient parallel execution of a LTS scheme can become a very challenging task. Since each element performs its update

only when (15) is fulfilled locally, the element updates are in general completely asynchronous which induces a very irregular load balancing

on the different processors. Therefore, for the parallel implementation of our code, we first group elements of zones with similar material

properties and element size together and partition each of these zones separately into a number of partitions that is equal to the total number

of processors. For this purpose we are using the free METIS software package introduced by Karypis & Kumar (1998). Then, the resulting

partitions of the different zones are merged together and thus provide the final domain decomposition. Note that the final partition in general

contains non-connected subdomains. However, since the ADER-DG approach provides a one-step scheme, the total communication overhead

induced by these non-contiguous partitions is quite small compared to the achieved benefits from the improved load balancing. Note that just

using METIS on the whole domain with large weights on elements with small time steps can not resolve the problem since the processor

load may remain ill-balanced due to the asynchronous element updates. As a final remark on parallelization we would like to note that in our

implementation the MPI communication is always performed after each cycle.
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ADER-DG with local time stepping and p-adaptivity 703

At the end of this section, we would like to investigate theoretically the maximum speed-up that can be reached ideally by a LTS scheme.

We consider a spatial computational domain � with a total number of E spatial elements. We assume that � contains only two different time

steps, the small time step 
t1 and the large time step 
t2, with 
t 2 = τ
t 1 and the time step ratio τ > 1. We assume furthermore that the

percentage of elements with the small time step 
t 1 is α < 1 and the percentage of the elements with the larger time step 
t 2 is (1 − α). The

total number of space–time elements NLTS
STE in the space–time domain � × T is for the LTS scheme

N LTS
STE = αE

T


t1

+ (1 − α)E
T


t2

. (21)

For a global time stepping method, all elements have to run the small time step 
t 1, so the corresponding number of space–time elements is

N GTS
STE = αE

T


t1

+ (1 − α)E
T


t1

. (22)

The theoretical speed-up σ is now given as the ratio of the number of space–time elements in (22) and (21) and can finally be written as

σ = N GTS
STE

N LTS
STE

= τ

1 − α + ατ
. (23)

To understand this formula in a more concrete sense, we consider the two extreme cases τ → ∞, which is the case for an extreme disparity

in the two time steps, and the case α → 0, which is the case when only a negligibly small number of mesh elements has to use the small time

step 
t1. In the first case, we obtain

lim
τ→∞

σ = 1

α
, (24)

and in the second case

lim
α→0

σ = τ. (25)

Especially the first result (24) is important for practical applications. In the limit case of an extremely large time step ratio τ , it is not the time

step ratio that determines the maximum theoretical speed-up, but it is the percentage α of elements using the small time step 
t 1. This means

that, for example, in a computational domain where 20 per cent of the elements have to use the small time step 
t 1 the maximum speed-up

can not go beyond 5. When already 50 per cent of the elements must use the small time step, one can not expect the speed-up to be better

than two. One should always be aware of this important result when deciding whether to use a LTS algorithm or not, especially considering

the difficulties with load-balancing of LTS schemes on massively parallel supercomputers.

The time step ratio τ determines the speed-up only in the case when extremely few elements with the small time step 
t 1 are present in

the domain (α → 0). This is the case, for example, when the tetrahedral mesh contains only one single sliver. An application of this extreme

case is shown in the following Section 4.2, where we show the convergence results obtained with our LTS scheme on a regular tetrahedral

mesh containing four slivers.

4 N U M E R I C A L C O N V E RG E N C E S T U D I E S O F T H E LT S A D E R - D G S C H E M E

Here, we present the results of the numerical convergence analysis in order to confirm the uniformly high accuracy in space and time of the

proposed ADER-DG method with time-accurate LTS. Convergence orders of the LTS ADER-DG schemes are shown from second to sixth

order in space and time and are denoted by LTS ADER-DG O2 to ADER-DG O6, respectively. We note that an ADER-DG scheme using

basis polynomials �l of maximum degree N has the formal order of accuracy N + 1 in space and time. This means that, for example, an

ADER-DG O6 method uses basis polynomials of maximal degree N = 5.

To determine the convergence orders we solve the 3-D elastic wave equations in (2) in a cube shaped computational domain � =
[−1, 1] × [−1, 1] × [−1, 1] ∈ R

3 with periodic boundary conditions. The initial condition is given by

Q0
p = Q p(�x, 0) = R

An

p1 sin(�k · �x) + R
An

p8 sin(�k · �x), (26)

with the wave number

�k = (kx , ky, kz)
T = (π, π, π)T . (27)

The vectors R
An

p1 and R
An

p8 are the two eigenvectors of matrix Apq rotated in normal direction, associated with the eigenvalues −cp and cs.

Therefore, the initial condition (26) creates a plane sinusoidal P-wave travelling along the diagonal direction �n = (−1, −1, −1)T of the cube,

as well as a plane sinusoidal S-wave travelling into the opposite direction. The homogeneous material parameters are set to

λ = 2, μ = 1, ρ = 1, (28)

throughout the computational domain � leading to the constant wave propagation velocities

cp = 2, cs = 1, (29)

for the P and S wave, respectively. The exact solution of this problem is

Qe = Q p(�x, t) = R
An

p1 sin(�k · �x + |�k|cp · t) + R
An

p8 sin(�k · �x − |�k|cs · t). (30)
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704 M. Dumbser, M. Käser and E. F. Toro

Table 1. Numerical convergence rates for variable w using ADER-DG schemes with local time stepping from

second to sixth order on the irregular tetrahedral meshes shown in Fig. 3.

h EL∞ EL1 EL2 OL∞ OL1 OL2 CPU (s)

1.65E-01 1.7362E-01 1.3511E-01 6.4464E-02 – – – 15

1.19E-01 8.7756E-02 6.2315E-02 3.0440E-02 2.1 2.4 2.3 71

9.05E-02 5.3290E-02 3.5194E-02 1.7267E-02 1.8 2.1 2.1 174

7.17E-02 3.3972E-02 2.1057E-02 1.0432E-02 1.9 2.2 2.2 438

1.65E-01 4.1876E-02 1.6274E-02 8.5126E-03 – – – 33

1.19E-01 1.7583E-02 5.1326E-03 2.7391E-03 2.6 3.5 3.5 152

9.05E-02 1.0291E-02 2.1468E-03 1.1720E-03 2.0 3.2 3.1 375

7.17E-02 4.0023E-03 9.9995E-04 5.5279E-04 4.1 3.3 3.2 936

1.65E-01 8.8193E-03 1.3238E-03 7.5536E-04 – – – 74

1.19E-01 3.1491E-03 3.0846E-04 1.8126E-04 3.1 4.4 4.3 336

9.05E-02 8.2239E-04 9.8214E-05 5.8509E-05 5.0 4.2 4.2 816

7.17E-02 4.3934E-04 3.5546E-05 2.1520E-05 2.7 4.4 4.3 2042

1.65E-01 1.4000E-03 9.2758E-05 5.9655E-05 – – – 169

1.19E-01 2.8336E-04 1.4341E-05 9.4223E-06 4.9 5.7 5.6 767

9.05E-02 9.1573E-05 3.5845E-06 2.4368E-06 4.2 5.1 5.0 1854

7.17E-02 2.2474E-05 1.0218E-06 7.0855E-07 6.0 5.4 5.3 4639

1.65E-01 1.1073E-04 5.3844E-06 3.8582E-06 – – – 392

1.19E-01 2.7071E-05 5.9898E-07 4.4779E-07 4.3 6.7 6.6 1799

9.05E-02 3.2553E-06 1.1377E-07 8.4015E-08 7.8 6.1 6.2 4319

7.17E-02 1.5113E-06 2.6350E-08 1.9615E-08 3.3 6.3 6.3 10 944
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Figure 3. Sequence of irregular tetrahedral meshes, used for the numerical convergence analysis of the local time stepping scheme.

The total simulation time T for the convergence test is set to T = 0.1. The stability of our explicit LTS scheme is controlled by

condition (9).

We then pick arbitrarily one of the variables of the system of the elastic wave eq. (2) to numerically determine the convergence order of

the used LTS ADER-DG schemes. In Tables 1 and 3, we show the errors for the velocity component w. The error of the numerical solution

Qh with respect to the exact solution Qe is measured in the L∞-norm and the continuous L1 and L2 norms,

E s
Lν = ‖Qhs − Qe‖Lν (�) =

( ∫

�

|Qhs − Qe|ν dV

)1/ν

, with ν ∈ {1, 2, ∞} , (31)

where the integration is approximated by Gaussian integration using twice the order of accuracy as in the numerical scheme. The L∞-norm is

approximated by the maximum error arising at any of these Gaussian integration points. The convergence orders are then computed through

OLν = log

(

E s
Lν

E s−1
Lν

)

/

log

(

hs

hs−1

)

, with ν ∈ {1, 2, ∞} , (32)

where hs indicates the mesh spacing h of mesh number s in the sequence of meshes. The first column in Tables 1 and 3 shows the mesh spacing

h, represented by the maximum diameter of the circumscribed spheres of the tetrahedrons. The following six columns show the L∞, L1 and L2

errors with the corresponding convergence orders OL∞ ,OL1 and OL2 determined by successively refined meshes. In the last column we give

the CPU time in seconds needed to reach the final simulation time T = 0.1 with the serial version of the code on one Pentium Xeon processor

with 3.6 GHz and 4GB of RAM.
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ADER-DG with local time stepping and p-adaptivity 705

Table 2. Comparison of ADER-DG schemes using global time stepping with pure P3 elements (top), local time

stepping with pure P3 elements (middle) and local time stepping with P2 and P3 elements (bottom). The analysed

variable is w, the meshes used for this test are shown in Fig. 3.

h EL∞ EL1 EL2 OL∞ OL1 OL2 CPU (s) Speed-up

1.65E-01 1.0217E-02 1.3756E-03 7.9740E-04 – – – 219 –

1.19E-01 3.7863E-03 3.1806E-04 1.9050E-04 3.0 4.5 4.4 1050 –

9.05E-02 9.4231E-04 1.0197E-04 6.2392E-05 5.1 4.2 4.1 2992 -

7.17E-02 5.1042E-04 3.6568E-05 2.2793E-05 2.6 4.4 4.3 7410 –

1.65E-01 8.8193E-03 1.3238E-03 7.5536E-04 – – – 74 2.95

1.19E-01 3.1491E-03 3.0846E-04 1.8126E-04 3.1 4.4 4.3 336 3.13

9.05E-02 8.2239E-04 9.8214E-05 5.8509E-05 5.0 4.2 4.2 816 3.67

7.17E-02 4.3934E-04 3.5546E-05 2.1520E-05 2.7 4.4 4.3 2042 3.63

1.65E-01 8.8193E-03 1.3238E-03 7.5536E-04 – – – 72 3.02

1.19E-01 3.1491E-03 3.0846E-04 1.8126E-04 3.1 4.4 4.3 331 3.17

9.05E-02 8.2239E-04 9.8214E-05 5.8509E-05 5.0 4.2 4.2 788 3.80

7.17E-02 4.3934E-04 3.5546E-05 2.1520E-05 2.7 4.4 4.3 1971 3.76

4.1 Example 1: Tetrahedral mesh with strongly varying element size

The convergence study to determine the numerical order of accuracy is first performed on a sequence of irregular tetrahedral meshes as shown

in Fig. 3, where the ratio of the edge lengths of the largest to the smallest tetrahedron is chosen to be hmax/hmin = 5.

From the numerical convergence rates shown in Table 1 we deduce that our proposed LTS ADER-DG scheme maintains time accuracy

perfectly even when using LTS. At the same time the scheme increases computational efficiency since in each element the optimal time

step can be used. The main advantage of such an algorithm is the considerable increase of robustness with respect to the underlying mesh

which for very complex realistic 3-D geometries may contain elements of strongly varying element size. For example, in applications with

surface topography, close to the surface, one usually must use quite a fine mesh in order to resolve the features of the topography correctly,

whereas in the deeper regions below the surface, less quickly changing geometrical features may allow larger elements. For a global time

stepping scheme, the elements on the surface would restrict the time step for all the other elements, even for the large elements far below the

surface.

To study the speed-up induced by LTS and furthermore to assess the accuracy of the pτ -adaptive version of the scheme, we perform the

same convergence analysis again using the fourth order global time stepping ADER-DG scheme as presented in Käser & Dumbser (2006)

and Dumbser & Käser (2006) as a reference. The results shown in Table 2 clearly show that the algorithm presented in this article using the

LTS technique is much faster than the one using global time stepping. On the finest mesh, the CPU time needed by the LTS scheme is less

than 28 per cent of the global time stepping method. Another interesting additional benefit of LTS is that the method is not only faster, but

the results are even better. This is due to the uniformly high local CFL number which should be as large as possible to have the least errors

due to numerical dissipation and dispersion. Using global time stepping, the local CFL number is quite low in the large tetrahedrons inducing

an unnecessary amount of numerical dissipation and dispersion. The details on the correlation of the CFL number and the dispersion and

dissipation errors of ADER FV schemes are given in Dumbser et al. (2006a).

Table 2, furthermore, shows that the pτ -adaptive version of the LTS ADER-DG scheme furthermore increases computational efficiency,

without loss of accuracy with respect to the LTS ADER-DG scheme using pure P3 elements (N = 3). However, we remark that on sufficiently

refined meshes the global order of accuracy of the mixed P2-P3 scheme must decrease to O3. In the testcase shown, the speed-up due to the

pτ -adaptive scheme is quite small. This is due to the fact that only a small number of elements uses the reduced order. However, using a lower

order in the small tetrahedrons in the interior of the mesh is beneficial from several points of view: first, the small tetrahedrons lead to a higher

spatial resolution compared to the larger tetrahedrons at the exterior of the domain. Therefore, the use of a lower order method is justified in

order to balance accuracy in the whole mesh. Second, the lower order ADER-DG method implies a more generous stability limit on the time

step since for DG schemes the time step limit is not only a function of the maximum wave speed and the element size, but also of the degree

N of the basis polynomials. Thus, the decrease of the order in the small tetrahedrons can compensate to some extent the more severe time

step restriction due to the small size of the elements. Third, the lower order (P2) elements in the interior are computationally faster than the

higher order (P3) elements in the rest of the domain. Since in the LTS algorithm the small elements have to do more time steps than the larger

ones, this leads to a further benefit concerning CPU time.

4.2 Example 2: Tetrahedral mesh with four extremely distorted sliver elements

This second test case is very similar compared to the previous one. However, we now consider a sequence of regular tetrahedral meshes into

which a set of four degenerate tetrahedrons, so-called slivers, has been introduced, see Fig. 4. The four slivers have been generated based on

a perfectly regular tetrahedral grid dividing the z-coordinate x3 by 1000 for the vertex V = (0/0/x 3) on the positive z-axis which is closest

to the origin O = (0/0/0). After this modification, the modified vertex V ′ = (0/0/ x3

1000
) and the origin O almost coincide. This leads to
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Figure 4. Sequence of regular tetrahedral meshes including a set of degenerate tetrahedrons (slivers) indicated between the arrows.

Table 3. Numerical convergence rates for variable w using ADER-DG schemes with local time stepping from

second to sixth order on the regular tetrahedral meshes including four slivers as shown in Fig. 4.

h EL∞ EL1 EL2 OL∞ OL1 OL2 CPU (s)

1.98E-01 1.6058E-01 1.7690E-01 7.9682E-02 – – – 16

1.32E-01 8.0926E-02 7.0999E-02 3.3510E-02 1.7 2.3 2.1 89

9.92E-02 4.6125E-02 3.9241E-02 1.8634E-02 2.0 2.1 2.0 279

7.94E-02 3.0424E-02 2.4037E-02 1.1657E-02 1.9 2.2 2.1 670

1.98E-01 4.7417E-02 2.3606E-02 1.1258E-02 – – – 41

1.32E-01 7.7286E-03 6.7786E-03 3.2771E-03 4.5 3.1 3.0 178

9.92E-02 3.5890E-03 2.7267E-03 1.3269E-03 2.7 3.2 3.1 506

7.94E-02 1.5846E-03 1.2560E-03 6.4294E-04 3.7 3.5 3.2 1272

1.98E-01 9.4030E-03 2.3390E-03 1.1777E-03 – – – 86

1.32E-01 2.3362E-03 3.9467E-04 2.1107E-04 3.4 4.4 4.2 339

9.92E-02 7.6429E-04 1.3282E-04 6.7896E-05 3.9 3.8 3.9 844

7.94E-02 3.3179E-04 4.8942E-05 2.5815E-05 3.7 4.5 4.3 2070

1.98E-01 1.2266E-03 1.7541E-04 9.4201E-05 – – – 166

1.32E-01 8.2925E-05 1.9842E-05 1.0348E-05 6.6 5.4 5.4 578

9.92E-02 1.2253E-05 4.8083E-06 2.5230E-06 6.6 4.9 4.9 1422

7.94E-02 4.7892E-06 1.5016E-06 8.0887E-07 4.2 5.2 5.1 3391

1.98E-01 1.8494E-04 1.1606E-05 7.2153E-06 – – – 572

1.32E-01 2.0914E-05 8.1676E-07 5.2066E-07 5.4 6.5 6.5 1877

9.92E-02 3.9283E-06 1.5152E-07 8.7313E-08 5.8 5.9 6.2 4294

7.94E-02 1.0296E-06 3.9531E-08 2.2398E-08 6.0 6.0 6.1 9737

four extremely degenerate tetrahedrons connected to the modified vertex V ′ and the origin O so that it is already impossible to see them

without heavy zooming. Their location is indicated by the arrows in Fig. 4. Due to the severe time step restriction induced by such elements,

the presented meshes could not be practically used by classical explicit time stepping schemes. However, as shown in Table 3 our proposed

local time stepping method obtains perfect convergence rates in reasonable CPU time even on a mesh containing such degenerate elements.

Running the scheme on a perfectly regular tetrahedral grid without modification yields almost the same error norms.

Although such an extreme ratio of hmax/hmin = 1000 may not seem to be very realistic, we added this very difficult example in order

to underline the capability and the robustness of the LTS ADER-DG method even in such an extreme situation. Real applications, where this

huge discrepancy in element size may indeed arise, could consist in earthquake simulations on the regional scale where small-scale features of

interest, such as buildings or bridges, are embedded directly in the numerical model used for the earthquake simulation. Such an application

may be of interest in civil engineering, where the impact of earthquakes on civil structures is to be studied in order to assess their security.

5 A P P L I C AT I O N E X A M P L E S

5.1 Layer over half-space

We apply the proposed ADER-DG method on a well-defined 3-D test problem, which was published in the final report of the LIFELINES

PROGRAM TASK 1A01 (Day 2001) of the Pacific Earthquake Engineering Research Center. The test case is part of a multi-institutional code

validation project of a series of different numerical methods employed in numerical modelling of earthquake ground motion in 3-D earth

models. Besides a quasi-analytic solution, simulation results from five different well-established codes exist and serve as additional reference

solutions. The results of these five codes are denoted by four-character abbreviations indicating the respective institutions.

(i) UCBL (Doug Dreger and Shawn Larsen, University of California, Berkeley/Lawrence Livermore National Laboratory).
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ADER-DG with local time stepping and p-adaptivity 707

Table 4. Material parameters for the LOH.1 test case.

cp (m/s) cs (m s−1) ρ (kg m−3) λ (GPa) μ (GPa)

Medium 1 4000 2000 2600 20.8 10.4

Medium 2 6000 3464 2700 32.4 32.4

Figure 5. Cut into the discretization of the LOH.1 model to visualize the tetrahedral mesh, which is extended with large elements in order to provide better

absorbing boundary conditions.

(ii) UCSB (Kim Olsen, University of California, Santa Barbara).

(iii) WCC1 (Robert Graves, URS Corporation).

(iv) WCC2 (Arben Pitarka, URS Corporation).

(v) CMUN (Jacobo Bielak, Carnegie-Mellon University).

The first four codes use finite differences of uniform, structured grids with staggered locations of the velocity and stress components and

fourth-order accuracy in space. However, we do not have detailed information about their differences as far as their particular formulation or

implementation is concerned. The CMUN code uses piecewise linear interpolation on unstructured tetrahedral finite elements.

The quasi-analytic solution is a frequency-wavenumber solution obtained by a modification of the method presented in Luco & Apsel

(1983) and Apsel & Luco (1983) and is compared to all numerical solutions to evaluate their accuracy. The setup of the test problem LOH.1 is

given in detail in Dumbser & Käser (2006). The material parameters of the layer (Medium 1) of the top 1000 m and the half-space (Medium

2) are given in Table 4.

The seismic source is a point dislocation, represented by a double couple source, where the only non-zero entries of the seismic moment

tensor are M xy = M yx = M 0 = 1018 N m. The location of the point source is (x s , y s , z s) = (0 m, 0 m, 2000 m), that is, in the centre of the xy

plane of the domain � in 2000 m depth.

The moment-rate time history is given through the source time function

ST (t) = t

T 2
exp

(

− t

T

)

, (33)

where the smoothness parameter T , controlling the frequency content and amplitude of the source time function, is set to T = 0.1 s. We

remark, that details of the discretization of external source terms in the framework of ADER-DG methods are outlined in previous work

(Käser & Dumbser 2006). The signals are recorded up to a simulation time of 9 s by 10 receivers on the free surface. The receiver locations

are (xi, yi, zi) = (i · 600 m, i · 800 m, 0 m), for i = 1, . . . , 10.

The computational domain � is discretized by an unstructured tetrahedral mesh as shown in Fig. 5 using 776 523 elements. Furthermore,

the mesh is generated in a special manner to reduce spurious reflections from the domain boundaries. To this end, the original computational

domain � = [−15 000 m, 15 000 m] × [−15 000 m, 15 000 m] × [0 m, 17 000 m] is discretized with elements using an average edge length of
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Figure 6. Comparison of the radial, transverse and vertical velocity components for the LOH.1 test case on receiver 10. The analytical solution (thick line) is

plotted against the numerical one (thin line) obtained by (a) UCBL, (b) UCSB, (c) WCC2, (d) CMUN, (e) LTS ADER-DG O4 and (f) LTS ADER-DG O5.

The relative seismogram misfit E from eq. (34) is given for each trace.
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ADER-DG with local time stepping and p-adaptivity 709

350 m at the surface and 900 m at the bottom of the model. Then, in order to reduce spurious reflections from the boundary, the computational

domain is embedded in a much larger extended domain �ext = [−50 000 m, 50 000 m] × [−50 000 m, 50 000 m] × [0 m, 25 000 m] that is

discretized using very coarse tetrahedrons of average edge length 2000 m. Since the large additional elements (about 23 per cent of the total

number of elements) allow also large time steps, the induced additional computational effort is only quite small (about 16 per cent more CPU

time) due to the use of local time stepping. We note that the mesh respects the material interface between Medium 1 and Medium 2 as the

faces of the tetrahedral elements are aligned with the material interface as shown in Fig. 5.

In the following, we present the comparison of our results obtained with LTS ADER-DG O4 and LTS ADER-DG O5 and the best four

results of the reference codes (UCBL, UCSB, WCC2 and CMUN) against the analytical solution. We stress that the maximal polynomial

degree of the basis functions for ADER-DG O4 is N = 3 so that the chosen mesh resolution for the smallest average tetrahedral edge length

of 350 m corresponds to the requirements of the LOH.1 benchmark which asked for a characteristic mesh size of 100 m. Analogous to

the LOH.1 test case in the LIFELINES PROGRAM TASK 1A01 the visual comparisons in Fig. 6 show the radial, transversal and vertical

components of the seismic velocity field recorded at receiver 10 at (x 10, y10, z10) = (6000 m, 8000 m, 0 m). Additionally, each plot gives the

relative seismogram misfit

E =
∑nt

j=1

(

s j − sa
j

)2

∑nt

j=1

(

sa
j

)2
, (34)

where nt is number of time samples of the seismogram, sj is the numerical value of the particular seismogram at sample j and sa
j is the

corresponding analytical value. We remark, that for all shown seismograms, the original source was deconvolved and replaced by a Gaussian

of spread 0.05 as described in Day (2001).

As shown in Figs 6(a)–(f), all numerical solutions (thin line) reproduce the analytical solution (thick line) with various degrees of

discrepancy. However, the four reference solutions shown in Figs 6(a)–(d) produce unphysical oscillations, possibly due to dispersion errors,

especially on the transverse component between 4.5 and 6 s. These errors are strongly reduced by the fourth order LTS ADER-DG O4 scheme

and even more by LTS ADER-DG O5. Furthermore, overshoots and phase errors obtained by all reference codes and mainly responsible for

the relative seismogram misfit in (34), are decreased by the ADER-DG methods as shown in 6(e) and (f), which leads to a more precise match

of the numerical and analytical solutions. We remark that with ADER-DG schemes using global time stepping as presented in Dumbser &

Käser (2006), oscillations were visible in the seismograms after 6.5 s due to boundary effects. The LTS ADER-DG schemes presented in

this article can handle the extended computational domain �ext shown in Fig. 5 in order to obtain better non-reflecting boundary conditions

without much additional CPU effort since the additional domain contains only a relatively small number of very large elements that use large

time steps and, therefore, add only a small computational overhead. The seismograms presented in this article indeed show a considerable

decrease of these oscillations, see Figs 6(e) and (f).

Considering the CPU-times a comparison turned out to be difficult, as no CPU-time data was available from the the final report of the

LIFELINES PROGRAM TASK 1A01 (Day 2001) of the Pacific Earthquake Engineering Research Center. Furthermore, all reference codes

have been run on different machines and with different levels of parallelisation. However, to give a precise indication of the CPU-time

requirements for our LTS ADER-DGO4 simulation: the run was carried out on the HLRB2 supercomputer of the Leibniz Rechenzentrum in

München, Germany, and took 5.9 h wall-clock time on 128 Intel Itanium2 Madison 9M processors, each with 1.6 GHz and 4.0 GB of RAM.

In comparison, the same computation with ADER-DGO4 using global time stepping was 12 h with the same hardware configuration.

5.2 Stiff 3-D inclusion

After having validated the LTS ADER-DG scheme with the convergence studies and the LOH.1 test case, in this section we consider a 3-D

extension of the inclusion test case given in LeVeque (2002) and Käser & Dumbser (2006) to show the efficiency and the high flexibility

provided by a pτ -adaptive LTS ADER-DG scheme on a geometrically and computationally more challenging example. The computational

domain of this test consists in a cylinder with radius R = 1 and length L = 2, into which is embedded a circular cone with length l = 1,

bottom radius r 1 = 0.1 and tip radius r 2 = 0.001. Both embedded bodies are aligned with the z-axis. The material properties are λi = 200

and μi = 100 inside the embedded cone and λo = 2 and μo = 1 in the rest of the cylinder. The density is constant ρ = 1 everywhere. This

choice of the material parameters leads to ten times higher P- and S-wave velocities inside the cone-shaped inclusion, inducing automatically

a much more severe restriction for the time step than in the outer material. Furthermore, the mesh needs to be refined heavily towards the tip

of the cone in order to resolve the geometry appropriately, see Fig. 7 where a cut through the whole mesh of the problem containing 172 836

elements is depicted. The mesh spacing outside the inclusion is hmax = 0.045 and at the tip of the cone it is hmin = 0.00157 in order to resolve

the tip of the cone with four mesh edges. This leads to a mesh-size ratio between largest and smallest element of about hmax/hmin = 28.6.

This refinement leads to an additional decrease of the time step in the tip of the cone with respect to the other elements in the inclusion.

Using a global time step and a constant polynomial degree throughout the whole computational domain would lead to a ratio of smallest time

step, arising in the tip of the cone, to largest time step, occurring in the outer region, of about 1:300. It is obvious that such a high discrepancy

in time steps leads to an unreasonably high computational effort, especially for a 3-D application. Since in the stiff cone-shaped inclusion the

wave speeds are much higher than in the outer material, one expects much larger wavelengths in the inclusion than in the rest of the cylinder.

This effect was already confirmed in the 2-D setting (see LeVeque 2002; Käser & Dumbser 2006). Therefore, it is adequate to use a lower

order approximation in the inclusion since larger wavelengths need less spatial resolution. The benefits of this lower order approximation in

C© 2007 The Authors, GJI, 171, 695–717

Journal compilation C© 2007 RAS

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
7
1
/2

/6
9
5
/6

5
7
1
2
8
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



710 M. Dumbser, M. Käser and E. F. Toro
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Figure 7. Tetrahedral mesh used for the 3-D inclusion test case.

Figure 8. Stress component σ zz at t = 0.3 obtained with the pτ -adaptive LTS ADER-DG scheme using P2 and P5 elements.

the interior of the cone together with a LTS algorithm are twofold: first, the use of a lower order ADER-DG scheme in the inclusion leads to a

larger time step since the time step of DG schemes decreases with the degree of the basis polynomials N as 1/(2N + 1) according to eq. (9).

Second, using the LTS ADER-DG scheme, the small tetrahedrons in the inclusion will do much more time steps than the tetrahedrons in the

outer material, so it is convenient to use a cheaper method in this part of the domain where most of the cycles are expected. In our particular

setting, we use a third order method (N = 2) inside the inclusion and a sixth order method (N = 5) in the rest of the domain. The initial

condition is given by a planar Gaussian-shaped P-wave travelling into positive z-direction:

u p(�x, 0) = R
An

p9 exp

[

−1

2

(x − x0)2

σ 2

]

, (35)

Here, the normal vector is �n = (0, 0, 1)T , the initial location of the centre of the Gaussian distribution is x 0 = 0.25, the halfwidth is chosen as

σ = 0.03 and R
An

p9 is the eigenvector associated with the corresponding P wave. This leads to an average resolution of the incident plane wave

of 2σ/hmax = 1.3 elements. We compute the problem until t = 0.3. The wall clock time needed by the pτ -adaptive LTS ADER-DG scheme

on the HLRB2 supercomputer of the LRZ in München, Germany, was 57 h using 128 Intel Itanium 2 Madison CPUs, each with 1.6 GHz and

4 GB of RAM. The total number of element updates necessary to reach this output time using different ADER-DG schemes are as follows.

(i) 71.665 × 109 using a purely sixth order ADER-DG scheme (N = 5) with global time stepping.

(ii) 32.575 × 109 using a pτ -adaptive ADER-DG scheme (N = 2 and 5) with global time stepping.
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ADER-DG with local time stepping and p-adaptivity 711

Figure 9. Visualization of the tetrahedral mesh and its partition into 64 subdomains for the Grenoble valley benchmark with topography (a). Topography and

velocity structure of the model (b). Zoom of an exploded view of the sediment/bedrock interface and its tetrahedrization (c). View of the bottom topography of

the sedimentary basin from below (d). Computed peak ground velocity in the Grenoble valley for the model without topography (e) and with topography (f).

(iii) 954.47 × 106 using a purely sixth order ADER-DG scheme (N = 5) with local time stepping.

(iv) 573.84 × 106 using a pτ -adaptive ADER-DG scheme (N = 2 and 5) with local time stepping.

This leads to a CPU time reduction of a factor greater than 125 for the pτ -adaptive LTS ADER-DG method compared to the use of a

sixth order ADER-DG scheme with global time stepping everywhere, considering only the number of element updates. Further CPU savings

for the pτ -adaptive scheme are due to the fact that third order elements are cheaper than sixth order elements.

In Fig. 8, we show a cut through the computational domain in the x − z plane at y = 0 for time t = 0.3. The stress component σ zz

obtained with the pτ -adaptive LTS ADER-DG scheme is depicted. Similar to the 2-D results shown in LeVeque (2002) and Käser & Dumbser

(2006) we can see the direct P wave, the Rayleigh waves at the outer cylinder surface and the shear waves emerging from the inclusion due

to the reflection of the P wave inside the cone because of the large difference of the material properties.

We are convinced that this test case is a very challenging one for all explicit numerical methods that have to obey a global time step

restriction. We emphasize furthermore that already the mesh generation for this test case using methods based on hexahedral grids is not a
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712 M. Dumbser, M. Käser and E. F. Toro

Table 5. Material parameters of the bedrock of the Grenoble valley

benchmark.

Depth of layer top (km) cp (m s−1) cs (m s−1) ρ (kg m−3) Q-factor

0 5600 3200 2720 ∞
3 5920 3430 2720 ∞
27 6600 3810 2920 ∞
35 8000 4450 3320 ∞

Table 6. Material parameters

of the sedimentary basin of the

Grenoble valley benchmark.

cp = 1450.0 + 1.2 d

cs = 300.0 + 19.0
√

d

ρ = 2140.0 + 0.125 d

Qp = (3c p/4c2
s ) Q s

Qs = 50

trivial task. To match the inner grid inside the cone with the outer grid of the cylinder can become difficult with structured and unstructured

hexahedral grids, even when using modern commercial mesh generators.

5.3 Earthquake modelling and ground motion prediction

In this section, we apply the proposed ADER-DG scheme with LTS to a benchmark test of earthquake modelling to confirm the performance

and the functionality of this approach for real-world applications. Thus, we chose the ESG 2006 benchmark for ground motion simulation

in the Grenoble valley, where details are given in Chaljub (2006). It is well known, that alpine valleys produce strong site effects due to

the contact and large impedance contrasts between solid bedrock and less consolidated sediments as shown in Bard & Buchon (1980a,b).

Furthermore, alpine valleys usually exhibit strong topographic variations of the free surface and of the internal boundary between the bedrock

and the sedimentary basin.

The setup of this test case provides a velocity model of 50.4 × 47.4 km horizontal extent and 35 km depth, as shown in Fig. 9(a) and (b).

The detailed topography information is given by a digital elevation model of 50 m lateral resolution. To discretize the computational domain

we use an unstructured tetrahedral mesh of 1 259 721 elements, see Fig. 9(a), that respects the free surface topography and the internal material

boundaries, in particular, the geometrically complicated interface between the sedimentary basin and the bedrock material. Furthermore, the

mesh is refined locally in the zones of interest and is coarsened with increasing depth and towards the model boundaries as illustrated in

Fig. 9(a). The sedimentary basin under Grenoble appears as an Y -shaped structure on the surface as shown in Fig. 9(b). The colour code

in Fig. 9(b) displays the P-wave velocity distribution. Details about the velocity model of the bedrock are given in Table 5. The material

parameters inside a bedrock layer vary linearly with depth.

An enlarged illustration of the 3-D shape of the sedimentary basin and its discretization by an unstructured, tetrahedral mesh is displayed

in Fig. 9(c). Note, that in this plot we show an exploded view, such that the sediment is detached from the bedrock in order to see the internal

interface between the two geological zones. The depth-dependent distribution of the material parameters inside the sedimentary basin are

given in Table 6, where the unit of depth d is (m), the one of the velocities cp and cs is (m s−1) and of the density ρ is (kg m−3).

Fig. 9(d) represents a view from below the sedimentary basin in order to display in more detail the topography of the sediment/bedrock

interface together with a cut to better visualize the tetrahedral elements of the basin discretization. We note, that the tetrahedral elements

discretizing the basin have an average tetrahedron edge length of 200 m. In comparison to the tetrahedral elements at 35 km depth with average

edge lengths of up to 6200 m, see Fig. 9(a), the relation of the local mesh spacing yields a factor of 31. We remark, that a global time stepping

scheme would have to update these large tetrahedrons many times according to the minimum time step that occurs in the entire computational

domain. Our LTS scheme, however, uses the maximum time step allowed for these large tetrahedral elements. We point out, that this maximum

time step also takes into account the local material parameters, that is, the local seismic wave velocities, and the local polynomial degree N

of the approximation polynomial. Therefore, the computational effort can be reduced considerably.

Table 7. Comparison of different numerical methods and meshing strategies applied to the Grenoble valley test case with topography and the

associated time requirements for the meshing process and for the wave propagation simulation.

Numerical method Mesh topology Domain size Number of elements Number of CPUs Wallclock time (h)

SEM (Chaljub) hexahedrons 31.0x 24.0x50.0 km3 332 160 32 7

ADER-DG (Dumbser et al.) tetrahedrons 50.4x47.4x35.0 km3 1259 721 255 50
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Figure 10. Spatial location and numbering of the receivers for the Grenoble valley benchmark problem. The projection of the lateral extend of the sedimentary

basin (thin solid line) as well as of the rupture plane (thick solid line) are also shown.

As seismic attenuation has to be considered inside the basin structure, the attenuation properties are approximated by a viscoelastic

material using three attenuation mechanisms in the frequency band from 0.1 to 10 Hz as introduced by Emmerich & Korn (1987) and

described in detail within the framework of ADER-DG schemes in Käser et al. (2007).

In our simulation, we consider the strong motion case, where the parameters of an extended rupture source describe a right-lateral

strike-slip event of moment magnitude M w = 6.0 on the eastern part of the Belledonne border fault as given in Chaljub (2006). The kinematics

of the rupture is represented by a circular crack propagating inside a rectangular fault, that is, a Haskell crack with constant final displacement,

with a rupture velocity of 2.8 km s−1. The nucleation point is in 3 km depth and in the centre of a vertical fault plane of 9 km length and

4.5 km width with orientation: strike = 45◦, dip = 90◦ and rake = 180◦. The rupture plane is subdivided into 15 × 30 = 450 subfaults of

size 300 × 300 m. The source is implemented via a seismic moment tensor describing a double couple source with the source time function

of the displacement rate

ST (t) = T√
π

exp{−[T (t − tD)]2}, (36)

with smoothness factor T = 3.5842 and delay time t D = 2.232 s as described in Chaljub (2006). A map of locations of receivers on the free

surface of the model and the projection of the rupture plane onto the surface with respect to the shape and position of the sedimentary basin

is shown in Fig. 10.

For the simulation, we decompose the model into four geometrical, geological zones: (1) the basin structure, (2) the surface layer above

3 km depth excluding the basin, (3) the layer between 3 and 27 km depth and (4) the layer between 27 and 35 km depth. We use the LTS

ADER-DG scheme with pτ -adaptivity, where the following distribution of the polynomial degree N is applied: zone (1) N = 3, zone (2) 3 ≤
N ≤ 4, zone (3) 3 ≤ N ≤ 4 and zone (4) N = 2. The mesh is partitioned into 255 subdomains for parallel computing as shown in Fig. 9(a).

The total simulation time is set to 30 s.

According to the benchmark proposed by Chaljub (2006), the computation is done first without surface topography but including the

basin structure. This model is in the following also denoted as the flat model. In the second computation, also the complex surface topography

is included. These two computations allow an assessment of the effects of surface topography on the seismograms and the observed peak

ground velocity.

In Figs 9(e) and (f) we present the maps of the peak ground velocity recorded by an array of 120 × 120 receivers with a spatial interval of

250 m on the surface across the area of the Grenoble valley for the flat test case and the model with surface topography. The strongest ground

velocity is predicted for the southeastern part of the Grenoble valley at the contact between the soft sediments and the solid bedrock, which

agrees with observed amplification effects of sedimentary basins in Chaljub et al. (2005). The well-known focusing effect of waves along

the strike direction of a rupture fault can be seen clearly, as the area of the sediment/bedrock contact closer but perpendicular to the rupture

plane exhibits ground velocity of much smaller amplitude. Furthermore, the sedimentary basin acts as a shield leading to rather weak ground

motion on the opposite (western) side of the valley.

Comparing Figs 9(e) and (f) it can be seen clearly that for the considered seismic event, surface topography has no large impact on the

peak ground motion since the observed maximal amplitudes are more or less the same in both cases.

In Figs 11 and 12 we display the unscaled and unfiltered seismograms for the three velocity components in x, y and z-directions recorded

on 15 of the receiver locations shown in 10 for the flat model and the model with surface topography. We note that in both cases receivers 4,

32, 33, 38 and 39 show much smaller velocity amplitudes than the other receivers as they are located on bedrock outside the basin. Except

the amplitude amplification the signals recorded in the basin show longer duration of oscillations due to the multiple reflections of the waves
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Figure 11. Seismograms obtained with the pτ -adaptive LTS ADER-DG method compared with the SEM reference solution of Chaljub et al. showing the three

velocity components on 15 selected receivers of the flat model for the Grenoble valley benchmark problem.

trapped inside the basin. These effects are in good correlation with other simulations and observations in this area as shown in Chaljub et al.

(2005). In agreement with the peak ground velocity maps discussed previously we observe by comparing the seismogram data for the flat

model and the surface topography model at the selected receiver locations that for this test case there are only small changes in the seismograms

due to surface topography effects.

As a reference, the unscaled and unfiltered seismogram data obtained by E. Chaljub using a SEM method for both models are also plotted

for all considered receiver locations. In both cases we note in general a very good agreement between the SEM reference seismograms and

our LTS ADER-DG simulations. Not only with respect to amplitudes and phases, but even the individual waveforms are very similar at all

receiver locations. Considering the geometrical complexity of this test case with a non-trivial source, such a high level of agreement between

two completely different numerical methods running on completely different mesh topologies and model setups, as given in Table 7, is very
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Figure 12. Seismograms obtained with the pτ -adaptive LTS ADER-DG method compared with the SEM reference solution of Chaljub et al. showing the three

velocity components on 15 selected receivers of the model with surface topography for the Grenoble valley benchmark problem.

satisfactory for both methods and underlines the reliability of modern numerical modelling tools in complex geophysical application cases of

practical relevance.

6 C O N C L U D I N G R E M A R K S

We have presented an arbitrary high order DG scheme on unstructured tetrahedral meshes that may adapt the local polynomial degree as well

as the local time step in a problem-dependent manner. The apparent main advantage of the proposed LTS ADER-DG scheme is its extreme

flexibility considering its ability to deal with complex geometry because it is able to run on tetrahedral meshes as well as the adaptivity of the

underlying numerical algorithm.
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Since our numerical method is based on a completely different mesh topology compared to other methods such as FD or SEM, a direct

and fair computational cost comparison is very difficult. We especially point out that in order to mesh two equal computational domains

with a similar mesh spacing, that is, with the same edge length of elements, one needs about six times more tetrahedral elements compared

to a hexahedral mesh. At the same time, tetrahedrons require a more severe time step restriction (between two and three times smaller time

steps) compared to a regular hexahedral grid. Hence, the pure computational cost of our method is in general high because of the underlying

tetrahedral mesh topology. Even the LTS version of our ADER-DG scheme is still slower compared to standard FD or SEM methods.

However, we emphasize that tetrahedral mesh generation is almost completely automatic, even for very complex geometries, which

definitely induces the advantage of flexibility for our method. All test cases presented in this article were computed with the same code, where

the model can be almost completely set up already in the tetrahedral mesh generator. We use the GAMBIT software package, available at the

HLRS supercomputing centre in Stuttgart, which allows to define so-called volume zones. For each zone, the local material properties (λ, μ,

ρ, as well as Qp and Qs for viscoelastic material) are defined, as well as the desired local polynomial degree N of the basis functions. Also

the boundary conditions (free surface, periodic or open boundaries) can be directly specified in the mesh generator. The entire generation of

the tetrahedral mesh for the inclusion testcase shown in Fig. 7 for the LTS ADER-DG scheme can be done completely automatic in about 15

s on a standard Intel Xeon Workstation with 3.6 GHz and 4GB of RAM. To generate the entire 3-D model and the tetrahedral mesh for the

Grenoble valley test case including surface topography as shown in Fig. 9(a), the GAMBIT mesh generator needed only 165 s without any

manual interactions. In contrast to this, the generation of hexahedral grids as shown in Stupazzini (2006) for the same testcase needs many

manual interactions and thus the mesh generation process for such hexahedral meshes can easily take several hours, even for experienced

users. Taking into account also the time needed for mesh generation, the LTS ADER-DG scheme seems to be a very flexible and practical

alternative to the current approaches, such as FD and SE schemes, which require more time-consuming hexahedral mesh generation. If the

computational model contains a very complex geometry that is difficult to mesh with hexahedral grids and if the computational model leads

to very different time steps, such as the presented Grenoble valley benchmark, the LTS ADER-DG scheme may offer advantages due to its

flexibility. In other cases, such as earthquake simulation on the global scale, where the underlying geometry is basically a sphere, the SEM

seems to be preferable.

Furthermore, the proposed LTS ADER-DG scheme is very robust concerning mesh quality. As we can see from the convergence studies

presented in Section 4, the error norms and CPU times are comparable for both the irregular mesh containing tetrahedrons of very different

size as well as for the regular mesh containing the four slivers. This robustness is required for applications with complex geometries in which

the annoying problem of slivers (Joe 1995; Bern & Eppstein 1992; Fleischmann et al. 1999) may occur during mesh generation. Such slivers,

if they cannot be avoided, not only reduce the solution quality but also considerably decrease the time step of global time stepping schemes,

which adds an unnecessary amount of CPU time.

In our opinion, a future main application of the LTS algorithm proposed in this article could be the embedding of small local structures

of interest for civil engineering such as bridges, towers or other buildings into an earthquake scenario on the regional scale, where the

computational model may be considerably enriched within the region of interest, for example, taking into account subsurface sediment

structures and surface topography. Since the small refined local region of interest does not degenerate the time step used on the global scale,

the global and the local wave fields could be computed simultaneously and in a fully coupled manner. A second major application could be

the computation of elastic waves in complex layered sediment structures where the sediments have very different material properties and thus

inducing very different time steps. The third future application may concern dynamic rupturing processes where the dynamic computation of

the rupture fault may be done on a locally strongly refined mesh, requiring very small local time steps. This dynamic rupture computation

may then be coupled directly with the wave propagation computation into the far field on a much coarser mesh using the full benefits of the

admissible large time steps for the far field computation.
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