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Analysis of large deformation of elastic-viscoplastic materials has been performed in this paper using 
the finite element method with the arbitrary Lagrangian-Eulerian description. An overstress type 
viscoplastic model using the internal variable approach in a rotated stress-strain space characterizes the 
material. Stable and efficient integration techniques for the viscoplastic relations are discussed. A 
linearized form in the ALE description is presented which is to be solved using iteration techniques. In 
particular the quasi-Newton methods have been used in this analysis. Several test problems which have 
been considered illustrate the effectiveness of the entire solution algorithm. 

1. Introduction 

Traditionally speaking, finite deformation problems in solid mechanics have been solved 
using a Lagrangian description for the finite element mesh. In this description, the finite 
element mesh is embedded in, and moves with the material constituting the continuum. The 
pure Lagrangian approach has the advantage of having to satisfy less complex governing 
equations, compared to the pure Eulerian approach. This may be attributed to the absence of 
the convection terms, and also simple updating techniques for path and history dependent 
materials in the former approach. However, a significant limitation of this description is 
encountered when the solid deformation becomes large. Lack of control over the mesh 
movement results in distorted (sometimes entangled) meshes with large changes in element 
dimensions, which adversely affects the accuracy of the solution. Secondly, problems involving 
certain contact boundaries, especially those with sharp edges or corners, may not be 
represented precisely in this description. This is due to the fact that the boundary condition 
has to be specified on a material point which might move itself. Situations of this kind are 
frequently encountered in the numerical simulation of metal forming processes, e.g. extrusion, 
drawing etc., where the punch or die faces may have acute edges or abrupt surface 
discontinuities. Despite the introduction of sophisticated remeshing schemes [1] to circumvent 
the problems associated with excessive mesh distortion in the Lagrangian description, an 
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accurate contact boundary manifestation is often questionable. Also, in most cases, remeshing 
after every time step becomes very expensive. Resorting to a pure Eulerian approach in which 
the mesh remains stationary, on the other hand, introduces other difficulties like appropriate 
representation of the free boundary. In spite of its capability to represent internal deformation 
effectively, the Eulerian mesh is less suited for domains whose boundaries or interfaces move 
substantially. The shortcomings of each of the above descriptions encountered in large 
deformation analysis, calls for a description which can combine the advantages of both the 
above approaches into a single description. Such a description, in which the finite element 
mesh need not adhere to the material but may be in general motion relative to the material is 
known as the arbitrary Lagrangian-Eulerian description. The ALE description reserves the 
potential to represent a Lagrangian or Eulerian description as limiting cases at points, where 
such descriptions are desired. Thus, it is evident that an ALE description is ideally suited 
(sometimes necessary) for solving a variety of complex problems in solid mechanics, especially 
those dealing with large deformation metal forming and fracture. 

The arbitrary Lagrangian-Eulerian description has been used in fluid mechanics [2] with a 
finite difference mesh and more recently in the finite element analysis of solid-fluid interaction 
problems [3, 4] for modeling the fluid. Argyris and his coworkers have also formulated a 
generalized Eulerian-Lagrangian description in the context of flow problems with Navier- 
Stokes equations in [5]. In their paper [5], they have successfully applied a moving reference 
frame to represent the finite element nodal points that model the fluid, which is interacting 
with a deformable solid undergoing unsteady motion. However, its use in solid mechanics 
problems has been restricted mainly because of the additional effort required in satisfying the 
equilibrium conditions and updating complexities. In the recent years, researchers like Haber 
[61, Benson [7], Liu et al. [8] have implemented the ALE techniques successfully to solve 
nonlinear problems in solid mechanics. However, all of the above authors have used explicit 
time integration schemes for handling the transient effects arising in large deformation 
problems with material nonlinearity. Explicit methods, though noted for their efficient 
performance with a class of structural problems, especially those with high frequency response 
such as in the case of impact and shock, suffer from the lack of generality of application. In 
general, the time steps in explicit methods are restricted by stringent stability conditions which 
require the evaluation of the maximum eigenvalue of the system. Frequently, this is rather 
inconvenient in nonlinear problems, as the eigenvalues change with the evolution of solution. 
Belytschko [9] has obtained bounds on the eigenvalues based on an evaluation of the Raleigh 
quotient and has stated that very often these upper bounds are drastically overestimated 
leading to much smaller time steps than are required for stability. Consequently, implicit 
methods, which have more flexibility with respect to numerical stability, are often more suited 
in the finite element analysis of inertial problems. 

A vital observation is also made while modeling metal forming processes at elevated 
temperatures. Very often it is imperative to include viscoplastic (time-dependent plastic) 
material behavior in the material model when analyzing such processes. It has been noticed 
that problems involving materials with a relaxation time are most susceptible to numerical 
instabilities arising from mathematically stiff nonlinear differential equations. It seems natural 
that the stability conditions of the finite element initial value problem is governed by the 
stability behavior of the temporal discretization at the constitutive level. The issue of 
numerical stability for quasistatic elasto/viscoplastic problems has been addressed by Cot- 
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meau [10] for the explicit Euler's method, from which he concludes that a stable solution is 
achieved only if the solution is within strict bounds derived for the particular constitutive 
models. Researchers like Kumar et al. [11] have also explored the feasibility of explicit 
schemes with time step control. However, as pointed out by Hughes and Taylor [12], the time 
steps required for numerical stability with explicit schemes are much smaller than those 
necessary for accuracy for slowly varying loads. In general, the bounds on the time step 
restrict the inelastic strain increments to be much less than the elastic strains. Since the elastic 
strains in the large deformation problems are infinitesimally small, this implies that the explicit 
schemes require a prohibitively large number of time steps to complete the finite strain 
analysis. To overcome this limitation of time step bounds, a variety of unconditionally stable 
implicit algorithms based on the generalized trapezoidal rule or midpoint rule, have been 
proposed in [12-14]. A number of these algorithms when examined carefully, as in [14], yield 
second order accurate solutions. 

Mesh partitioning techniques which introduce implicit and explicit elements in separate 
parts of a domain to reduce the computing cost in comparison with the fully implicit mesh 
have been found to be suitable for certain problems in solid mechanics [15]. However, at the 
moment, such a partitioning does not look very promising with an arbitrary Lagrangian- 
Eulerian mesh based on the fact that time integration is used to update variables associated 
with material points which may advect across the elements, thus making it difficult to define 
the zones a priori. The above argument does not hold for the fully implicit methods which 
maintain a uniformity over the entire domain in this respect. 

A major drawback of the implicit method is the evaluation of the tangent iteration matrix 
during each iteration step performed for achieving dynamic equilibrium. However, the 
superlinearly convergent quasi-Newton methods have proven to be extremely beneficial in 
alleviating these obstacles associated with implicit algorithms. These methods replace the 
Jacobian matrix in Newton's method with an approximation matrix that is updated by mere 
matrix multiplication at each iteration step resulting in a drastic reduction in the computing 
effort. The explosive growth in computer technology at the level of supersystems and 
mini/micro computers have also had a tremendous impact in the sophistication of finite 
element codes. A large number of nonlinear computer codes, e.g. NIKE3D, ADINA, etc., 
have implemented implicit schemes because ot their flexibility. Thus, in the perspective of the 
above discussion, an arbitrary Lagrangian-Eulerian finite element method with implicit time 
integration seems to possess attractive features which are desirable in a large deformation 
analysis of materials exhibiting inelastic behavior. 

As indicated earlier, the main objective of this work is to develop a finite element model for 
large deformation analysis of elastic-viscoplastic materials. The response of materials subject- 
ed to loading at elevated temperatures (--0.5 melting point) are best represented by such rate 
dependent plastic models exhibiting the characteristics of combined creep and plasticity. 
Among the various unified models which include internal state variables to define the current 
state of deformation, the overstress models exhibiting rate dependence after a yield stress is 
reached have ~ained relative preference in the computational area. This may be attributed to 
the complex yield criterion in the theories that include rheologic effects prior to yielding. An 
overstress viscoplastic model with isotropic work hardening proposed by Perzyna [16] has been 
modified in this analysis, from macroscopic considerations, to include the effects of large 
deformation and initial anisotropy [17]. The latter has been incorporated with sheet metal 
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forming in mind, where grain orientation due to pre-roiling gives rise to structure anisotropy. 
The above model has prospects of further modification to include temperature dependence, 
rate-dependent yield strength and plastic anisotropy, and a few of these will be addressed in a 
future paper. 

From the previous discussion on time integration, it is apparent, that in any numerical 
scheme employed for the analysis of elasto-viscoplastic problems, integration of the rate 
constitutive equations to obtain the internal variables and stresses is of utmost importance. In 
particular, objective rate forms of stresses and internal variables have to be integrated to yield 
their updated values at the end of a time step in an incremental formulation. The conventional 
methods based on elasto-viscoplastic modulus suffer from various shortcomings especially in 
satisfying the plasticity consistency conditions, and very often these methods require elaborate 
schemes for making transition from elasticity to plasticity resulting in the truncation of time 
steps. In an attempt to overcome these limitations, various researchers have conveniently 
exploited the additive structure of the rate of deformation (strain rate in small deformation) 
tensor to introduce return mapping algorithms. These stem from the operator split of the 
complete set of spatial rate constitutive equations and the use of product formula techniques. 
The three major requirements of an integration algorithm, viz. consistency with the constitu. 
tive relations, numerical stability and incremental objectivity, can be satisfied in these 
algorithms with a careful choice of component algorithms. Several forms of the return 
mapping algorithms, e.g. the radial return method [18, 19], the closest point algorithm [20], 
the mean normal procedure [21] have been cited in literature. However, most of these 
algorithms are applicable to simple plasticity models consisting of associated plastic flow, 
simple yield criteria, flow rules, etc. Among these, the closest point algorithm is of relatively 
general applicability, but unfortunately it suffers from laborious evaluations of gradients of 
plastic flow direction, normal to the yield surface, plastic modulii, etc. for non-trivial 
plasticity. Recently Ortiz and Simo [22] have come up with a return mapping algorithm which 
is capable of handling a wide variety of plastic/viscoplastic models without having to go 
through the extensive computations of the closest point algorithms. Plastic state is attained at 
a quadratic rate of convergence with this algorithm. The central idea of this algorithm has 
been extended for applicability to the set of constitutive relations discussed above in this 
analysis. It involves stress relaxation based on subcycling, thus avoiding the necessity to iterate 
for the solutions. 

In this paper, an ALE finite element model for large deformation analysis of rate sensitive 
materials has been presented. It starts with a brief review of the governing equation in the 
arbitrary Lagrangian-Eulerian description in Section 2. The constitutive relations for an 
elastic-viscoplastic material are discussed in Section 3. A corotational formulation using 
rotated components of the Cauchy stress tensor and its conjugate deformation rate is 
developed for its simplicity with anisotropic materials. Specific relations have been presented 
for initially transversly isotropic materials which are suitable for certain sheet metal forming 
analysis. In Section 4, the weak forms for the ALE description within the implicit time 
integration frame work are described. A return mapping scheme for integration of the 
viscoplastic rate equations is discussed in Section 5. Section 6 deals with the linearization 
techniques used and linearized version of the weak form. The numerical implementation 
techniques have been considered in detail in Section 7 and finally some numerical examples 
consolidating the validity of the model are presented in Section 8. 
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2. Governing field equations in the arbitrary Lagrangian-Eulerian description 

A detailed discussion on the derivation and meaning of governing field equations, viz. the 
continuity, momentum and energy equations in the arbitrary Lagrangian-Eulerian descrip- 
tion, has been presented in an earlier paper [17] by the authors. In this paper, we shall briefly 
review the significance of these equations for the clarity of presentation. 

The ALE formulation introduces a reference configuration which consists of a set of grid 
points in arbitrary motion in space. Each point of this reference configuration may be 
unambiguously identified by an invariant set of three independent coordinates X~. The motion 
of the reference frame may then be expressed as an arbitrary continuous function of X, and the 
time t, 

X i -~ X i ( X j  , t). (1) 

The formulation requires an inverse to (1) to exist, i.e. 

x, = x,(xj, t ) ,  (2) 

such that the Jacobian J = IOx~/OXjl is non-vanishing. The above description of the referential 
system does not refer directly to the motion of the particles constituting the continuum and it 
is therefore necessary to establish a correlation between this system and the Lagrangian 
system which inherently defines the motion of the particles. Such a relation demands a unique 
connection between the two systems at every stage of deformation of the continuum, i.e., a 
single material point may coincide with only one point (not necessarily the same point always) 
of the grid system. In the Lagrangian system the material particles are identified by a set e; 
coordinates X known as the material coordinates. In the deformed configuration the material 
particle may occupy a position x=(xt ,x2,x~),  which may be expressed in terms of the 
material coordinates and time t as 

x , =  t)  , (3) 

where the inverse of (3) is assumed to exist such that the determinant of the Jacobian 
J = lax~/OX~l is not equal to zero. To obtain a relation between the referential and material 
coordinates, we assume a point x in space occupied at a time t by elements of both the systems 
(material point and grid point). Thus, by virtue of the existence of the inverse mappings of (1) 
and (3), an interrelation between the motion of material and referential (grid) points may be 
established as 

Xt = ~(xj, t) ff i f~(X k, t) .  ( 4 )  

Equation (4) may be interpreted as a mapping of the material domain onto the referential 
domain. With the notion that such a relation exists, it is then possible to derive the 
conservation equations of mechanics with respect to a referential configuration. The Reynolds 
transport theorem is applied to an arbitrary control volume moving through a deforming 
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continuum which is then shrunk to a point (see [17] for details). This yields the resulting field 
equations in the arbitrary Lagrangian-Eulerian description as 

Continuity: 

a(t,j) I + ]  a 
at x ~x/(p(V~ - 14//))= O; (5) 

Momentum: 

Oo~, aV~[ OV~. (6) 
pc ; ,  + = p + p ( v ,  - ox j  ' 

Energy: 

o-g i 
Oft Oqi 

+ p(Vj - W/) ~ = o'.D,i ax i + f ; (7) 

where p refers to the material density, o'q is the Cauchy stress tensor, G is the body force 
vector per unit mass, t~ is the specific internal energy, q is the heat flow vector, D is the rate of 
deformation tensor, and f is the rate of heat addition by a source. In the above equations 
W(=Ox/Ot[~) represents the velocity of a representative grid point and v(-ox/at[x ) repre- 
sents the velocity of a material point coinciding with the grid point at time t. 

The above set of equations (5)-(7) may be interpreted as material conservation laws with 
respect to arbitrarily moving grid points. A noteworthy advantage of the ALE description is 
that, in general, the velocity W of the reference frame (representative grid point) may not be 
the same as the coincident material point velocity V as in the Lagrangian description, or be 
zero as in the Eulerian description. In the event, that a grid point may coincide with a material 
point, the relative velocity term ( W - V )  becomes zero, resulting in the vanishing of the 
convection terms and consequently the set of equations becomes Lagrangian. Similarly, a pure 
Eulerian description is obtained by simple setting W = 0. 

It is this flexibility to use a different description pointwise, where the grid points may be 
made to move with material or remain stationary in space or even to move with any arbitrary 
velocity, that makes the arbitrary Lagrangian-Eulerian description so attractive. This feature 
provides a greater scope for the user to maneuver the nodal or grid points effectively in a large 
deformation analysis. 

When analyzing problems in solid mechanics, especially nonlinear materials with time and 
history dependent variables using the ALE description, it can be observed from (5)-(7) that a 
relationship between time derivatives, with material and referential coordinates fixed, is 
necessary. This relation may be obtained by direct comparison of the ALE conservation laws 
with the corresponding Lagrangian form (W-V). If/3 is a time-dependent variable for the 
material points, then the following relation may be established: 

0/1[ _0~1[ +(W_Vk)Oil 
o-7  -o-7 • (8) 

This equation provides the link necessary for updating various material variables like velocity, 
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density, temperature, Cauchy's stress, etc., to the grid points at the end of each time step in 
an ALE formulation. The above set of equations, together with the constitutive relations 
discussed in the next section form a basis for the weak forms used in the finite element 
formulation for large deformation analysis using the arbitrary Lagrangian-Eulerian de- 
scription. 

3. Constitutive equations 

The constitutive relations for elastic-viscoplastic materials adopted in this paper are rate 
type, based on the additive decomposition of the rate of deformation into elastic and inelastic 
parts. This requires the choice of an appropriate objective stress rate, which depends on the 
class of materials being considered. In this analysis, a general formulation has been carried out 
for elastically transversely isotropic materials. It has been shown by Green and Naghdi [23] 
and subsequently by Green and McInnis [24], that for general anisotropic materials a 
constitutive relation together with a yield criterion is best represented in a rotated Lagrangian 
system. Their contention was further confirmed by Dienes [25] and Johnson and Bammann 
[26] who extended its use to solve successfully, problems of finite deformation with simple 
shear and kinematic hardening plasticity. In this description, the stress rate is derived from the 
material time derivative of a stress tensor (also noted as the rotated Cauchy stress tensor) 
transformed into a rotated space of the material deformation to yield 

tffiMcR, (9) 

where t is the rotated stress tensor, cr is the Cauchy stress tensor and R is the proper 
orthogonal tensor obtained from the polar decomposition of the deformation gradient tensor 
R (R = FU-t) .  The rotated stress tensor t, which has the same principal invariants as the 
Cauchy stress tensor, is the true stress which would result if the deformation gradient was the 
stretch U alone. An interesting consequence of this transformation is that the conjugate strain 
rate for this stress is the rotated rate of deformation tensor d, (d = RTDR, where D is the rate 
of deformation tensor) which, when integrated in time, yields a physically meaningful strain 
measure. The frame invariant constitutive model is therefore formulated in a rotated 
stress-strain space. 

In this model, it is assumed that the rotated rate of deformation tensor d admits an additive 
decomposition into elastic and inelastic parts. A thermodynamic argument for such decompo- 
sition is provided within the framework of internal variable theory, where such a decomposi- 
tion may be obtained independent by any kinematic considerations. Thus 

d = d ~ + d vp , ( 10 )  

where d ~ represents the elastic par* and d vp represents the viscoplastic part of the deformation 
rate tensor. The material time derivative of rotated Cauchy stress may then be related to the 
rate of rotated deformation tensor through the elasticity relations as 

i f  E: ( d -  dVp) , (11) 
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where E is a fourth order elasticity tensor which may be a function of the spatial stress tensor 
in general. The above equation is not valid for materials which exhibit hyperelastic response 
but is typical of hypoelastic materials which do not admit a stored energy. 

In the characterization of the viscoplastic part of the rate of deformation, an internal state 
variable approach is adopted, where the response functions depend on the past history of the 
independent variables only through the present values of certain variables describing the 
internal state of the continuum. Within this approach:, there exists two categories of models, 
viz. (i) theories that assume yield criteria which separate purely elastic deformations from 
combined elastic-viscoplastic deformations and (ii) theories that assume no yield criterion and 
allow the possible existence of elastic and viscoplastic deformations at all stages of loading. It 
should be noted that the power law model has been widely used by material scientists to 
simulate metals. However, a recent critical study by Eftis and Jones [27] indicates that the 
yield based theories in general offer a greater promise in modeling a wide variety of inelastic 
behavior like loading/unloading, rate and history effects, isotropic and kinematic hardening 
with Bauchinger effects, creep/relaxation, etc. A three-dimensional unified, overstress model 
of this category, described by Perzyna [16] has been appropriately extended to include the 
effects of large deformation and initial anisotropy. In this description, the rate of rotated 
viscoplastic deformation tensor is given as 

(12) 

where ~, is a temperature dependent viscosity coefficient, ( ) is the MacCaulay operator, K is 
an internal state variable, in particular a parameter describing isotropic work hardening, WI, is 
the inelastic work and 0 is the absolute temperature. The term t'may be defined as an effecuve 
rotated Cauchy stress which may be written as 

/'= (½[(F + c)t , + (F + + - 2Ft,,t , - 

- 2Gt,,t33 + 2(G + 2F)t 2 + 6Mt s + 6Mt ,]) ''2 (13) 

for transversely isotropic materials. The scalars F, G and M are parameters of anisotropy 
which depend on the amount of inelastic strain accumulation and the temperature. Details of 
evaluating these parameters may be found in [17]. 

The rate of deformation tensor defined by (12) is for associated plastic flow and therefore 
satisfies the normality and incompressibility conditions. The viscoplastic model, though 
incorporates isotropic hardening, does not include kinematic hardening. Also, the model 
suffers from not having a rate-dependent yield criterion. The function O(F) may be chosen 
according to the material being modeled and the conditions of the experiment and various 
choices have been cited in [16]. It is interesting to note that the relations for inviscid plasticity 
may be derived as a limiting case of (12) in the event that the viscosity parameter 7 goes to 
infinity or when the motion is very rapid. 

The set of constitutive relations (12) will be complete by supplementing them with the 
evolution laws for the internal variables. The rate-dependent characterization of plasticity will 
reside in the characterization of these evolution laws. The growth law used in this model 
assumes a linear relation between the rate of change of the work hardening parameter ~ and 
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the equivalent rate of viscoplastic deformation tensor: 

OK / 0t = Epd vp , (14) 

where Ep is an equivalent plastic modulus. Despite the fact that other nonlinear forms may be 
more realistic from a representation point of view, the evaluation of the anisotropic parame- 
ters are simplified with the linearity assumption as shown in [17]. Thus, the set of equations 
(11)-(14) form the basis of the material model used in this analysis. 

4. Weak forms and finite element approximations in the arbitrary Lagrangian-Eulerian 
description 

Weak forms of the mass and momentum equations may be obtained by taking the product 
of (5) and (6), respectively, with appropriate weighting functions and integrating over the 
current grid volume. However, in the finite element analysis of time-dependent finite 
deformation problems, emphasis is placed on the proper time integration scheme and hence 
the selection of the appropriate configuration. It is apparent from the discussion given in the 
introduction that an implicit time integration scheme is better suited for the class of inertial 
problems considered here. In this analysis, we have chosen to neglect the transient term 
(pOVa/Ot[x) in the momentum balance equation (6), i.e., we have assumed a quasi-static 
process with respect to a grid point. 

An overall stability analysis for implicit schemes used in the nonlinear initial value problem 
with an ALE description is extremely difficult because of the nonlinear, nonsymmetric 
convection operators together with the nonlinearities arising out of the material constitutive 
relations. The selection of the implicit method has therefore been based on a critical 
examination of the conclusions drawn from the stability analysis of a few associated systems. 

Two notions of stability exist in general. One of them is the concept of linearized stability 
based on a linearization of the nonlinear system. Studies on the linearized stability criteria of 
one step time integration algorithms for linear and nonlinear heat conduction problems with 
symmetric operators have been carried out in [28-30]. These indicate that in the nonlinear 
regime, the generalized mid-point family of algorithms are unconditionally stable for a much 
wider range of the parameter a (a ~ ½) compared to the generalized trapezoidal family. 
However, this does not necessarily imply that a conservation law or decay inequality imposes 
limits upon the growth of the solutions. As a matter of fact, pathological energy growth have 
been noticed for unconditionally linearized stable algorithms for nonlinear problems. Conse- 
quently, a second notion of stability based on physically appropriate energy growth charac- 
teristics is now widely used in nonlinear analysis. Such a global energy criterion when applied 
to the above two integration schemes indicate more favorable conclusions for the midpoint 
and trapezoidal family of algorithms [30]. 

In problems of fluid mechanics, the convection term in an Eulerian description gives rise to 
an oscillatory solution when the Galerkin formulation is used. In the recent years various 
upwinding techniques like 'upstream weighting', 'Petrov-Galerkin finite element method' 
have been used to stabilize the solution. It is observed that the oscillatory behavior is apparent 
when the local Peclet number which is proportional to the velocity becomes large (--2). In 
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solid mechanics problems, such stabilizing may therefore be necessary when treating highly 
transient problems like impact, shock, etc. However, in the class of inertial problems that are 
of primary interest here, the difference between the grid and the material velocity is not 
believed to be large enough to initiate significant oscillations in the solution. Nevertheless, it is 
also reassuring to notice that an energy analysis of the algorithms mentioned above for certain 
convective systems with nonlinear terms guarantees unconditional stability for the generalized 
mid-point family [30]. 

In a numerical scheme for the solution of the boundary value problem for elastic- 
viscoplastic materials, stability of the integration schemes for rate constitutive relations have a 
significant contribution to the overall stability of the system. In a recent discussion on the 
accuracy and stability characteristics of integration schemes, Ortiz and Popov [14] have 
pointed out that the general class of return mapping algorithms that have been used in this 
analysis are contained in the families of generalized trapezoidal and midpoint algorithms. 
Based on a linearized stability and accuracy analysis of the two families mentioned above for 
elasto-plastic constitutive relations, they have concluded that, while both of them render 
second order accuracy for a choice a = ½ of the algorithmic parameter, their response to 
stability is quite different. The stability properties of the generalized trapezoidal rule are very 
sensitive to the degree of distortion of the loading surface whereas the generalized midpoint 
rule is unconditionally stable for a >~ ½, regardless of the choice of the loading surface. This 
notable conclusion establishes the superiority of the midpoint family over the trapezoidal 
family for any arbitrary material model. All of the above studies on stability of numerical 
schemes for systems related to the one in question, point in the direction of an implicit finite 
element formulation utilizing the favorable conditions of the generalized midpoint rule. 
Specifically, from maximum accuracy considerations, the above discussion together with the 
contention that evaluation of displacement gradients at the midstep (a -- ½) gives no straining 
due to rigid body rotations [31] speak favorably in terms of a weak form at the midstep 
configuration. 

Using the generalized midpoint rule, the principle of virtual work is written in an 
intermediate grid configuration/~(t,+,) as 

fn % 0t7~ fn ,,.+o, da + p(v - wj) 0v, ('.+.) ~ t7 i d n  

ffi o ~t,,.+.) PGiffi dl7 + T~ff~ dF 
~t. +¢, ) (15) 

where all variables are at the mid-step configuration, corresponding to time t.+o with the 
position of a grid being interpolated as 

x " * ~ = ( l - a ) x  " + a x  ~+~ f o r O ~ a ~ l ,  (16) 

As mentioned in Section 2, an unambiguous connection is required between the Lagrangian 
and the referential system. This implies that the boundary of the grid domain never leaves the 
boundary of the solid or quantitatively 

(V-W).n=O, (17) 
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where n is the outward normal to the grid boundary. This enables the accommodation of all 
kinds of boundary conditions. The boundary of the grid is assumed to be the union of 
displacement, traction and contact types, i.e., F(t) is Fw(t ) U F~r(t ) U F~c for 1 ~ i ~ 3, with 
the usual respective conditions imposed. In special cases, such as boundaries with concen- 
trated loads it might be necessary to make the corresponding load application points 
Lagrangian. 

Obviously, the above weak form (15) demands the evaluation of the different variables in 
the intermediate equilibrium configuration occurring between two consecutive equilibrium 
states. Let/~" and/3 "÷ ~ correspond to values of any such variable of the problem at time t, 
and t,+l, respectively. The midstep value of this variable may then be obtained by a linear 
interpolation between its two end values as 

/3"+~ = (1 - a)/~" + a/3 "+' . (18) 

It is assumed that the value of the variable is known at a grid point in the n-th 
configuration. Its value in the (n + 1)-th grid configuration may be calculated '~.t, ough the 
evaluation of the grid point increment of the variable Ag/~, by using the generalized midpoint 
integration as 

• 

However, for path-dependent material variables like Cauchy stress, velocity, work harden- 
ing parameter, etc., the evaluation procedure of the increment Ag/3 is not direct. For this type 
of variables, the grid point increment must be derived from the material point increment Am/3. 
The relation between the time derivatives of a variable at a fixed material point and a grid 
point (8) may be numerically integrated to yield this desired relation as 

AglJ m Am[~ + A t ( W  "*~ - v"+o  Oll"+o 
r r  k r k  ) , ,  n+Ot ' 

0X k 
(20) 

Figure 1 clearly shows the distinction between the two increments. 

R E M A R K  1. The contact boundary is incorporated using the well-known exterior penalty 
formulation for unilateral contact problems. It should be emphasized that, though in the 
present work only normal contact with a rigid surface in the absence of friction is considered, 
an extension to the treatment of contact of two deformable surfaces is trivial. An extensive 
treatment on the penalty formulation of unilateral contact problems may be found in [32, 33]. 

The central idea of this formulation lies in the introduction of interface springs to preclude 
penetration. The possible contact boundary F c in this formulation is assumed to consist ot 
purely Lagrangian nodes. Constructing a local coordinate system 0~ (1 ~ ~ ~ 3) on each part of 
the candidate contact boundary, a procedure similar to that discussed in [32, 33] may be 
adopted to reach the following non-penetration condition at the intermediate configuration: 

0.+~ . " " ( 2 1 )  (01 + tlt A U l ,  0 2 + tlt AU2) ~ 0 3 + ot AU 3 . 
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path of a material point in a time step 

path of a grid point in a time step 

~.,~n + 1 

T X3 n ,a  ): 

g 
! 

Fig, 1, Motion of a grid point and material point in a time step in the ALE description. 

In (21) 0~*~(01, 02) is the parametric representation of the rigid surface at time t.+o and 0~ 
represents the coordinates of a point on the contact boundar': at time tel. It is assumed that the 
positive 03 coordinate is roughly in the direction of the inward normal to the rigid surface. 
Linearization of the function 0 in c~ Au I and a Au 2 results in the following contact condition: 

a A u . n  el+°-g~<O, (22) 

where n "÷° is the inward normal to the rigid surface at the intermediate step and g is the gap 
function defined in [32]. The constraint condition may then be incorporated in the principle of 
virtual work (15) through the use of an exterior penalty method to yield the approximate 
approximation for traction as 

tes.~ n÷O! Te l  T "÷° - Tel + ~ ~l.n = + kel(a ~uel - g)n el+" on r c , (23) 

where ( ) is the MacCaulay operator. The above equation (23) is a result of the assumption 
that the contribution to traction within a time step, is due to normal contact alone. The 
penalty parameter kel ( ~ )  is representative of the rigidity of stiff normal springs on the 
contact boundary. It is evident from (23) that only in the case of contact an increment of 
pressure is activated. 
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R E M A R K  2. The midstep value of the density is evaluated directly by solving the weak form 
of the continuity equation. This equation, after the application of the constraint condition (17) 
may be written as 

t,.+~,) ~ x it,+.,) ~ dO - t,,+.) p ~ 16 d O .  (24) 

Equation (24) is solved for (Op/Otlx) "÷~ from which density at the intermediate step may 
be obtained as 

p"+~ = p" + a At . (25) 

The solution to the temperature problem may similarly be obtained easily by considering 
the weak form of the energy balance equation (7), but it has not been considered in the 
present work and will be presented in a forthcoming paper by the authors. The set of 
equations discussed above, must now be solved after finite element discretization using 
iterative techniques and these will be discussed in Section 7. 

$. Integration algorithm for rate type constitutive equations of elasto-viscoplasticity 

A well-known fact about the integration algorithms for rate type constitutive relations in 
large deformation, solid mechanics problems is that, they must necessarily satisfy three basic 
requirements, namely (a) consistency with the constitutive relations, (b) numerical stability 
and (c) incremental objectivity. The difficulties associated with the fulfillment of these 
requirements in the traditional tangent modulus method have given way to the more efficient 
return mapping alogithms which may be implemented for a wide variety of elastic-plastic/ 
viscoplastic constitutive models. These algorithms evolve as a consequence of the additive 
decomposition of the rate of deformation tensor into elastic and viscoplastic parts. 

It was noticed by Ortiz et al. in [20] that the complete set of rate constitutive equations 
itself admits an additive decomposition, resulting from the decomposition of the spatial rate of 
deformation tensor mentioned above. Such a split of the set of evolution equations, also 
known as the 'operator split', calls for the use of product formula techniques to construct an 
efficient integration algorithm. The product formula suggest the independent treatment of the 
component operators, i.e., the result of an algorithm consistent with the first operatnr is 
operated on by an algorithm consistent with the second operator and so on. An attractive 
feature of the product algorithms is that if each of the component algorithms are numerically 
consistent and unconditionally stable, then the global algorithm is also consistent and 
unconditionally stable. In the present context, let FC~(h) and FVp(h) be two unconditionally 
stable, elastic and viscoplastic algorithms, respectively, which are consistent with the set of 
constitutive equations for every time step h > 0. Then, according to the above proposition, the 
resulting global algorithm F(h)= FVP(h)FC~(h) is also unconditionally stable and consistent 

with the constitutive relations. 
In this analysis, this idea of the product algorithm in conjunction with operator split of the 
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set of evolutionary equations has been used. Let us first assemble the entire set of evolution 
equations for elasto-viscoplasticity from Section 3 as 

d = d ~ + d vp , i = E" d ¢ , 

Oi 
d = , , ( W , ,  

OK 
"- E p d  vp " 

(26) 

In the above set of equations the elasticity matrix, the viscosity coefficient and the plastic 
modulus are assumed to remain constant over the entire deformation process. The additive 
structure of the rate of deformation tensor introduces an additive decomposition of (26) into 
an elastic and a viscoplastic part: 
(a) Elastic: 

d = d ~ + d vp , i = E" d ,  

t9/¢ 
d vp = 0,  at = 0 ; 

(27) 

(b) Visco-plastic: 

d = d ~ + d vp - O ,  i = - E "  d vp , 

d = a , ( / -  K(W,,, 0))) t~.~K = EpdV p 
Ot 

(28) 

It is to be observed that the right-hand sides of (27) and (28) add up to the right-hand side 
of (26) in accordance with the notion of operator split. The operator split of the entire set of 
equations (26) has an important significance. The set of elastic equations (27) indicates that 
the solid does not respond viscoplastically in this part, i.e., the viscoplastic strains and the 
work hardening parameter do not change. The response of the solid is thus entirely elastic. 
Contrarily, in the viscoplastic set of equations (28) the total strain rate is zero, i.e., the solid 
behavior is absolutely rigid. With this operator split, an applied product algorithm has the 
following implication. The elasto-viscoplastic is solved by first solving an elastic problem to 
obtain the deformation and elastic stress predictor at each time step. The viscoplastic 
algorithm then relaxes the stress predictors and updates the internal variables (work hardening 
parameter) so that viscoplastic consistency is achieved. Global consistency and unconditional 
stability may thus be attained if each of these algorithms are devised to possess these 
characteristics individually. We next discuss the elastic and plastic algorithms separately 
required for the global analysis. 

Elastic algorithm. In the implicit integration algorithms applied to spatial rate constitutive 
equations, linear difference operators are often used on stresses for updating their values to 
the next consecutive configuration. In the implementation of the linear space operators, care 
should be taken to represent the relation between tensorial quantities with respect to the same 
basis vectors, i.e., the tensor fields should be associated with a common configuration. It has 
been demonstrated by Pinsky et ai, [34] that the rotated stress formulations may be candidates 
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to such implicit algorithms with an approximation. If it is assumed that the motion of material 
neighborhoods is purely rotational, i.e. D = g  in a time step, then the generalized midpoint 
rule may be applied to integrate the rotated stress tensor, to yield 

t " + ~ - t ' = A t i  "+~, O~ < a < ~ l ,  (29) 

where At is the time step. Use of the elastic relation from (27) in (29) results in 

t " + ' -  t " =  A t ( E ' ( R T D R ) )  "+~ . (30) 

An inspection of (30) suggests that the algorithm is unconditionally stable for values of 
a > ½, which is an inherent property of such a midpoint algorithm. It is also second order 
accurate for a = ~. Satisfactory conclusions have also been reached regarding the consistency 
and incremental objectivity of the algorithm in [34]. In a treatise on numerical implementation 
of rate constitutive relations, Hughes [35] has also proved that the term A t D  ''÷'~ gives most 
accurate results for strain increments for t~ = ½ for which value only the algorithm is 
incrementally objective. 

Equation (30) may be written in terms of displacement increments, such that the increment 
of the rotated stress tensor becomes 

tn+l n !:: l~n+aP n+a 
q -- to-- , . , i jk / , , t ,k "'qt 

0 A'"U 
P 

t l ~  Ot ° 

Xq 
(31) 

The updated rotated stresses should now be checked against the yield condition as shown in 
Table 1. For values exceeding the yield stress, the viscoplastic algorithm is applicable. 
Otherwise the trial elastic stress becomes the final stress state. 

i 

Viscoplastic algorithm. As seen from the discussion on product formulae, the viscoplastic 
algorithm should operate on (28) to relax the trial predictor stresses obtained from the elastic 
algorithm and also to upgrade simultaneously the loading surface through the updated values 
of the stresses and evolutionary internal variables. The return mapping algorithm described 
here is based on that proposed by Ortiz and Simo [22]. The algorithm is applicable to a wide 
variety of constitutive models and is based on the evaluation of response functions rather than 
their gradients. Such response functions are in general the stress-strain relations, the elastic 
modulii, the yield function and the normals to the yield surface in the stress-internal variable 
space. It has been seen that many of the traditional return mapping algorithms require the 
evaluation of the gradients of these functions which often make the calculations quite 
complex. The method described here is based on subcycling, i.e., breaking up the time 
interval into subintervals and projecting the stresses on to an updated loading surface. 

In this analysis, a special assumption ¢ , (F)= F p has been made in the overstress function 
for its suitability in representing metal characteristics under a wide range of experimental 
conditions [16]. Even though the algorithm has been constructed using a value p = 1 for the 
exponent, it can be readily extended to accommodate models, for which p > 1. Combining the 
last two equations of (28) and using the chain rule, the rate of change of the loading function 
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Table 1 

Update algorithm for viscoplasticity 

At each integration point: 
1. Elastic predictor: 

t ~.+t . . . . . . .  ,,+ . . . . .  ,,+,, Oztr "" ( t i j )  + l~ i ik l l~pk  lqq l  O l l U p l O X q  

(K),"/'  = ('0" 
2 .  Check for yielding: (F),~ + ~ = x. (i')n/tr + 1 _ ( K ) t  rn + 1 ~ 0 .  9 

YES: Retain stresses and go to (5)  

( t O )  n + l  ---- ( tO)~r  +!  , K n + !  - -  Kn 

N O :  Start viscoplastic correction. 
n+l  __ ,~n+i n + l  K n 

i = l  ( to)  I ( to , t ,  , K I = 
3. Viscoplastic corrector: 

Evaluate 

1 

r, = y[Eok,(Oi/ato)(O~/Ot~t  ) + Ep], 

Find At, for bounded At, lr~ 

Update 
r y~+i  n+l  n + l  e - A t / v ,  
. , , , + ,  = ( t o )  ~ . - yr,  F ,  . E o k , ( 1 -  )a[/Otkt 
( .  xn~-I n ÷ l  n ÷ l  
, s p , + , = ( K ) ,  -y~ ' ,F~  E p ( 1 - e  - A ' / ' )  

t, + I = t, + At, 
4. Process termination: 

t , + l < A t  go to (3 )  i - - - , i + l  

t,÷ I=At  go to (5) 

5. Rotate the stress by R " " '  to obtain ¢ " ÷ '  

t t"* ' = (R"" ' ) r  '+ ' (R ' )  "+ ' 

(F = i'- K(Wp)) may be written as 

El,] OF F 
= - - ,  (32) + or at ~. 

where ~" (= 1/ (y[  E~jk, 07/0t e 0i'/0tk, + Ep])) is an instantaneous relaxation time. For values of 
p > 1, the corresponding relaxation ttme is obtained by dividing the above expression by the 
exponent p. The relaxation time depends on the derivative of equivalent stress with respect to 
the stress components and may in general vary over a time step. So a closed form integration 
for (32) is not always possible. Therefore we subdivide the time interval into a number of 
segments. Assuming r to remain constant in each segment, (32) may be integrated to obtain 
the yield function at the end of the i-th segment as 

F n +  I n + ! --At~/T t 
~+ ! = F i  e , (33) 

where r, refers to the relaxation time at the beginning of the segment. The rotated Cauchy 
stress and the work hardening parameter may then be updated to the end of the/-th segment 
by integrating the straight segments of the return path, the second and last equations of the set 
(28) to give 

t v '+~ = (t~j)', '+~ - A~E,j~t(1 - e -~'~'') Oi /Otk~  i j / i +  I 

. \ , , +  ! - A t , / , , ) ,  
, , , , + ,  = + A ,f (1 - e  

(34) 
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where A6 i = yriF~ '+~ . Equations (34) defining the return path are dissipative in nature and the 
corresponding trajectories are contractive since the yield function is assumed to be convex and 
the plastic flow is associative. The resulting algorithm is therefore unconditionally stable under 
these conditions. 

In updating the stresses in this manner, one has to be cautious above the ratio Ati/r  i 
because of its use in the exponential form. In the term Ati/r~ is reasonably big (---10), the term 
( 1 -  e -~'~') tends to 1 and this results in a collapse in the algorithm. On the other hand, a 
very small value of At~ making At~/~.~ small, may result in a lot of segments within each time 
step and this becomes computationally expensive. Thus an optimum value of At~/z~ has to be 
established in every segment before performing the updating. The above algorithm is 
relatively straightforward and eliminates the need for iteration. If carefully implemented, this 
proves to be a very efficient way to update stress and internal variables. Table 1 shows a 
summarized form of the update algorithm for implementation in the finite element analysis. 
However, one shortcoming of this update algorithm is that in the process of meeting the time 
step requirement (E At~ = At), the stress points may not exactly reach the loading surface. It 
should be noted here, that this updating is carried out for material particles at integration 
points of an element. 

6. Approximate iinearization of the boundary value problem of momentum balance 

In the preceding sections we have discussed the various ingredients required for the finite 
element modeling of large deformation analysis of materials exhibiting inelastic response. It 
can be easily seen from the equations presented, that the combined set of equations is highly 
nonlinear in their kinematic and constitutive behavior. It is therefore imperative to linearize 
the set of equations before undergoing the solution process with iterative methods. To do this, 
we start with the weak form of the momentum balance equation in the midstep configuration 
(15) and express it as a scalar valued function G, where 

oE 
G(a-.. .)- fo,,,,.o, on+ On- 

- fr Titi" i dF - O .  
On+o) 

pGg~i d[J 

(35) 

All the tensors occurring in the equilibrium equation have a functional dependence on the 
motion. Therefore in general, the above scalar form is nonlinear with respect to the 
displacement of a material particle Amu(-(x*)  n+ 1_ (x*)"), see Fig. 1. Here x* corresponds to 
the path of a material point coinciding with the grid point at t,+~. A consistent iinearization 
with respect to the reference material point displacement Am/l may be expressed based on 

Taylor's formula for C ~ functions as 

L[G]Am~ - G(Am/I,/1) + DG(Am/I, / l ) .u - 0 ,  (36) 

where DG. u refers to the directional derivative of G(Amd, t~) in the direction of incremental 
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displacement u and may be written as 

0 
D G ' u  = ~e  [G(Amfi + eu)]~=° ' (37) 

with e being a scalar parameter. Assuming that the domain O(tn+a)  and the grid point 
location x "÷" in the ALE description are independent of the particle displacement Ainu, the 
directional derivative of the function G given by (35) is expressed as 

DG'u  = fa  tr[(Do", u).V/] dO + f. [D(p(V- W).V)V). u]. a da 
(tn +a ) (tn +a ) 

- fa( , , ,+,)[D(pG),  ulti d O  - +~) (Dr" u) .  a d r  = - G ( a m a ,  a ) .  (38) 

A rigorous linearization performed with respect to the motion Amu results in a lot of terms 
in the construction of the tangent stiffness matrix. However, as will be discussed in the 
following section, the iteration method used requires only a first approximation to the stiffness 
matrix. Therefore we have chosen to make certain relevant assumptions in the linearization 
process. First, because of the viscoplastic incompressibility condition, we may assume that the 
density does not change considerably, and therefore may be treated as a constant. In order to 
find the directional derivative of the Cauchy stress tensor, a functional dependence to the 
incremental displacement Ainu is introduced through the rotated stress-strain relation (11). 
Since an explicit dependence of R ( - F U  - i )  on the incremental displacement is cumbersome 
in nature, an assumption that R"+" remains unchanged in the vicinity of Amd is made. In order 
to linearize the stress tensor, we recall that the Cauchy stress tensor in an intermediate 
configuration may be expressed in terms of the rotated stress tensor by the relation 

or ''+" = (RT)"+"(t '' + a Amt)R ''+" , (39) 

where A"t is the increment of the rotated stress at a material point which coincides with a grid 
point at x "+" in the mid-step configuration. This incremental stress may be obtained by an 
integration of the material constitutive relations (11) using the techniques discussed in Section 
5 to yield the approximate relation 

a A"up ( ai ' )  "÷~ 
" "  = t~"+~t~"+~Eqkt ,,+~ l, FEqk I At  (40) 

A tO "" l,k "" qt OXq O--~k I " 

A consistent linearization of the increment of rotated stress tensor may then be carried out 
using the standard techniques to yield 

D(A't). u = A~,  (41) 

where A~,, = ~Rp~Rw[Oup/Ox q + O uq/Oxp]. Here F is the tangent modulus obtained as an 
inverse of a fourth order tensor C expressed by the relation 
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^ [ 1 Oi Ot 
C,jk, = Cii,t + T At (1 + TEp At) ~ O'Tkk t 

Oei- "! 

+ (/-- K) l 
OtoOt m J, 

(42) 

with Cij u representing the elastic compliance. 
In a similar fashion, it is possible to linearize the traction term in the contact boundary from 

(23) as 

D r ' u = - a k . ( u ' n " + ~ ) n  "+~ • (43) 

Substituting the linearized forms of the above components into (38), the approximate 
linearized form of the equilibrium equation may then be written as 

fn ^ OUp ~ui fn ~t# 06~ t~RjkR~tRpmRp"Ektm" OXq Oxj d~  + u k d~  
(In+a) (In+ a ) ~ll k 

1 

+ fro,. 1 L ÷~) PU i ~ ~ , d ~  + -At o,, 

f r  C olk  - n+t~ n + a -  + ,,ujnj n~ u~dF 
(t,, + ,~ ) 

t~/,/i 

= pGfi~ d~  + Tit2 i d F -  trji d~  
(tn+~,) (in+a) ( t n+ ,~ )  

f,, - o ( v , . -  o n .  (44) 

It is this equation (44), that will be used in the iteration procedures for obtaining the 
solution to the boundary value problem. 

7. Numerical implementation 

A wide variety of numerical details have to be considered in the construction of a global 
solution strategy for solving large deformation problems using the model that we have 
discussed so far. In this section we focus on a few salient features of the solution process. 

7.1. Iteration scheme 

The physical grid point domain is discretized into isoparametric eight node brick elements 
with variables interpolated by the Lagrangian shape functions. It is to be remembered that the 
elements are essentially made up of grid points rather than of material points. Hence the 
variables have to be appropriately updated before interpolation. The method utilized in doing 
so has been discussed later on in this section. 

It is obvious that the linearized form of the principle of virtual work (44) has to be solved 
for the displacement increment Ainu iteratively. A judicious choice of the iteration scheme is 
necessary from an efficiency and accuracy point of view. Several studies on iterative 



146 S. Ghosh, N. Kikuchi, An arbitrary Lagrangian-Eulerian FEM 

techniques [36, 37] suggest that the use of a full Newton-Raphson iteration is not very 
effective in general geometric and material nonlinear response calculations. It requires 
accurate evaluation and updating of the effective stiffness matrix in every iteration step, which 
in the present case may become computationally very expensive due to the several contribut- 
ing terms. In general, for a system of n nonlinear equations, it requires a large number of 
computations (O(n3)) per iteration step. Thus, from an efficiency point of view, this calls for 
relatively large load steps which again are restricted by stability and accuracy considerations. 
A remedy to the drawbacks of the full Newton scheme is offered in the modified Newton's 
method. In this method the stiffness matrix is not updated in every time step but only from 
time to time. However, problems of slow convergence and divergence are frequently 
encountered with these methods. As an alternative to the different forms of Newton iteration, 
a class of methods known as matrix update methods or quasi-Newton methods have been 
found suitable for iterative solution of a system of nonlinear equations. For a system of n 
nonlinear equations, these methods require only n scalar functional evaluations and reduces 
the number of arithmetic calculations to O(n2). In these methods, the Jacobian matrix in the 
Newton iteration is replaced by an approximation matrix. The above iteration methods have 
been found to be most effective in this analysis. We now elaborate on the steps involved, in 
the solution of the boundary value problem of interest. 

Applying the finite element approximations in the discretized domain, the linearized 
equation (44) may be written for the i-th iteration step as 

'+" " ' [+ l ' - '  { a v }  = '+" "'R - '+" " ' P ' - ' ,  (45)  

where AU -- A'U +- A'U ++ t refers to the correction in the incremental material point displace- 
ment corresponding to a grid point in the intermediate configuration. The quasi-Newton 
iteration then proceeds in the following steps. 

S T E P  1. With an initial guess for AINU, evaluate the right-hand side '+" A'R- '+" atF° of (45) 
and also the initial stiffness matrix t+,, ~,[K]O using (18) to establish mid-step variables. The 
initial guess to the displacement increment is obtained by solving the incremental form of the 
weak form using explicit time integration. 
S T E P  2. Evaluate a displacement vector U which defines a direction for the actual displace- 
ment increment vector as 

u - '++" " ' [ K - '  ] ' - ' (  '+'.' A'R - '++'  A'F'- (46)  

S T E P  3. Perform a line search in the direction of U to satisfy equilibrium. In this step a scalar 
parameter s (0 ~< s ~< 1), defining the displacement increment as 

AInU + = A " U  +-! + sU , (47) 

is varied to make the projection of the off balance loads in the direction of U approximately 
zero. 

S T E P  4. Calculate the values of the off balance loads using the new values of Amu. Also, the 
inverse of the stiffness matrix is updated using the BFGS or Broyden's update formulae 
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[37,38]. It has been observed in our analysis that the Broyden's update performs more 
effectively and accurately for the nonsymmetric matrix updates required in this analysis. 
STEP 5. A convergence check is done at the end of each iteration for displacements, out of 
balance load vectors and incremental internal energy. Divergence results when out of balance 
loads exceed the initial value and is remedied by immediate stiffness reformation. The 
displacement norm and internal energy are checked against their initial values within some 
preset tolerances (in our case and e D = 10 -3 and e E = 10-2). More details on the convergence 
criteria may be looked up in [39]. 

Z2. Updating scheme 

A very important consideration to be given in the ALE description is the updating of 
variables to the nodal points of the arbitrary mesh in the intermediate and final configurations. 
In this analysis, there exist two types of variables: (a) variables which have explicit depen- 
dence on the mesh movement (e.g. the grid velocity W) and (b) variables which are material 
path dependent and their dependence on the mesh movement is not explicit. For this second 
class of variables, nodal point values have to be obtained through interpolation. 

The variables of the first kind are easily updated to the mid-step configuration and hence to 
the end configuration based on information on nodal points alone, e.g. 

W "+° -_ a S x / a t ,  (48) 

where Asx is the grid displacement in a time step. The values at the grid points in the 
(n + 1)-th configuration are then calculated by extrapolation using (18). However for vari- 
ables of the second kind, a much more involved updating process is necessary. This is outlined 
below. 

(a) First, pseudo-material elements are constructed at time tn+ o by projecting the material 
displacements (a Amu) from the nodal points at time t,, to the intermediate configuration, as in 
a pure Lagrangian case. 

(b) Next, the material element in which a grid (nodal) point at location x ''+'~ belongs is 
found. This is clone by checking iteratively for the values of the normalized local coordinates 
of the grid point in the mapped master element corresponding to a material element. If the 
magnitudes of all of the normalized coordinates are less than or equal to 1, then the material 
element in which a grid point belongs may be deciphered. The values of the variables, such as 
Ainu *, (p*)", (o'*)", etc., in the n-th configuration, for a material point which coincides with 
the grid point in the (n + a)-th configuration are then obtained by interpolation. Figure 2 
gives an idea of the variables in different configurations. 

(c) Corresponding to the displacements Amu * as shown in the figure, the stress and velocity 
increments are evaluated for a material point coinciding with the grid point at time tn+ o. The 
intermediate values are calculated from these increments using (39) and the relation 
V n + a  -'- Am//*/At (see also [17]). Iterative correction for Am//* is continued till convergence is 

achieved. 
(d) Finally the material variables are updated to the grid configuration at tn+X using the 

ALE relations given by (20). Figure 4 gives a detailed flow chart of the entire solution 
process. An important observation with regards to the updating of material point variables, 
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dotted lines symbolize pseudo material element 

path of a grid point to the mid step 

I~ path of a material point to the mid step 

center node is ALE ; rest are Lagrangian nodes 
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Fig, 2, Updating variables to the ALE node at mid-step. 

especially t~auchy stress and rotated Cauchy stress tensors, is worth mentioning. The variables 
mentioned above are initially calculated at the integration points of an element in the FEM 
model from displacement values at the nodal points. If the values of these variables are then 
projected to the nodal points for carrying material information to the subsequent steps by 
methods like least squares or weighted averaging, severe instabilities are noticed after 
sufficient number of steps. A simple way to avoid such instabilities is by storing stress values at 
the integration points of an element and updating directly to the corresponding points at 
subsequent steps. 

In moving the grid points at boundary, the condition that the grid boundary encompasses 
the material at all times (17) must be enforced. For a smooth surface the normal is first 
evaluated at the nodal point in an average sense from the surrounding elements in •(t,,+o) 
(see Fig. 3). The normal component of the displacement is evaluated as Ainu. = AInU • n. For a 
prescribed value of the tangential component of grid displacement ASx, the total grid 
displacement at a nodal point is specified as 

Agx = Amuon + A~X. (49) 

For sliding boundaries with corners, special attention must be given to the fact that more 
than one normal might exist and hence (49) must be specified accordingly. 
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Material point velocity 
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Fig. 3. Representation of a normal and velocities for applying the boundary constraint condition. 

7.3. Reduced integration procedures 

It has been a common experience with nearly incompressible materials that full integration 
of the stiffness matrix using the Gaussian quadrature rules for certain constraint problems can 
give rise to physically meaningless locked solutions. Methods of selective reduced integration 
are applied to alleviate this shortcoming. However for general anisotropic material the 
segregation of the stiffness matrix into volumetric and other terms is not always feasible. 
Following the procedure suggested by Hughes [40] the strain-displacement matrix B is 
modified to be formed by a combination of terms formed by reduced and full integration. The 
stress increments are computed by separating the dilatation part of the strain rate from the 
deviatoric part and evaluating the incremental arising from the former by one point reduced 
integration. 

Another phenomenon that is noticed in bending dominated problems with full integration, 
is the so called 'shear locking' due to an excessive contribution of shear to the internal energy. 
Selective reduced integration with hourglass control has been used to control this locking 
phenomenon induced by shear [41]. However, the selective reduced integration may not 
provide desirable approximations for elements which are at an angular orientation with 
respect to the global axes or for problems which predominantly involve torsion. A remedy has 
been suggested in a recent paper by Koh and Kikuchi [42] in the form of directional reduced 
integration (DRI). In this method, the underintegration criterion of strains is determined from 
the geometry of an element, rather than from the physical component itself. Such a technique 
has been adopted in this analysis because of its suitability in large deformation problems 
involving rotation. Details of this technique may be obtained in [42]. 
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Fig, 4, Flow chart representing the analysis, 

8. Numerical examples 

A Fortran computer code has been developed for the implementation of the aforemen- 
tioned algorithm. Using this code, a number of different problems were solved to verify the 
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validity of the algorithms as well as the code. All the examples were executed on Apollo DN 
3000 and DN 4000 computers. In the presentation of the examples we take a sequential 
approach to the development of different aspects of the entire algorithm. That is, we first test 
the elastic-viscoplastic algorithms for large deformation by solving a few standard benchmark 
type problems and then we explore the flexibility of the ALE description for elastic- 
viscoplastic material behavior by numerically experimenting with several illustrative examples 
with particular emphasis to metal forming processes. This section is therefore divided into two 
subsections namely (a) elastic-viscoplastic problems and (b) metal forming type problems 
using the ALE description. Though the formulation is of general nature, all the examples 
mentioned in this section have been carried out in the midstep configuration using the value of 
a = ½. The three-dimensional elements used to discretize the domains in all the examples are 
the eight-node Lagrangian elements. 

8.1. Elastic-viscoplastic problems 

EXAMPLE 1. Tension test: Stress and strain controlled tests are performed for a bar with 
material parameters as follows: E=10,000psi,  v=0 .3 ,  o% =10psi, E, (elastic-plastic 
modulus) = 3333.3333 psi, ), = 0.001 sec-1. 

In the stress controlled tension test, a load of 15 lbs is applied at one end of the bar over a 
time period of one second divided into twenty equal segments. Figure 5 shows the creep 
response of the solid for various values of 3'. The results obtained are compared with those in 
[43] and a good agreement is obtained. The variation in static yield or work hardening 
parameter K is shown in Fig. 6. 
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Fig. 5. Extension (in) versus time (sec) for varying viscosity parameter. 
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Fig. 6. Static yield (psi) versus time (sec) for varying viscosity parameter. 

Next a strain controlled tension test is analyzed. In this example, one end of the bar is 
assumed to be pulled with a constant velocity (strain rate) 0.005 in/sec for half the total time 
after which the end is held fixed. The stress relaxation characteristics are clearly seen from 
Fig. 8 and the response of yield stress from Fig. 7. Finally the effect of strain rates on the 
stress and work-hardening characteristics are shown in Figs. 9 and 10 and these seem to be in 
good agreement with the experimentally observed results. 
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Fig. 7. Static yield (psi) versus time (see) in tension test with relaxation. 
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Fig. 8. Axial stress (psi) versus time (sec) in tension test with relaxation. 

E X A M P L E  2. Simple shear test. A simple shear test on an elastic-viscoplastic cube, as shown 
in Fig. 12 is executed. The major objective of this numerical experiment is to observe whether 
any oscillation in the shearing stress occur with the model, as is observed in the traditional 
Jaumann's rate description. The top surface of the cube is moved by four times the height of 
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Fig. 9. Axial stress (psi) versus normalized displacement for varying strain rates. 
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Fig. 10. Static yield (psi) versus time (sec) for varying strain rates. 
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Fig, 11. Stresses (psi) versus shear strain in simple shear test. 
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Fig. 12. Deformation patterns in simple shear test. 
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the cube resulting in a very large shear strain (shearing angle is 63.4°). The material 
parameters used in this test are E = 10,000000 psi, v = 0.3, tr v (initial yield stress) = 16000 psi, 
E, (elastic-plastic modulus)= 2307690psi, ~, (viscosity parameter)= 0.001 see -~. Results ob- 
tained are shown in Fig. 11. The stress-strain plot indicates no oscillations whatsoever, and 
thus proves the effectiveness of rotated Cauchy stress for large viscoplastic deformation. The 
results obtained by Key [44] are of the same nature as those obtained here. 

EXAMPLE 3. Clamped and simply supported square plate. Various numerical experiments 
have been carried out with clamped and simply supported square plate problems. Only a 
quarter of the plate is modelled because of symmetry. The material parameters in this 
example are E = 10,000000 psi, v = 0.3, cr v (initial yield stress)= 16000 psi, E, (elastic-plastic 
modulus) = 2307690 psi, 3/(viscosity parameter)= 0.001 sec -~. The dimensions of the plate are 
20 in x 20 in x 0.4 in. For the uniform pressure loading case where the pressure is incremented 
by 50 psi per step, the deformation patterns are shown in Figs. 15 and 19, respectively for the 
simply supported and clamped cases. Results obtained by full integration of the deviatoric 
parts of the stiffness and stress components, and those obtained by complete DRI were 
compared with the classical elastic series solution as shown in Figs. 14 and 18. It can be seen 
that in the elastic regime, the results obtained from DRI (geometry dependent integration 
points) are in much better agreement with the classical solution in comparison with the stiffer 
results obtained by full integration. Thin layer of boundary elements as shown in Figs. 15 and 
19 are introduced in order to avoid any hourglassing that may arise because of the boundary 
layer effect. This has been explained clearly in [42]. Figures 14 and 18 clearly illustrate the 
transition from flexure to membrane action that is expected in plate analysis. The deflection 
along the line of symmetry as the load increases is demonstrated in Figs. 13 and 17. Figures 16 
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Fig. 13. Deflection (in) along the centerline of a simply supported plate under uniform load. 
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Fig. 14. Applied pressure (psi) versus mid-point deflection (in) for the simply supported plate. 
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Fig. 15. Deformation patterns of a simply supported plate under uniform loading. 
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Fig. 16. Equivalent stress contours (psi) in a simply supported plate under uniform loading. 

and 20 show the equivalent stress contours for uniformly loaded simply supported plate and 
clamped plate, respectively. 

Similar numerical experiments were conducted with simply supported and clamped plates 
under concentrated central loading. The load P(t) was, in these cases, incremented by 1000 lbs 
per time step. Consistent with the observations for uniform loading, the response with full 
integration was stiffer than that with DRI, though in this case the pure elastic solution was 
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Fig. 17. Deflection (in) along the centerline of a clamped plate under uniform load. 
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Fig. 18. Applied pressure (psi) versus mid-point deflection (in) for the clamped plate. 
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Fig. 19. Deformation patterns of a clamped plate under uniform loading. 

somewhat stiffer than the latter. This response can be seen from Fig. 26, where the center 
deflection is plotted as a function of the load. The load causes viscoplastic yielding even in the 
first step and hence the elastic solution is omitted. Figures 21 and 22 show the deformation 
patterns and equivalent stress contours for the simply supported plate, while Figs. 23 and 24 
show the same for the clamped plate. In Fig. 25 the deflection curves of the symmetry lines for 
the clamped plate are presented. 

8.2. Metal forming type problems with ALE description 

EXAMPLE 4. Bending of variable length beam. In this case, a rectangular beam in a guide, 
which is being pushed out by a piston from one side and is acted upon by a variable 
concentrated load P(t) at the other, as shown in Fig. 27 is analyzed. 



S. Ghosh, N. Kikuchi, An arbitrary Lagrangian-Eulerian FEM 161 

• :' ": - 4 

3.51agE,-O 4 

2 . 8 9 4 E * 0 4  

2.21fiE.04 ~ 

1.543E*04 ,, " 

/ 

1.916£+03 

6.224E-%4 

4.631E-C~ 

3.258E°~4 

STEP NUMBER 5 STEP NUMBER 15 

8.ageE.g.l 

,'..l 4 "rE, ~, 4 

~ .698~ ,*04  

4.049E+04 

2 . 4 0 0 E + 0 4  

7 .513E*03  

' . ? , ' o F - ' -  

9 .8"8~ l .  ,'4 

5.b:3E, O4 

3.]31E-04 

'.:49E°~4 

STEP NUMBER 20 STEP NUMBER 30 

Fig. 20. Equivalent stress contours (psi) in a clamped plate under uniform loading. 
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STEP NUMBER = 15 STEP NUMBER = 30 

Fig. 21. Deformation of a simply supported plate under concentrated load. 

The material parameters in this example are E = 10,000000psi, v =0.3,  ~v (initial yield 
stress)= 16000psi, E, (elastic-plastic modulus) = 2307690 psi, 7 (viscosity parameter)= 
0.001 sec-1. The load is incremented by 152 lbs in each time step and the velocity of the piston 
is maintained at 0.005 in/sec. The analysis is continued over a time period of 0.3 sec in thirty 
equal time steps. The load increment is stopped after twenty five steps. The typical Lagrangian 
approach fails to represent the precise effect of the sharp edges of the guide in this example. 
This is because the displacement boundary conditions are specified on the material points 
which may physically move away from the edges. It is here that the flexibility of the ALE 
description may be used favorably. The nodes coinciding with the edge of the guide are held 
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Fig. 22. Equivalent stress contours (psi) of a simply supported plate under concentrated load. 
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STEP NUMBER = 15 STEP NUMBER = 30 

Fig. 23. Deformat ion of a c lamped plate under  concentrated load. 

fixed (Eulerian) and the surface nodes under the guide are moved towards the edge with 
specified velocities. The latter movement is monitored to better represent the stress jump 
across the edges. A comparative study with full integration and DRI (2 x 1 x 2) schemes is 
presented in Figs. 28 and 30, which indicate the variation of flexural stress along the beam and 
the end deflection with time, respectively. It is noticed from Fig. 29 that the relaxation effects 
become pronounced with time especially at the free end of the beam. Figure 31 shows the 
deformation patterns of the beam for a few selected time steps and Fig. 32 shows the flexural 
stress contours.  
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Fig. 24. Equivalent stress contours (psi) of a clampled plate under concentrated load. 
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Fig. 25. Deflection (in) along the centerline of a clamped plate under concentrated load. 
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Fig. 26. Applied concentrated load (lbs) versus mid-point deflection (in) for the clamped plate 
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Fig. 27. Section view of 3-D beam pushed by a piston at one end and loaded by a variable concentrated force at the 
other end. 
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Fig. 28. Load (lbs) versus end deflection (in) in viscoplastic beam bending with relaxation. 
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Fig. 29. Flexural stress (psi) versus distance from one end (in) in beam bending. 
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Fig. 30. End deflection (in) versus time (sec) in beam bending. 
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Fig. 31. Deformation patterns for beam bending. 
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8.89~.~,O3 

-1.128E.tO4 

-3.145E+04 

Min../.4, -$.i62E.t4)4 

STEP NUMBER - 15 
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6.$99E+04 

3.~1E+04 
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4 .~B4~ 
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STEP NUMBER =30 

Fig, 32. Flexural stress contours (psi) in beam bending problem. 
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EXAMPLE 5. Indentation by a semi-cylindrical rigid punch. This example is aimed at testing 
the contact algorithms in the context of large deformation. A semi-cylindrical frictionless 
punch is made to indent an elastic-viscoplastic slab with a constant velocity of 15 in/sec. The 
dimensions of the punch and the slab and the material constants are given in Fig. 33. The 
movement of the punch is restrained in the transverse direction by introducing frictionless 
walls. Only the right half of the slab is analyzed because of symmetry. The process is carried 
out for a period of 0.067 sec, during which time the punch progressively sinks through 
approximately its own radius. Owing to the absence of any sharp discontinuities in boundary 
conditions, the nodes in this analysis are made to be Lagrangian. Of course, in the event that 
the elements may become squeezed due to sudden impact by the punch, ALE nodes may have 
to be created under the punch. However, such circumstances have been avoided in the present 
work and hence ordinary Lagrangian nodes suffice. 

The computed results of the analysis are compared with the elastic-plastic counterpart 
performed by Dumas and Baronet [45]. Deformation profiles at various stages of the process 
can be seen from Fig. 34. The extent of the viscoplastic zone propagation, which originate 
inside the material under the punch tip, is effectively observed from the shades of equivalent 
stress contours in Fig. 35 and these in good harmony with the schematic representation of 
plastic zones in [45]. Figure 36 is a depiction of the pressure profiles in the contacting zone as a 
function of the angle made by the line joining the center of the punch of the contact node with 

6 
Young's Modulus ffi 10 x 10 psi 

Poisson ratio - 0.3 
3 

Yiold Slress = 16 x 10 psi 

Tangent Modulus = 0.230769 x 10 7psi 

Viscosity parameter-=- 0.001 se~ t 

Punch Velocity -- 15 in/sec 

Thicl~ess = I in 

frictionless surfaces 

~ = - - -  . . _ _  = - . _ _ _ _  - -  

i i  - |  

Fig. 33. Section view of  indentat ion of a solid block by a rigid punch. 
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PUNCH TRAVEL = 0.15 ins PUNCH TRAVEL = 0.45 ins 

PUNCH TRAVEL = 0.75 ins PUNCH TRAVEL = 0.99 ins 

Fig. 34. Deformat ion patterns at various stages in the indentat ion problem.  

the vertical. The vertical force exerted by the punch on the slab was calculated from the 
pressure in the contact zone and this is shown for various stages in Fig. 37. Also Fig. 38 shows 
the variation of maximum contact pressure with the movement of the punch. Finally the 
sinking depth of the punch is plotted in terms of the vertical load in Fig. 39 and these show 
good agreement with [45]. 

EXAMPLE 6. Side extrusion problem. This is a problem of metal forming in which the 
Lagrangian description proves to be ineffective in boundary representation. In such forming 
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Max "'k-4~ 

Mi,~ .1-" 

P U N C H  T R A V E L  = 0.45 ins 

Max "'k.~ 

Min .-/'~ 

PUNCH TRAVEL = 0.99 ins 

! 

[ 

6.534E+05 

5.257E+05 

3.981E+05 

2.704E+05 

1.427E+05 

1.507E+04 

1.824E+06 

1.476E+06 

1,127E+06 

7.786E+05 

4.302E+05 

8.173E÷04 

Fig. 35. Equivalent stress contours (psi) in the indentation problem. 
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Fig. 36. Contact pressure (psi) as a function of contacting angles (radians), 
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Fig. 37. Vertical punch force (ibs) as a function of contact area (in2). 
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Fig. 38. Maximum contact pressure (psi) as a function of contact area (in2). 
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Fig. 39. Punch travel (in) as a function of vertical punch force (lbs). 
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operations, material is extruded by a punch through a slit on the side of the die as is shown in 
Fig. 40. The traditional Lagrangian methods cannot represent the edge of the slit properly 
even with remeshing. Also the mesh associated with the material which is being extruded out 
of the slit becomes extremely distorted in this description. As a result, the use of the ALE 
description for this problem is almost indispensible in this analysis. 

Only a half of the elastic-viscoplastic extrudate is modelled in this exarnple from symmetry 
considerations. The contact between the surfaces of the die and punch and the material is 
assumed to be frictionless. The dimensions and material parameters are indicated in Fig. 40. 
The process is executed for 0.2 sec corresponding to 40 percent reduction in the height of the 
extruded material and the computation is carried out in 20 equal steps. Evidently, the mesh 
moving scheme is one of the most demanding aspects of the ALE description in such a 
problem. Several different combinations of mesh descriptions and node movements were 
experimented with, in this example. It is apparent that in order to represent the slit precisely, 
nodes coinciding with the top of the slit should be made Eulerian. However, as shown in Fig. 
41, certain difficulties are encountered with most of the schemes if we keep these nodes 
Eulerian at all times. For example, Fig. 41(a) shows the results obtained by an entirely 
Eulerian mesh with Lagrangian nodes, at the opening. The analysis stopped after 12 steps 
corresponding to a reduction of 24 percent, because the elements outside of the die became 

Young's Modulus : tO x 106 psi 

Poisson ratio : 0.3 
$ 

Yield Slress : O. 16 x I0 psi 

Tangent Modulus = 0,230769 x '107 psi 

-I 
Viscosity psrsmem'= O,OOt sec 

Punch Velocity - I0 ~ s ~  

surfam 

Fig. 40. Section view of a solid material in a die being side extruded by a rigid punch. 
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E - VP SIDE EXTRUSION PROBLEM ( A.L.E. ) 2 E - VP SIDE EXTRUSION PROBLEM | A.L.E, ) 2 

STEP NR. 12 STEP NR. 7 

la) Ib) 

Fig. 41. Some unsuccessful mesh moving schemes. 

very long. This resulted in difficulties with proper interpolation for the material path and 
hence unreasonable material displacements were obtained. A second description, shown in 
Fig. 41(b) represents a mesh in which the nodes below the level of the top edge of slit are 
made Lagrangian. Clearly, the elements become entangled after a height reduction of 14 
percent. This prompted the use of partial Eulerian description of the nodes in contact with the 
edge of the opening. Here, a set of nodes are held Eulerian at the edge till 20 percent 
reduction (10 steps) is achieved, after which they become Lagrangian and move with their 
respective material points. Meanwhile the row above these are ALE nodes, which are made to 
move down in such a way that they replace the former set of nodes from the l l th step. This 
can be seen from Fig. 42. The nodes at the lower portion within the opening are made 
Lagrangian to portray the material movement and also for computational efficiency. Obvious- 
ly this necessitates the introduction of transient modes to smoothen the behavioral difference 
between the Lagrangian and Eulerian nodes. A weighted averaging scheme given by 

W,~+~ = -N1 ~ wjWj" (50) 

is used to assign nodal velocities in this region. Here w~ represents a weighting function 
associated with a J-th node that surrounds the l-th node, N is the total number of nodes 
around the l-th node and n corresponds to the time step. The success of this description can 
be easily inferred from Fig. 42 in which the analysis was successfully carried out till 40% 
reduction and further. The corresponding motion of the material points and the equivalent 
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12 % REDUC"rlON IS % REDUCTION 

22 % REDUCTION 40 % REDUCTION 

Fig. 42. Mesh movements in a side extrusion problem. 

stress contours are shown in Figs. 43 and 44. The sudden opening in the wall of the die 
introduces some instabilities which are visible in Fig. 43. 

EXAMPLE 7. Back extrusion problem. As a final example, we demonstrate the ability of the 
ALE description to alleviate the typical problems encountered in the simulation of a back 
extrusion process by the Lagrangian formulation. The description of the problem is illustrated 
in Fig. 45, where a rigid prismatic punch of transverse thickness 1.5 inches is back extruding 
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12 % REDUCTION 18 % REDUCTION 

22 % REDUCTION 40 % REDUCTION 

Fig. 43. Material movements in a side extrusion problem. 

an elastic-viscoplastic billet of the same thickness. The material parameters are indicated in 
Fig. 45. An assumption that all contact surfaces are frictionless is made. It is intended for the 
punch to cause a 40% reduction in the height of the billet under the fiat punch surface with 
successive strokes. The process continues for an inti~rval of 0.2 sec which is temporally 

discretized into 20 equal steps for analysis. 



178 S. Ghosh, N. Kikuchi, An arbitrary Lagrangian-Euleria, FEM 

ii ̧ 1 

1. 069E+06 

8.873E+C5 

7.056E+05 

5.239E+05 

3.422E+05 

i. 605E+05 
Hin .J 

18 % REDUCTION 

..... ~i!i~ ¸ ::!ill ' 

• ~~.,~i!iiii!~.~iii.ii~i~ ~i ~ 

/ 

Hax.-~ 3,237E÷06 

2.633E+06 

2,030E+06 

1,426E+06 

8.221E+05 

Min.j ,~ 2.1a4~+OS 

40 % REDUCTION 

Fig. 44. Equivalent stress (psi) contours in the side extrusion problem 
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6 
Young's Modulus -10 x 10 psi 

Poisson ratio = 0.3 
3 

Yield Stress = 16 x 10 psi 
7 

Tangent Modulus = 0.230769 x 10 psi 
-1 

Viscosity parameter = 0.001 sec 

Punch Velocity = l0 in/sec 

10 ~ 

4 , - .  4 ~ - - -~  

ab, 

v 

~ V  

frictionless surfaces // 

Fig. 45. Section view of the back extrusion problem. 

Similar problems with the Lagrangian formulation have been solved by Cheng and Kikuchi 
[1] and Gelten and Konter [46] using mesh rezoning techniques for rate-independent 
plasticity. However, it is beneficial to use the ALE description to solve this problem with 
adequate accuracy and efficiency. Because of the problem symmetry, only half of the 
workpiece is analyzed. To start with, we model the billet with a majority of Lagrangian nodes 
with the exception of nodes coinciding with the edge of the punch, which are glued to the 
punch. The sharp corner of the punch causes the material around it to deform excessively and 
as a result the elements in the vicinity are severely distorted. This can be seen from Figs. 46 
and 47. The interaction between neighboring Lagrangian and ALE nodes causes element 
entangling, thus stopping the analysis. The blow up of the distorted zone in Fig. 47 is just 

before this entanglement occurs at 20% height reduction. 
A few schemes for effectively moving the nodes around the sharp edge of the extruding 

punch were experimented with. First, a portion of the mesh which is vulnerable to excessive 
distortion is automatically constructed in each step by elliptic mesh generation techniques after 
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10 % REDUCTION 18 % REDUCTION 

Fig. 46. Element crashing in a nearly Lagrangian mesh. 

18% height reduction. In this method, variational techniques may be applied to minimize a 
linear combination of a measure of grid smoothness, orthogonality and volume variation 
resulting in a set of elliptic partial differential systems, e.g. the Laplace equation or the more 
general Poisson equation 

V2~ ~=P~, i = 1 , 2 , 3 ,  (51) 

where ~' refer to the curvilinear coordinate system of the physical domain and P" are the 
control functions which may be implemented to control the spacing and orientation of 
coordinate lines. The deformed configurations of the billet demonstrated in Fig. 48 are results 
of this scheme. The control function P was adjusted to yield favorable meshes. A typical 
partially eUiptically generated mesh at an intermediate step may be observed from Fig. 49(a). 

Fig. 47. Blow up of the section of element crashing in a nearly Lagrangian mesh. 
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26 % REDUCTION 34 % REDUCTION 

Fig. 48. Deformation patterns with the mesh by elliptic generator. 

However, as the contacts with the vertical edges of the punch increase, the boundary of the 
zone for elliptic generator admits a sharp corner and this results in the excessive distortion of 
the mesh as seen in Fig. 49(b). This caused the process to stop after 34% deformation under 
the punch. 

Alternately, the algebraic mesh generator, which involves transformation into a computa- 
tional domain to compute the interior points of the domain was tried. As in the previous case, 
this generator was activated every alternate step after 18% height reduction. A section view of 
the consequently generated mesh is seen in Fig. 53. The process was successfully executed for 

Ca) (b) 

Fig. 49. Blow up of the sections of eUiptically generated mesh (a) at an intermediate step and (b) when the 

elements become overdistorted. 
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20 % REDUCTION 28 % REDUC'HON 

32 % REDUCTION 40 % REDUCTION 

Fig. 50. Deformation patterns with contact edge zone generated by algebraic mesh generator. 

40% deformation with this scheme. Figure 50 clearly exhibits the FEM mesh at various stages 
of the process. The corresponding material flow is given in Fig. 51, while Fig. 52 illustrates the 
equivalent stress contours for some representative steps. The applied load under the punch is 
computed from the pressure distribution and is plotted with the punch movement in Fig. 54, 
while Fig. 55 shows the pressure distribution. 
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20 % REDUCTION 28 % REDUCTION 

/ 
\ 

32 % REDUCTION 40 % REDUCTION 

Fig. 51. Material movement in the back extrusion problem. 
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Fig. 52. Equivalent stress contours (psi) in the back extrusion problem. 
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Fig. 53. Blow up of the section of algebraically generated mesh at a time step. 
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Fig. 54. Total force (Ibs) exerted by the punch with respect to the punch movement (in). 
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Fig. 55. Contact pressure (psi) under the punch at different stages. 

9. Conclusion 

This paper elucidates the power of the arbitrary Lagrangian Eulerian finite element method 
to solve various large deformation problems of elastic-viscoplastic materials, especially with 
complex boundary descriptions. The algorithms described in this paper may find direct 
application in metal forming analysis and fracture mechanics problems where many comprom- 
ises are often made in accordance with the limitations of the conventional methods. The 
overall algorithm proved to be numerically stable and reasonably accurate in the sense that the 
results obtained are in very good accordance with physical experience. Temperature effects 
and more efficient adaptive mesh moving schemes based on error analysis have not been 
considered in this paper and will be addressed in a forthcoming paper. 
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