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ABSTRACT

Higher order sliding mode differentiators have received a great deal of attention in
the literature. For the case of reconstructing the first derivative, theoretical con-
vergence conditions for the differentiator are available from which differentiator pa-
rameters may be selected. For the case of higher order derivatives, some parameter
settings have been suggested for differentiators of certain order but there is no tuning
algorithm available to determine convergent parameters for differentiators of arbi-
trary order. Whilst recognising the strong theoretical properties of sliding mode dif-
ferentiators, practitioners report difficulties in achieving wide envelope performance
from a single set of differentiator parameters. This paper proposes a constructive
design paradigm to generate differentiator parameters which is seen to provide a
natural framework to facilitate simple on-line adaptation of the chosen gains. Simu-
lation experiments as well as experimental results are presented to demonstrate the
proposed approach.
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1. Introduction

The robust exact differentiator (RED) is a special case of the super-twisting algo-
rithm. Stability considerations, robustness properties and convergence time estimates
based on Lyapunov functions have been proposed in Davila, Moreno, and Fridman
(2009); J. Moreno (2009); J. Moreno and Osorio (2008, 2012); Orlov, Aoustin, and
Chevallereau (2011); Polyakov and Poznyak (2009). In this paper the RED is repre-
sented by a so-called pseudo-linear system Banks and Mhana (1992); Langson and
Alleyne (1999, 2002) which motivates the development of a new tuning procedure
which will be seen to provide a natural framework to adapt the gains of the differen-
tiator to accommodate varying signal characteristics. Initially, the unperturbed case is
studied. State-dependent eigenvalues which guarantee vanishing estimation errors are
described. Robustness of the differentiator is demonstrated exploiting existing conver-
gence proofs.

Differentiators obtaining time-derivatives of an arbitrary order n are often based

Email: markus.reichhartinger@tugraz.at



on the ideas of higher-order sliding mode techniques which generate an exact re-
sult within finite-time Levant (2003); Y. Shtessel, Edwards, Fridman, and Levant
(2014); Y. B. Shtessel, Moreno, Plestan, Fridman, and Poznyak (2010). This requires
a noise-free signal to be differentiated and a known Lipschitz constant of its nth time-
derivative. The latter requirement may be relaxed by the implementation of adap-
tive gains differentiators. This strategy is available for the general order case in Sid-
hom, Pham, Thvenoux, and Gautier (2010); Sidhom, Smaoui, Thomasset, Brun, and
Bideaux (2011). For the first order case a number of solutions are known from the
literature Kobayashi and Furuta (2007); Y. Shtessel, Taleb, and Plestan (2012). The
authors Oliveira, Estrada, and Fridman (2015, 2016) propose a higher order sliding
mode differentiator with dynamic gains in the context of output feedback control where
the gains are scaled using a function which depends on the input signal of the system
and a norm bound of the estimated state variables in combination with some constants
related to worst-case estimation of the absolute value of the desired time derivative of
the output signal of the system. Although this function includes parameters and sig-
nals which may not be available in the scenario considered in this paper, the structure
of the differentiator is similar to the adaptive differentiator discussed in this paper.

In the case of constant gains, differentiation algorithms of a fixed certain order are
available. They mainly provide the first or more rarely the second derivative, see e.g.
Ortiz-Ricardez, Sanchez, and Moreno (2015). The well-known first-order sliding mode
differentiator is enhanced in Cruz-Zavala, Moreno, and Fridman (2011) to provide
the exact derivative within a prescribed time independent of the initial conditions of
the differentiation algorithm. A differentiator which relies on a discontinuous high-gain
observer is outlined in Orani, Pisano, and Usai (2006) where a discrete-time implemen-
tation is also discussed. An example of the arbitrary-order differentiator presented in
Levant (2003) for the computation of the first and second derivative is given in Pisano
and Usai (2011).

2. Robust exact differentiator - constant gains

A RED provides an output signal ν which exactly coincides with the first time deriva-
tive of the noise-free input signal f(t), i.e. the difference f (1) − ν tends to zero after a
finite transient time and remains there. The only assumption required is that the 2nd

derivative w.r.t. time t of the input signal f(t), i.e. f (2)(t), satisfies
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d2f

dt2
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∣

∣

≤ L, (1)

where L denotes the finite and known Lipschitz constant. This differentiator is robust
to uncertainties in the input signal f which satisfy inequality (1). The differentiator
can be regarded as the closed-loop system obtained by the application of the super-
twisting algorithm as control law such that the state z0 tracks the function f where
the RED may be represented by

dz0

dt
= κ0 ⌊f − z0⌉

1

2 + z1, (2a)

dz1

dt
= κ1 sign(f − z0), (2b)

ν = z1, (2c)
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with the abbreviation

⌊a⌉b := |a|b sign(a), a, b ∈ R. (3)

The positive constants κ1 and κ2 are the tuning parameters. The error dynamics is
given by

dx0

dt
= x1 − κ0 ⌊x0⌉

1

2 , (4a)

dx1

dt
= −κ1 sign(x0) +

d2f

dt2
, (4b)

where the estimation errors are

x0 := f − z0 and x1 :=
df

dt
− z1. (5)

Proper choice of the parameters κ0 and κ1 must ensure the convergence of the trajec-
tories of (4) to zero in finite time despite the uncertainty (1).

2.1. Overview of existing tuning procedures

It is shown in Y. Shtessel et al. (2014) that any parameters satisfying

κ1 > L and κ20 >
2 (κ1 + L)2

κ1 − L
(6)

yield global finite time stability of the origin of the system (4). Slightly different
inequalities are proposed in Levant (1998):

κ1 > L and κ20 ≥ 4L
κ1 + L

κ1 − L
(7)

These result from a conservative estimate of the trajectories of (4). A further setting
is available from Orlov et al. (2011) as

L < min

{

κ0

2
,
κ0κ1

1 + κ0

}

. (8)

This setting is obtained by a Lyapunov function based approach where linear gains
may be considered. Another tuning algorithm proposed in J. A. Moreno (2012) requires
a feasible solution of the linear matrix inequality (LMI)

[

ATP+PA+ cL2cT Pb

bTP −1

]

< 0 (9)

with a positive definite matrix P = PT ∈ R2×2,

A :=

[

−κ0 1
−2κ1 0

]

, c :=
[

2 0
]T

and b :=
[

0 1
]T

. (10)
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Figure 1.: The values of κ0 and κ1 obtaining a feasible solution of linear matrix in-
equality (LMI) given in (9) with L = 1 are indicated. Below the limit curves no valid
setting w.r.t. the corresponding setting is available.

In Figure 1 valid regions of the presented inequalities are depicted for the case L = 1.
Note that any valid setting of κ0 and κ1 for L = 1 may be generalized for general

Lipschitz constants L̃ of f (2) using the scaled parameters κ̃0 = κ0

√

L̃ and κ̃1 = κ1L̃, see
Y. Shtessel et al. (2014). In order to avoid overestimation of the gains of the RED, it is
suggested in Levant (1998) that the parameters κ0 and κ1 are tuned based on numerical
simulations rather than using the discussed inequalities. Practitioners have reported
difficulties achieving theoretical performance levels for practical systems across a wide
and uncertain envelope of operation. Within the area of haptics, for example, accurate
and insensitive real time velocity estimation is required. The RED has been tested
in both simulation and experimentally with application to passivity-based control of
haptic displays in Chawda, Celik, and O’Malley (2011). The authors report that the
performance of the RED was difficult to tune and it was found that low and high
velocity signals may require different sets of optimized gains. This motivates the need
to develop adaptive methods to tune the gains of the RED on-line.

2.1.1. An alternative interpretation of the tuning procedure

The adaptive gains differentiator developed in the subsequent sections will rely on
a pseudo-linear representation of the discussed error dynamics (4) and is based on
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eigenvalue considerations. Using

sign(a) =
a

|a| , (11)

where a = 0 formally has to be excluded, and the function

⌊a⌉b = |a|b sign(a) = |a|b−1a, (12)

the error dynamics of the RED in (4) becomes

dx

dt
= M(x0)x+ bf (2), (13)

with x :=
[

x0 x1
]T

and

M(x0) :=

[

−κ0|x0|−
1

2 1
−κ1|x0|−1 0

]

. (14)

System (13) is a pseudo-linear system and all system properties of (4) are maintained.

Remark 1. This is the first time that a pseudo linear representation is used in the
context of sliding mode based differentiators. It enables the construction of a system-
atic parameter tuning approach. Note that for differentiators of arbitrary order only
simulation based tuning methods are available.

Remark 2. Results relating to pseudo-linear systems are also considered in the work
of Langson and Alleyne (1999, 2002). However, the dynamic system under considera-
tion in this paper does not have the smoothness properties required for the stability
theorems within this work. Therefore, these theorems are not applied. It also should
be noted that the results on pseudo-linear systems applied pertain to the case of local,
not global, stability.

The characteristic polynomial of M(x0) (almost everywhere) is given by

w(s) = s2 + κ0 |x0|−
1

2 s+ κ1 |x0|−1 . (15)

It can be shown that the roots p1, p2 ∈ C of equation (15) are given by

s1(x0) = |x0|−
1

2 p1 and s2(x0) = |x0|−
1

2 p2, (16)

so that equation (15) may be expressed as

w(s) = s2 − |x0|−
1

2 (p1 + p2)s+ |x0|−1p1p2. (17)

Comparing (15) and (17) and equating coefficients

κ1 = p1p2 and κ0 = −(p1 + p2) (18)
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and a mapping between the parameters of the RED and the free parameters p1 and
p2 is established.

Remark 3. Note that the parametrization (18) is not limiting but is an alternative
representation of the usual sliding mode differentiator which is practically motivated.

Using (16) and (18), matrix M(x0) in (14) becomes

M(x0) =

[

s1

(

1 + p2

p1

)

1

−s21
p2

p1
0

]

. (19)

The first theorem motivates RED parameter selections based on this approach in the
unperturbed case, i.e. f (2) = 0.

Theorem 2.1. Select the roots p1 and p2 such that the polynomial w̄(p) = p2+κ0p+κ1
is Hurwitz. Then the matrix M(x0) is a stable matrix, i.e.

ℜ{sk} < 0 ∀x0(t) k = 1, 2 (20)

and furthermore the origin of system (13), i.e. x0 = x1 = 0, with the matrix M(x0)
given in equation (19) and f (2) = 0 is globally finite time stable with the parameter
setting given in equation (18).

The proof of Theorem 2.1 is given in the appendix.

Remark 4. The proof of Theorem 2.1 exploits the homogeneity properties of sys-
tem (13) as outlined in Bacciotti and Rosier (2005); Levant (2005). It should be noted
that there are other options for proving the finite time convergence of the estimation
errors x0 and x1. In Levant (1998), the proof is based on geometrical considerations of
the closed-loop trajectories and in J. Moreno and Osorio (2008), a Lyapunov function
is used. Also note that in general all characteristics of the differentiator are maintained.
This naturally also includes the well-documented behaviour in the case of noisy and
sampled input signals as outlined in Livne and Levant (2014).

The unperturbed case assumed in Theorem 2.1 motivates choosing the parameters
κ0 and κ1 such that the polynomial w̄ is Hurwitz. In order to ensure robustness w.r.t.
the uncertainty given by inequality (1) the necessary condition for the existence of a
sliding mode at the equilibrium point x0 = x1 = 0 given by

κ1 = p1p2 > L (21)

has to be satisfied. The next Theorem shows that in the case of real roots p1 and p2
condition (21) is sufficient for asymptotic stability of the origin of system (13).

Theorem 2.2. Select negative real roots p1 and p2 such that p1p2 > L. Then the
origin of system (13) is finite time stable with the parameters of the RED selected as
given in equation (18).

The proof of Theorem 2.2 is presented in the appendix. From Theorem 2.2 it also
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follows that the parameters of the RED may be selected as

κ1 > L and κ0 ≥ 2
√
κ1, (22)

which ensures real roots p1 and p2 of the polynomial w̄(s). It is interesting to consider
complex roots, i.e. p1, p2 ∈ C, which are obtained when 2

√
κ1 > κ0. From the proof of

Theorem 2.2, finite time convergent estimation errors x0 and x1 can be ensured if

||G(s)||∞ =
4

κ0
√

8κ1 − κ20
<

1

L
(23)

holds, which ensures feasibility of the LMI (9). In the case of complex roots a parameter
setting is suggested by the following theorem.

Theorem 2.3. Inequality (23) is satisfied in the case of complex roots p1, p2 by the
choice of parameters

κ1 > L and 2

√

κ1 −
√

κ21 − L2 < κ0 < 2
√
κ1. (24)

The proof of Theorem 2.3 is given in the appendix. Note that the upper bound on
the parameter κ0 ensures complex roots and can be omitted in the case of real roots.
Assume that κ1 is selected so that κ1 = p1p2 > L. Use the following metric

d2 := κ21 − L2 = (p1p2)
2 − L2 (25)

and select κ0 such that equation (90) from the proof of Theorem 2.3 holds, i.e.

κ0 = 2
√

κ1 − d, (26)

the roots p1 and p2 of the polynomial p2 + pκ0 + κ1 are given by

p1,2 = −
√

κ1 − d± j
√
d. (27)

Since κ0 is selected such that (90) holds, inequality (23) will not be satisfied. This will
be achieved by further increasing κ0, which will reduce |ℑ {p1,2}|. Hence, in the case
of complex conjugate roots, the absolute value of the imaginary part must satisfy

|ℑ {p1,2}| <
√
d. (28)

Hence, the imaginary part of the roots may be increased whenever the distance d is
increased which indicates a conservative choice of κ1. The tuning procedure is sum-
marized as follows:

(1) Select p1, p2 such that p1p2 > L.
(2) In the case of complex roots the imaginary part must satisfy

|ℑ {p1}| <
(

κ21 − L2
)

1

4 =
[

(p1p2)
2 − L2

]
1

4

,
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where ℜ{.} and ℑ{.} denote the real and imaginary part of the corresponding
roots.

3. Robust exact differentiator - adaptive gains

This eigenvalue based tuning procedure will now be extended in order to achieve
vanishing estimation errors in the case of an unknown Lipschitz constant L. The
idea is based on an appropriate online-scaling of the eigenvalues given in equation
(16) using an additional strictly positive, time-varying parameter γ(t). Therefore, the
differentiator should be enhanced such that the eigenvalues are given by

λi(x0) = γ(t)|x0|−
1

2 pi = γ(t)si(x0). (29)

This can be realized by the modification of the applied super twisting algorithm such
that the RED given in equation (2) becomes

dz0

dt
= κ0 γ(t) ⌊f − z0⌉

1

2 + z1, (30a)

dz1

dt
= κ1 γ

2(t) sign(f − z0), (30b)

ν = z1, (30c)

which yields the corresponding error dynamics

d

dt

[

x0
x1

]

=

[

−κ0γ|x0|−
1

2 1
−κ1γ

2|x0|−1 0

] [

x0
x1

]

+

[

0
1

]

d2f

dt2
. (31)

A straightforward computation of the eigenvalues of the dynamic matrix involved in
(31) verifies that its eigenvalues are given by λi(x0) as specified in equation (29). Note,
that the eigenvalues λi and si have the same sign and consequently the same tuning
procedure as outlined in Section 2.1.1 may be applied. Hence the constant gains κ0
and κ1 can be selected such that the polynomial w̄(p) given in Theorem 2.1 is Hurwitz.

In terms of the robustness against the unknown but bounded function d2f
dt2

it becomes
evident from Theorem 2.2 that

κ1γ
2 = p1p2γ

2 > L (32)

has to be satisfied in the case of real roots. The idea of the proposed gain adaptation
therefore is to increase the variable γ such that the estimation errors vanish and con-
sequently inequality (32) has to be satisfied. Using equation (18), the error dynamics
(31) may be written as

d

dt

[

x0
x1

]

=

[

λ1(x0)
(

1 + p2

p1

)

1

−p2

p1
λ2
1(x0) 0

]

[

x0
x1

]

+

[

0
1

]

d2f

dt2
. (33)
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To derive an adaptation mechanism specifying the time behaviour of γ, consider the
modified version of the Lyapunov function used in the proof of Theorem 2.1:

V (x0, x1, γ) = γ2|x0|+
1

2p1p2
x21, (34)

where positive definiteness is ensured by an appropriate selection of the real, strictly
negative constants p1 and p2. The time derivative of V along the trajectories of system

(33) in the case d2f
dt2

= 0 yields

dV

dt
= γ2λ1(x0)

(

1 +
p2

p1

)

|x0|+ 2γ
dγ

dt
|x0|. (35)

In order to ensure negative semidefiniteness of dV
dt

by the design of an adaptation

algorithm dγ
dt

the first term in equation (35) is rewritten using (16) and (18) to yield

dV

dt
= −γ3κ0|x0|

1

2 + 2γ
dγ

dt
|x0|. (36)

Using the adaptation law

dγ

dt
=

γ

2
α ·

{

|x0|−
1

2 for |x0| ≥ 1
|x0| for |x0| < 1

with γ(t = 0) = 1, (37)

where the constant tuning parameter α is selected as

0 < α < κ0 (38)

generates

dV

dt
= −γ2 ·

{

|x0|
1

2 (γκ0 − α) for |x0| ≥ 1

γκ0|x0|
1

2 − αx20 for |x0| < 1
. (39)

The initial value γ(0) = 1, the selection of the tuning parameter α according to
inequality (38) and the design of the adaptation algorithm as stated in (37) ensure

negative semidefiniteness of dV
dt

for any x0. Due to the assumption d2f
dt2

= 0, system
(33) represents an autonomous discontinuous system and the extended version
of the Invariance Principle as outlined in Orlov (2009) is applicable. The radial
unboundedness of V , the fact that the largest invariant subset of the manifold where
dV
dt

= 0 is characterized by x0 = x1 = 0 and a constant value of γ and that γ ≥ 1
shows that that all the trajectories of system (33) vanish asymptotically.

Remark 5. The adaptation law given in equation (37) is designed such that negative
semidefiniteness of dV

dt
is guaranteed. The design is based on the idea that “large”

deviations from x0 = 0, which may occur initially, should not generate arbitrarily fast
adaptation of γ. Also “small” deviations, i.e. x0 ≈ 0, should not lead to an unbounded
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adaptation rate. This is apparent from the characteristics

lim
|x0|→∞

dγ

dt
= lim

|x0|→0

dγ

dt
= 0. (40)

The adaptation law guarantees robustness against a bounded second time derivative
of f . The origin of system (33) is an equilibrium whenever (32) is satisfied. Hence, γ
is increased by the adaptation law (37) until x0 = 0 is maintained and consequently
inequality (32) holds.
In the case of an input signal f(t) which is corrupted by noise of maximum amplitude
ε a modified version of the adaptation algorithm given in equation (37) is proposed as

dγ

dt
=

γ

2
α ·







|x0|−
1

2 for |x0| ≥ 1
|x0| for |x0| < 1
0 for |x0| < 1.1ε

with γ(0) = 1. (41)

Here adaptation is halted whenever the domain |x0| < 1.1ε is reached by the differ-
entiator. It is obvious that due to noise the estimation error x1 will not vanish and
it is well-known that it is proportional to

√
ε, see Levant (1998). If there is a domain

of x1 introduced such that the adaptation is halted then also adaptation laws have
been designed in literature which also allow γ to be reduced, see Plestan, Shtessel,
Bregeault, and Poznyak (2010); Y. Shtessel et al. (2012). A modified version of the
adaptation algorithm given by

dγ

dt
=

γ

2
α ·







|x0|−
1

2 for |x0| ≥ 1
|x0| for |x0| < 1
1
γ
− 1 for |x0| < 1.1ε

with γ(0) = 1, (42)

also provides the ability to reduce γ whenever the estimation error x0 belongs to
the prespecified boundary layer of width 1.1ε. Applying this modified version of the
adaptation algorithm, convergence to the origin x0 = x1 = 0 cannot occur. This is
known from other adaptive techniques using a boundary layer in order to facilitate
gain reduction, see Plestan et al. (2010); Y. Shtessel et al. (2012).

Remark 6. In the case of the adaptation law (42) and |x0| ≤ 1.1ε, the adaptation
parameter γ is governed by

dγ

dt
= −γα

2
+

α

2
(43)

and the unique equilibrium point of equation (43) characterized by

0 = −γeα

2
+

α

2
(44)

is given by γe = 1. Hence, the adaptation parameter γ will not converge towards
values below 1. The adaptive gain differentiator therefore may compensate for unknown
Lipschitz constants L in the case of underestimated differentiator parameters κ0 and
κ1. It, however, does not reduce these parameters in the case of their overestimation.
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Remark 7. Assume that the estimation error converges so that |x0| ≤ 1.1ε holds. In
this case the Lyapunov function is given by

dV

dt
= −γ3κ0|x0|

1

2 − γα|x0| (γ − 1) (45)

which is negative semi-definite since γ ≥ 1 ∀t ≥ 0. It becomes evident that this adap-

tive gains differentiator is derived using a Lyapunov function assuming d2f
dt2

= 0. The
time-derivative of the Lyapunov function given in equation (45) is negative, however,
γ may be reduced such that inequality (32) is no longer satisfied. Consequently the
estimation error x0 will leave the boundary layer specified by |x0| ≤ 1.1ε and the
adaptation will start again by increasing the parameter γ.

4. Arbitrary-order robust exact differentiator - adaptive gains

The adaptive tuning procedure of the first-order robust exact differentiator will now be
generalized for arbitrary-order differentiators. An nth-order robust exact differentiator
determines the first n time-derivatives of a signal f(t) which satisfies

∣

∣

∣

∣

dn+1

dtn+1
f(t)

∣

∣

∣

∣

≤ L, (46)

where L again denotes the Lipschitz constant, however, in the general order case it
denotes the Lipschitz constant of the nth-time derivative. The implementation of the
non-recursive adaptive gain differentiator

dzi

dt
= zi+1 + κiγ

i+1 ⌊f − z0⌉
n−i

n+1 with zn+1 := 0 and i = 0, 1, . . . , n

(47)

and the definition of the errors xi :=
di

dti
f − zi yields the differential equations

dxk

dt
= xk+1 − κkγ

k+1 ⌊x0⌉
n−k

n+1 , k = 0, 1, . . . n− 1, (48a)

dxn

dt
=

dn+1

dtn+1
f − κnγ

n+1 sign(x0), (48b)

describing the estimation error dynamics. The constant tuning parameters are denoted
by κi and may be selected based on the ideas of Theorem 2.1. The time-varying
adaptation parameter γ will be governed by the adaptation law presented in equation
(37) and, in the case of a function f corrupted by noise, by equation (41) or equation
(42). Exploiting relation (12), the error dynamics from equations (48) represented as
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a pseudo linear system yield

dx

dt
=

















−κ0γ|x0|−
1

n+1 1 0 . . . 0

−κ1γ
2|x0|−

2

n+1 0 1
. . . 0

...
...

. . .
. . .

...

−κn−1γ
n|x0|−

n−1

n+1 0 0 . . . 1
−κnγ

n+1|x0|−1 0 0 . . . 0

















x+

















0
0
...
0
0
1

















dn+1

dtn+1
f (49)

=: M(x0, γ)x+ b
dn+1

dtn+1
f, (50)

where the errors xi were composed by the vector

x :=
[

x0 x1 . . . xn
]T

. (51)

The determinant of the matrix M can easily be computed and represented as

detM(x0, γ) = (−γ)n+1κn|x0|−1 =

n+1
∏

i=1

piγ|x0|−
1

n+1 . (52)

The characteristic polynomial of M is given by

∆(s) = sn+1 + κ0γ|x0|−
1

n+1 sn + κ1γ
2|x0|−

2

n+1 sn−1 + . . .+ κnγ
n+1|x0|−1 (53)

and the representation of the determinant of M in equation (52) motivates the struc-
ture of the eigenvalues of the matrix M as

λi(x0, γ) = γpi|x0|−
1

n+1 . (54)

Using these eigenvalues λi in the characteristic polynomial (53), i.e.

∆(λi(x0, γ)) = γn+1|x0|−1
(

pn+1
i + κ0p

n
i + κ1p

n−1
i + . . .+ κn

)

, (55)

it becomes evident that the eigenvalues are given by (54). The tuning parameters κi
of the differentiator are selected such that the polynomial

w̄(p) = pn+1 + κ0p
n + κ1p

n−1 + . . .+ κn (56)

is Hurwitz and consequently ∆(λi) = 0 holds. Furthermore, this tuning procedure im-
plies, that all eigenvalues λi are negative

1 and the matrix M is stable. The robustness
against the perturbation dn+1

dtn+1 f of an arbitrary-order differentiator is assumed to be
achieved by the same approach as discussed in Section 2 in the first-order case. Hence,
focusing on the (n+ 1)th differential equation describing the error dynamics, i.e.

dxn

dt
=

dn+1

dtn+1
f − κnγ

n+1 sign(x0), (57)

1Note that in this article complex roots are not considered.
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reveals a necessary condition for vanishing error variables given by

κnγ
n+1 > L. (58)

Note that this inequality requires that

∣

∣

∣

∣

∣

n+1
∏

i=1

piγ

∣

∣

∣

∣

∣

= γn+1

∣

∣

∣

∣

∣

n+1
∏

i=1

pi

∣

∣

∣

∣

∣

> L, (59)

see equation (52). Hence, in the case of convergent estimation error variables, the
absolute value of the product of the roots of the polynomial w̄(p) in combination with
the adaptation algorithm (37), (41) or (42) ensures that inequality (58) is satisfied
after an initial transient time.

Remark 8. The order of the adaptation law in the differentiator is independent of the
order of the differentiator; the order of the adaptation law is always 1. Implementation
of the proposed differentiator requires a constant gains differentiator implementation
to be augmented by the γ-dynamics. The existing parameters κi can remain.This is
in contrast to the scheme proposed in Sidhom et al. (2011), where each differentiator
parameter requires an additional differential equation in the adaptation scheme.

Remark 9. Note that in order to avoid overestimation of the gains, the adaptation
algorithm as given in equation (42) may also be implemented. This concept was realized
in the simulation scenario 3, see Section 5.3 where the performance of the proposed
strategy in the case of an input signal corrupted by noise is investigated.

4.1. A remark on the parameter tuning of arbitrary-order differentiators

with constant gains.

The arbitrary-order differentiator is now considered when the Lipschitz constant L

is known. This can provide the initial differentiator parameters κi required by the
proposed adaptive gain differentiator. In the case of known constant L, adaptation is
not required and γ can be assumed to be constant. Assume γ = 1. The non-recursive
differentiator becomes

dzi

dt
= zi+1 + κi ⌊f − z0⌉

n−i

n+1 and zn+1 := 0, (60)
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with the output ν = zn. Hence, the differentiator given in Levant (2003) is recovered.
The error dynamics is governed by

dx0

dt
= x1 − κ0 ⌊x0⌉

n

n+1 ,

dx1

dt
= x2 − κ1 ⌊x0⌉

n−1

n+1 ,

...

dxn

dt
=

dn+1f

dtn+1
− κn sign(x0),

(61)

This may be represented in the pseudo-linear representation given by equation (49),
i.e.

dx

dt
= M(x0, 1)x+ b

dn+1

dtn+1
f. (62)

The eigenvalues of the matrix M(x0, 1), which are given in equation (54), also may be
selected such that the polynomial w̄(p) given in equation (56) solely has negative real
roots, hence, the parameters κi are selected such that the matrix M(x0, 1) is stable.
It follows from (54) that

λi(x0, 1) < 0 ∀x0 (63)

and

lim
x0→0

|λi(x0, 1)| = ∞. (64)

From equation (62) it becomes evident that in this section also the pseudo-linear sys-
tem representation as used in Section 2 is exploited. As in the case of the differentiator
of first order (see Remark 2), the matrix M does not satisfy the smoothness condi-
tions required by the theorems presented by Langson and Alleyne (1999, 2002). Con-
sequently its application is not valid. Any parameter setting of the differentiator which

yields finite error convergence must satisfy κn > L, i.e. the inequality
∣

∣

∣

∏n+1
i=1 pi

∣

∣

∣
> L

holds, see equations (58) and (59). Hence, for the case of real roots pi and motivated
by the results of Section 2.1.1 the parameters κi of an nth-order differentiator with
constant gains may be tuned by the following paradigm:

(1) Select negative real roots pi such that

n+1
∏

i=1

|pi| = α > L. (65)

(2) Compute the parameters κi by equating the coefficients of the polynomial w̄(p),
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i.e.

pn+1 + κ0p
n + . . .+ κn =

n+1
∏

i=1

(s− pi). (66)

Whilst this paradigm is intuitive, there is currently no formal theoretical proof of
convergence for differentiators of the form (49) with the setting (65) and (66), where
system (49) is of order greater than 2. The obtained parameters can be applied to
generate the parameters κi of an adaptive gain differentiator as previously discussed.
It is desirable to generate small parameters κi, and in addition satisfy inequality (65).
For differentiators up to order six, possible parameters are listed in Table 1. Note that
currently no suggestions of convergent differentiator parameters for the case n > 5
are available. The parameters listed in Table 1 may be used as initial parameters to

Table 1.: Differentiator parameters up to order 6.

κ0 κ1 κ2 κ3 κ4 κ5 κ6

n = 1 2α
1

2 α

n = 2 3α
1

3 3α
2

3 α

n = 3 4α
1

4 6α
1

2 4α
3

4 α

n = 4 5α
1

5 10α
2

5 10α
3

5 5α
4

5 α

n = 5 6α
1

6 15α
1

3 20α
1

2 15α
2

3 6α
5

6 α

n = 6 7α
1

7 21α
2

7 35α
3

7 35α
4

7 21α
5

7 7α
6

7 α

perform a simulation based refinement. Alternatively, the Lyapunov function proposed
in Cruz-Zavala and Moreno (2016) can be used to justify an initial setting.

5. Simulation experiments

In this section, three simulation experiments are carried out. For comparison, a func-
tion already proposed in the literature is considered in Section 5.1. Section 5.2 inves-
tigates the performance using randomly generated input signals f . The input signals
have limited slew rate and it is demonstrated that the differentiator parameters have to
be adapted accordingly during simulation. In Section 5.3 the order of the differentiator
is increased such that the impact of noise is reduced.

5.1. Simulation scenario 1

Consider the function used in Levant (1998):

f(t) = sin(t) + 5t+ 0.001 cos(30t), (67)

The second derivative w.r.t. time t has a maximum value of 1.9 at t = 3π
2 . Hence,

according to equation (1) the Lipschitz constant L = 1.9. A RED with constant gains
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(b) Time behaviour of the adaptation parameter γ.

Figure 2.: Results of numerical simulation in order to compare the RED performance
achieved by a constant gain setting and an adaptive gain implementation.

κ1 = 1.5 and κ0 = 1.1 is implemented in Matlab/Simulink2. This parameter setting
corresponds to the roots p1,2 = −0.75 ± 0.7331j of the polynomial w̄(p) given in
Theorem (2.1) and represents the well-established setting e.g. discussed in Y. Shtessel
et al. (2014) for the case L = 1. Therefore, this implemented constant gains RED is not

robust against the uncertainty term d2f
dt2

in system (4) introduced by the considered
signal (67). This also becomes evident in the simulation results shown in Figure 2
where the zoomed subplot reveals time instants at which the error x1 can not be kept
at zero. The performance of an adaptive gains RED also is depicted in Figure 2. The
roots p1 and p2 are selected as used by the constant gains RED. In the adaptation
law (37) α = 0.9κ0 was used. In order to obtain robustness the adaptation algorithm
increases γ until x0 = 0 is maintained, see Figure 2(b).

5.2. Simulation scenario 2

Randomly generated signals f(t) with limited slew rate, see Figure 3(a), are considered.
A uniformly distributed random signal of maximum absolute value 0.001 was also
added to f(t) in order to evaluate the proposed adaptive gains differentiator in the
case of noisy input signals. The parameter setting of the differentiators was as in the
first simulation scenario, however, its initial values were selected randomly from the
interval (0, 10). The time response of γ is shown in Figure 3(c), where the adaptation
algorithm (42) with ε = 0.001 was implemented. Hence, γ is allowed to reduce. For
experiments carried out with the same slew rate limitation, γ converges towards a
similar range. The evolution of the estimation errors x0 is depicted in Figure 3(b) which
also includes zoomed plots indicating the achieved estimation accuracy. The depicted
plots in Figure 3 also show results obtained with an input signal which has half of the
slew rate as the other signals. It is interesting to see that this characteristic also can be
observed in the behaviour of γ which settles at about half the value when compared to
the other simulation experiments. Although not shown in the simulation results this
dependency also can be observed in general, i.e. the multiplicity of bandwidth of the
input signal is reflected in the “steady state value” of γ.

2A constant step size of 10−4s was used during the simulation studies presented in this article. The initial
values were selected as z0(0) = 5 and z1(0) = 0.72.
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(a) Randomly generated signals x(t) used to demonstrate the performance of the adaptive
gains RED.
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(c) Time behaviour of the adaptation parameter γ.

Figure 3.: Results of numerical simulation using randomly generated signals with lim-
ited slew rate. The estimation error x0 vanishes for any tested input signal, the adapted
parameter γ always converges towards a similar constant limit.

5.3. Simulation scenario 3

The input signal of the differentiator is assumed to be corrupted by noise of maximum
amplitude ε and

f(t) = sin(t) + η(t) with |η(t)| ≤ ε ∀t ≥ 0, (68)

hence a harmonic signal of frequency 1 rad
s is applied as base signal. The function η

representing the noise is implemented using a uniformly distributed random signal
with ε = 0.1. The parameter α was selected as in the previous simulation scenarios,
i.e. α = 0.9κ0. The adaptation algorithm as given in equation (42) was implemented
in Matlab/Simulink. It is well known that the impact of noise may be reduced by
increasing the order of the differentiator. In this simulation scenario, the first-time
derivative of the input signal f as given in equation (68) is computed by a first order
differentiator. Its parameters are computed according equation (18) using the roots
p1 = −1.1 and p2 = −1. The performance achieved by this RED is compared to an
estimate of an adaptive gains differentiator of order 4. The constant parameters κ0,
κ1, κ2, κ3 and κ4 are determined using the roots p1 = −1.1 and p2,3,4,5 = −1 of the
polynomial w̄(p) given in equation (56). Figure 4(a) shows the input signal f of the
differentiators which is heavily affected by noise after 10 seconds. The error signals x0
are plotted in Figure 4(b). Therein, it becomes evident that in case of the input signal
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(a) Input signal f given in equation (68). Noise of
maximum amplitude ε = 0.1 is added to the base
signal sin(t) after 10 seconds.
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(b) Evolution of the estimation error x0 of a first and
a fourth order adaptive gains differentiator.
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(c) Evolution of the adaptation parameter γ of gener-
ated by the first and the fourth order adaptive gains
differentiator.

Figure 4.: Simulation results demonstrating the performance of higher-order differen-
tiators in the presence of noisy input signals.

corrupted by noise, the maximum absolute value of the estimation error produced by
the fourth order differentiator is less than that generated by the RED. The evolution
of the adaptation parameter γ of both differentiators is shown in Figure 4(c). This
simulation scenario is also used to compare the performance of the proposed adaptive
gains algorithm with the existing algorithm discussed in Y. Shtessel et al. (2012). In
this case, the adaptation law

dκ0

dt
=

{

µ1 sign(|f − z0| − µ2), if κ0 > µ4,

µ3, if κ0 ≤ µ4,
(69a)

κ1 = µ5κ0, (69b)

with the positive constants µ1, µ2, µ3, µ4 and µ5 is implemented. Hence, there are five
parameters which have to be selected in order to adapt the two controller gains κ0
and κ1 of the differentiator. The parameter µ2 is selected as 1.1ε which corresponds to
the selection given in the adaptation algorithm (42). The parameter µ3 indicates how
fast the parameter κ0 is increased if it shows its minimum value µ4. The impact of
the selected value of the parameter µ3 to the overall dynamics seems not to be crucial
and is selected as µ3 = 1. The parameters κ0 and κ1 are increased if |f − z0| > µ2.
The parameter µ1, which is selected as 5.5, determines how fast this adaptation takes
place. This also is the rate used to reduce the parameters in the case |f−z0| < µ2. The
parameter µ4 may be regarded as a minimum gain of the differentiator. A “huge” value
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(c) Results obtained with µ4 = 0.75.
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Figure 5.: Comparison of the robust exact differentiators with adaptive gains.

of µ4 yields high gains κ0 and κ1 and consequently there will be no adaptation required.
Greater adaptation effort is required as the parameter µ4 is reduced. This, however,
impacts on the estimation accuracy. The discussed behaviour is illustrated in Figure 5
where three simulation results are shown. The parameter setting µ4 = 0.25, µ4 = 0.75
and µ = 1.25 is used to obtain the results depicted in Figure 5(a) and 5(b), Figure 5(c)
and 5(d) and Figure 5(e) and 5(f) respectively. The evolution of the estimation error
x0 obtained by the application of the proposed adaptation algorithm is shown in the
upper plot in Figure 4(b).

6. Case study: Magnetic Levitation System

This section applies the adaptive gains differentiator to a magnetic levitation labora-
tory setup depicted in Figures 6(a) and 6(b). In Section 6.1 a brief system description
and a dynamic model are given. A control law stabilizing the levitated ball is outlined
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(a) Foto of the levitating ball system used for exper-
iments.

(b) Schematic diagram of the setup.

Figure 6.: Photo and schematics of the laboratory magnetic levitated ball system.

in Section 6.2. The differentiator implementation is presented in Section 6.3. Results
obtained from real world experiments are shown in Section 6.4.

6.1. System description and modeling

An electric current through the coil generates a magnetic field. The objective is to
adjust this current such that the ball is levitated at a desired constant position r. It
is well known that the dynamics can be modelled by

dxb

dt
= xv, (70a)

dxv

dt
= g − c

2m

i2

x2b
, (70b)

di

dt
= − R

L0
i+

c

L0

xvi

x2b
+

1

L0
u, (70c)

where xb, xv and i represent the distance between ball and coil, see Figure 6(b), the
velocity of the ball and the electric current respectively. The electrical circuit consists
of an ideal resistor (with resistance R), the coil (with inductance L0) and a voltage
source representing the system’s input u. The acceleration of gravity is denoted by g,
the mass of the ball is labelled as m and c is a positive constant related to the force
acting on the ball due to the magnetic field3. The laboratory setup used in this paper
provides measurements of the ball position xb and the current i. The parameters of
the laboratory setup are listed in Table 2.

6.2. Design of a simple control law

Although many sophisticated control techniques ensuring satisfactory tracking perfor-
mance of the ball position are available a simple approach is implemented. A constant

3The dependency of the inductance L on the ball position x1 is neglected in this model.
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Table 2.: Parameters of the magnetic levitation system

parameter value unit

g 9.81 m/s2

m 6.687 · 10−3 kg
c 1.05 · 10−4 Hm
R 18 Ω
L0 0.95 H

Figure 7.: Schematic diagram of the applied ball position control loop.

reference position r corresponds to the desired equilibrium point

xe =
[

r 0 r

√

2mg
c

]T
, (71)

characterized by the constant input u = ue = R

√

2mg
c

r, see system (70), which will be

stabilized by a linear state controller. Denoting deviations from the desired equilibrium
xe by z and deviations from the constant input ue by w, i.e.

x = xe + z and u = ue + w (72)

a linear, time-invariant model approximating the the behavior of system (70) suffi-
ciently close to the desired equilibrium xe is given by

dz

dt
=







0 1 0

2 g
r

0 − c
√

2 g m

c

mr

0
c
√

2 g m

c

r L
−R

L






z+





0
0
1
L



w. (73)

The control law is executed at a constant sampling period of τ = 2ms. Therefore a
linear, discrete-time state controller, which is based on a discretized version of system
(73) is computed. It is designed such that all eigenvalues of the discrete-time closed-
loop system are located at 0.89. A linear full-state discrete-time Luenberger observer
based on the measured ball position is used to estimate the unmeasured ball velocity
xv and the current i for use by the controller. In order to deviate the ball position
from its desired value r an additive reference signal ∆r is considered as additional
input which is weighted by the constant V , see Fig 7.
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6.3. Discrete-time Implementation of the adaptive gains differentiator

The proposed adaptive gains differentiator is implemented in a discrete-time environ-
ment executed with a constant sampling time τ . A continuous-time differentiator as
given in equation (47) in the case of constant gains, i.e. γ = 1, may be implemented
in a discrete-time environment as

zi,k+1 = zi,k + τκi ⌊x0,k⌉
n−i

n+1 +

n−i
∑

j=1

τ j

j!
zj+i,k,

zn,k+1 = zn,k + τκn sign(x0,k),

(74)

which is proposed in Livne and Levant (2014). The idea of the applied discretization
scheme is to preserve homogeneity properties of the continuous-time differentiation
error dynamics Levant (2005). In this representation of the differentiator the notation
zi,k := zi(kτ), zi,k+1 := zi((k + 1)τ) and k = 0, 1, 2 . . . is used. A straightforward
application of the mentioned discretization approach in the case of the adaptive gains
differentiator given in (47) is given by

zi,k+1 = zi,k + τγi+1
k κi ⌊x0,k⌉

n−i

n+1 +

n−i
∑

j=1

τ j

j!
zj+i,k,

zn,k+1 = zn,k + τγn+1
k κn sign(x0,k),

(75)

where γk denotes γ(kτ) and results from

γk+1 = γk +
α τ

2
γk







|x0,k|−
1

2 for |x0,k| ≥ 1
|x0,k| for |x0,k| < 1
1
γk

− 1 for |x0,k| < 1.1ε
with γ0 = 1, (76)

which is a discrete-time realization of (42) based on Euler discretization.

6.4. Experimental results

A 4th order adaptive gains differentiator as given by equations (75) and (76) was
implemented. Note that this implementation is not part of the closed-loop control
system. The sampling time was τ = 0.002 seconds. The implemented differentiator is
tuned such that the roots are located at

p1,2 = −0.25 and p3,4,5 = −0.5, (77)

which yields parameters

κ0 = 2, κ1 = 1.6, κ2 = 0.59, κ3 = 0.11, κ4 = 0.0078. (78)

These parameters are chosen such that the estimation errors of a constant gains dif-
ferentiator will not vanish, hence, adaptation is required in order to ensure estimation
accuracy. The adaptation parameter α was selected as α = 0.9κ0 and ε was selected
as 0.00001. Experimentally obtained results are shown in Figure 8. The measured ball
position is plotted in Figure 8(a). In addition the outputs z0 of a constant gains and
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Figure 8.: Experimental results achieved with the magnetic levitated ball system de-
picted in Figure 6.

an adaptive gains differentiator using the parameters as listed in equation (78) are
shown. It becomes evident that this differentiator gains are tuned such that the error
x0 does not vanish if no adaptation is implemented. The time evolution of the tuning
parameter γ is depicted in Figure 8(c), the estimation error x0 of the adaptive gains
differentiator is shown in Figure 8(b). The parameter γ is increased initially and starts
to oscillate at around 3.5 after achieving its resulting estimation accuracy. The esti-
mation of the current i is depicted in Figure 8(d), where the estimate obtained by the
adaptive gains differentiator is based on the re-arranged equation (70b), i.e.

î =

[

2m

c
z20

(

g − dz1

dt

)]
1

2

, (79)

where z0 and z1 where used as the estimate of the ball position xb and velocity xv re-
spectively. Note that even the time derivative of the estimated ball velocity is required
to compute the estimated current. This current estimate is compared to the estimation
using the Luenberger observer and to the measured current, see Figure 8(d).

7. Conclusion

A new parameter tuning method for the first order robust exact differentiator has
been established. By employing a pseudo-linear system perspective in the analysis, it
has been possible to establish a general tuning heuristic to determine parameters for
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arbitrary order differentiators. The method has been seen to lend itself to parameter
adaptation. Both simulation experiments and a practical implementation case study
have been used to demonstrate the paradigm. The method has great potential to
bridge the gap between theory and practice by ensuring the gains of the differentiator
are constantly adjusting to the characteristics of the signal to be differentiated.
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8. Appendices

Proof of Theorem 2.1

The eigenvalues of matrix M(x0) are given in equation (16). Whenever p1 and p2
are selected such that p2 + κ0p + κ1 is a Hurwitz-polynomial, the eigenvalues satisfy
ℜ{sk} < 0 ∀x0(t) k = 1, 2. Consider the Lyapunov function

V (x0, x1) = p21
1

s21(x0)
+

1

2p1p2
x21. (80)

Its positive definiteness is ensured by p1p2 > 0, where the product p1p2 ∈ R, and
the relation p21

1
s21(x0)

= p21
1

p2
1|x0|−1 = |x0|. Computing the time derivative of V given in

equation (80) along the trajectories of system (13) yields

dV

dt
=

(

1 +
p2

p1

)

|x0|s1(x0), (81)

where s21x0 = p21|x0|−1x0 = p21 sign(x0) was exploited. Note that equation (81) is

always real since
(

1 + p2

p1

)

s1(x0) = −κ0|x0|−
1

2 , where equation (18) is used, holds and

consequently dV
dt

≤ 0. From equation (16) negativeness of ℜ{p1} and ℜ{p2} ensure
negative definiteness of the time-derivative of the Laypunov function. This motivates
using the roots p1 and p2 for parameter tuning of the RED. The presented Lyapunov
function is taken form Orlov et al. (2011). Applying the ideas of the extended invariance
principle as outlined in Orlov (2009) ensures that the origin of system (13) in the
unperturbed case is globally asymptotically stable. The finite convergence time from
any bounded initial values x0(0) and x1(0) is guaranteed by the homogeneity properties
of the system as in Levant (2005).
Proof of Theorem 2.2

Exploit the bounded real lemma which states that the statements 1. ||G(s)||∞ < 1
L

and 2. LMI (9) is feasible, where G(s) = cT (sI−A)−1
b, are equivalent, see Boyd,

El Ghaoui, Feron, and Balakrishnan (1994). Using (10) yields

||G(s)||∞ =

{

1
κ1

for κ20 ≥ 4κ1
4

κ0

√
8κ1−κ2

0

else. (82)

With the parameter selections κ0 and κ1 in the theorem, ||G(s)||∞ = 1
κ1

and from

κ1 > L, ||G(s)||∞ = 1
κ1

< 1
L
and consequently a feasible solution of the LMI (9) with

some P > 0 exists. LMI (9) is the result using

V (x0, x1) =
[

⌊x0⌉
1

2 x1

]

P

[

⌊x0⌉
1

2

x1

]

=: ξTPξ (83)
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as Lyapunov-function candidate4, see J. Moreno and Osorio (2012); J. A. Moreno
(2012). This can be shown from

dξ

dt
=

1

2
|x0|−

1

2

[

Aξ +∆(x0, f̈)b
]

, (84)

where the functions

∆(x0, f̈) := −2 |x0|
1

2

d2f

dt2
and f̈ := f (2) =

d2f

dt2
(85)

are introduced. The information on f given by (1) yields
(

2 |x0|
1

2

)2 (
d2f
dt2

)2
≤

(

2 |x0|
1

2

)2
L2 which may be combined with (85) to give

(

⌊x0⌉
1

2

)2
L2 −∆2(x0, f̈) ≥ 0. (86)

Inequality (86) with n :=
[

0 0
]T

may be written as

[

ξT ∆
]

[

cL2cT n

0 −1

] [

ξ

∆

]

≥ 0, (87)

Introducing the scaling

1

|x0|
1

2

[

ξT ∆
]

[

ccT n2×1

0 −1

] [

ξ

∆

]

≥ 0 (88)

and combining with the time derivative of the Lyapunov function V along the trajec-
tories of system (4) yields

dV

dt
≤ 1

2 |x0|
1

2

[

ξT ∆
]

[

ATP+PA+ cL2cT Pb

bTP −1

] [

ξ

∆

]

, (89)

Whenever the matrix inequality (9) has a feasible solution, the time derivative of
the Lyapunov function V in (89) is negative definite. Applying the quasihomogeneity
principle from Orlov (2009), system (4) is homogeneous of degree −1 w.r.t. the ho-
mogeneity dilation δε : (x0, x1) 7→

(

ε2x0, εx1
)

and parameter ε > 0, the origin of the
system (4) is globally finite-time stable.
Proof of Theorem 2.3

Select κ1 = γL with γ > 1 to ensure the desired equilibrium point at x0 = x1 = 0.
Using inequality (23)

κ40 − 8γLκ20 + 16L2 < 0

κ0 is selected such that the above holds. Using κ40 − 8γLκ20 + 16L2 = 0 yields

κ0 = 2
√
L

√

γ −
√

γ2 − 1 (90)

4This Lyapunov-function does not satisfy the properties typically required of Lyapunov-functions. A detailed
discussion of this is presented in J. Moreno and Osorio (2012) and references therein.
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These results determine an interval for the selection of κ0 such that the roots p1 and
p2 are complex and in addition inequality (23) is satisfied. The parameter κ0 has to

be selected as κ0 < 2
√
κ1 so that the roots are complex and κ0 > 2

√
L

√

γ −
√

γ2 − 1.

The result follows directly.
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