
An architectural approach for digital factories
(Extended abstract)⋆

Nicola Bicocchi1, Giacomo Cabri1, Francesco Leotta2,
Federica Mandreoli1, Massimo Mecella2, and Francesco Sapio2

1 Università degli Studi di Modena e Reggio Emilia, Italy
2 Sapienza Università di Roma, Italy

Abstract. Digital factories comprise a multi-layered integration of vari-
ous activities along the factories and product life-cycles. A central aspect
of a digital factory is that of enabling the product lifecycle stakeholders
to collaborate through the use of software solutions. The digital factory
expands outside the company boundaries and allows to collaborate on
business processes over the whole supply chain. This extended abstract,
based on a recently published paper, discusses an interoperability archi-
tecture for digital factories. It analyses the key requirements for enabling
a scalable factory architecture characterized by access to services, aggre-
gation of data, and orchestration of production processes.

Keywords: digital factories · data sharing and interoperability · service
oriented architectures · dynamic supply chains

1 Introduction

Production processes are fragmented across different companies and organised
in global multi-tier supply chains. This is the result of the first wave of globali-
sation, which was partly enabled by the diffusion of Internet-based Information
and Communication Technologies (ICTs)in the early 2000s. A recent wave in
technology, has led to the fourth industrial revolution - or Industry 4.0, whose
goal is to increase opportunities for firms, including small and medium enter-
prises (SMEs) by being able to access global customers. However, this requires
the ability to adapt to different requirements and conditions, volatile demand
patterns, and fast changing technologies. Therefore, supply chains need to in-
crease their agility by adapting to evolving and uncertain business contexts.

⋆ This paper is based on Nicola Bicocchi, Giacomo Cabri, Federica Mandreoli,
Massimo Mecella (2019): Dynamic digital factories for agile supply chains:
An architectural approach. Journal of Industrial Information Integration, DOI:
https://doi.org/10.1016/j.jii.2019.02.001. The work has been partly supported by
the European Commission through the H2020 project FIRST – virtual Factories:
Interoperation suppoRting buSiness innovaTion (grant agreement # 734599).
Copyright c© 2019 for the individual papers by the papers’ authors. Copying per-
mitted for private and academic purposes. This volume is published and copyrighted
by its editors. SEBD 2019, June 16-19, 2019, Castiglione della Pescaia, Italy.



Fig. 1: Our RAMI-based architectural framework

Digital factory is a key paradigm to this end because it uses digital tech-
nologies to promote the integration of product design processes, manufacturing
processes, and general collaborative business processes across factories and enter-
prises [2, 6]. An important aspect of this integration is to ensure interoperability
between machines, products, processes, and services, as well as any descriptions
of those. As a result, a digital factory consists of a multi-layered integration of the
information related to various activities along the factory and related resources.

The main contribution of this paper is to provide methodological and tech-
nological support to agile supply chains in the Industry 4.0 context. It sets forth
an architectural framework that the leverages Reference Architectural Model In-
dustrie - RAMI 4.0 [7] and addresses the methodological issue of making RAMI
4.0 capable of enabling agility in supply chains. To address this aim, we propose
an architectural framework that enables interoperability via a three-layered ar-
chitecture where business processes and goal descriptions trigger the discovery of
the needed services and data, and their composition in a dynamic, autonomous
and adaptive fashion. Lastly, the rest of the paper is organised as follows: Section
2 presents the RAMI 4.0-based architectural framework, and Section 3 concludes
the paper and discusses future work.

2 Enabling interoperability

The approach undertaken in this work is based on RAMI 4.0. RAMI is a lay-
ered reference architectural framework in the manufacturing industry domain
developed in Germany by leveraging EU initiatives and guidelines 3.

RAMI 4.0 consists of six different layers. As shown in Fig. 1, we propose a cor-
respondence between these layers and established technologies, i.e., polystores,
dynamic services and multi-party agile processes.

According to RAMI 4.0, data is the bridge towards digitalization and is
described in the integration, communication and information layers. In global
multi-tier supply chains, data characteristics are: largeness, distribution, and

3 See https://ec.europa.eu/futurium/en/system/files/ged/

a2-schweichhart-reference_architectural_model_industrie_4.0_rami_4.

0.pdf



heterogeneity. For instance, machines equipped with IoT sensors continuously
produce data streams, Online transaction processing - OLTP data are available
in DBMSs, Online analytical processing - OLAP data are available in data ware-
houses, digital manuals are stored in repositories, and so on. To deal with these
information, data sources are organised as a dataspace where they can communi-
cate through mappings. The dataspace adhere to the polystore model supporting
dynamic configurations (i.e., data sources going in and out the system).

At the functional level, different kinds of services are provided to get informa-
tion and to perform actions on the manufacturing parts of system (e.g., produc-
ing and assembling machines) as well as to enable interoperability with different
actors of the supply chain (e.g., order management, warehouse management).
Open APIs are exposed by services to control, discover, and compose them in a
dynamic way. Rich semantic descriptions of the services should be available to
support both the discovery of the services and their execution/invocation. This
service layer allows to achieve higher-level goals defined at the business level.

At the business level, business process specifications need to capture not only
orchestrated processes but also choreographed processes across different organi-
zations, as a supply chain definition requires. By defining several goals, with
different degrees of completeness, the business process model is able to support
a resilient and responsive environment, as the involved parties can tune their
efforts to reach one of the goals, that is not necessarily the best one. Decisions
on the goal to be achieved are driven by the available data [4].

In order to describe our approach we refer to the following scenario.
MyMuffin is a (fictitious) company operating within the EU producing

muffins and is expanding its business to allow customers to buy muffins online
(in boxes of 4). Clients can customise their muffins by choosing among different
combinations of ingredients (e.g., chocolate chips), toppings (icing sugar), and
additions to the dough (e.g., honey, yoghurt). The client can also customise the
colors of the muffin liners (e.g., pink, yellow) as well as the colors of the box.
The muffins are then delivered to a specified location.4

The muffin factory collects orders and organises batches of muffin doughs for
production. For example, if a client orders 3 boxes of carrot muffins with yoghurt,
icing sugar on top, and pink baking paper, whereas another client orders 2 boxes
of carrot muffins with yoghurt, nothing on top, and yellow baking paper, the
same dough can be used for both orders. Once an order is received, the muffin
liners are set-up as in parallel to the dough preparation. In addition, a QR-code
is printed on the baking paper to serve as a unique identifier for a specific order.
After the dough has been prepared, the muffins are placed in muffin liners and
sent to the oven (connected to a QR code reader) for cooking. Muffins are cooked
in batches of 1000 muffins. Once the muffins are cooked, toppings are placed,
the cart is operated to route the different muffins to the right boxes where they
are then ready for delivery. Considering the steps involved here, agility is needed
during each stage of process, (e.g., the baking step may overcook some muffins,
which therefore are not ready for delivery and should be prepared again).

4 MyMuffin is a fantasy company, but there are real successful examples of mass
customization applied to food likewise Mymuesli, a German company - https://

en.wikipedia.org/wiki/Mymuesli.



Fig. 2: The BPMN diagram describing the MyMuffin process.

Fig. 3: A fragment of the adapted process.

2.1 Process space layer - goal-oriented process specification

The top layer of the proposed architecture deals with the goals and the pro-
cesses able to achieve such goals. Figure 2 shows the process behind MyMuffin
represented using Business Process Model and Notation (BPMN) 5.

In the MyMuffin example, some goals of the process may be:

[G1] for each order, evade it within 36 hours;

[G2] for each order, the final delivery to the customer should be within 72 hours.

5 See http://www.bpmn.org/



The MyMuffin company adopts a process in which sub-goals might have been
defined for specific parts (i.e., goals can in turn be decomposed in sub-goals),
e.g., to achieve G1, it should be [G1.1] muffins should not be overcooked.

Notably, MyMuffin would like to define, on the basis of such goals, specific
KPIs (Key Performance Indicators) that are defined over many aspects (e.g.,
interactions with external companies being part of the process, maintain a total
of less than 24 hours from pick-up to delivery of orders, and to keep a KPI of
95% respected over the week). We can imagine that in a given day, some muffins
get overcooked due to an error in the oven. This means that the goal [G1.1] is
not achieved. Through automated planning techniques, like the one adopted in
SmartPM [5], the process can be modified. In particular, as shown in Figure 3,
after the original activities Prepare muffin(s) and Cook muffin(s), new activities
are introduced, to Select alternative cooking service, as a local bakery nearby
MyMuffin that offers the availability of the oven; then, analogously to the original
process, Prepare dough and Prepare cooking paper are performed, the muffins are
moved and finally are received freshly cooked (see Move muffin(s) and Receive
freshly cooked muffin(s) tasks). Finally, the process continues as the original one.
Notably, this is only one of the possible adaptations.

2.2 Service space layer - service discovery and composition

Starting from the goals and processes defined in the process layer, services must
be dynamically composed to achieve goal(s). In our example, we have differ-
ent machines that can expose operations such as setting/increasing/decreasing
the oven temperature, starting/stopping the dough mixer and providing related
data by means of OpenAPIs. Rich semantic descriptions of the services should
be available to support both discovery and service execution. The descriptions
should include keywords identifying the context of the service (e.g., “food”,
“cooking”), the equipment (e.g., “oven”, “mixer”), the operation (e.g., “turn-
on”, “speedup”), and the parameters (e.g., “temperature”, “speed”).

In regards to the discovery phase, semantic descriptions are exploited to
search for specific services without knowing their exact names and their syntax
a priori. Semantic techniques can be exploited to find synonyms and keywords
related to the words searched for in this phase. Searches can be performed either
automatically by the process layer or by human operators which may be involved
when needed (such as the adaptation techniques realised in the process layer fail,
and a human intervention is needed to make the process progress).

Semantic descriptions can be used in the composition phase as well. Being the
composition dynamic, the platform must not only find, but also use, the needed
service or eventually provide support to human operators. To this purpose, the
description of the service parameters is needed to exploit the functionalities of
the data layer to adapt the client service invocation to the server syntax. Some
proposals and examples of semantic service descriptions are proposed in [1].

As an example, consider a scenario where the oven does not reach the required
temperature due to different reasons (e.g., a cold winter day, bad isolation, bro-
ken door). The oven service provides the slowdown():delay operation, which
outputs the delay in percentage (see Fig. 4a); for instance, if the oven was ex-
pected to reach the correct temperature in 30 minutes, but it actually needs 45



(a) Adapting to oven performance (b) Adapting to overcooked muffins

Fig. 4: Service composition.

minutes, a delay of 33% is returned. The operation is then composed with all
the services available for reducing the speed of the machines.

As a second example, consider the case where some muffins are overcooked
(see Fig. 4b). In this case, the shipping courier must be notified to modify the
shipment, and a new set of muffins must be produced starting from the list
of ingredients. To this aim, the overcook():(QRCode,type,num) overation is
available and can be activated either by a monitoring facilities or by human
intervention. This operation outputs the type type and number num of the over-
cooked muffins and the corresponding order (identified by its QRCode), and can be
composed with two discovered services: one interacting with the shipping courier
(i.e., shipment(URL) with the courier service as input) and one activating the
dosing machine (i.e., dosing machine(setOfIngredients,setOfQuantities)
with ingredients and quantities as input). Essentially, the composition connects
the discovered services by making explicit the relationships between the involved
service parameters. ?x, ?y, ?z, ?h are variables and the corresponding values
must be discovered in the data space as they represent the input to the two
services for shipment and the dosing machine.

2.3 Data space layer - service-oriented mapping discovery

Data are managed and accessed in a data space. The data space must be able
to deal with a huge volume of heterogeneous data from autonomous sources and
support the different information access needs of the service level. In particular, a
large variety of data types should be managed at the data space level. Data can be
static such as those available in traditional DBMSs but also highly dynamic like
sensor data. Moreover, the data space should accommodate data with different
degrees of structure, from tabular to fully textual data. Finally, the data space
should cope with the very diversified data access modalities sources offer, from
low level streaming access to high level data analytics.

To this extent, the data space is a collection of heterogeneous data sources
that can be involved in the processes, both in-factory and out-factory, and that
can exchange data through mappings, i.e. declarative specifications describing
the relationship between a target data instance and possibly more than one
source data instances. Each data source has its data access model that describes
the kind of managed data, e.g., streaming data vs. static data, and the supported
operators. As an example, Fig. 5a shows a small portion of the MyMuffin data
space that can be used in case of overcooking where data are modelled as triples.
Batches is a data stream that reports the cooking status over time; Orders is the



(a) An excerpt of the MyMuffin data space.

(b) Mapping discovery process

Fig. 5: The data space.

set of records storing the orders made by clients online and the corresponding
QR-codes; Recipes is a semi-structured data set recording the recipes of the
different kinds of muffins; Yellow pages is a web-based data source about the
couriers and the related Web services.

In this large scale deeply heterogeneous and dynamic integration scenario,
unlike traditional approaches, mappings are interactively created and refined
according to the needs of service flows and the exclusive role of mappings is to
contribute to execute service compositions [3]. Hence, we start from a chain of
services with their information needs expressed as inputs and outputs that we
attempt to satisfy in the dataspace. For instance the data flow of Fig. 4b indicates
that from each QRCode returned by the overcook service, (i) it should be derived
the Web service to interact with the delivery agent/courier, whereas (ii) from
the type of the overcooked muffin it should be derived the list of ingredients
together with the required quantities as input to the dosing machine. Therefore,
mapping discovery leads to two mappings whose targets are (QRCode, call,
?z) and (type, has ingredient, ?h), (?h, name, ?x), (?h, qty, num*?y).
A plausible output to the mapping discovery for the second mapping is shown in



Fig. 5b. This mapping involves the Recipes data source, only, and provides all
the ingredients of the recipe of the type of the given overcooked muffins. If some
muffins of type type 1 are overcooked then ?k = type 1 and the inputs to the
dosing machine will be (yoghurt,75gr), (blueberry,30gr), (egg,2), etc.

3 Conclusion

In this paper, we have outlined an architectural framework for RAMI 4.0-based
digital factories. The framework supports agile supply-chains through innovative
technological approaches aiming at the dynamic discovery of service and data
flows that best fit the requirements expressed in business process specifications
and their evolution. The proposed approach relies on a three-level architecture
whose aims are to enable the interoperability among the different parts of the real
factory and to ease the involvement of humans in the agile management of factory
processes. Moreover, the proposed approach leverages the interactions with other
actors of the supply chain, making them easier and overcoming the obstacles
deriving from the possible different data formats and process management.

Our future work and next steps will mainly consist in the implementation of
the proposed architectural framework and proof-of-concept of such an architec-
ture, to be validated in agile supply-chain application scenarios.

Finally, we would like to remark the impact of our research. At the business
level, the potential impact of our research can facilitate the information exchange
and ability for companies to increase their agility by adapting to changes occur-
ring in the supply chains. As a result, they can offer more customised products
and services to the customer. Moreover, agility considers security flaws among
the potential risks against which supply chains need to be responsive. Therefore,
the adoption of the proposed solution has a fundamental value today as security
and privacy of data are one of the most important issues for the public.

References

1. G. Castelli, M. Mamei, A. Rosi, and F. Zambonelli. Engineering pervasive service
ecosystems: The sapere approach. ACM Trans. Auton. Adapt. Syst., 10(1).

2. N. Chungoora, R. I. Young, G. Gunendran, C. Palmer, Z. Usman, N. A. Anjum, A.-
F. Cutting-Decelle, J. A. Harding, and K. Case. A model-driven ontology approach
for manufacturing system interoperability and knowledge sharing. Computers in

Industry, 64(4):392–401, 2013.
3. F. Mandreoli. A framework for user-driven mapping discovery in rich spaces of

heterogeneous data. In OTM Conf., pages 399–417, 2017.
4. A. Marrella, M. Mecella, B. Pernici, and P. Plebani. A design-time data-centric ma-

turity model for assessing resilience in multi-party business processes. Information

Systems, 2018.
5. A. Marrella, M. Mecella, and S. Sardiña. Supporting adaptiveness of cyber-physical

processes through action-based formalisms. AI Commun., 31(1):47–74, 2018.
6. M. P. Papazoglou. Smart connected digital factories - unleashing the power of

industry 4.0 and the industrial internet. In Proc. of CLOSER, pages 260–271, 2018.
7. F. Zezulka, P. Marcon, I. Vesely, and O. Sajdl. Industry 4.0–an introduction in the

phenomenon. IFAC-PapersOnLine, 49(25):8–12, 2016.


