An Architectural Approach to Autonomic Computing

CBSS Course Presentation Provided by: Sepinood H. Gashti July 2005

References

- Steve R. White, James E. Hanson, Ian Whalley, David M. Chess, and Jeffrey O. Kephart. An Architectural Approach to Autonomic computing, IBM Thomas J. Watson Research Center, ICAC'04.
- An Architectural blueprint for autonomic computing, IBM 2004.
- Architectural blueprint for autonomic computing, IBM 2003
- David M. Chess, Alla Segal, Ian Whalley, Steve R. White. Unity:
 Experiences with a Prototype Autonomic Computing System, IBM Thomas J. Watson Research Center, ICAC'04.
- Mazeiar Salehie, Ladan Tahvildari. Autonomic Computing: Emerging Trends and Open Problems, Dept.of Elect.Comp.Eng,University of Waterloo, DEAS'05.
- Shang-Wen Cheng, An-Cheng Huang, David Garlan, Bradley Schmerl, Peter Steenkiste.An Architecture for Coordinating Multiple Self-Management System, School of Computer Science, Carnegie Mellon University, WICSA'04.

Outline

- Introduction
- Autonomic Computing
- Autonomic System Architecture
 - Autonomic Element
 - Interaction
 - Infrastructure Elements
- Common Design Patterns
- Related Works
- Summary

July 28, 2005

Sepinood H. Gashti

3

Introduction

- Management problems
 - Cost & time for administration and troubleshooting
 - Complexity crisis
- Self-managing system
 - Behaviour specified by sys admins via high-level policies
 - System and its components figure out how to carry out policies

Autonomic Computing

- A computing system that senses its operating environment, models its behaviour in that environment, and takes action to change the environment or its behaviour.
- A Self-managing autonomic system has the properties of self-configuring, self-healing, self-optimization and self-protection. (self-CHOP)
- Inspired from autonomous behaviour of the human body

July 28, 2005 Sepinood H. Gashti 5

Self-CHOP

Reference Architecture

Source: Architectural blueprint 2004, IBM

Q - Intelligent Control Loop

July 28, 2005

Sepinood H. Gashti

7

Autonomic System Architecture

- Autonomic element
- External interfaces and behaviour for individual component
- Interaction among components

Autonomic Systems

How to build a system with autonomic behaviour?

- A collection of autonomic elements that implement the desired function.
- Additional autonomic elements to implement system functions that enable the needed system level behaviours.
- 3. Design patterns for system self-CHOP.

July 28, 2005

Sepinood H. Gashti

9

policy

Autonomic Element (AE)

- AEs are responsible for:
 - Managing their own behavior
 - Interacting with other autonomic elements
- AEs contain:
 - one autonomic manager
 - Zero or more managed element (s)

Managed Elements

Controlled through its sensors and effectors by manager

July 28, 2005 Sepinood H. Gashti 11

Autonomic Manager

A component that implements the control loop

Knowledge

- Knowledge Types
 - Solution Topology Knowledge
 - Problem Determination Knowledge
 - Policy Knowledge
- Two Mechanisms to obtain knowledge
 - □ Effector Interface
 - Monitor Part

July 28, 2005

Sepinood H. Gashti

13

14

Policy

- Policy
 - □ Action policy: If (Condition) THEN (Action)
 - □ Goal policy: direction
 - Utility function policy: Priority

Interaction Between Components

- Interfaces
 - Monitoring and testing interfaces
 - Lifecycle interfaces
 - Policy interfaces
 - Negotiation interfaces

July 28, 2005 Sepinood H. Gashti 15

Infrastructure Elements

Assist other element in doing their tasks

- Sentinel
- Aggregator
- Broker
- Negotiator

July 28, 2005 Sepinood H. Gashti 16

Design Patterns

- Self-Configuring
 - Goal driven self-Assembly
 - Initialization
 - Registration
- Self-Healing
 - Self-regenerating cluster
 - Required interfaces
 - Sending state
 - Receiving state,
 - Querying planned outage (Availability management)
 - Scheduling planned outages (Availability management)

July 28, 2005

Sepinood H. Gashti

17

Design Patterns (2)

- Self-optimization
 - Market-based control (buyer &seller)
 - Resource arbiter
 - Required interfaces
 - Query service
 - Query service level bounds
 - Requesting a service level
- Self-Protecting
 - Some aspects are similar to self-healing
 - Prevention: Policy-based management
 - Security policy

Related Works

- Shang-Wen Cheng, An-Cheng Huang, David Garlan, Bradley Schmerl, Peter Steenkiste. An Architecture for Coordinating Multiple Self-Management System, Carnegie Mellon University, WICSA'04.
- Dharini Balasubramaniam, Ron Morrison, Graham Kirby, Kath Mickan, Brian Warboys, Ian Robertson, Bob Snowdon,R Mark. A Software Architecture Approach for Structuring Autonomic Systems, University of Manchester, DEAS 2005.
- Richard Anthony, Alun Butler, Mohammad Ibrahim. Layered Autonomic Systems, University of Greenwich, ICAC'05

July 28, 2005 Sepinood H. Gashti

19

Summary

- Needs for AC
- Describing a proposed architecture for AC
 - □ AE
 - Infrastructure AE
 - Design patterns for self-CHOP

July 28, 2005 Sepinood H. Gashti 20

An Architectural Approach to Autonomic Computing

CBSS Course Presentation

Provided by: Sepinood H. Gashti

July 2005