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Abstract

The widespread deployment of inexpensive communica-
tions technology, computational resources in the net-
working infrastructure, and network-enabled end de-
vices poses an interesting problem for end users: how to
locate a particular network service or device out of hun-
dreds of thousands of accessible services and devices.
This paper presents the architecture and implementa-
tion of a secure Service Discovery Service (SDS). Service
providers use the SDS to advertise complex descriptions
of available or already running services, while clients
use the SDS to compose complex queries for locating
these services. Service descriptions and queries use the
eXtensible Markup Language (XML) to encode such
factors as cost, performance, location, and device- or
service-specific capabilities. The SDS provides a highly-
available, fault-tolerant, incrementally scalable service
for locating services in the wide-area. Security is a core
component of the SDS and, where necessary, communi-
cations are both encrypted and authenticated. Further-
more, the SDS uses an hybrid access control list and
capability system to control access to service informa-
tion.

1 Introduction

The decreasing cost of networking technology and net-
work-enabled devices is enabling the large-scale deploy-
ment of such networks and devices [32]. Simultaneously,
significant computational resources are being deployed
within the network infrastructure; this computational
infrastructure is being used to offer many new and in-
novative services to users of these network-enabled de-
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vices. We define such “services” as applications with
well-known interfaces that perform computation or ac-
tions on behalf of client users. For example, an applica-
tion that allows a user to control the lights in a room is
a service. Other examples of services are printers, fax
machines, and music servers.

Ultimately, we expect that, just as there are hun-
dreds of thousands of web servers, there will be hun-
dreds of thousands (or millions) of services available to
end users. Given this assumption, a key challenge for
these end users will be locating the appropriate service
for a given task, where “appropriate” has a user-specific
definition (e.g., cost, location, accessibility, etc.). In ad-
dition, trustworthy and secure access to such services
are critical requirements. Clients cannot be expected to
track which services are running or to know which ones
can be trusted.

Thus, clients will require a directory service that en-
ables them to locate services that they are interested in
using. We have built such a service, the Ninja1 Service
Discovery Service (SDS) to provide this functionality
and enable clients to more effectively search for and use
the services available in the network. Like the rest of the
major components of Ninja, the SDS is implemented in
Java [10].

The SDS is a scalable, fault-tolerant, and secure in-
formation repository, providing clients with directory-
style access to all available services. It stores two types
of information: descriptions of services that are avail-
able for execution at computational resources embed-
ded in the network (so-called “unpinned” services), and
services that are already running at a specific location.
The SDS also supports both push-based and pull-based
access; the former allows passive discovery, while the
latter permits the use of a query-based model.

Service descriptions and queries are specified in eX-
tensible Markup Language (XML) [4], leveraging the
flexibility and semantic-rich content of this self-describ-
ing syntax.

The SDS also plays an important role in helping
clients determine the trustworthiness of services, and
vice versa. This role is critical in an open environment,
where there are many opportunities for misuse, both
from fraudulent services and misbehaving clients. To

1The Ninja project is developing a scalable, fault-tolerant,
distributed, composable services platform [30].
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address security concerns, the SDS controls the set of
agents that have the ability to discover services, allow-
ing capability-based access control, i.e., to hide the ex-
istence of services rather than (or in addition to) disal-
lowing access to a located service.

As a globally-distributed, wide-area service, the SDS
addresses challenges beyond those of services that op-
erate solely in the local area. The SDS architecture
handles network partitions and component failures; ad-
dresses the potential bandwidth limitations between re-
mote SDS entities; arranges the components into a hi-
erarchy to distribute the workload; and provides appli-
cation-level query routing between components.

This paper presents the design of the SDS, focusing
on both the architecture of the directory service and
the security features of the system. Section 2 begins
our discussion by describing the design concepts used
in order to achieve our goals. The SDS architecture is
described in Section 3. Wide-area operation is discussed
in Section 4. Performance measurements from the SDS
prototype implementation are presented in Section 5,
followed by a discussion of related systems in Section 6.
Finally, we summarize and conclude in Section 7.

2 Design Concepts

The SDS system is composed of three main components:
clients, services, and SDS servers. Clients want to dis-
cover the services that are running in the network. SDS
servers enable this by soliciting information from the
services and then using it to fulfill client queries. In
this section, we will discuss some of the major concepts
used in the SDS design to meet the needs of service
discovery, specifically accounting for our goals of scal-
ability, support for complex queries, and secure access
for clients and services.

2.1 Announcement-based Information Dissemination

In a system composed of hundreds of thousands of serv-
ers and services, the mean time between component
failures will be small. Thus, one of the most impor-
tant functions of the SDS is to quickly react to faults.
The SDS addresses this issue by using periodic multicast
announcements as its primary information propagation
technique, and through the use of information caching,
rather than reliable state maintenance, in system enti-
ties. The caches are updated by the periodic announce-
ments or purged based on the lack of them. In this
manner, component failures are tolerated in the nor-
mal mode of operation rather than addressed through a
separate recovery procedure [1]: recovery is enabled by
simply listening to channel announcements. The com-
bination of periodicity and the use of multicast is of-
ten called the “announce/listen” model in the litera-
ture, and is appropriate where “eventual consistency”
rather than a transactional semantic suffices. The an-
nounce/listen model initially appeared in IGMP [6], and
was further developed and clarified in systems such as
the MBone Session Announcement Protocol [15]. Re-
finement of the announce/listen idea to provide for tol-
erance of host faults (leveraging multicast’s indirection
along with cluster computing environments [2]) appear-
ed in the context of the AS1 “Active Services” frame-

work [1]. We will describe our use of announce/listen in
Sections 3.1 and 3.2.

2.2 Hierarchical Organization

As a scalability mechanism, SDS servers organize into a
hierarchical structure; service announcements and client
queries are assigned to go to a particular SDS server.
The “domain” of an SDS server is the network extent
(e.g., the fractional subnet, subnet, or subnets) it covers.
If a particular SDS server is overloaded, a new SDS
server will be started as a “child” and assigned a portion
of the network extent (and, thus, a portion of the load).
See Figure 1 for an example configuration.

Section 3.1 discusses how domains are mapped to
the multicast channels that are used by all services in
the domain. Discussion of hierarchical organization is
treated in Section 4.

2.3 XML Service Descriptions

Rather than use flat name-value pairs (as in, e.g., the
Session Description Protocol [12]), the SDS uses XML [4]
to describe both service descriptions (the identifying
information submitted by services) and client queries.
XML allows the encoding of arbitrary structures of hi-
erarchical named values; this flexibility allows service
providers to create descriptions that are tailored to their
type of service, while additionally enabling “subtyping”
via nesting of tags.

Valid service descriptions have a few required stan-
dard parameters, while allowing service providers to
add service-specific information – e.g., a printer service
might have a color tag that specifies whether or not the
printer is capable of printing in color. An important ad-
vantage of XML over name-value pairs is the ability to
validate service descriptions against a set schema, in the
form of Document Type Definitions (DTDs). Unlike a
database schema, DTDs provide flexibility by allowing
optional validation on a per tag granularity. This allows
DTDs to evolve to support new tags while maintaining
backwards compatibility with older XML documents.

Services encode their service metadata as XML doc-
uments and register them with the SDS. Typical meta-
data fields include location, required capabilities, time-
out period, and Java RMI address. Clients specify their
queries using an XML template to match against, which
can include service-specific tags. A sample query for a
color Postscript printer and its matching service descrip-
tion are presented in Figure 2.

2.4 Privacy and Authentication

Unlike many other directory services, the SDS assumes
that malicious users may attack the system via eaves-
dropping on network traffic, endpoint spoofing, replay-
ing packets, making changes to in-flight packets (e.g.,
using a “man-in-the-middle” attack to return fraudu-
lent information in response to requests), and the like.
To thwart such attacks, privacy and integrity are main-
tained via encryption of all information sent between
system entities (i.e., between clients and SDS servers
and between services and SDS servers). To reduce the
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Figure 1: Components of the secure Service Discovery Service. Dashed lines correspond to periodic multicast com-
munication between components, while solid lines correspond to one-time Java RMI connections.

<?xml version="1.0"?>

<!doctype printcap system

"http://www/~ravenben/printer.dtd">

<printcap>

<?xml version="1.0"?> <name>print466; lws466</name>

<printcap> <location>466 soda</location>

<color>yes</color> <color>yes</color>

<postscript>yes</postscript> <postscript>yes</postscript>

</printcap> <duplex>no</duplex>

<rmiaddr>http://joker.cs/lws466</rmiaddr>

</printcap>

(A) (B)

<?xml version="1.0"?>

<!doctype printcap system

"http://www/~ravenben/printer.dtd">

<printcap>

<name>lws720b</name>

<location>720 soda</location>

<color>yes</color>

<postscript>n/a</postscript>

<duplex>yes</duplex>

<rmiaddr>http://ant.cs/lws720b</rmiaddr>

</printcap>

(C)

Figure 2: An example XML query (A), matching service
description (B), and failed match (C).

overhead of the encryption, a traditional hybrid of asym-
metric and symmetric-key cryptography is used.

However, encryption alone is insufficient to prevent
fraud. Thus, the SDS uses cryptographic methods to
provide strong authentication of endpoints. Associated
with every component in the SDS system is a princi-
pal name and public-key certificate that can be used to
prove the component’s identity to all other components
(see Section 3.3). By making authentication an integral
part of the SDS, we can incorporate trust into the pro-
cess used by clients to locate useful services. Clients can
specify the principals that they both trust and have ac-
cess to, and when they pose queries, an SDS server will
return only those services that are run by the specified
principals.

For example, if a CS Division principal is used for
CS division-wide services, then a client with access to
all CS Division services looking for an “official” e-mail
server would specify the CS Division principal. SDS
servers would only return CS Division servers, instead of

including e-mail servers being run by, e.g., individuals.
The SDS also supports the advertisement and loca-

tion of private services, by allowing services to specify
which “capabilities” are required to learn of a service’s
existence. These capabilities are basically signed mes-
sages indicating that a particular user has access to a
class of services. Whenever a client makes a query, it
also supplies the user’s capabilities to the SDS server.
The SDS server ensures that it will only return the
services for which the user has valid capabilities. Sec-
tion 3.4 elaborates on the use of capabilities.

Section 3.5 provides details of our use of authenti-
cation and encryption in the architecture, while Sec-
tion 5.1 presents our measurements of the cost of these
security components.

3 Architecture

Figure 1 illustrates the architecture of the Service Dis-
covery Service, which consists of five components: SDS
servers, services, capability managers, certificate author-
ities, and clients. In the following sections, we describe
the components that compose the SDS, focusing on their
roles in the system and how they interact with one an-
other to provide SDS system functionality.

3.1 SDS servers

Each server is responsible for sending authenticated mes-
sages containing a list of the domains that it is responsi-
ble for on the well-known global SDS multicast channel.
These domain advertisements contain the multicast ad-
dress to use for sending service announcements, the de-
sired service announcement rate, and contact informa-
tion for the Certificate Authority and Capability Man-
ager (described in Sections 3.3 and 3.4). The messages
are sent periodically using announce/listen. The aggre-
gate rate of the channel is set by the server administra-
tor to a fixed fraction of total available bandwidth; the
maximum individual announcement rate is determined
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by listening to the channel, estimating the message pop-
ulation, and from this estimate, determining the per-
message repeat rate, ala SAP [15] and RTCP [26]. (SDS
servers send this value out as a part of their advertise-
ments so individual services do not have to compute
it.) Varying the aggregate announcement rate exhibits
a bandwidth/latency trade-off: higher rates reduce SDS
server failure discovery latency at a cost of more network
traffic. Using a measurement-based periodicity estima-
tion algorithm keeps the traffic from overloading the
channel as the number of advertisers grows, allowing
local traffic to scale.

In the SDS server hierarchy, when the service load
reaches a certain threshold on an SDS server, one or
more new “child” servers are spawned. Each new server
is allocated a portion of the existing service load. Servers
keep track of their child nodes through periodic “heart-
beat” messages.

If a server goes down, its parent will notice the lapse
in heartbeats and restart it (possibly elsewhere if the
node itself has failed). As an additional measure of
robustness, server crashes can also be recovered by a
“peer” workstation in the same manner described by
Amir et.al. [1]: have the peer workstations listen in on
the announce/listen messages and, leveraging the mul-
ticast indirection, transparently select amongst them-
selves. Restarted servers populate their databases by
listening to the existing service announcements, thereby
avoiding the need for an explicit recovery mechanism.
Additionally, because the services are still sending to the
original multicast address while this transition occurs,
the rebuilding is transparent to them. If more than one
server goes down, recovery will start from the top of
the hierarchy and cascade downwards using the regular
protocol operation.

Once an SDS server has established its own domain,
it begins caching the service descriptions that are ad-
vertised in the domain. The SDS server does this by
decrypting all incoming service announcements using
the secure one-way service broadcast protocol (see Sec-
tion 3.5.2), a protocol that provides service description
privacy and authentication. Once the description is
decrypted, the SDS server adds the description to its
database and updates the description’s timestamp. Pe-
riodically, the SDS flushes old service descriptions based
on the timestamp of their last announcement. The flush
timeout is an absolute threshold which currently de-
faults to five times the requested announcement period.

The primary function of the SDS is to answer client
queries. A client uses Authenticated RMI (Section 3.5.3)
to connect to the SDS server providing coverage for its
area, and submits a query in the form of an XML tem-
plate along with the client’s capabilities (access rights).
The SDS server uses its internal XSet XML [34] search
engine to search for service descriptions that both match
the query and are accessible to the user (i.e., the user’s
capability is on the service description’s ACL). Depend-
ing upon the type of query, the SDS server returns either
the best match or a list of possible matches. In those
cases where the local server fails to find a match, it for-
wards the query to other SDS servers based on its wide-
area query routing tables (as described in Section 4).

Note that SDS servers are a trusted resource in this
architecture: services trust SDS servers with descrip-

tions of private services in the domain. Because of this
trust, careful security precautions must be taken with
computers running SDS servers — such as, e.g., physi-
cally securing them in locked rooms. On the other hand,
the SDS server does not provide any guarantee that a
“matched” service correctly implements the service ad-
vertised. It only guarantees that the returned service
description is signed by the certificate authority speci-
fied in the description. Clients must decide for them-
selves if they trust a particular service based on the
signing certificate authority.

3.2 Services

Services need to perform three tasks in order to partic-
ipate in the SDS system. The first task is to continu-
ously listen for SDS server announcements on the global
multicast channel in order to determine the appropri-
ate SDS server for its service descriptions. Finding the
correct SDS server is not a one-time task because SDS
servers may crash or new servers may be added to the
system, and the service must react to these changes.

After determining the correct SDS server, a service
then multicasts its service descriptions to the proper
channel, with the proper frequency, as specified in the
SDS server’s announcement. The service sends the de-
scriptions using authenticated, encrypted one-way ser-
vice broadcasts. The service can optionally allow other
clients to listen to these announcements by distributing
the encryption key.

Finally, individual services are responsible for con-
tacting a Capability Manager and properly defining the
capabilities for individual users (as will be described be-
low in Section 3.4).

3.3 Certificate Authority

The SDS uses certificates to authenticate the bindings
between principals and their public keys (i.e., verifying
the digital signatures used to establish the identities of
SDS components). Certificates are signed by a well-
known Certificate Authority (CA), whose public key is
assumed to be known by everyone. The CA also dis-
tributes encryption key certificates that bind a short-
lived encryption key (instead of a long-lived authentica-
tion key) to a principal. This encryption key is used to
securely send information to that principal. These en-
cryption key certificates are signed using the principal’s
public key.

The operation of the Certificate Authority is fairly
straightforward: a client contacts the CA and specifies
the principal’s certificate that it is interested in, and the
CA returns the matching certificate. Since certificates
are meant to be public, the CA does not need to au-
thenticate the client to distribute the certificate to him;
possessing a certificate does not benefit a client unless
he also possesses the private key associated with it. Ac-
cepting new certificates and encryption key certificates
is also simple, since the certificates can be verified by
examining the signatures that are embedded within the
certificates. This also means the administration and
protection of the Certificate Authority does not have to
be elaborate.
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ID Ciphered Secret Payload
Sender Name {Sender, Destination, Expire, SK , Sign(CP )}EK {Data, Time, MAC}SK

Figure 3: Secure One-Way Broadcast Packet format: SK – shared client-server secret key, Sign(CP ) – signature of
the ciphered secret using the client public key, EK – server public key, and MAC – message authentication code.

3.4 Capability Manager

The SDS uses capabilities as an access control mecha-
nism to enable services to control the set of users that
are allowed to discover their existence. In traditional
access control, services would have to talk to a central
server to verify a user’s access rights. Capabilities avoid
this because they can be verified locally, eliminating the
need to contact a central server each time an access con-
trol list check is needed.

A capability proves that a particular client is on the
access control list for a service by embedding the client’s
principal name and the service name, signed by some
well-known authority. To aid in revocation, capabilities
have embedded expiration times.

To avoid burdening each service with the require-
ment that it generate and distribute capabilities to all
its users, we use a Capability Manager (CM) to per-
form the function. Each service contacts the CM, and
after authentication, specifies an access control list (a
list of the principals allowed to access the service’s de-
scription). The CM then generates the appropriate ca-
pabilities and saves them for later distribution to the
clients. Since the signing is done on-line, the host run-
ning the CM must be secure. Capability distribution
itself can be done without authentication because ca-
pabilities, like certificates, are securely associated with
a single principal, and only the clients possessing the
appropriate private key can use them.

3.5 Secure SDS Communication

The communication methods used by the SDS balance
information privacy and security against information
dissemination efficiency. In the following sections, we
discuss the various types of communication used by the
SDS.

3.5.1 Authenticated Server Announcements

Due to the nature of SDS servers, their announcements
must have two properties: they must be readable by
all clients and non-forgeable. Given these requirements,
SDS servers sign their announcements but do not en-
crypt them. In addition, they include a timestamp to
prevent replay attacks.

3.5.2 Secure One-way Service Description Announce-
ments

Protecting service announcements is more complicated
than protecting server announcements: their informa-
tion must be kept private while allowing the receiver to
verify authenticity. A simple solution would be to use
asymmetric encryption, but the difficulty with this is
that asymmetric cryptography is extremely slow. Effi-
ciency is an issue in this case, because SDS servers might
have to handle thousands of these announcements per

hour. Using just symmetric key encryption would en-
sure suitable performance, but is also a poor choice,
because it requires both the server and service to share
a secret, violating the soft-state model.

Our solution is to use a hybrid public/symmetric key
system that allows services to transmit a single packet
describing themselves securely while allowing SDS serv-
ers to decrypt the payload using a symmetric key. Fig-
ure 3 shows the packet format for service announce-
ments. The ciphered secret portion of the packet con-
tains a symmetric key (SK) that is encrypted using the
destination server’s public encryption key (EK). This
symmetric key is then used to encrypt the rest of the
packet (the data payload).

To further improve efficiency, services change their
symmetric key infrequently. Thus, SDS servers can cache
the symmetric key for a particular service and avoid per-
forming the public key decryption for future messages
for the lifetime of the symmetric key. Additionally, if
the service desires other clients to be able to decrypt
the announcements, the service needs only to distribute
SK .

The design of one-way service description announce-
ments is a good match to the SDS soft-state model:
each announcement includes all the information the SDS
server needs to decrypt it.

3.5.3 Authenticated RMI

For communication between pairs of SDS servers and
between client applications and SDS servers, we use
Authenticated Remote Method Invocation (ARMI), as
implemented by the Ninja project [33]2. ARMI allows
applications to invoke methods on remote objects in a
two-way authenticated and encrypted fashion.

Authentication consists of a short handshake that
establishes a symmetric key used for the rest of the ses-
sion. As with the other components in the SDS, ARMI
uses certificates to authenticate each of the endpoints.
The implementation also allows application writers to
specify a set of certificates to be accepted for a connec-
tion. This enables a client to set a policy that restricts
access to only those remote SDS servers that have valid
“sds-server” certificates. The performance of ARMI is
discussed in Section 5.

3.6 Bootstrapping

Clients discover the SDS server for their domain by lis-
tening to a well-known SDS global multicast address.
Alternatively, as a discovery latency optimization, a
client can solicit an asynchronous SDS server announce-
ment by using expanding ring search (ERS) [7]: TTL-

2The choice of ARMI for client-server communication is a
function of our use of Java. This implementation choice is or-
thogonal to the system design; the necessary functionality can
be mapped onto most other secure invocation protocols.
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limited query messages are sent to the SDS global mul-
ticast address, and the TTL is increased until there is
a response. This is analogous to “foreign agent solic-
itation” and “foreign agent advertisement” in Mobile
IP [19] extended beyond the local subnet.

An SDS server’s domain is specified as a list of CIDR-
style network-address/mask pairs (e.g., 128.32.0.0/16
for the entire Berkeley campus). Newly spawned child
SDS servers claim a portion of the parent’s region, where
the specific portion is specified by the parent. This
syntax allows for complete flexibility in coverage space
while providing efficient representation when domains
align to the underlying topology.

4 Wide-Area Support

The previous section detailed the local interactions of
SDS servers, SDS clients, and services. In this section,
we focus on how SDS servers could interact with one an-
other as a whole in order to support scalable, wide-area
service discovery. (A caveat: this section is a design
overview. We have implemented portions of it but not
incorporated it with the local-area SDS code or mea-
sured it.)

Using the SDS as a globally-distributed service re-
quires that it be able to scale to support a potentially
huge number of clients and services using it while adapt-
ing as the underlying entities that comprise it change
(e.g., due to network partitions and node failures). We
would like clients to be able to discover all services on all
SDS servers, so we cannot simply partition the informa-
tion and queries. Additionally, neither maintaining all
service information at all servers, nor sending queries to
all servers, scales as the number of such servers grows.
One approach to reducing this scaling problem is to
leave service information partitioned amongst the indi-
vidual SDS servers, while propagating summaries of the
contents to one another. Even if such summarization
were possible, there is quadratic growth in such mes-
saging, and queries would still have to go to all servers.
This is again a scaling problem. A further step, then, is
to have the servers arrange themselves into a multi-level
hierarchy. Summary information would be propagated
only to parents, and queries partitioned amongst the
servers for further forwarding. It is this latter approach
that we employ for wide-area service discovery.

There are two major components to achieving this
goal: the dynamic construction and adaptation of a hi-
erarchy of SDS servers, and providing an application-
level routing infrastructure that allows servers to prop-
agate information through the hierarchy. The informa-
tion propagation problem can be further decomposed
into two sub-problems: providing lossy aggregation of
service descriptions as they travel up the hierarchy (to
prevent the root nodes from becoming a bottleneck for
updates or queries), and dynamically routing client quer-
ies to the appropriate servers based on the local aggre-
gate data. In short, the problems of building routing
tables and then interpreting them.

We now discuss our proposed solutions to these prob-
lems.

4.1 Adaptive Server Hierarchy Management

Two key questions arise given the use of hierarchy. The
first is the choice of what hierarchy, or hierarchies, to
build. The second is determining how to build and
maintain the chosen hierarchies given their semantics.
The first question is a policy decision that must be de-
termined by whoever is running the SDS server itself (or
defaulted if no configuration is specified); the second is
a choice of mechanism that will be shared by whoever
participates in that hierarchy. Because the first decision
is policy-based, we contend that the best solution to it
is to allow for the use of multiple hierarchies. Examples
of possible useful hierarchies include those based on ad-
ministrative domains (e.g., company, government, etc.),
network topology (e.g., network hops), network mea-
surements (e.g., bandwidth, latency), and geographic lo-
cation (e.g., using location and distance metrics). They
are independently useful because they enable users to
make queries that resolve based on them – i.e., query-
ing for a service based on geographic proximity rather
than ownership.

Individual SDS servers can choose to participate in
one or more of these hierarchies by maintaining sepa-
rate pointers to parents and children for each hierarchy
(along with any associated “routing table data” for each
link, as will be described below). Due to the fact that
routing may be performed differently in each hierarchy,
a single “primary” hierarchy is required to guarantee
that queries can get to all portions of the tree. Our
current choice is to use an administrative primary hi-
erarchy, but a better choice would be one based on the
underlying network characteristics – such as topology –
because such a hierarchy requires no manual setup and
is robust to network partitions.

Our previous descriptions of SDS client/server op-
eration does not address how parent/child relationships
are determined, only the mechanisms used to maintain
them once they are known. Examples of possible mech-
anisms for constructing these parent/child relationships
include using manual specification in configuration files
(i.e., to indicate administrative hierarchies) or an ap-
proach based on external information. Such external
information could be geographic data (e.g., through the
use of GPS or DNS LOC records [5]), topological data
(e.g., using topology discovery [14, 21], multicast ad-
ministrative scoping [17], a variant of expanding ring
search [7]), or network measurement (e.g., using a tool
such as SPAND [27] to derive bandwidth and latency in-
formation). In these latter cases, such information can
be shared via a global multicast address and the neigh-
bor relationships (and resulting tree) inferred from it in
a manner analogous to Internet link-state routing [16].

Individual node failures can be tolerated in the same
manner as is used to tolerate single-server failure in the
local-area case: have a cluster of workstations listen in
on the announce/listen messages and leverage the indi-
rection to transparently select amongst themselves.

4.2 Description Aggregation and Query Routing

To prevent the servers in the upper tiers of the hierar-
chy from being overloaded by update or query traffic,
the SDS architecture must keep updates localized. This
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implies that individual service descriptions and queries
must be filtered as they propagate up the hierarchy. We
describe this process as the lossy aggregation function
of the hierarchy. At the same time, the aggregation
function must be designed such that the summarized
information (aka index) can be queried as to whether a
given piece of information is, or is not, contained in it.
Applied to the SDS, this means that 1) service descrip-
tion data must be summarized/indexed as it travels up
the hierarchy, allowing control over the rate of updates
to the root, and 2) queries must be able to be compared
against these indices to determine whether the branch
they are summarizing contains a match for that query.
Performing the former operations as updates occur at
the leaves is called “description aggregation;” perform-
ing the latter function while iterating through the tree
is called “query routing.” In all cases, service descrip-
tions are only stored at the servers where they are being
periodically refreshed; only summaries are sent up the
tree.

The SDS has a far more difficult problem than most
systems that build an application-level routing infras-
tructure and use it. This is due to the allowance for
multi-criteria selection (arbitrary attribute-value pairs)
in queries. The novelty of the SDS is that it is attack-
ing the wide-area discovery problem for the case where
queries do not have a hierarchical structure embedded in
them. Multiple systems have solved wide-area scaling
and non-hierarchical queries independently [18, 31, 13];
none that we know of have succeeded at addressing
both.

We now look at one approach to lossy aggregation
and query routing. This approach is based on the use
of hashing and hash summarization via Bloom filtering.

Hashing summarizes data by creating a unique N-to-
M mapping of data vales, where M is a short fixed length
bitstring and N can be arbitrarily long. Unfortunately,
because SDS queries contain subsets of the tags rather
than exact matches, just computing a hash for each ser-
vice description is not sufficient: all possible matching
query values hashes – so-called “subset hashes” – would
have to be computed. (To clarify the problem, imagine a
service description with three tags. There are seven pos-
sible queries that should “hit” it: each tag individually,
the three combinations of pairs of tags, and all three tags
together. Each of these possible queries would need to
be hashed and these hashes stored to guarantee correct-
ness.) There are two obvious problems with computing
all possible subset hashes: the amount of computation
required, and the amount of space required to store the
large number of hashes produced (seen as memory usage
at local servers and update bandwidth on the network).

Our solution the computation problem is to limit
the number of subset hashes by limiting the number of
cross-products of tags that are hashed (e.g., only singles
and pairs). Incoming queries must be similarly broken
up into groups of tag combinations and checked to en-
sure there are no false misses. Limiting the computa-
tion in this manner increases the probability of false
positives, but addresses the exponential computational
growth in a manner that gives a “knob” that can trade
reduced probability of false positives for additional com-
putation and vice-versa. The knob is the “depth” of the
cross product (number of tag combinations hashed).

A

A | B

B

Figure 4: Aggregation of Bloom filter tables.

Even given a solution to the computation problem,
there still remains the second problem: space. Each
service has tens (or even hundreds) of hashes, and all
these hashes must be stored locally; more worrisome,
the hashes must be propagated up the hierarchy be-
cause they are our index. Our approach to solving
this problem is to use Bloom filters [3, 8]. A Bloom
filter is a summarization method that uses a bit vec-
tor with bits set in positions corresponding to a set of
hash values of the data. The key property of Bloom
filters is that they provide hashed summarization of a
set of data, but collapse this data into a fixed-size ta-
ble, trading off an increased probability of false posi-
tives for index size – exactly the knob we need to ad-
dress the issue of long hash lists. This approach never
causes false misses, thereby maintaining the correctness
of our lossy aggregation function. The basic probability
of false positives (independent of limiting the number
of tag cross-products hashed) can be reduced by us-
ing more hash functions and/or longer bit vectors [9],
though these numbers must be sized based on the root
node – i.e., sized based on the acceptable false positive
rate at the root, which knows about all service hashes
and shouldn’t just be “too full of ones.”

To summarize how these ideas are applied to the
SDS: each SDS server applies multiple hash functions
(e.g., using keyed MD5 and/or groups of bits from a
single MD5 as in [9]) to various subsets of tags in the
service announcements, and uses the results to set bits
in a bit vector. The resulting bit vector (the index) sum-
marizes its collection of descriptions. A query against
this bit vector is resolved by multiply hashing it and
checking that all the matching bits are set. If any are
not set, then the service is definitely not there – it is a
“true miss.” If all are set, then either the query hit, or a
“false positive” may have occurred due to aliasing in the
table. The latter forces unneeded additional forwarding
of the query (i.e., makes the routing non-optimal), but
does not sacrifice correctness.

If an SDS server is also acting as an internal node
in the hierarchy, it will have pointers to its children.
Associated with each child will be a similar bit vec-
tor. To perform index aggregation, each server takes all
its children’s bit vectors and ORs them together with
each other and its own bit vector. This fixed-size ta-
ble is passed to the parent (in the form of differential
updates to conserve bandwidth), who then associates it
with that branch of the tree. This is illustrated in Fig-
ure 4. To route queries, the algorithm is as follows: if
a query is coming up the hierarchy, the receiving SDS
server checks to see if it hits locally or in any of its chil-
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Name Time
DSA Signature 33.1 ms
DSA Verification 133.4 ms
RSA Encryption 15.5 ms
RSA Decryption 142.5 ms
Blowfish Encryption 2.0 ms
Blowfish Decryption 1.7 ms

Table 1: Timings of cryptographic routines

dren; if not, it passes it upward. If it is coming down
the hierarchy, the query’s computed bit locations are
checked against the local and child tables. If there is
a hit in the local table, the query is resolved locally.
If there is a hit in any children’s tables, the query to
routed down the matching children’s links. If neither of
these occur, it is a known miss.

A final problem to address: the bit vectors must
be cleaned when a service dies (i.e., we would like to
zero their matching bits). Bits cannot be unset, though,
because another hash operation may have also set them,
and zeroing them would not preserve correctness (i.e.,
could cause a false miss). To address this, the tables
must either be periodically rebuilt, or per-bit counts
must be tallied and propagated along with the tables.

5 System Performance

In this section, we examine the performance of the SDS
and the XSet XML search engine. The results we present
are for single client to single SDS server interactions,
and are used to calculate the number of clients an SDS
system can handle and to verify that the security fea-
tures of the system do not greatly reduce performance.

The measurements we will present were averaged
over 100 trials and were made using Intel Pentium II
350Mhz machines with 128 MB of RAM, running Slack-
ware Linux 2.0.36. We used Sun’s JDK 1.1.7 with the
TYA JIT compiler to run each component of the SDS
system. For security support, we use the java.security
package, where possible, and otherwise we use the Cryp-
tix security library. For the XML parser, we use Mi-
crosoft’s MSXML version 1.9. We assert that the ma-
jority of SDS queries will contain a small number of
search constraints, and use that model for our perfor-
mance tests. Our tests on XSet were done on a large set
of small XML files, similar in complexity to typical ser-
vice descriptions. Finally, SDS uses an authenticated
RMI implementation developed by the Ninja research
group [33], which we modified to use Blowfish [24] (in-
stead of Triple DES) for encrypting the data sent over
the network.

5.1 Security Component

In this section, we take a closer look at the cost of the
security mechanisms used in the SDS. Specifically, we
examine the individual costs of using Java implemen-
tations of certificates and asymmetric/symmetric cryp-
tography. As our results show, the costs are relatively
high, but for the most commonly used component, sym-
metric encryption, the cost is small enough to allow the
system to scale reasonably well.

Files ms / query
1000 1.17
5000 1.43

10000 2.64
20000 2.76
40000 4.40
80000 5.64

160000 6.24

Table 2: XSet Query Performance

Query
Null Full

Insecure 24.5 ms 36.0 ms
Secure 40.5 ms 82.0 ms

Table 3: Query Latencies for Various Configurations

Table 1 lists the various costs of the security mech-
anisms. As it shows, we profiled the use the DSA cer-
tificates [23] for both signing and verifying informa-
tion, RSA [23] encryption and decryption as used in the
service broadcasts, and Blowfish which is used in au-
thenticated RMI. Note, both DSA and RSA are asym-
metric key algorithms, while Blowfish is a symmetric
key algorithm. All execution times were determined by
verifying/signing or encrypting/decrypting 1 KB input
blocks. The measurements verify what should be ex-
pected: the asymmetric algorithms, DSA and RSA, are
much more computationally expensive than the sym-
metric key algorithm. This is an especially important
result for our system, since the SDS was designed to
leverage the fast performance of symmetric key algo-
rithms. We also note that the DSA verification time
is especially high because it verifies multiple signatures
per certificate: the certificate owner’s signature and the
certificate authority’s signature.

5.2 XML Search Component Using XSet

We use the XSet XML [34] search engine to perform
the query processing functionality needed by the SDS.
To maximize performance, XSet builds an evolutionary
hierarchical tag index, with per tag references stored in
treaps (probabilistic self-balancing trees). As a result,
XSet’s query latency increases only logarithmically with
increases in the size of the dataset. The performance
results are shown in Table 2. To reduce the cost of query
processing, validation of a service description against
its associated Document Type Definition is performed
only once, the first time it is seen, not per query or per
announcement.

5.3 Performance and Throughput

Table 3 lists the performance of handling various types
of SDS queries: both null queries and full queries, in
both secure and insecure versions of the SDS. We also
measured the service announcement processing time to
be 9.2 ms, which is the time the SDS takes to decrypt
and process a single service announcement. This was
measured using 1.2 KB service announcements
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Description Latency
Query Encryption (client-side) 5.3 ms
Query Decryption (server-side) 5.2 ms
RMI Overhead 18.3 ms
Query XML Processing 9.8 ms
Capability Checking 18.0 ms
Query Result Encryption (server-side) 5.6 ms
Query Result Decryption (client-side) 5.4 ms
Query Unaccounted Overhead 14.4 ms

Total (Secure XML Query) 82.0 ms

Table 4: Secure Query Latency Breakdown

The other measurements in Table 3 show the perfor-
mance of various components of the SDS system. For
example, the null query time on an insecure SDS sys-
tem demonstrates the RMI and network overhead, since
no time is spent on encryption or searching. The dif-
ference between this time and the query time on an
insecure SDS indicates the time spent on search over-
head. Likewise, the null query time on the secure SDS
demonstrates the amount of time spent on the security
features. We should point out that the time of a secure
SDS query is much higher than the search time plus
secure non-query numbers because a secure query per-
forms more encryption/decryption than the secure null
query, and also it uses the client’s capabilities to per-
form the search. Note that these times do not include
session initialization, since this cost is amortized over
multiple queries.

Table 4 shows the average performance breakdown
of a secure SDS query from a single client. The SDS
server was receiving service descriptions at a rate of 10
1.2 KB announcements per second, and the user per-
formed a search using 7 different capabilities. The SDS
was only searching twenty service descriptions, but as
the XSet performance numbers show, additional search
engine file-handling would contribute very little addi-
tional latency. Note that the table splits encryption
time between its client and server components, and that
RMI overhead includes the time spent reading from the
network. The unaccounted overhead is probably due to
context switches, network traffic, and array copies. Not
shown in table is that server processing time for the
same operation takes about 60 ms.

Using these performance numbers, we approximate
that a single SDS server can handle a user community
of about five hundred clients sending queries at a rate
of of one query per minute per client.

6 Related Work

Service discovery is an area of research that has a long
history. Many of the ideas in the SDS have been influ-
enced by previous projects.

6.1 DNS and Globe

The Internet Domain Naming Service [18] and Globe [31]
(both conceptual descendents of Grapevine [25]) are ex-
amples of systems which perform global discovery of
known services: in the former case, names are mapped
to addresses; in the latter, object identifiers are mapped

to the object broker that manages it. An assumption of
this type of service discovery is that keys (DNS fully-
qualified domain names or Globe unique object iden-
tifiers) uniquely map to a service, and that these keys
are the query terms. Another assumption is that all re-
sources are publicly discoverable; access control is done
at the application level rather than in the discovery in-
frastructure.

The scalability and robustness of DNS and Globe
derives from the hierarchical structure inherent in their
unique service names. The resolution path to the ser-
vice is embedded inside the name, establishing implicit
query-routing, thus making the problem simpler than
that attacked by the SDS.

6.2 Condor Classads

The “classads” [20] (classified advertisements) service
discovery model was designed to address resource allo-
cation (primarily locating and using off-peak comput-
ing cycles) in the Condor system. Classads provides
confidential service discovery and management using
a flexible and complex description language. Descrip-
tions of services are kept by a centralized matchmaker;
the matcher maps clients’ requests to advertised ser-
vices, and informs both parties of the pairing. Adver-
tisements and requirements published by the client ad-
here to a classad specification, which is an extensible
language similar to XML. The matchmaking protocol
provides flexible matching policies. Because classads
are designed to only provide hints for matching service
owners and clients, a weak consistency model is suffi-
cient and solves the stale data problem.

The classads model is not applicable to wide-area
service discovery. The matchmaker is a single point
of failure and performance bottleneck, limiting both
scalability and fault-tolerance. Additionally, while the
matchmaker ensures the authenticity and confidential-
ity of services, classads do not offer secure communica-
tion between parties.

6.3 JINI

The Jini [28] software package from Sun Microsystems
provides the basis for both the Jini connection tech-
nology and the Jini distributed system. In order for
clients to discover new hardware and software services,
the system provides the Jini Lookup Service [29], which
has functionality similar to the SDS.

When a new service or Jini device is first connected
to a Jini connection system, it locates the local Lookup
service using a combination of multicast announcement,
request, and unicast response protocols (discovery). The
service then sends a Java object to the Lookup service
that implements its service interface (join), which is
used as a search template for future client search re-
quests (lookup). Freshness is maintained through the
use of leases.

The query model in Jini is drastically different from
that of the SDS. The Jini searching mechanism uses the
Java serialized object matching mechanism from JavaS-
paces [29], which is based on exact matching of serial-
ized objects. As a result, it is prone to false negatives
due to, e.g., class versioning problems. One benefit of
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the Jini approach is that it permits matching against
subtypes, which is analogous to matching subtrees in
XML. A detriment of the model is that it requires a
Java interface object be sent over the network to the
lookup service to act as the template; such representa-
tions cannot be stored or transported as efficiently as
other approaches.

Security has not been a focus of Jini. Access control
is checked upon attempting to register with a service,
rather than when attempting to discover it; in other
words, Jini protects access to the service but not dis-
covery of the service. Furthermore, communication in
the Jini Lookup service is done via Java RMI, which
is non-encrypted and prone to snooping. Finally, the
Jini Lookup Service specifies no mechanism for server-,
client-, or service-side authentication.

A final point of distinction is the approach to wide
area scalability. While the SDS has a notion of dis-
tributed hierarchies for data partitioning and an aggre-
gation scheme among them, Jini uses a loose notion
of federations, each corresponding to a local adminis-
trative domain. While Jini mentions the use of inter-
lookup service registration, it’s unclear how Jini will
use it to solve the wide-area scaling issue. In addition,
the use of Java serialized objects makes aggregation dif-
ficult.

Despite the differences in architecture, we believe
Jini services and devices can be made to cooperate eas-
ily. By adding a Java object to XML generator proxy
that speaks the Jini discovery protocol on one end, and
SDS broadcasts on the other, we can integrate the Jini
federation into the SDS hierarchy and benefit from the
strengths of both systems.

6.4 SLP

The Service Location Protocol (SLP) [11], and its wide-
area extension (WASRV) [22], address many of the same
issues as the SDS, and some that are not (e.g., interna-
tionalization). The design of the SDS has benefited from
many of the ideas found in the IETF SLP draft [11],
while attempting to make improvements in selected ar-
eas.

The SLP local-area discovery techniques are nearly
identical to those of the SDS: Multicast is used for an-
nouncements and bootstrapping, and service informa-
tion is cached in Directory Agents (DAs), a counterpart
to the SDS server. Timeouts are used for implicit ser-
vice deregistration.

As for the scaling beyond the local area, there are
actually two different mechanisms: named scopes and
brokering. SLPv2 [11] has a mechanism that allows
the local administrative domain to be partitioned into
named User Agent “scopes.” This scheme was not de-
signed to scale globally, as it has a flat scoping names-
pace. Scopes are optional, though, allowing evolution-
ary growth while retaining backward-compatibility with
“unscoped” clients. To address wide-area usage, the
WASRV draft extension has been proposed [22]. The
suggested approach is to pick an entity in each SLP
administrative domain (SLPD) to act as an Advertising
Agent (AA), and for these AAs to multicast selected ser-
vice information to a wide-area multicast group shared
amongst them. Brokering Agents (BAs) in each SLPD

selectively listen to multicasts from other SLPD AAs,
and advertise those services to the local SLPD as if they
were SAs in the local domain. While the WASRV strat-
egy does succeed in bridging multiple SLPDs, it does
not address the basic problem of a lack of hierarchy
imposed on the global set of available services. The
AAs must be configured to determine which service de-
scriptions are propagated between SLPDs; in the worst
case, everything is propagated, each domain will have a
copy of all services, and thus there is no “lossy aggrega-
tion” of service information. This inhibits the scheme
from scaling any better than linearly with the number
of services advertised, and quadratically in the number
of AAs/BAs.

One of the most interesting aspects of SLP is its
structure for describing service information. Services
are organized into service types, and each type is asso-
ciated with a service template that defines the required
attributes that a service description for that service type
must contain [11]. The functionality and expressiveness
of this framework is almost an exact mapping onto the
functionality of XML: each template in SLP provides
the same functionality as an XML DTD. Queries in SLP
return a service URL, whereas XML queries in the SDS
returns the XML document itself (which can itself be a
pointer using the XML XREF facility). There are some
benefits to using XML rather than a templates for this
task. First, because of XML’s flexible tag structure,
service descriptions may, for example, have multiple lo-
cation values or provide novel extensions such encoding
Java RMI stubs inside the XML document itself. Sec-
ond, since references to DTDs reside within XML doc-
uments, SDS service descriptions are self-describing.

A final point of contrast between SLP and SDS is
security. SLP provides authentication in the local ad-
ministrative domain, but not cross-domain. Authenti-
cation blocks can be requested using an optional field
in the service request, providing a guarantee of data in-
tegrity, but no mechanism is offered for authentication
of User Agents. Additionally, because of a lack of access
control, confidentiality of service information cannot be
guaranteed.

Though the systems are disparate, we would like
SLP and the SDS to cooperate rather than compete
in providing information to clients. We believe that, as
with Jini, this could be achieved through proxying.

7 Conclusion

The continuing explosive growth of networks, network-
enabled devices, and network services is increasing the
need for network directory services. The SDS provides
network-enabled devices with an easy-to-use method for
discovering services that are available. It is a directory-
style service that provides a contact point for making
complex queries against cached service descriptions ad-
vertised by services. The SDS automatically adapts its
behavior to handle failures of both SDS servers and ser-
vices, hiding the complexities of fault recovery from the
client applications. The SDS is also security-minded; it
ensures that all communication between components is
secure and aids in determining the trustworthiness of
particular services.
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The SDS soft-state model and announcement-based
architecture offers superior handling of faults and chang-
es in the network topology. It easily handles the addi-
tion of new servers and services, while also recognizing
when existing services have failed or are otherwise no
longer available. This feature will be very important
in the future, where given the number of components,
failures will be a frequent occurrence.

The use of XML to encode service descriptions and
client queries also gives the SDS a unique advantage.
Service providers will be able to capitalize on the ex-
tensibility of XML by constructing service-specific tags
to better describe the services that they offer. Like-
wise, XML will enable clients to make more powerful
queries by taking advantage of the semantic-rich service
descriptions.

Finally, the SDS integrated security model aids ser-
vices in protecting sensitive information and clients in
locating trustworthy services. In this age of integrated
networks and digital commerce, this feature will be great-
ly appreciated by both clients and service providers.

Continuing work on the SDS includes finishing the
wide area implementation and additional benchmark-
ing. Once the infrastructure is in place, the SDS will
be used with components of the Ninja system – and
other Internet systems – allowing us to gain practical
experience with real services and client applications.
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