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ABSTRACT 

Mobile applications execute in an 
environment characterized by scarce and 
dynamically varying resources. We believe that 
applications have to adapt dynamically and 
transparently to the amount of resources 
available at runtime. To achieve this goal, we 
use the conventional extension of the client-
server model to a client-proxy-server model. 
The mobile devices execute the client, which 
provides the user interface and some part of the 
application logic. The proxy is a component of 
the application that executes in the wired 
network to support the client. As the user 
moves, the proxy may also move to remain on 
the communication path from the mobile 
device to a fixed correspondent host. Logically, 
the proxy hides the “mobile” client from the 
server, who thinks it communicates with a 
standard client (i.e., a client that executes on a 
powerful desktop directly connected to the 
wired network). The new contribution of our 
research lies in the division of labor between 
client and proxy. The application logic of the 
“standard client” is split dynamically between 
the mobile client and the proxy, using mobile 
code, to adapt to the dynamic wireless 
environment and to address the limitations of 
the portable device. Using mobile code allows 
us to experiment with different adaptation 
strategies and to explore resource tradeoffs in a 
unified framework. We are developing the 
components of a flexible and general-purpose 
runtime infrastructure to facilitate the rapid 
development and deployment of such adaptive 
mobile applications. We will evaluate our 
infrastructure by implementing a number of 

wireless applications and by building simulation 
tools to validate the scalability of our 
architecture when considering metropolitan and 
provincial cellular systems. The simulations will 
be driven by trace data that we are collecting in 
cooperation with a Canadian cellular service 
provider. 

INTRODUCTION 

The convergence of two technological 
developments has made mobile computing a 
reality [17]. In the last few years, developed 
countries spent large amounts of money to 
install and deploy wireless communication 
facilities. Originally aimed at telephone services 
(which still account for the majority of usage), 
the same infrastructure is increasingly used to 
transfer data. The second development is the 
continuing reduction in size of computer 
hardware, leading to portable computation 
devices such as laptops, palmtops, or 
functionally enhanced cell phones. Given 
current technology, a user can run a set of 
applications on a portable device and 
communicate over a variety of communication 
links, depending on his/her current location. 
For example, the user can access the wired 
corporate LAN at 10 Mbps or higher in the 
office. Roaming in the building, connectivity is 
provided by an indoor wireless LAN at 1-2 
Mbps. Outdoors, connectivity is provided by 
cellular wireless-IP networks, providing 
bandwidths of a few tens of kbps. Furthermore, 
the sets of services available in each location 
will generally differ.  



 

1999.05.13  2 

Similar discrepancies will also persist in 
future wireless networks, such as the ones 
under study by the International 
Telecommunication Union [11] and the 
European Union’s ACTS program [1]. Unlike 
second-generation cellular networks, future 
cellular systems will cover an area with a variety 
of non-homogeneous cells that may overlap. 
This allows the network operators to tune the 
system layout to subscriber density and 
subscribed services. Cells of different sizes will 
offer widely varying bandwidths: very high 
bandwidths with low error rates in pico-cells, 
very low bandwidths with higher error rates in 
macro-cells. Again, depending on the current 
location, the sets of available services might also 
differ. It is generally argued that applications 
should “adapt” to the current environment, for 
example by filtering and compressing data or by 
changing the functionality offered to the user, 
see [2,6,22,28,30]. Some researchers even argue 
that all future applications, not just the ones 
intended for execution on mobile devices, will 
have to be able to adapt to changing 
requirements and changing implementation 
environments on time scales from 
microseconds to years [13]. This paper 
describes the architecture we propose to 
facilitate the development of such adaptive 
mobile applications, based on mobile code. 

The alternative to adaptive applications is 
multiple functionally identical or similar 
binaries, tuned for specific environments. This 
is an inferior solution, for a number of reasons. 
The user of a portable device has to install and 
maintain multiple applications, which is a drain 
on the limited storage capabilities typically 
found on those devices. It also potentially 
results in different user interfaces and causes 
high software development overheads when 
developing the “same” mobile application 
multiple times. Finally, it forces the user to 
identify the current execution conditions and 
select the “right” application. 

MOBILE APPLICATIONS 

To define a suitable architecture, we first 
identify categories of applications a mobile user 
is most likely to execute on his mobile device. 
Due to the existing limitations of portable 

devices (limited computational power, disk 
space, screen size, etc.), we claim that portable 
devices should not be considered general-
purpose computers. Even though portable 
devices will become increasingly powerful, they 
will never match the computational power and 
facilities available on typical desktop machines. 
Similarly, while the wireless technology will 
improve, providing more and more bandwidth 
to the end user, wired network technology will 
advance as well, with the result that wireless 
networks will remain, in the near to medium 
future, orders of magnitudes slower. Therefore, 
mobile computing will always be characterized 
by a scarcity of resources, relatively speaking. In 
our opinion, an end-user will execute 
applications in one of the following six 
categories in such an environment: 

n Standalone applications such as games 
or utilities; 

n Personal productivity software (word 
processors, presentation software, 
calendars); 

n Internet applications such as e-mail, 
WWW browsers, multi-user calendars, 
or telnet; 

n Vertically integrated business 
applications (field installation and 
services, security); 

n New “location-aware” applications: 
tour planners, interactive guides; 

n Ad-hoc network and groupware 
applications. 

The first category was originally of little 
interest to us, since these applications do not 
involve communication. However, the main 
idea underlying our architecture is to 
transparently support resource-constrained 
mobile devices by powerful proxy servers. We 
are therefore currently exploring how to 
generalize this idea to support standalone 
applications as well. 

Applications in the second category will be 
used on multiple platforms: a user will have a 
version of his/her favorite word processor 
executing on a laptop as well as on the more 
powerful desktop in the office. This requires 
the exchange and synchronization of 
documents between the machines. Depending 
on the prevailing view of available network 
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connectivity, two possible approaches are 
imaginable. Windows CE and MS Office 
exemplify a first solution. A user works on a 
document at either the laptop or the desktop, 
synchronizing multiple versions only 
infrequently and in a controlled environment. A 
second solution assumes that connectivity is 
more pervasive, allowing access to 
“authoritative” copies of a document on 
demand. This solution will require client-server 
applications to allow access to remote 
documents in the presence of highly variable 
communication links.  

The Internet applications constitute a very 
interesting and challenging category. Mobile 
devices are often considered as the “on-ramp” 
to the Internet, see for example [10]. 
Consequently, a user will want to execute the 
client side of typical Internet applications on his 
portable device, communicating with servers in 
the existing Internet infrastructure. This is not 
as straightforward as it may seem at first glance. 
The Internet developed as a wired network, 
connecting powerful computers over relatively 
high-speed communication links. The 
assumptions underlying the design of many 
Internet clients reflect this view of the world. 
They are therefore not particularly well suited to 
a mobile environment. For example, the 
communication protocol of choice is TCP, 
which is known to behave poorly in the 
presence of wireless links with their 
corresponding high bit-error rates. Client 
applications typically assume that they have 
sufficient bandwidth, memory, and 
computational power at their disposal, which is 
equally questionable. Given the huge amount of 
money invested in the current infrastructure, it 
is unrealistic to expect that the whole Internet 
will change to accommodate mobile users 
overnight. In particular, servers deployed 
worldwide will not change in the near future. 
To facilitate access to the Internet, only the 
client side of the application can be adapted to 
function well in the dynamic and resource-
constrained mobile environment. The 
architecture proposed below is intended for 
applications in this category.  

Vertically integrated business applications 
are often structured as client-server 
applications. Furthermore, the backends 

(servers) have to support both existing wired 
desktops and wireless mobile devices. One 
example is a bank, where the back office has to 
support account managers in branch offices as 
well as mobile customer service representatives. 
Therefore, the clients executing on the portable 
devices face challenges similar to those faced by 
traditional Internet clients. They have to adapt 
to the limitations of the portable device in a 
dynamically changing execution environment. 
To facilitate the deployment of mobile 
applications, solutions should be transparent to 
the servers. Due to these similarities, we believe 
that the architecture proposed below applies 
equally well to this group of applications. 

The location-aware applications exploit the 
fact that a user is mobile. Possible examples 
include travel guides, which might display the 
shortest path from a user’s current location to 
the closest/cheapest/best Italian restaurant, or 
applications that allow a user to print a 
document on the closest color postscript laser 
printer. To the extent that these applications 
utilize the existing Internet (discovering and 
accessing nearby resources, for example), the 
architecture described below can be of value 
here as well. 

Applications in the final category arise out 
of the mobility of a number of users, for 
example the meeting of a number of 
researchers or managers, each equipped with a 
portable device. Users might want to establish 
ad-hoc networks to exchange documents (the 
newest version of the transparencies for the 
invited talk) or to execute groupware 
applications to update a shared business plan. 
Since these applications will not, to a large 
extent, be limited by the need to interact with 
an existing infrastructure, the proposed 
architecture is probably not directly relevant to 
them. Similar to standalone applications, we are 
however exploring how to generalize our ideas 
to support ad-hoc network applications. 

THE CLIENT-PROXY-SERVER MODEL 

Most application categories discussed 
above comprise client-server applications. An 
application on a mobile device or desktop 
workstation provides some functionality to the 
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end-user in conjunction with server(s) in the 
Internet. Examples are the WWW browsers 
that retrieve documents from servers around 
the world, or clients that connect to FTP 
servers to upload or download files. Our 
architecture is based on an extension of this 
traditional client-server model to a client-proxy-
server model. Figure 1 shows the relevant 
components. 

The mobile devices execute the client, 
which provides the user interface and some part 
of the application logic. In all wireless 
technologies, a mobile device communicates 
with the fixed network through a base station, 
which is the access point for all devices in a cell. 
Through some switching fabric, the base station 
provides connectivity with other hosts in the 
network, such as a WWW server or an SMTP 
server. The third component of our model is 
the proxy, a component of the application that 
executes in the wired network and supports the 
client. One possible location for the proxy is 
the base station. In general, any computer on 
the communication path between client and 
server can host the proxy. Logically, the proxy 
hides the  “mobile” client from the server, who 
thinks it communicates with a standard client 
(i.e., a client that executes on a powerful 
desktop directly connected to the wired 
network). The application logic of the “standard 
client” is split between the mobile client and the 
proxy to adapt to the dynamic wireless 

environment and to address the limitations of 
the portable device. For example, the proxy 
could execute on a powerful workstation with 
large amounts of memory and disk space. This 
would make the proxy an ideal candidate to 
manage large caches or to perform 
computationally intensive tasks such as 
interpreting an MPEG video stream and 
turning it into a pixmap. Where bandwidth 
limitations over the wireless link are of major 
concern, the proxy could provide filtering and 
compression functions. 

To avoid suboptimal communication paths, 
the proxy must migrate within the fixed 
network, following the user.  “Migrating” the 
proxy can mean either that the proxy moves 
physically from machine to machine, or that a 
system of proxies exists, and only relevant state 
information is passed during a hand-over. The 
two approaches are complementary, and the 
best choice depends upon the details of a given 
situation. Other issues raised by user mobility 
are: 

n How should the proxy migration 
decision be made (based on what 
information, using what algorithm)? 

n Given that we expect a large number of 
mobile users, how does the approach 
scale? For example, what happens if a 
sizeable subset of users decides to head 
to the same shopping mall at noon, 

Figure 1: The Client-Proxy-Server Model 
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checking stock options over the WWW 
while having lunch? 

COMPARISON TO RELATED WORK 

The idea of using a proxy in the wired 
network to support a mobile device is well 
known. In fact, most wireless WWW browsers, 
among others, use one or more proxies to 
support their operation in a low-bandwidth 
environment [5,7,8,16]. However, our approach 
is more concerned with adaptability, flexibility, 
and mobility than work published in the 
literature, as explained below. 

ADAPTABILITY 

Existing proposals often install a proxy that 
filters and/or compresses data for a specific 
application. This filter is either enabled or 
disabled. Examples are filters to turn color 
inline images into lower-resolution grayscale 
images or to convert postscript into ASCII text, 
or e-mail readers that provide the “subject” line 
of a mail message only, avoiding the 
transmission of the main message body over a 
slow link. In the scenario of the introduction, 
the environment changes dynamically, 
depending on the user’s behavior and that of 
others. We therefore foresee the need to make 
the proxies more dynamic, to adapt more 
closely to changes in the environment. 
Examples are changing the resolution and/or 
color of an inline image only when necessary, 
and changing the resolution incrementally. 
Another example could be to allow an e-mail 
reader to read the body of small e-mail 
messages but to avoid downloading large 
messages. To enable this more fine-grained 
adaptation, a mechanism is needed that 
provides the mobile application with 
information about the environment, including 
device information, information about the 
wireless link, infrastructure information like 
reachable servers or services, and location-
related information. 

Adaptation decisions need to take 
information about multiple resources into 
consideration. For example, high available 
bandwidth might favor a shift from the proxy 
to the mobile. However, the mobile might be 
running low on power, arguing for a shift from 

the mobile to the proxy. Similarly, certain 
adaptation options might not be feasible in 
environments that lack the appropriate 
infrastructure. Previous research tended to 
focus on one resource only: [24,26] focus on 
power consumption, [21] on location 
information, [9] on local services, and [4,30] on 
the network characteristics.  

A completely different approach would be 
to design the division of labor between mobile 
client and proxy for the worst case only, which 
would allow a user to get consistent 
functionality across all environments. We 
consider such a solution less than desirable, for 
at least two reasons. First, whenever possible, a 
user should experience the best service 
achievable. Normalizing to the lowest common 
denominator often unnecessarily deprives the 
user of full service and functionality. Second, a 
proxy server will, in general, support many 
mobile users. To the extent that the individual 
portable devices can contribute to better client 
functionality, they should be encouraged to do 
so. Otherwise, even a powerful proxy server 
might be overloaded, resulting in poor 
performance for all applications. 

FLEXIBILITY 

Most existing proxy solutions operate at the 
protocol level. They intercept messages and 
reduce the data sent over the wireless link by 
filtering less important data and utilizing 
compression algorithms (see for example [30]). 
As discussed in [5], while data compression and 
filtering improve the perceived performance of 
web browsers, they are not sufficient. Support 
for new types of operations, such as browsing 
while disconnected and/or asynchronous 
browsing, is needed in a mobile environment. 
The research in [5,16] is based on a static client-
proxy-server architecture, where the division of 
labor between client and proxy is determined 
and fixed at design time. Both papers, however, 
emphasize that a more flexible, dynamic, 
adaptation based on mobile code should be 
explored in future. 

Our approach is aimed at more general 
proxy solutions. As mentioned above, we 
envision mobile applications where the proxy 
can overcome some of the limitations of the 
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portable device by maintaining a cache or 
performing CPU-intensive interpretation of the 
data stream. Offloading some of the application 
logic to a proxy comes at a cost. We therefore 
want to shift parts of the client logic only when 
necessary (to conserve battery power or reduce 
network bandwidth, for example). This again 
argues for a dynamic adaptive proxy design, 
with the added complexity of moving not only 
data, but also code.  

MOBILITY 

A third major difference from previous 
work is that we plan to address issues of 
mobility. Nearly without exception, existing 
solutions address the situation where a mobile 
host interacts with a fixed host over the same 
wireless link forever. In fact, [30] claims that the 
issue of proxy migration is beyond the current 
state-of-the-art. Given that “migrating” the 
proxy does not necessarily mean that we 
physically migrate the proxy, we disagree with 
this statement. We will investigate how to create 
a proxy infrastructure, perhaps connected with 
or related to the concept of Intelligent 
Networks [27] in telephony, which was devised 
for fast deployment of new services in a 
network. “Migrating” the proxy would then 
take the form of a handoff between two 
proxies. There are three salient issues to be 
addressed here. 

n What information should be collected 
(and how to collect it) to make 
“migration” decisions? 

n What are good decision algorithms, 
based on this information? 

n How does the solution scale to a 
metropolitan or provincial coverage 
area? 

ARCHITECTURE 

To achieve truly adaptive applications, we 
need to design and implement a number of 
components. Figure 2 gives an overview of the 
relevant pieces and how they interact. In this 
architecture, we distinguish two proxies, a high-
level proxy and a low-level proxy, similar to [30]. 
They play distinctive roles and require different 
mechanisms for their implementation. 

A central piece of infrastructure is the 
environment monitor. The client application 
needs to be informed of changes in the 
environment. This can be achieved by a 
daemon process on the mobile device, 
monitoring relevant environment parameters 
and notifying the application through registered 
call-back functions. To avoid interruptions of 
the client logic, these call-back functions could 
execute in a separate thread, for example, 
communicating with the rest of the mobile 
client through shared state. An application must 
register with this daemon, inform it of 

Figure 2: Proposed Architecture
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environment parameters it is interested in and 
the conditions under which it wants to be 
notified, and provide appropriate call-back 
functions. To obtain reliable information about 
the wireless link, the client-side daemon might 
interact with a similar daemon on the other end 
of the wireless link. 

The mobile device will execute the user 
interface and parts of the client application 
logic. Other parts of the client logic execute on 
a dedicated proxy server, which is a powerful 
machine in the fixed network. Ideally, the proxy 
server should be close to the base station. The 
high-level proxy communicates with the server, 
transparently hiding the fact that the server 
communicates with a mobile client. Since the 
high-level proxy will execute parts of the 
application code, it will exist at the user level. 

The application logic is divided between the 
mobile client and the high-level proxy. This 
division of labor changes over time, depending 
on the current environment. In previous work, 
we designed and implemented a number of 
applications that registered with the monitor 
and made decisions about the most appropriate 
adaptation, based on the feedback received 
from the monitor, see for example [20,29]. To 
facilitate the development of adaptive mobile 
applications, we plan to factor the partition 
algorithms out into the runtime system. Each 
client application will be designed concentrating 
on the functional aspect only. To enable 
dynamic partitioning, the application may 
register certain information with the runtime 
system. It is up to the runtime system to 
connect with the monitor and to combine the 
information registered by the application with 
the feedback received from the monitor to 
make partitioning decisions. 

We have started implementing this 
architecture as follows. The mobile device and 
the proxy server both execute a Java virtual 
machine. The client application consists of a 
number of objects, communicating via method 
invocation. Upon creation, each object may 
register with the runtime system. The 
registrations are of the form “execute on 
mobile if bandwidth greater than X” or 
“execute in same location as object O.” A 
default policy handles objects that did not 

explicitly register and provide specific 
information. For example, a default policy links 
object size to bandwidth and/or available 
memory. Objects exceeding a threshold size 
execute on the proxy server, otherwise they 
execute on the mobile host. The runtime 
system monitors the relevant parameters and 
initiates object migration if necessary. Object 
migration is achieved by a mobile code 
technology based on Java (Objectspace Voyager 
[24]). 

A low-level proxy supports the 
communication between client and high-level 
proxy. One example of such a low-level proxy 
is SNOOP [3]. The low-level proxy operates at 
the data, network, and/or transport layers. 
Protocols at these layers are typically provided 
as part of the operating system protocol stack, 
so for maximal efficiency we expect the low-
level proxy to become part of the operating 
system. The low-level proxy supports 
communication over the wireless link, so we 
envision that the low-level proxy will execute 
on a host that directly connects to the wireless 
link. There are only two choices: the mobile 
device and the base station. Given the 
restrictions of the mobile device, the logical 
place for the low-level proxy is the base station. 
However, a low-level proxy might also be split 
between the mobile device and base station, to 
provide symmetric support for communication 
to and from the mobile device. 

Most published low-level proxies work 
under the assumption that the low-level proxy 
is transparent to higher-level communication. 
Another useful extension of the proxy approach 
is to extend the capabilities of the higher-level 
protocols. In previous work [15,19], we 
identified services such as prioritizing 
competing TCP connections or keeping TCP 
connections alive in the presence of spurious 
disconnections. In this case, the existence of the 
low-level proxy cannot be kept transparent to 
the client. In fact, the client needs an interface 
to request such enhanced services, and to 
provide the proxy with necessary information. 
As far as possible, this functionality should be 
hidden in the runtime system, invisible to the 
application logic implemented by the 
programmer. 
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EXAMPLES 

To give an indication of how the 
architecture will support adaptive mobile 
applications, this section briefly describes 
designs for a number of potential applications. 

MPEG FILTER 

We are completing the implementation of a 
transparent MPEG filter that operates as part 
of the low-level proxy [18].  It selectively drops 
frames of various types depending on the 
current network conditions.  This is achieved 
transparently to the application through the use 
of a second, lower-level filter [14] that adjusts 
the TCP protocol headers to mask the removal 
of data.  This preserves the end-to-end 
semantics of the TCP stream, even though the 
two endpoints have divergent views about the 
amount of data exchanged. 

WWW BROWSER 

A possible design for a WWW browser 
uses the high-level proxy as a data filter. The 
client registers with the monitor, asking to be 
informed of changes in the bandwidth. In a 
high-bandwidth environment (for example, 
when the user is working in the office), the 
high-level proxy forwards HTTP requests to 
the servers and forwards the replies to the 
client. In addition, the high-level proxy can 
maintain a cache of documents, potentially 
sharing this cache with other clients executing 
in the same cell. For medium-bandwidth 
environments, the high-level proxy filters the 
incoming inline images to reduce the resolution. 
In a low-bandwidth environment, the high-level 
proxy filters inline images to reduce both the 
resolution and the color. In this example, client 
and proxy communicate with the standard 
HTTP protocol. 

This first design follows the customary use 
of proxies to filter and compress the data 
stream, potentially making the proxy somewhat 
more adaptive based on feedback about the 
available bandwidth received from the monitor. 
A somewhat different design, emphasizing code 
mobility, is as follows. Based on information 
about the mobile device, routines to process 

and format the HTTP replies are assigned to 
either the portable device or the high-level 
proxy. The high-level proxy would send 
pixmaps representing the web page to the 
client, who displays them and returns 
information about user actions. Full-color high-
resolution pixmaps will increase the bandwidth 
requirement, but reduce the computational load 
on the client, saving energy. Grayscale and/or 
low-resolution pixmaps can help to reduce both 
energy and bandwidth consumption. In either 
design, the proxy communicates with the server 
following the HTTP protocol, hiding the 
mobile client and the current division of labor 
between client and proxy from the other 
servers. 

MUSEUM GUIDE 

A different application is an interactive 
museum guide. A visitor wanders through a 
museum with a palmtop in his/her hands. 
Information about each exhibit is displayed as 
the visitor approaches an object. The 
application also provides the visitor with the 
option to inquire about a specific exhibit and to 
display the best path from his/her current 
location to that object. 

To enable this application, the monitor 
must provide location information. This could 
be achieved either directly, with a system such 
as GPS, or indirectly, by deducing the current 
location from the base station with which the 
device communicates. Computing the shortest 
path is potentially rather complex and is 
therefore done at the high-level proxy. This 
proxy also provides a cache for previous 
information and the query routines to fetch 
information from the central database, based on 
the current location. The portable device 
executes the interface component. The available 
bandwidth will vary, depending on the number 
of people crowding in front of the more 
popular exhibits, and whether the object is 
indoors or outdoors.  The application can adapt 
to these changes by offloading the graphical 
processing to the proxy, similar to the WWW 
browser example. In this case, the backend (the 
database that provides the information about 
exhibits) can serve other applications as well, 
for example to generate dynamic web pages. 
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MAIL READER 

A mobile mail reader can use the monitor 
to inquire about locally available SMTP servers. 
It establishes connections to the closest SMTP 
server (potentially based on security and/or 
cost considerations) to send e-mail messages 
composed by the user. To read e-mail, the client 
must connect to the “home” message store. 
Typically, a user will have many different 
folders with many messages in each. Copies of 
these folders are downloaded to the high-level 
proxy server. Depending on the network 
conditions and the available space (memory, 
disk) at the mobile device, copies of the smaller 
folders can be downloaded to the mobile. The 
application will dynamically determine whether 
a mail folder exists locally or at the proxy 
server, processing requests for listing all 
messages or displaying certain messages at the 
appropriate location.  

A partial version of such a mail reader is 
described in [20]. We experimented with 
different policies for placing the folders on 
either the mobile host or the proxy server. To 
evaluate the performance, we measured the 
elapsed time to execute scripts representing user 
sessions for the various configurations over 
different bandwidths. Table 1 lists the results. 

We found that the dynamic adaptation 
scheme, while not always resulting in the lowest 
possible response times, performs relatively well 
across all bandwidths. Furthermore, the two 
“static” designs, creating all folders at either the 
mobile device or the proxy independent of the 
current network condition, result in poor 
performance in some environments. For 
applications that encounter the whole range of 
bandwidths (and other characteristics of a 
dynamically changing environment), we need 
adaptive application designs. Otherwise we end 
up with applications that either result in 
extremely poor performance some of the time, 

or a user will need to install multiple binaries 
for the same task. As this example also 
demonstrates, the adaptation can be transparent 
to the user and application developer, assuming 
that a mobile code system with location-
transparent method invocations is being used. 

SUMMARY AND CONCLUSIONS 

Mobile computing is a relatively new field. 
While the challenges arising from mobility and 
the limitations of the portable devices are 
relatively well understood, there is no consensus 
yet as to what should be done to address these 
challenges. A comprehensive solution has to 
address many different aspects, such as the 
issue of dynamically changing bandwidth, the 
power, computational, and other limitations of 
the portable devices, or the varying availability 
of services in different environments. This 
paper presents our architecture for such 
adaptive mobile applications. We motivated the 
architecture by classifying likely mobile 
applications and identified common properties. 
The architecture intends to be more general 
than previous work with respect to adaptability, 
flexibility, and user mobility. We developed 
various pieces of the overall architecture and 
collected some preliminary experience with 
adaptive mobile applications. The results, 
reported in [15,18,19,20,23,29], are encouraging. 
Work is currently under way to implement the 
missing components of our architecture. Once 
completed, we will explore the following 
questions: What are good indicators of relative 
resource scarcity and how do we collect them at 
runtime? What adaptation policies are 
appropriate for different resources (bandwidth, 
power, or memory)? Can we tradeoff one 
resource for another? How transparent can 
application adaptation be made to end-users? 
How transparent can it be made to application 
developers? We are also cooperating with a 

Bandwidth All folders on Mobile All folders on Proxy Adaptive scheme 

10 Mbps 369 529 486 
1 Mbps 1,346 577 532 
100 kbps 2,018 637 669 
64 kbps - 2,583 2,190 

Table 1: Elapsed Times (seconds) for variants of the mail application 



 

1999.05.13  10 

Canadian cellular service provider to evaluate 
our ideas and explore the scalability of our 
architecture for province-wide cellular systems. 
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