
1999.05.13 1

A N A R C H I T E C T U R E F O R A D A P T I V E
M O B I L E A P P L I C A T I O N S

Thomas Kunz1
Systems and Computer Engineering

Carleton University
tkunz@sce.carleton.ca

James P. Black
Computer Science

University of Waterloo
jpblack@uwaterloo.ca

1 The contact for this paper is Thomas Kunz, Department of Systems and Computer Engineering, Carleton University,
1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6, email: tkunz@sce.carleton.ca, phone: (613) 520-3573, fax: (613)
520-5727

ABSTRACT

Mobile applications execute in an
environment characterized by scarce and
dynamically varying resources. We believe that
applications have to adapt dynamically and
transparently to the amount of resources
available at runtime. To achieve this goal, we
use the conventional extension of the client-
server model to a client-proxy-server model.
The mobile devices execute the client, which
provides the user interface and some part of the
application logic. The proxy is a component of
the application that executes in the wired
network to support the client. As the user
moves, the proxy may also move to remain on
the communication path from the mobile
device to a fixed correspondent host. Logically,
the proxy hides the “mobile” client from the
server, who thinks it communicates with a
standard client (i.e., a client that executes on a
powerful desktop directly connected to the
wired network). The new contribution of our
research lies in the division of labor between
client and proxy. The application logic of the
“standard client” is split dynamically between
the mobile client and the proxy, using mobile
code, to adapt to the dynamic wireless
environment and to address the limitations of
the portable device. Using mobile code allows
us to experiment with different adaptation
strategies and to explore resource tradeoffs in a
unified framework. We are developing the
components of a flexible and general-purpose
runtime infrastructure to facilitate the rapid
development and deployment of such adaptive
mobile applications. We will evaluate our
infrastructure by implementing a number of

wireless applications and by building simulation
tools to validate the scalability of our
architecture when considering metropolitan and
provincial cellular systems. The simulations will
be driven by trace data that we are collecting in
cooperation with a Canadian cellular service
provider.

INTRODUCTION

The convergence of two technological
developments has made mobile computing a
reality [17]. In the last few years, developed
countries spent large amounts of money to
install and deploy wireless communication
facilities. Originally aimed at telephone services
(which still account for the majority of usage),
the same infrastructure is increasingly used to
transfer data. The second development is the
continuing reduction in size of computer
hardware, leading to portable computation
devices such as laptops, palmtops, or
functionally enhanced cell phones. Given
current technology, a user can run a set of
applications on a portable device and
communicate over a variety of communication
links, depending on his/her current location.
For example, the user can access the wired
corporate LAN at 10 Mbps or higher in the
office. Roaming in the building, connectivity is
provided by an indoor wireless LAN at 1-2
Mbps. Outdoors, connectivity is provided by
cellular wireless-IP networks, providing
bandwidths of a few tens of kbps. Furthermore,
the sets of services available in each location
will generally differ.

1999.05.13 2

Similar discrepancies will also persist in
future wireless networks, such as the ones
under study by the International
Telecommunication Union [11] and the
European Union’s ACTS program [1]. Unlike
second-generation cellular networks, future
cellular systems will cover an area with a variety
of non-homogeneous cells that may overlap.
This allows the network operators to tune the
system layout to subscriber density and
subscribed services. Cells of different sizes will
offer widely varying bandwidths: very high
bandwidths with low error rates in pico-cells,
very low bandwidths with higher error rates in
macro-cells. Again, depending on the current
location, the sets of available services might also
differ. It is generally argued that applications
should “adapt” to the current environment, for
example by filtering and compressing data or by
changing the functionality offered to the user,
see [2,6,22,28,30]. Some researchers even argue
that all future applications, not just the ones
intended for execution on mobile devices, will
have to be able to adapt to changing
requirements and changing implementation
environments on time scales from
microseconds to years [13]. This paper
describes the architecture we propose to
facilitate the development of such adaptive
mobile applications, based on mobile code.

The alternative to adaptive applications is
multiple functionally identical or similar
binaries, tuned for specific environments. This
is an inferior solution, for a number of reasons.
The user of a portable device has to install and
maintain multiple applications, which is a drain
on the limited storage capabilities typically
found on those devices. It also potentially
results in different user interfaces and causes
high software development overheads when
developing the “same” mobile application
multiple times. Finally, it forces the user to
identify the current execution conditions and
select the “right” application.

MOBILE APPLICATIONS

To define a suitable architecture, we first
identify categories of applications a mobile user
is most likely to execute on his mobile device.
Due to the existing limitations of portable

devices (limited computational power, disk
space, screen size, etc.), we claim that portable
devices should not be considered general-
purpose computers. Even though portable
devices will become increasingly powerful, they
will never match the computational power and
facilities available on typical desktop machines.
Similarly, while the wireless technology will
improve, providing more and more bandwidth
to the end user, wired network technology will
advance as well, with the result that wireless
networks will remain, in the near to medium
future, orders of magnitudes slower. Therefore,
mobile computing will always be characterized
by a scarcity of resources, relatively speaking. In
our opinion, an end-user will execute
applications in one of the following six
categories in such an environment:

n Standalone applications such as games
or utilities;

n Personal productivity software (word
processors, presentation software,
calendars);

n Internet applications such as e-mail,
WWW browsers, multi-user calendars,
or telnet;

n Vertically integrated business
applications (field installation and
services, security);

n New “location-aware” applications:
tour planners, interactive guides;

n Ad-hoc network and groupware
applications.

The first category was originally of little
interest to us, since these applications do not
involve communication. However, the main
idea underlying our architecture is to
transparently support resource-constrained
mobile devices by powerful proxy servers. We
are therefore currently exploring how to
generalize this idea to support standalone
applications as well.

Applications in the second category will be
used on multiple platforms: a user will have a
version of his/her favorite word processor
executing on a laptop as well as on the more
powerful desktop in the office. This requires
the exchange and synchronization of
documents between the machines. Depending
on the prevailing view of available network

1999.05.13 3

connectivity, two possible approaches are
imaginable. Windows CE and MS Office
exemplify a first solution. A user works on a
document at either the laptop or the desktop,
synchronizing multiple versions only
infrequently and in a controlled environment. A
second solution assumes that connectivity is
more pervasive, allowing access to
“authoritative” copies of a document on
demand. This solution will require client-server
applications to allow access to remote
documents in the presence of highly variable
communication links.

The Internet applications constitute a very
interesting and challenging category. Mobile
devices are often considered as the “on-ramp”
to the Internet, see for example [10].
Consequently, a user will want to execute the
client side of typical Internet applications on his
portable device, communicating with servers in
the existing Internet infrastructure. This is not
as straightforward as it may seem at first glance.
The Internet developed as a wired network,
connecting powerful computers over relatively
high-speed communication links. The
assumptions underlying the design of many
Internet clients reflect this view of the world.
They are therefore not particularly well suited to
a mobile environment. For example, the
communication protocol of choice is TCP,
which is known to behave poorly in the
presence of wireless links with their
corresponding high bit-error rates. Client
applications typically assume that they have
sufficient bandwidth, memory, and
computational power at their disposal, which is
equally questionable. Given the huge amount of
money invested in the current infrastructure, it
is unrealistic to expect that the whole Internet
will change to accommodate mobile users
overnight. In particular, servers deployed
worldwide will not change in the near future.
To facilitate access to the Internet, only the
client side of the application can be adapted to
function well in the dynamic and resource-
constrained mobile environment. The
architecture proposed below is intended for
applications in this category.

Vertically integrated business applications
are often structured as client-server
applications. Furthermore, the backends

(servers) have to support both existing wired
desktops and wireless mobile devices. One
example is a bank, where the back office has to
support account managers in branch offices as
well as mobile customer service representatives.
Therefore, the clients executing on the portable
devices face challenges similar to those faced by
traditional Internet clients. They have to adapt
to the limitations of the portable device in a
dynamically changing execution environment.
To facilitate the deployment of mobile
applications, solutions should be transparent to
the servers. Due to these similarities, we believe
that the architecture proposed below applies
equally well to this group of applications.

The location-aware applications exploit the
fact that a user is mobile. Possible examples
include travel guides, which might display the
shortest path from a user’s current location to
the closest/cheapest/best Italian restaurant, or
applications that allow a user to print a
document on the closest color postscript laser
printer. To the extent that these applications
utilize the existing Internet (discovering and
accessing nearby resources, for example), the
architecture described below can be of value
here as well.

Applications in the final category arise out
of the mobility of a number of users, for
example the meeting of a number of
researchers or managers, each equipped with a
portable device. Users might want to establish
ad-hoc networks to exchange documents (the
newest version of the transparencies for the
invited talk) or to execute groupware
applications to update a shared business plan.
Since these applications will not, to a large
extent, be limited by the need to interact with
an existing infrastructure, the proposed
architecture is probably not directly relevant to
them. Similar to standalone applications, we are
however exploring how to generalize our ideas
to support ad-hoc network applications.

THE CLIENT-PROXY-SERVER MODEL

Most application categories discussed
above comprise client-server applications. An
application on a mobile device or desktop
workstation provides some functionality to the

1999.05.13 4

end-user in conjunction with server(s) in the
Internet. Examples are the WWW browsers
that retrieve documents from servers around
the world, or clients that connect to FTP
servers to upload or download files. Our
architecture is based on an extension of this
traditional client-server model to a client-proxy-
server model. Figure 1 shows the relevant
components.

The mobile devices execute the client,
which provides the user interface and some part
of the application logic. In all wireless
technologies, a mobile device communicates
with the fixed network through a base station,
which is the access point for all devices in a cell.
Through some switching fabric, the base station
provides connectivity with other hosts in the
network, such as a WWW server or an SMTP
server. The third component of our model is
the proxy, a component of the application that
executes in the wired network and supports the
client. One possible location for the proxy is
the base station. In general, any computer on
the communication path between client and
server can host the proxy. Logically, the proxy
hides the “mobile” client from the server, who
thinks it communicates with a standard client
(i.e., a client that executes on a powerful
desktop directly connected to the wired
network). The application logic of the “standard
client” is split between the mobile client and the
proxy to adapt to the dynamic wireless

environment and to address the limitations of
the portable device. For example, the proxy
could execute on a powerful workstation with
large amounts of memory and disk space. This
would make the proxy an ideal candidate to
manage large caches or to perform
computationally intensive tasks such as
interpreting an MPEG video stream and
turning it into a pixmap. Where bandwidth
limitations over the wireless link are of major
concern, the proxy could provide filtering and
compression functions.

To avoid suboptimal communication paths,
the proxy must migrate within the fixed
network, following the user. “Migrating” the
proxy can mean either that the proxy moves
physically from machine to machine, or that a
system of proxies exists, and only relevant state
information is passed during a hand-over. The
two approaches are complementary, and the
best choice depends upon the details of a given
situation. Other issues raised by user mobility
are:

n How should the proxy migration
decision be made (based on what
information, using what algorithm)?

n Given that we expect a large number of
mobile users, how does the approach
scale? For example, what happens if a
sizeable subset of users decides to head
to the same shopping mall at noon,

Figure 1: The Client-Proxy-Server Model

1999.05.13 5

checking stock options over the WWW
while having lunch?

COMPARISON TO RELATED WORK

The idea of using a proxy in the wired
network to support a mobile device is well
known. In fact, most wireless WWW browsers,
among others, use one or more proxies to
support their operation in a low-bandwidth
environment [5,7,8,16]. However, our approach
is more concerned with adaptability, flexibility,
and mobility than work published in the
literature, as explained below.

ADAPTABILITY

Existing proposals often install a proxy that
filters and/or compresses data for a specific
application. This filter is either enabled or
disabled. Examples are filters to turn color
inline images into lower-resolution grayscale
images or to convert postscript into ASCII text,
or e-mail readers that provide the “subject” line
of a mail message only, avoiding the
transmission of the main message body over a
slow link. In the scenario of the introduction,
the environment changes dynamically,
depending on the user’s behavior and that of
others. We therefore foresee the need to make
the proxies more dynamic, to adapt more
closely to changes in the environment.
Examples are changing the resolution and/or
color of an inline image only when necessary,
and changing the resolution incrementally.
Another example could be to allow an e-mail
reader to read the body of small e-mail
messages but to avoid downloading large
messages. To enable this more fine-grained
adaptation, a mechanism is needed that
provides the mobile application with
information about the environment, including
device information, information about the
wireless link, infrastructure information like
reachable servers or services, and location-
related information.

Adaptation decisions need to take
information about multiple resources into
consideration. For example, high available
bandwidth might favor a shift from the proxy
to the mobile. However, the mobile might be
running low on power, arguing for a shift from

the mobile to the proxy. Similarly, certain
adaptation options might not be feasible in
environments that lack the appropriate
infrastructure. Previous research tended to
focus on one resource only: [24,26] focus on
power consumption, [21] on location
information, [9] on local services, and [4,30] on
the network characteristics.

A completely different approach would be
to design the division of labor between mobile
client and proxy for the worst case only, which
would allow a user to get consistent
functionality across all environments. We
consider such a solution less than desirable, for
at least two reasons. First, whenever possible, a
user should experience the best service
achievable. Normalizing to the lowest common
denominator often unnecessarily deprives the
user of full service and functionality. Second, a
proxy server will, in general, support many
mobile users. To the extent that the individual
portable devices can contribute to better client
functionality, they should be encouraged to do
so. Otherwise, even a powerful proxy server
might be overloaded, resulting in poor
performance for all applications.

FLEXIBILITY

Most existing proxy solutions operate at the
protocol level. They intercept messages and
reduce the data sent over the wireless link by
filtering less important data and utilizing
compression algorithms (see for example [30]).
As discussed in [5], while data compression and
filtering improve the perceived performance of
web browsers, they are not sufficient. Support
for new types of operations, such as browsing
while disconnected and/or asynchronous
browsing, is needed in a mobile environment.
The research in [5,16] is based on a static client-
proxy-server architecture, where the division of
labor between client and proxy is determined
and fixed at design time. Both papers, however,
emphasize that a more flexible, dynamic,
adaptation based on mobile code should be
explored in future.

Our approach is aimed at more general
proxy solutions. As mentioned above, we
envision mobile applications where the proxy
can overcome some of the limitations of the

1999.05.13 6

portable device by maintaining a cache or
performing CPU-intensive interpretation of the
data stream. Offloading some of the application
logic to a proxy comes at a cost. We therefore
want to shift parts of the client logic only when
necessary (to conserve battery power or reduce
network bandwidth, for example). This again
argues for a dynamic adaptive proxy design,
with the added complexity of moving not only
data, but also code.

MOBILITY

A third major difference from previous
work is that we plan to address issues of
mobility. Nearly without exception, existing
solutions address the situation where a mobile
host interacts with a fixed host over the same
wireless link forever. In fact, [30] claims that the
issue of proxy migration is beyond the current
state-of-the-art. Given that “migrating” the
proxy does not necessarily mean that we
physically migrate the proxy, we disagree with
this statement. We will investigate how to create
a proxy infrastructure, perhaps connected with
or related to the concept of Intelligent
Networks [27] in telephony, which was devised
for fast deployment of new services in a
network. “Migrating” the proxy would then
take the form of a handoff between two
proxies. There are three salient issues to be
addressed here.

n What information should be collected
(and how to collect it) to make
“migration” decisions?

n What are good decision algorithms,
based on this information?

n How does the solution scale to a
metropolitan or provincial coverage
area?

ARCHITECTURE

To achieve truly adaptive applications, we
need to design and implement a number of
components. Figure 2 gives an overview of the
relevant pieces and how they interact. In this
architecture, we distinguish two proxies, a high-
level proxy and a low-level proxy, similar to [30].
They play distinctive roles and require different
mechanisms for their implementation.

A central piece of infrastructure is the
environment monitor. The client application
needs to be informed of changes in the
environment. This can be achieved by a
daemon process on the mobile device,
monitoring relevant environment parameters
and notifying the application through registered
call-back functions. To avoid interruptions of
the client logic, these call-back functions could
execute in a separate thread, for example,
communicating with the rest of the mobile
client through shared state. An application must
register with this daemon, inform it of

Figure 2: Proposed Architecture

1999.05.13 7

environment parameters it is interested in and
the conditions under which it wants to be
notified, and provide appropriate call-back
functions. To obtain reliable information about
the wireless link, the client-side daemon might
interact with a similar daemon on the other end
of the wireless link.

The mobile device will execute the user
interface and parts of the client application
logic. Other parts of the client logic execute on
a dedicated proxy server, which is a powerful
machine in the fixed network. Ideally, the proxy
server should be close to the base station. The
high-level proxy communicates with the server,
transparently hiding the fact that the server
communicates with a mobile client. Since the
high-level proxy will execute parts of the
application code, it will exist at the user level.

The application logic is divided between the
mobile client and the high-level proxy. This
division of labor changes over time, depending
on the current environment. In previous work,
we designed and implemented a number of
applications that registered with the monitor
and made decisions about the most appropriate
adaptation, based on the feedback received
from the monitor, see for example [20,29]. To
facilitate the development of adaptive mobile
applications, we plan to factor the partition
algorithms out into the runtime system. Each
client application will be designed concentrating
on the functional aspect only. To enable
dynamic partitioning, the application may
register certain information with the runtime
system. It is up to the runtime system to
connect with the monitor and to combine the
information registered by the application with
the feedback received from the monitor to
make partitioning decisions.

We have started implementing this
architecture as follows. The mobile device and
the proxy server both execute a Java virtual
machine. The client application consists of a
number of objects, communicating via method
invocation. Upon creation, each object may
register with the runtime system. The
registrations are of the form “execute on
mobile if bandwidth greater than X” or
“execute in same location as object O.” A
default policy handles objects that did not

explicitly register and provide specific
information. For example, a default policy links
object size to bandwidth and/or available
memory. Objects exceeding a threshold size
execute on the proxy server, otherwise they
execute on the mobile host. The runtime
system monitors the relevant parameters and
initiates object migration if necessary. Object
migration is achieved by a mobile code
technology based on Java (Objectspace Voyager
[24]).

A low-level proxy supports the
communication between client and high-level
proxy. One example of such a low-level proxy
is SNOOP [3]. The low-level proxy operates at
the data, network, and/or transport layers.
Protocols at these layers are typically provided
as part of the operating system protocol stack,
so for maximal efficiency we expect the low-
level proxy to become part of the operating
system. The low-level proxy supports
communication over the wireless link, so we
envision that the low-level proxy will execute
on a host that directly connects to the wireless
link. There are only two choices: the mobile
device and the base station. Given the
restrictions of the mobile device, the logical
place for the low-level proxy is the base station.
However, a low-level proxy might also be split
between the mobile device and base station, to
provide symmetric support for communication
to and from the mobile device.

Most published low-level proxies work
under the assumption that the low-level proxy
is transparent to higher-level communication.
Another useful extension of the proxy approach
is to extend the capabilities of the higher-level
protocols. In previous work [15,19], we
identified services such as prioritizing
competing TCP connections or keeping TCP
connections alive in the presence of spurious
disconnections. In this case, the existence of the
low-level proxy cannot be kept transparent to
the client. In fact, the client needs an interface
to request such enhanced services, and to
provide the proxy with necessary information.
As far as possible, this functionality should be
hidden in the runtime system, invisible to the
application logic implemented by the
programmer.

1999.05.13 8

EXAMPLES

To give an indication of how the
architecture will support adaptive mobile
applications, this section briefly describes
designs for a number of potential applications.

MPEG FILTER

We are completing the implementation of a
transparent MPEG filter that operates as part
of the low-level proxy [18]. It selectively drops
frames of various types depending on the
current network conditions. This is achieved
transparently to the application through the use
of a second, lower-level filter [14] that adjusts
the TCP protocol headers to mask the removal
of data. This preserves the end-to-end
semantics of the TCP stream, even though the
two endpoints have divergent views about the
amount of data exchanged.

WWW BROWSER

A possible design for a WWW browser
uses the high-level proxy as a data filter. The
client registers with the monitor, asking to be
informed of changes in the bandwidth. In a
high-bandwidth environment (for example,
when the user is working in the office), the
high-level proxy forwards HTTP requests to
the servers and forwards the replies to the
client. In addition, the high-level proxy can
maintain a cache of documents, potentially
sharing this cache with other clients executing
in the same cell. For medium-bandwidth
environments, the high-level proxy filters the
incoming inline images to reduce the resolution.
In a low-bandwidth environment, the high-level
proxy filters inline images to reduce both the
resolution and the color. In this example, client
and proxy communicate with the standard
HTTP protocol.

This first design follows the customary use
of proxies to filter and compress the data
stream, potentially making the proxy somewhat
more adaptive based on feedback about the
available bandwidth received from the monitor.
A somewhat different design, emphasizing code
mobility, is as follows. Based on information
about the mobile device, routines to process

and format the HTTP replies are assigned to
either the portable device or the high-level
proxy. The high-level proxy would send
pixmaps representing the web page to the
client, who displays them and returns
information about user actions. Full-color high-
resolution pixmaps will increase the bandwidth
requirement, but reduce the computational load
on the client, saving energy. Grayscale and/or
low-resolution pixmaps can help to reduce both
energy and bandwidth consumption. In either
design, the proxy communicates with the server
following the HTTP protocol, hiding the
mobile client and the current division of labor
between client and proxy from the other
servers.

MUSEUM GUIDE

A different application is an interactive
museum guide. A visitor wanders through a
museum with a palmtop in his/her hands.
Information about each exhibit is displayed as
the visitor approaches an object. The
application also provides the visitor with the
option to inquire about a specific exhibit and to
display the best path from his/her current
location to that object.

To enable this application, the monitor
must provide location information. This could
be achieved either directly, with a system such
as GPS, or indirectly, by deducing the current
location from the base station with which the
device communicates. Computing the shortest
path is potentially rather complex and is
therefore done at the high-level proxy. This
proxy also provides a cache for previous
information and the query routines to fetch
information from the central database, based on
the current location. The portable device
executes the interface component. The available
bandwidth will vary, depending on the number
of people crowding in front of the more
popular exhibits, and whether the object is
indoors or outdoors. The application can adapt
to these changes by offloading the graphical
processing to the proxy, similar to the WWW
browser example. In this case, the backend (the
database that provides the information about
exhibits) can serve other applications as well,
for example to generate dynamic web pages.

1999.05.13 9

MAIL READER

A mobile mail reader can use the monitor
to inquire about locally available SMTP servers.
It establishes connections to the closest SMTP
server (potentially based on security and/or
cost considerations) to send e-mail messages
composed by the user. To read e-mail, the client
must connect to the “home” message store.
Typically, a user will have many different
folders with many messages in each. Copies of
these folders are downloaded to the high-level
proxy server. Depending on the network
conditions and the available space (memory,
disk) at the mobile device, copies of the smaller
folders can be downloaded to the mobile. The
application will dynamically determine whether
a mail folder exists locally or at the proxy
server, processing requests for listing all
messages or displaying certain messages at the
appropriate location.

A partial version of such a mail reader is
described in [20]. We experimented with
different policies for placing the folders on
either the mobile host or the proxy server. To
evaluate the performance, we measured the
elapsed time to execute scripts representing user
sessions for the various configurations over
different bandwidths. Table 1 lists the results.

We found that the dynamic adaptation
scheme, while not always resulting in the lowest
possible response times, performs relatively well
across all bandwidths. Furthermore, the two
“static” designs, creating all folders at either the
mobile device or the proxy independent of the
current network condition, result in poor
performance in some environments. For
applications that encounter the whole range of
bandwidths (and other characteristics of a
dynamically changing environment), we need
adaptive application designs. Otherwise we end
up with applications that either result in
extremely poor performance some of the time,

or a user will need to install multiple binaries
for the same task. As this example also
demonstrates, the adaptation can be transparent
to the user and application developer, assuming
that a mobile code system with location-
transparent method invocations is being used.

SUMMARY AND CONCLUSIONS

Mobile computing is a relatively new field.
While the challenges arising from mobility and
the limitations of the portable devices are
relatively well understood, there is no consensus
yet as to what should be done to address these
challenges. A comprehensive solution has to
address many different aspects, such as the
issue of dynamically changing bandwidth, the
power, computational, and other limitations of
the portable devices, or the varying availability
of services in different environments. This
paper presents our architecture for such
adaptive mobile applications. We motivated the
architecture by classifying likely mobile
applications and identified common properties.
The architecture intends to be more general
than previous work with respect to adaptability,
flexibility, and user mobility. We developed
various pieces of the overall architecture and
collected some preliminary experience with
adaptive mobile applications. The results,
reported in [15,18,19,20,23,29], are encouraging.
Work is currently under way to implement the
missing components of our architecture. Once
completed, we will explore the following
questions: What are good indicators of relative
resource scarcity and how do we collect them at
runtime? What adaptation policies are
appropriate for different resources (bandwidth,
power, or memory)? Can we tradeoff one
resource for another? How transparent can
application adaptation be made to end-users?
How transparent can it be made to application
developers? We are also cooperating with a

Bandwidth All folders on Mobile All folders on Proxy Adaptive scheme

10 Mbps 369 529 486
1 Mbps 1,346 577 532
100 kbps 2,018 637 669
64 kbps - 2,583 2,190

Table 1: Elapsed Times (seconds) for variants of the mail application

1999.05.13 10

Canadian cellular service provider to evaluate
our ideas and explore the scalability of our
architecture for province-wide cellular systems.

BIOGRAPHIES

Thomas Kunz received the Dr. Ing. degree
from the Technical University of Darmstadt,
Federal Republic of Germany, in May 1994.
From 1994-1997 he worked as assistant
professor in the Department of Computer
Science at the University of Waterloo, Ontario,
Canada. During this time, he was a member of
the Shoshin research group, participating in the
development of a distributed debugger. He also
started work on client-server applications over
wireless links. In 1997, he joined the
Department of Systems and Computer
Engineering at Carleton University as assistant
professor. Starting in the summer of 1998, he
heads a research project that explores how to
adapt mobile applications transparently to
scarce and dynamically varying execution
environment resources. His other research
interests include load balancing in distributed
systems, distributed debugging, management of
distributed applications and systems, and
wireless communication systems and protocols.
He can be reached at: Department of Systems
and Computer Engineering, Carleton
University, 1125 Colonel By Drive, Ottawa,
Ontario K1S 5B6. His e-mail address is
tkunz@sce.carleton.ca.

J.P. Black received his PH.D. in Computer
Science from the University of Waterloo in
1982, having previously studied at the
University of Calgary and the Institute National
Polytechnique de Grenoble, France. He has
been on the faculty of the University since
1984. He is currently Associate Provost,
Information Systems and Technology, and is an
Associate Professor in the Department of
Computer Science. As Associate Provost, he is
responsible for the administration and long
term planning of all information systems and
information technology at UW. His current
research interests include the management of
distributed applications and systems, distributed
debugging and the visualization of complex
executions, and mobile and wireless computing.
He was involved in the design and

implementation of the Newcastle Connection,
and early distributed extension to Unix at the
Computing Laboratory, University of
Newcastle on Tyne. More recently, he has been
involved in the design and development of
Poet, a suite of software for visualizing and
debugging distributed and concurrent
applications. His research forms part of the
activities of the Shoshin research group at
Waterloo.

REFERENCES

1. ACTS Mobility, Personal & Wireless
Communications Domain, Evolving the
UMTS Vision, December 1997,
http://www.infowin.org/ACTS/IENM/C
ONCERTATION/MOBILITY/.

2. B. R. Badrinath, A. Acharya, and T.
Imielinski, Structuring Distributed Algorithms
for Mobile Hosts, Proceedings of the 14th
International Conference on Distributed
Computing Systems, Poznan, Poland, June
1994, pages 21-28.

3. H. Balakrishnan, S. Seshan, E. Amir, and R.
H. Katz, Improving TCP/IP Performance over
Wireless Networks, Proceedings of the First
Annual International Conference on
Mobile Computing and Communications,
Berkeley, USA, November 1995, pages 2-
11.

4. J. Bolliger and T. Gross. A framework-based
approach to the development of network-aware
applications. IEEE Transactions on Software
Engineering, 24(5):376-390, May 1998.

5. H. Chang, C. Tait, N. Cohen, M. Shapiro,
S. Mastrianni, R. Floyd, B. Housel, and D.
Lindquist, Web Browsing in a Wireless
Environment: Disconnected and Asynchronous
Operation in ARTour Web Express, Proc. 3rd
Ann. ACM/IEEE Conf. on Mobile
Computing and Networking, Budapest,
Hungary, September 1997, pages 260-269.

6. G. H. Forman and J. Zahorjan, The
Challenges of Mobile Computing, University of
Washington, Department of Computer
Science, Tech. Rep. #93-11-03, March
1994.

1999.05.13 11

7. S. Gessler and A. Kotulla, PDAs as mobile
WWW browsers, Proc. of the Second World
Wide Web Conference: Mosaic and the
Web, Chicago, Illinois, USA, October 1994,
http://www.ncsa.uiuc.edu/SDG/IT94/Pr
oceedings/DDay/gessler/www_pda.html.

8. R. Han, P. Bhagwat, R. LaMaire, T.
Mummert, V. Perret, and J. Rubas, Dynamic
Adaptation in an Image Transcoding Proxy for
Mobile Web Browsing, IEEE Personal
Communications, December 1998, pages 8-
17.

9. T. D. Hodes, R. H. Katz, E. Servan-
Schreiber, and L. Rowe, Composable Ad-hoc
Mobile Services for Universal Interaction, Proc.
3rd Ann. ACM/IEEE Conf. on Mobile
Computing and Networking, Budapest,
Hungary, September 1997, pages 1-12.

10. Industry Canada website
http://spectrum.ic.gc.ca/.

11. International Telecommunication Union,
IMT-2000 Website,
http://www.itu.int/imt/.

12. Internet Engineering Task Force website:
http://www.ietf.org/.

13. K. Kavi, J. C. Browne, and A. Tripathi,
Computer Systems Research: The Pressure is on,
IEEE Computer, January 1999, pages 30-
39.

14. D. Kidston, Transparent Communication
Management in Wireless Networks, Master’s
Thesis, Dept. of Computer Science,
University of Waterloo, October 1998.

15. D. Kidston, J.P. Black, T. Kunz, M.E.
Nidd, M. Lioy, B. Elphick, and M.
Ostrowski. Comma: A communication manager
for mobile applications. Proceedings of the 10th
Annual Int. Conf. On Wireless
Communications, Calgary, Alberta, Canada,
pages 103-116, July 1998.

16. M. T. Le, S. Seshan, F. Burghardt, et al.,
Software Architecture of the InfoPad System,
Proceedings of the Mobidata Workshop on
Mobile and Wireless Information Systems,
Rutgers, NY, USA, 1994.

17. Y. Li and V. C. M. Leung, Supporting Personal
Mobility for Nomadic Computing over the Internet,
Mobile Computing and Communications
Review, 1(1), Apr. 1997, pages 22-31.

18. F. G. Lin, An Adaptive MPEG Filter,
Master’s Thesis, Department of Computer
Science, University of Waterloo, in
progress.

19. M. Lioy, Providing TCP-level Services to Mobile
Computers in a Wireless Environment, Master’s
Thesis, Department of Computer Science,
University of Waterloo, September 1997.

20. H.-Y. Lo, M-Mail: A Case Study of Dynamic
Application Partitioning in Mobile Computing,
Master’s Thesis, Department of Computer
Science, University of Waterloo, May 1997.

21. H. Maass, Location-Aware Mobile Applications
based on Directory Services, Proc. 3rd Ann.
ACM/IEEE Conf. on Mobile Computing
and Networking, Budapest, Hungary,
September 1997, pages 23-33.

22. E. G. Manning, S.Khan, R. Lea, G. C.
Shoja, and M. M. J. Zastre, Metaspaces and
Mobile Computing: Promises and Challenges,
Lecture Notes in Computer Science,
Volume 1274, Springer Verlag, 1997, pages
350-362.

23. M.E. Nidd, T. Kunz, and J.P. Black.
Wireless applications and API design.
Proceedings of the 4th Int. IFIP Workshop
on QoS, Paris, France, pages 83-85, March
1996.

24. Objectspace Voyager,
http://www.objectspace.com/developers/
voyager/white/index.html

25. M. Othman and S. Hailes, Power Conservation
Strategy for Mobile Computers Using Load
Sharing, Mobile Computing and
Communications Review, 2(1), January
1998, pages 44-51.

26. A. Rudenko, P. Reiher, G. J. Popek, and G.
H. Kuenning, Saving Portable Computer Battery
Power through Remote Process Execution, Mobile
Computing and Communications Review,
2(1), January 1998, pages 19-26.

27. Telecom Finland, Intelligent Networks and
Services,
http://www.tfi.net/rd/network.html.

28. G. Welling and B. R. Badrinath, A
Framework for Environment Aware Mobile
Applications, 17th International Conference
on Distributed Computing Systems,

1999.05.13 12

Baltimore, Maryland, USA, May 1997,
pages 384-391.

29. T. J. Whalen, Design Issues for an Adaptive
Mobile Group Editor, Master’s Thesis,
Department of Computer Science,
University of Waterloo, September 1997.

30. B. Zenel and D. Duchamp, A General
Purpose Proxy Filtering Mechanism Applied to
the Mobile Environment, Proc. 3rd Ann.
ACM/IEEE Conf. on Mobile Computing
and Networking, Budapest, Hungary,
September 1997, pages 238-259.

