
An Architecture for Automatic Relational
Database System Conversion

BEN SHNEIDERMAN

University of Maryland

and

GLENN THOMAS

Kent State University

Changes in requirements for database systems necessitate schema restructuring, database translation,

and application or query program conversion. An alternative to the lengthy manual revision process

is proposed by offering a set of 15 transformations keyed to the relational model of data and the

relational algebra. Motivations, examples, and detailed descriptions are provided.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design--schema and

subschema; H.2.3 [Database Management]: Languages-data manipulation languages (DML);

H.2.5 [Database Management]: Heterogeneous Databases-program translation

General Terms: Design, Languages

Additional Key Words and Phrases: Database systems, automatic conversion, relational model,

transformations

1. INTRODUCTION

As logical data requirements change, database administrators are faced with the

enormous challenge of database system conversion. The new requirements may
call for a simple addition/deletion of a relation or attribute or for a total
restructuring of the logical relationships. Simple additions or deletions present a
minor problem which can be handled easily, while a total restructuring may
require complete rewriting of the database system from scratch [2].

Often the change in requirements is between these extremes, and it may be

accommodated by a modest revision of the working system. The change may be
to replace a one-to-one relationship with a one-to-many relationship, to add a

field to the set of key fields, to decompose a complex record into several simpler
records, or to partition a collection of records into two types based on the value
of one field.

This work was supported in part by National Science Foundation Grant MCS-77-22509 and the

University of Maryland Computer Science Center provided some of the computer resources.

Authors’ addresses: B. Shneiderman, Department of Computer Science, University of Maryland,
College Park, MD 20742; G. Thomas, Administrative Sciences, Kent State University, Kent, OH

44242.
Permission to copy without fee all or part of this material is granted provided that the copies are not

made or distributed for direct commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by permission of the Association

for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

0 1982 ACM 0362-5915/82/0600-0235 $00.75

ACM Transactions on Database Systems, Vol. 7, No. 2, June 1982, Pages 235-257.

236 * B. Shneiderman and G. Thomas

Revising the schema is a relatively simple task which can be accomplished in

a few hours or days. Translating the stored database to match the new require-

ments may be done by a program which creates the target database while
verifying integrity constraints. The third task, rewriting the application programs
or queries, is often the major bottleneck in system conversion.

In a health insurance application, it was estimated that two person-months per
program were required to convert and test each of the 600 PL/I-IMS application

programs which had an average length of more than 1000 statements. Even with
compact high-level query languages, it may take months of effort to convert the
hundreds of programs and test them to make sure that they still work correctly
on the translated database. The burden is greatest with complex, lengthy

host-embedded data manipulation languages, but it is still considerable with
high-level self-contained languages such as those proposed for the relational
model.

2. RESEARCH BACKGROUND

Until now our research on automatic conversion has been based on a specially

designed data model which was tailored to meet the needs of automatic database
system conversion. Our Pure Data Definition and Manipulation Languages
blended elements of the network and relational models to facilitate the design of
a Pure Transformation Language processor [8, 10, 161. The eighteen transfor-
mations which we proposed permitted name changes, addition and deletion of
fields, records and sets, changes to set keys, and the movement of fields between
owner and member record types. The FIND, STORE, and MODIFY data
manipulation statements provided explicit descriptions of query semantics
through the use of path expressions with Boolean qualifications [9].

In this paper we explore the possibility of developing an automatic database
system conversion facility for the relational model [l] using the relational algebra
as a data manipulation language. Su and Reynolds [13, 151 suggest some relation-
ally oriented transformations and show how SEQUEL queries might be rewritten
in certain cases. Sakai [7] informally proposes several relational transformations

as aids in the schema design process.

In related work with other data models, House1 [3] demonstrates the use of
CONVERT [ll, 121 operators for querying and transforming hierarchically or-

ganized, tabular databases described by DEFINE language statements. Su and
Lam [14] describe transformations of data traversals and operations in a high-
level semantic data model. Navathe [5] offers a high-level data model defined by

“schema diagrams” and a set of useful schema diagram transformations. Jacobs
[4] describes automatic conversion in the context of his database logic, which
provides a formal mathematical foundation for database systems.

Our contribution in this paper is the gross architecture for a complete conver-
sion system. We build on the individual suggestions for schema transformations
by describing the implementation issues and integrity constraints for a set of
transformations on the schema, the stored database, and the application programs
of a relational database system. We believe that our set of transformations, when
used individually and in groups, can effectively support a database administrator
in coping with changing user requirements.

ACM Transactions on Database Systems, Vol. 7, No. 2, June 1982.

Automatic Relational Database System Conversion * 237

3. BASIC MODEL

In this section we present the basic concepts of the transformation process and
a taxonomy of transformations.

3.1 Transformation Process

We consider a database system (DBS) to consist of a schema S, a stored database
D, and a collection of programs

P=Pl,pz,...,pn

so that

DBS = (S, D, P).

Applying a program to the stored database yields an output

Pi(D) = oi, for i = 1, . . . , n.

A transformation applied to a database system yields a new database system

T(DBS) = DBS’ = (S’, D’, P’),

such that applying the new programs to the new database yields the output oi’

pi(D’) = o! I, for i = 1, . . . , n.

If 0: is identical to oi for all i, the transformation maintains input/output
equivalence, since the execution yields identical results (although ordering of
tuples or attributes may vary) for the programs. Of course, input/output equiv-

alence is possible only for informationpreserving transformations; that is, trans-
formations that do not destroy information but merely change the logical data
format. For other transformations the database administrator will have to judge
the acceptability of the output.

A weaker requirement might be for attribute subset equivalence, in which the
target output attributes are a subset of the source output attributes. If a trans-
formation eliminates attributes from the database, then a seven-column report
may be acceptable in place of the ten-column report generated by the original

program. In general, a database administrator may seek still weaker requirements
and define acceptable equivalence to suit organizational needs.

3.2 Taxonomy of Transformations

We have found it useful to classify transformations on three features: information
preservation, data dependence, and program dependence. These are features of
a transformation type rather than a specific instance of a transformation. The
deletion of an attribute from a relation is classified as not information preserving,
even though there are instances when the deletion may result in no loss of
information (if all values are nulls or the attribute appears twice).

A transformation is information preserving if no information is lost. If a
transformation is information preserving, then it is also invertible (the original
format can be restored), but only immediately after the transformation is per-
formed. After operations such as storing, modifying, or deleting a tuple, inverti-
bility is no longer guaranteed. For example, adding attributes or relations to a

ACM Transactions on Database Systems, Vol. 7, No. 2, June 1982.

238 * 6. Shneiderman and G. Thomas

database system is information preserving, but deleting attributes or relations is
not information preserving.

A second feature for characterizing transformations is data dependence/inde-
pendence. A transformation is data dependent if the stored database must be
checked to determine whether the transformation is consistent with the logical
format of the target system. For example, eliminating an attribute from the key

may not be permissible if the remaining key attributes no longer guarantee
uniqueness. If, while checking the stored database, the conversion system en-
counters an inconsistency between the source and target databases the database

administrator must decide on how to modify/delete the source database so that
the conversion can continue. We prohibit the creation of a target database which

does not adhere to the target schema. This checking process may be extremely
costly, but it must be done if data integrity is to be ensured. Efficient techniques,
such as scanning summary tables, data dictionaries, or indexes, will have to be
implemented to reduce checking costs.

A third feature for characterizing transformations is program dependence/
independence. A transformation is program dependent if the application pro-

grams must be checked to determine whether the transformation is permissible.
For example, eliminating an attribute that is the target of a query or is used in a
Boolean qualification destroys the possibility of an input/output equivalent
transformation. The database administrator must be informed of this condition
so that he or she can decide whether the resultant transformation is acceptable.
We have found it useful to distinguish between two forms of program dependence:

query program dependence and update program dependence. Similar distinctions
have been made by researchers in multiple view maintenance.

Note that a transformation may be program independent but still require
program modifications. For example, changing a relation name is program inde-
pendent (assuming the new name is not already in use) even though the programs
must be modified. If a transformation is program dependent, this implies that the
collection of application programs must be checked to determine whether the
transformation is permissible. Since this is a potentially costly process, efficient

techniques for scanning on-line libraries of programs or summary information will
be useful.

Figure 1 shows how our fifteen proposed transformations fit this taxonomy.
Section 4 presents an extended example of how our transformations might be
used in a practical situation. Section 5 describes an architecture for a conversion
system, and Section 6 provides more details about each transformation.

4. TRANSFORMATION EXAMPLE

We begin with an extremely simple situation and follow the impact of organiza-

tional policy changes on the database system. At every stage the database will be
kept in fourth normal form. Imagine a chemical plant that begins using a database
system by maintaining basic employee data in the relation emp:

emp (eno*, name, salary, dept, job, cartag)

which has an employee number (eno) as a key (key fields will be marked with an
asterisk), the employee’s name, the employee’s salary, the department he or she

ACM Transactions on Database Systems, Vol. 7, No. 2, June 1982.

Automatic Relational Database System Conversion - 239

INFORMATION PRESERVING
(IMMEDIATELY INVERTIBLE)

PROGRAM INDEPENDENT QUERY PROGRAM INDEPENDENT PROGRAM DEPENDENT

UPDATE PROGRAM DEPENDENT

DATA
INDEPENDENT

DATA
DEPENDENT

CHANGE NAME DECOMPOSE INFO

ADD ATTRIBUTES REMOVE MULTIVALUED DEPENDENCY

INTRODUCE

PARTITION INTO

PROMOTE TO KEY
EXPORT PARTIAL DEPENDENCY

DEMOTE FROM KEY EXTRACT TRANSITIVE DEPENDENCY

DATA
INDEPENDENT

DATA
DEPENDENT

NOT INFORMATION PRESERVING
(NOT IMMEDIATELY INVERTIBLE)

PROGRAM INDEPENDENT QUERY PROGRAM INDEPENDENT PROGRAM DEPENDENT
UPDATE PROGRAM DEPENDENT

DELETE ATTRIBUTES

SEPARATE

COMPOSE FROM MERGE FROM
IMPORT DEPENDENCY

Fig. 1. Taxonomy of transformations.

works in (dept), the title of his or her job, and the tag number for his or her car
(cartag) in the parking lot.

After some time, management recognizes that the database system can be used
to keep the health records of each employee as well. Adding attributes for weight,
lung capacity, blood pressure (bp), and the month (mo) and year (yr) of the
most recent physical exam can be accomplished by issuing a transformation
statement:

ADD ATI’RIBUTES weight, lung, bp, mo, yr
To emp.

ACM Transactions on Database Systems, Vol. 7, No. 2, June 1982.

240 - 6. Shneiderman and G. Thomas

to yield a new relation:

emp (eno*, name, salary, dept, job, cartag, weight, lung, bp, mo, yr)

This transformation is simple to implement and is supported by some currently

available systems. The transformation is information preserving, data indepen-
dent (the database does not have to be checked to verify the allowability of this

transformation), and program independent (the programs do not have to be
checked to verify the allowability of this transformation). Immediately after the
transformation the new attributes have null values which the user can replace

with actual values for each employee.

Privacy concerns may prompt the database administrator to decouple the
medical information from the accounting or personnel information. This decom-
position separates the concerns of different users so each can deal with a single
simpler relation. This transformation may be specified as

DECOMPOSE emp INTO
emp-acct (eno*, name, salary, dept, job, car-tag),
emp-med (eno*, weight, lung, bp, mo, yr).

yielding two relations. This is another simple information preserving, data inde-

pendent, and query program independent transformation. However, this trans-
formation requires translation of the database and revision of the programs.

Queries directed to the emp relation now may require a join to retrieve or qualify
attributes. Updates to the emp relation may now require updates to one or both
new relations.

Instead of maintaining only the most recent medical examination data, man-
agement may decide to maintain a history of yearly examinations. This requires
that the yr attribute be included as a key attribute in the medical relation

PROMOTE yr IN emp-med TO KEY.

Since the eno provided a unique key, adding an attribute yr to the key cannot
be a problem. The stored database and the programs need not be altered, but
future updates will have to satisfy the new integrity constraint about the key of
the emp-med relation. Once multiple tuples have been added for an employee,
queries that formerly returned a single tuple may now return several tuples. User
programs may have to be modified if only the most recent medical report is
desired.

Now imagine that a new government safety regulation requires that workers
coming into direct contact with hazardous substances must have a monthly lung
capacity exam and complete historical records must be kept. To satisfy this new
requirement, the high-risk employees (those with dept = ‘production’) must be
separated out from the low-risk employees (all other departments). The PAR-
TITION transformation can be used in this simple way to form a mutually
exclusive partition of tuples in a relation:

PARTITION emp-med INTO

(emp-acct.eno = emp-med.eno AND emp-acct.job = ‘production’):
high-emp-med (eno*, yr*, mo, weight, lung, bp);

ELSE low-emp-med (eno*, yr*, mo, weight, lung, bp).

ACM Transactions on Database Systems, Vol. 7, No. 2, June 1982.

Automatic Relational Database System Conversion 241

The number of tuples in emp-med will be equal to the sum of the number of
tuples in high-emp-med and low-emp-med.

To record the monthly lung capacity information and keep historical records
requires that the month participate in the key

PROMOTE mo IN high-emp-med TO KEY.

so that the relations now are

emp-acct (eno*, name, salary, dept, job, cartag)
high-emp-med (eno*, yr*, mo*, weight, lung, bp)
low-emp-med (eno*, yr*, mo, weight, lung, bp)

This introduces a partial dependency of weight and bp on eno, yr in high-emp-
med, because only lung capacity is measured monthly. Eliminating this partial
dependency so as to restore the fourth-normal-form status requires the use of the
EXPORT transformation

EXPORT PARTIAL DEPENDENCY FROM high-emp-med
GIVING high-annal (eno*, yr*, weight, bp).

After issuing a trasformation to change names

CHANGE NAME FROM high-emp-med TO high-monthly.

we now have the following set of relations:

emp-acct (eno*, name, salary, dept, job, cartag)
high-annual (eno*, yr*, weight, bp)
high-monthly (eno*, yr*, mo*, lung)
low-emp-med (eno*, yr*, mo, weight, lung, bp)

A further change in policy may require that all employees with the same job
title earn the same salary. This means that a transitive dependency now exists
among two nonkey fields of emp-acct. To EXTRACT this transitive dependency
and to create a table of job titles with a salary attribute we could issue the
following transformation:

EXTRACT TRANSITIVE DEPENDENCY FROM emp-acct
GIVING job-salaries (job*, salary).

This leaves the emp-acct relation without the salary attribute, so queries on
the salary attribute now require a join. This transformation is information
preserving and program independent, but it is data dependent since the database
must be checked to see if there is no conflicting information.

Finally, the original assumption that employees brought only a single car to
work must be changed to accommodate multicar families. This new assumption
implies a multivalued dependency between eno and cartag in the emp-acct
relation. The following transformation restores fourth-normal-form status:

REMOVE MULTIVALUED DEPENDENCY FROM emp-acct
GIVING car-registration (eno*, cartag).

ACM Transactions on Database Systems, Vol. 7, No. 2, June 1982.

242 - B. Shneiderman and G. Thomas

The final set of relations is

emp-acct (eno*, name, dept, job)
high-annual (eno*, yr*, weight, bp)
high-monthly (eno*, yr*, mo*, lung)
low-emp-med (eno*, yr*, mo, weight, lung, bp)
job-salaries (job*, salary)
car-registration (eno*, cartag*)

Throughout this example the focus has been on changes to the schema as
described by the set of relations. For each transformation, there are precise rules
for translating the database and revising the programs.

5. SYSTEM ARCHITECTURE

In the simplest case (Figure 2), we assume that the source schema, stored
database, and application programs exist in available on-line libraries. The
conversion processor reads transformation statements, checks syntax, matches
variable names with those in the desired source schema, and prints error messages
when there are problems. If all is well, then a target schema can be generated by
the system.

The second stage deals with data-dependent transformations which require
checking the source stored database to ensure that the constraints of the trans-
formation are satisfied. If attribute values produce constraint violations, error
messages are printed and the database administrator must decide about changing
or eliminating these values. If such modifications are not possible, then this
transformation cannot be allowed to go forward.

Assuming all constraints are satisfied, then the target database can be gener-
ated. In the simple case, the source stored database can be quiesced and the
target stored database can be generated without concern for concurrent access.
If continuous access is required, then more elaborate algorithms and protection
mechanisms are necessary.

The third stage handles program-dependent transformations which require
checking the source application programs to determine whether the transforma-
tion is permissible. Here again the database administrator must decide what to
do in cases where an input/output equivalent transformation is not possible. The
database administrator must decide whether a transformation is acceptably
equivalent or whether a manual application program revision is required. After
responding to system messages and warnings, the database administrator can
allow the generation of the target application programs.

When all three database system components have been generated, there will
probably have to be a testing phase to ensure that the target system functions
properly before the old system is retired. In some cases both systems will remain
available and in other cases the target system will be copied for use at another
site while the source system remains active.

Many variants of this conversion process can be envisioned. The source
application programs may not exist in an on-line library; instead, they may be
typed in at a terminal when needed. In this case the transformation commands
must be maintained and a real time conversion can be made to produce the
proper query or update operation. Dynamic transformation can be used to

ACM Transactions on Database Systems, Vol. 7, No. 2, June 1982.

C
O

N
V

E
R

S
IO

N

S
Y

S
T

E
M

*a
cc

ep
ts

tr

an
sf

or
m

at
io

n
co

m
m

an
ds

*c
he

ck
s

so
ur

ce

-
sc

he
m

a
-

st
or

ed

da
ta

ba
se

-
ap

pl
ic

at
io

n
pr

og
ra

m
s

*i
ss

ue
s

m
es

sa
ge

s

*g
en

er
at

es

ta
rg

et
s

J-
E

J
\

h
M

E
S

S
A

G
E

S

M
E

S
S

A
G

E
S

M
E

S
S

A
G

E
S

F
ig

.
2.

A

rc
hi

te
ct

ur
e

fo
r

da
ta

ba
se

sy

st
em

co

nv
er

si
on

.

244 * B. Shneiderman and G. Thomas

support multiple views of a set of base relations [18]. Another variant would be
to assume a distributed database environment where each site could maintain its
own format for the database. In this case dynamic transformation of the database
would be necessary to present data in the required format.

If a sequence of transformation commands is issued, then there are some
interesting optimization questions. In some cases the simple approach of process-
ing each transformation command independently may be appropriate and effi-
cient, but it may sometimes be more effective to pass units of data or individual
application programs through a sequence of commands, thereby skipping inter-
mediate stages. Optimization strategies may be tailored to the particular sequence
of transformation commands. For automatic database system conversion to
become practical, implementers will have to cope with some of these efficiency
questions.

6. TRANSFORMATION DEFINITIONS

The following subsections present fifteen relational transformations with the
constraints that the source database system must satisfy to guarantee input/
output equivalence. The target database and the revisions to the relational
algebra application programs are described. Special attention is given to trans-
formation side effects requiring database administrator intervention to obtain a
target database system that is acceptably equivalent to the source database
system. A more formal definition of these transformations is given in [16].

We use the notation

to indicate that a relation R has n key attributes k(n 2 1) and m nonkey attributes
f(m > 0). Where there is no ambiguity,

RK*, F)

indicates the relation R where K is a grouping of one or more key attributes and
F a possibly empty grouping of nonkey attributes. The relational algebra projec-
tion of R over a collection a, b, c, . . . of its attributes is denoted by

R[a, b, c, . . .]a

The Sz join of two relations R and S over the compatible attribute groupings A
and B is given by

R[A 8z B]S.

Finally, the restriction of R to a subset of its tuples based on a Boolean condition
is denoted by

R[aa ul $ ba v2 $. . .]

where a, b, . . . are attributes of R; v are constants or identifiers; a is one of =,
<>, >, >=, <, or c=; and $ is AND or OR.

6.1 Elementary Transformations

Changing the name of an identifier and adding/deleting a relation or an attribute
of an existing relation are elementary transformations that are available on some

ACM Transactions on Database Systems, Vol. 7, No. 2. June 1982.

Automatic Relational Database System Conversion * 245

commerically distributed systems. These transformations are included for com-
pleteness and are not the focus of this paper.

Changing an identifier (relation or attribute) requires that the schema and the
application programs be revised, but the stored database is untouched. The
CHANGE NAME transformation accomplishes this task.

Adding an attribute to an existing relation (ADD ATTRIBUTES transfor-
mation) requires a modification to the schema and some way of indicating that
the stored database contains a new attribute with all null values. An application
program may be written to populate the attribute with values. Source application
programs still function correctly, but the database administrator may wish to
manually rewrite update operations to provide values for the expanded relation.

Deleting an attribute from an existing relation (DELETE A’ITRIEWTES
transformation) requires a schema modification, elimination of the values from
the database, and changes to the application programs. Any transformation that
destroys information, as does the DELETE transformation, cannot be guaranteed
to produce input/output equivalence. If it happens that the application programs
do not refer to the deleted attribute, then it will be possible to produce input/
output equivalence.

Introducing a new relation (INTRODUCE transformation) is a basic operation
which requires an addition to the schema, but no change to the stored database
or the application programs. Eliminating an existing relation (SEPARATE
transformation) from the database system requires deletion frbm the schema and
the stored database. Since information is lost in the SEPARATE transformation,
application programs which reference the separated relation can no longer func-
tion correctly.

6.2 Promoting/Demoting Keys

Assume that the relation R is defined by

R(kI*,k2* ,..., kn*,fl,fi ,..., fm),

where the n (~1) attributes Ki are key and the 172 (20) attributes fi are nonkey. A
basic integrity assertion of the relational model is that there may never be two or
more tuples of a relation that have the same value for the key attributes.
Otherwise, it would be possible to have two tuples describing the same entity
with possibly different and hence conflicting values for the nonkey attributes.
When designing a DBS, the DBA (database administrator) must designate one
or more attributes of each relation as the key. While the choice made may be
appropriate at one time, changes in requirements may cause a redefinition of the
key to include more or fewer attributes. The two transformations

and

PROMOTE “attribute name” IN “relation name” TO KEY

DEMOTE “attribute name” IN “relation name” FROM KEY.

allow such redefinition.
With ,PROMOTE the DBA may add an existing attribute to the key of a source

relation. DEMOTE allows the removal of an attribute from the key of an existing

ACM Transactions on Database Systems, Vol. 7, No. 2, June 1982.

246 - 6. Shneiderman and G. Thomas

relation. Both of these are perceived as being information preserving transfor-

mations because all relationships implicit in the source schema S can be derived

in the target schema S’. PROMOTE is data dependent because, although adding
a new attribute to an existing key cannot violate the uniqueness constraint, the
new attribute may contain nulls that are not permitted for key attributes.
DEMOTE requires an examination of the source stored database D to determine
whether or not the resulting shortened key will be sufficient to uniquely identify

the tuples. Should any two or more tuples share the same value for the target
key, the DBA must interact with the transformation system to obtain a target
stored database LY that will not violate the uniqueness constraint. With both the
hierarchical and network models, the value of a record key affects its logical

position in the stored database. The relational model makes no use of keys
beyond enforcing the uniqueness constraint above. For this reason programs
accessing and/or updating the stored database are unaware of the designation of
fields as key or nonkey. Hence both PROMOTE and DEMOTE are program

independent, yielding a target set of programs that is identical to the source
programs P. Insert commands which do not have values for all key attributes will
fail, so at execution time some inserts which succeeded before may now fail, but
the program needs no revision. PROMOTE may be inverted by DEMOTE, and

DEMOTE may be inverted by PROMOTE.

6.3 Decomposing/Composing Relations

A particular schema S is a model of some environment. The entity types of

interest may be represented by one or several relations having key attributes to
identify instances of the entities and nonkey attributes to retain data about the
instances. For a particular entity there may be several valid but different repre-
sentations. For example, consider an entity E that may be uniquely identified by
the values of the grouping K of attributes. It may be desirable to store data
describing occurrences of this entity as n mutually disjoint groupings of attributes
Fi. Two possible representations of E are

and
(4 R(K*, FI, Fz, . . . , F,J

(b) RICK*, R)
&(K*, Z-72)

.

kn(K*, Fn).
Representation (a) implies that all data about an occurrence of the entity will

be stored and accessed as a single tuple of the relation R. Should information
about some subset Fi of the attributes be desired, this can be obtained by the
projection R[K, FJ Specific user views may similarly be defined by projection
over the desired attributes. Representation (b) stores data about an entity as n
tuples-one for each relation Ri. All data about the entity may be retrieved by
the equijoin of the n relations Ri on the common key attributes K. Hence it may
be argued that both representations are equivalent. However, we feel they differ
in two respects.

ACM Transactions on Database Systems, Vol. 7, No. 2, June 1982.

Automatic Relational Database System Conversion * 247

The first difference is at the logical level. With representation (b), the data for
an instance of the entity E is scattered across n tuples. In fact, it is possible that
for some entity there may be m(cn) tuples in the database. Hence a query for
this instance might result in values for some attribute Fi and in the statement
that there is no such entity for other attributes Fi(i #j). Under representation
(a) there would be one tuple for this instance. While the same values might be
presented for a query on Fi, the query on Fj would presumably produce the
answer “null” or “unknown”. This semantic difference may be overcome by
imposing the integrity constraint

3U(Vri E Ri, Q[K] = (u} * Vh (1 5 h I n, i # h)% E Rh 3 h[K] = (v})

on representation (b) requiring that for each instance of E represented in any
relation Ri, the entity must be represented in all relations Rj. If the underlying
database management system enforces this integrity constraint, then the two
representations are indeed equivalent. Otherwise they differ at the logical level
because (b) represents components of the entity E by n separate and independent
entities.

The second difference between representations (a) and (b) occurs at the
physical level. With most database management systems, the data values com-
posing a tuple are stored in physically contiguous locations. Hence with represen-
tation (a), should some attribute Fi be of extreme importance or require a high
level of security, the entire relation will be physically stored or protected based
on the attributes Fi. This may be wasteful of high-speed storage or impose
needless security on some attributes Fj. Further, multiple projections may be
required to materialize user views resulting in excessive CPU and channel use.
Representation (b) may be preferable because it allows selecting storage devices
and protection levels based on the importance of the individual attribute group-
ings F, while more closely modeling diverse user views. Thus the DBA may prefer
representation (b) for performance reasons, even though this might result in
violation of the above integrity constraint.

The transformations DECOMPOSE and COMPOSE [7] allow the transfor-
mation of a DBS employing representation (a) to one employing representation
(b), or vice versa. Whenever such a transformation is made, the DBA must be
cognizant of the subtle logical differences between these representations. Espe-
cially with representation (b), a policy decision is required to determine whether
or not the n relations R, are independent or dependent.

If they are dependent, this requires users to be aware of the dependence
whenever the stored database is updated by INSERT, MODIFY, or DELETE
commands. The syntax of these transformations is

DECOMPOSE “relation name” INTO “relation definition list”.

and

COMPOSE “relation definition” FROM “relation name list”.

where DECOMPOSE maps representation (a) to (b), and COMPOSE maps (b)
to (a).

ACM Transactions on Database Systems, Vol. 7, No. 2. June 1982.

240 * B. Shneiderman and G. Thomas

DECOMPOSE is an information-preserving, data-independent, and program-
independent transformation, while COMPOSE is not information preserving, is
data dependent, and is program independent.

DECOMPOSE maps representation (a) to representation (b). Each of the n

target relations must have the same key K as the source relation R. The n
attribute groupings Fi must be pairwise disjoint. The target schema S’ is derived
from S by replacing the source relation R by the n relations Ri. The target

database D’ is obtained by executing the program

RI +- R[K, FI].

RZ + R[K, RI.

R, + R[K, Fnl.

DELETE R.

An examination of the program for populating the target database shows that

R=RI[K=K]Rz[K=K] . . . Rn-I[K=K]R,

holds at the instant of the transformation, This leads to the observation that all
source program queries of the form

Rl...),

where (. . .) is some form of projection, join, or restriction, may be converted to

an input/output equivalent form by substituting the above equijoin for the
reference to R. Because of the semantic difference between representations (a)

and (b), source program updates of the form INSERT R, MODIFY R, and
DELETE R cannot be transformed in such a clean manner. If the n target
relations are dependent, then source statements of the form INSERT R may be
automatically transformed to a sequence of target statements

INSERT R, .

INSERT Rz.

INSERT R, .

with a control structure that guarantees that all succeed or none succeeds. Similar
modifications may be made for MODIFY and DELETE. However, this implies
that all programs yet to be written be aware of the dependency and be written in
a manner that ensures the dependency will be maintained. If the n target relations
are independent, then all source program statements that update the relation R

must be deleted to create the target set of programs P’. Thus input/output
equivalence of queries can be guaranteed, but the DBA must decide how to
transform updates. DECOMPOSE may be inverted by COMPOSE.

COMPOSE maps representation (b) to representation (a). In addition to the
constraints that the target relations and source relation share the same key and
that the attribute groupings Fi be pairwise disjoint, COMPOSE requires that the
n relations Ri be dependent. This implies that the source database must be

ACM Transactions on Database Systems, Vol. 7, No. 2, June 1982.

Automatic Relational Database System Conversion * 249

examined to determine whether or not

R,[K]=Rz[K]= .'.=R,[K]

holds. If it does, then the target database may be populated by executing the
program

R +-R,[K= K]RyJK=K]...R,-l[K=K]R,

and deleting the tuples of the relations Ri for i = 1, IZ. If the examination of the
source database shows a violation of the above, then DBA interaction is required
to resolve the violation before the transformation can be allowed. Hence COM-
POSE is data dependent. At the schema level, the source schema relations R, are

replaced by the target relation R. This is not information preserving, because the
IX relations Ri lose their separate identity as a result of the transformation. All

source program queries of the form

Ri(- . .),

where (. . .) is a projection, join, or restriction, may be replaced by

R[K, Fil(. . .)

to preserve input/output equivalent behavior. Source program updates of the
form INSERT Ri will require DBA interaction to yield equivalent target program
updates. Because COMPOSE is not information preserving, there is no inverse

for this transformation.

6.4 Partitioning/Merging Relations

Consider a source relation R defined by

R(K*, F)

where K and F are groupings of attributes. This relation may model a generic

entity, such as employee. It may be desirable to partition [S] this entity into
several disjoint specialized entities, such as machinist, plumber, or typist, where

each is modeled by a relation of the form

Ri(K*,F).

having the same attribute groupings as the entity modeled by R. The two
transformations PARTITION and MERGE [6] allow the DBA to partition a
representation of an entity into disjoint representations or merge specialized

representations into a single merged one. The syntax of these transformations is

PARTITION “relation name”
INTO “partition clauses”
ELSE “relation definition”.

and

MERGE “relation definition” FROM “relation name list”.

where “partition clauses” is one or more clauses of the form

(“condition”) : “relation definition”

ACM Transactions on Database Systems, Vol. 7, No. 2, June 1982.

250 * B. Shneiderman and G. Thomas

separated by semicolons. For the above relations, the transformations would be

PARTITION R
INTO (c,): R,(K*, F);

(cd: Rz(K*, F);

(G-d: Rn-, tK*, F)

ELSE R,(K*, F).

and

MERGE R(K*, F) FROM RI, RP, . . . , R,.

The constraints that these transformations must satisfy and their effects are
presented using the above rotation.

These transformations may be illustrated by a simple schema with only one
relation, employees (name *, title *, age), and a second schema with three

relations, managers (name*, title*, age), secretaries (name*, title*, age),

and clerks (name *, title *, age). The partition transformation

PARTITION EMPLOYEES
INTO (title = ‘manager’): managers (name*, title*, age);

(title = ‘secretary’ OR title = ‘typist’):
secretaries(name*, title*, age);

ELSE clerks(neme *, title *, age).

would split the tuples in the EMPLOYEES relation into three relations. The

value of TITLE in the MANAGERS relation would be the same for all the tuples
and could be disposed of with a DELETE ATTRIBUTES transformation. The
MERGE transformation

MERGE employees (name *, title *, age) FROM managers,
secretaries, clerks.

would combine the tuples in these three relations into a single relation. Before
the MERGE would be permitted, a check would have to be made to ensure that

a name value did not appear in two of the relations to ensure uniqueness in the
target relation.

PARTITION is an information preserving, data-dependent, and query pro-
gram-independent transformation. Each of the target relations defined by

“partition clauses” must have the same key and non-key attributes as the relation
being partitioned. Each of the n - 1 conditions cj is a Boolean condition that
must evaluate to true or false for every tuple of the source relation R. Each tuple

r E R will be mapped by PARTITION to one of the n relations Ri by evaluating
the n - 1 conditions cj. If, for r, exactly one condition cj is true, r is mapped to Rj.
If, for r, no condition cj is true, r is mapped to R,. Otherwise there must be two

or more conditions cj that are true for r. In this case, the transformation system
is unable to map r to a specific Ri without DBA intervention. Hence PARTITION
is data dependent. The target schema is obtained from S by replacing the
definition of the relation R with the definitions of the n relations Ri. The target

ACM Transactions on Database Systems, Vol. 7, No. 2, June 1982.

Automatic Relational Database System Conversion * 251

database is obtained by executing the following program

set RI, Rz, . . . , R, empty
for each r E R do

ifclthenR1tR1Ur
else if c2 then Rz c Rz U r

else if c3 then R3 c RJ U r

else if C,-I then R,-, + Rn-b U r
else R, +R, U r.

DELETE R.

From the above program, we observe that R = RI U RB U - . - U R,. Hence, all

source program queries of the form

R(...)

may be replaced by input/output equivalent queries of the form

(RI U Rz u . . . U R,)(. . .)

where (...) is a projection, join, or restriction. Source program updates of the

form

INSERT R

may be replaced by

if cl then INSERT RI
else if c2 then INSERT Rz

else if c,-~ then INSERT R,,-l
else INSERT R,.

so long as the conditions c; will continue to map each occurrence of R into exactly
one of the relations Ri for i = 1, n - 1. If this condition cannot be guaranteed,

then the DBA must assume responsibility for transforming source updates to
produce equivalent target updates. Finally, PARTITION may be inverted by
MERGE.

MERGE is a non-information-preserving, data-dependent, and program-depen-
dent transformation. As with DECOMPOSE and COMPOSE, there is a subtle
semantic difference between the source and target schemata. Merge creates the
target relation R by taking the union of the source relations Ri. This implies that
each higher level entity described by R may occur at most once as a lower level
entity Ri. Hence the source database must satisfy the constraint

3 U(ri E Ri, ri[K] = {u}

* v h(1 I h I n, h # i), 3 rh E RI, 3 rh[K] = {u})

for all i (15 i I n). The validity of this constraint may be examined for the source
database by determining whether or not Ri[K] rl RJK] = 9 for all i and j such
that 15 i <j 5 n. Should any pairwise intersection be other than the empty set,
this implies that an instance of the higher level generic entity is represented by

ACM Transactions on Database Systems, Vol. 7, No. 2, June 1982.

252 * 6. Shneiderman and G. Thomas

two lower level tuples ri(Ki, Fi) and ri(Ki, Fi) such that ri[Ki] = ri[Ki] holds, but

the nonkey attribute values may not be equal. The transformation system will
require DBA guidance in determining which of these tuples to map to the higher

level target relation R. Because data may be lost as a result of this transformation,

and because the lower level entities Ri lose their identity when mapped to R, this

transformation is not information preserving. Data dependence follows from
observing that the source database must be examined to determine whether or
not it is valid with respect to the target database system. Program dependence
can best be illustrated by considering a source query of the form

Rite..),

where (. . .) is a projection, join, or restriction. Under the target system, the
relations Ri may be materialized by a projection over R. However, the criteria
needed to partition R into the disjoint relations Ri are not available to the
transformation system. They could be made available in some cases by an
elaborate MERGE statement, but in general only the DBA can provide these

criteria. Hence, DBA interaction is required to modify every source query to an
acceptable equivalent target query, if possible. Similary, all source updates will
require DBA interaction to produce equivalent target updates. Because MERGE

is not information preserving, it has no inverse.

6.5 Functional Dependency Transformations

We have assumed thus far that the source and target DBSs are in fourth normal
form; that is, the key of every relation is minimal and there are no partial,
transitive, or multivalued dependencies. As an example, consider the functional
dependency fd, : K, P -+ F, G where K, P, F, and G are nonempty groupings of
attributes. The relation

R(K*, P*, F, G)

is a fourth normal form relation representing this functional dependency. Should
the environment change so that in addition to fd, the functional dependency
fdz : P+ G becomes true, then R is no longer in fourth normal form. This can be

rectified by replacing the relation R by the two relations

and

R’(K*, P*, F)

TV’*, G),

both of which are in fourth normal form. In a similar manner, the existence of
transitive dependency td : F+ G or a multivalued dependency md : K, P++ G
would imply that the relation R above was no longer in fourth normal form and
should be replaced by other fourth normal form relations reflecting the new
dependencies. The first three transformations in this class may be employed to
restore DBSs to fourth normal form in response to dependency changes. The
fourth transformation may be used to invert the effects of the first three.

6.5.1 Partial Dependencies. The transformation.

EXPORT PARTIAL DEPENDENCY FROM “relation name”
GIVING “relation definition”.

ACM Transactions on Database Systems, Vol. 7, No. 2, June 1982.

Automatic Relational Database System Conversion - 253

may be employed to restore a DBS system to fourth normal form when “relation
name” is no longer in fourth normal form as the result of the perception of a
partial dependency of one or more nonkey attributes of “relation name” on the
key. Specifically, the transformation

EXPORT PARTIAL DEPENDENCY FROM R GIVING T(P *, G).

transforms the relation

R(K*, P*, F, G)

to the two relations

R’(K*, P*, F)

and

T(P*, G).

EXPORT requires that the key attributes of the target relation T be a proper
subset of the key attributes of R; the nonkey attributes of T be a subset of the
nonkey attributes of R; and for all pairs of tuples (P,, G1) and (Pz, Gz) in the
projection R[P, G] over the source database PI = P2 j G, = Gz holds. If these

constraints are satisfied, EXPORT is an information preserving, data-dependent,

and query program-independent transformation. Violation of the first two con-
straints may be determined by an examination of the source schema S. The
validity of the third constraint requires an examination of the source database to
determine whether or not the attributes P are a key for the proposed target
relation T. If they are not, DBA intervention is required to modify the source

stored database. Information preservation follows from observing that the equi-
join of R’ and T over the attributes P recreates the source relation R. Hence no
information is lost in the transformation. The target database may be derived
from the source database by executing the program

T+R[P, G].

R’ + R[K, P, F].

Source queries of the form

R(...)

may be replaced by

(R’[P = P]T)(. . .)

preserving input/output equivalent retrieval behavior. Source updates of the
form INSERT R may not be handled so neatly because such a statement implies
the insertion of an R ’ tuple and possibly a T tuple. Hence DBA interaction will
be required to transform source updates. EXPORT may be inveted by the
transformation IMPORT.

6.5.2 Transitive Dependency Transformations. Let the source relation R de-
fined by

R(K*, F, G)

model the functional dependency fd: K --+ F, G. With the passage of time, the

ACM Transactions on Database Systems, Vol. 7, No. 2, dune 19H2.

254 * B. Shneiderman and G. Thomas

transitive dependency td: F + G may be perceived. In this case, R is no longer in

fourth normal form. The transformation

EXTRACT TRANSITIVE DEPENDENCE FROM R GIVING T(F*, G).

yields the target relations

and

R(K*, F)

T(F*, G).

This transformation differs from EXPORT only in that the key of the target
relation T must be a proper subset (if G is empty, then there is no transitive

dependency) of the nonkey attributes of the source relation R. Otherwise the
constraints and effects of this transformation are identical to those of EXPORT
for like reasons. Hence EXPORT is information preserving, data-dependent, and

query program independent with an inverse of IMPORT.

6.5.3 Multivalued Dependency Transformations. The treatment of multival-
ued dependencies differs from that for partial and transitive dependencies in that

the target relation added to the schema is composed solely of key attributes.
Hence, given a source relation R defined by

R(K*, 4 G)

and a change in the external environment resulting in the perception of the
multivalued dependency md: K ++ F, the transformation

REMOVE MULTIVALUED DEPENDENCY FROM R GIVING T(K *, F*).

yields a target database system containing the relations

R’(K*, G)

and

T(K*, F*).

Because the projection R[K, F] is a set and the target relation T is “all key”,
this transformation is data independent. For reasons similar to EXPORT and
EXTRACT, this transformation is information preserving and query program
independent. The target schema is derived from the source by adding the relation
T and deleting the nonkey attributes of R that are mapped to T from the
definition of the target relation R’. The target database may be obtained from
the source by executing the program

T+R[K,F]
R'+R[K,G].
DELETE R.

Source program queries of the relation R may be replaced by input/output
equivalent queries of the equijoin of T and R’ over the attributes K. Source
program updates will require DBA interaction to produce acceptably equivalent
target program updates. Inversion of REMOVE is a two-step process. In the first

ACM Transactions on Database Systems, Vol. 7, No. 2, June 1982.

Automatic Relational Database System Conversion - 255

step, the attributes F of the relation T are demoted from key to verify that the
functional dependency fd: K -+ F has replaced the multivalued dependency md : K
++ F. In the second step, the relation T is imported into R’ to restore the
original source relation R.

6.5.4 Importing Dependencies. The preceding three transformations allow the
DBA to restore a database system to third normal form whenever a partial,
transitive, or multivalued dependency is perceived. IMPORT is provided to invert
these transformations. Consider the source relations

and

RW*, G)

TV*, F)

where P the key of T is a subset of the attributes of R, and the nonkey attributes
F of the relation Tare not attributes of R. (We may have P = K, P C K, P = G,
or P C (KU G). We must have F n (KU G) = 0.) The transformation

IMPORT DEPENDENCY BY MAPPING T INTO R.

yields a target database system in which the relation

R’(K*, F, G)

replaces both T and R. For this DBS to be in fourth normal form, the functional
dependency fd: K -+ F must be true, as is the case when inverting the three
preceding transformations. To ensure that no stored data values are lost, we
require that for every source tuple in T there be at least one tuple in R having the
same value for the key attributes P of T, and that for every source tuple in R
there be exactly one tuple in T having the same value for the attributes P. These
two constraints ensure that no tuple of T will be lost when mapping T into R and
that for every tuple in R there is a tuple in T to map into R. They also imply that
this transformation is data dependent and may require the DBA to add/delete
tuples to or from T or R prior to allowing the transformation. IMPORT is not
information preserving because the two tuples of T and R in the source schema
are replaced by the single tuple of R’ in the target schema, losing information
about the independent existence of T and R. The cardinality of R is the same as
R’, but given only R’ it is impossible to determine the cardinality or contents of
T. The target database is derived from the

R’ c R[P = PIT.
DELETE T.
DELETE R.

Source program queries of the form

T(...)

or

R(...)

may be replaced by

R’[P, Fl)(. . .)
ACM Transactions on Database Systems. Vol. 7, No. 2, June 1982.

256 * B. Shneiderman and G. Thomas

and

(R’[K (A)(.. .),
respectively, to preserve input/output equivalent retrieval behavior.

Source program updates involving either T or R will require DBA interaction
to obtain equivalent target program updates. Because IMPORT is not informa-
tion preserving, it has no inverse.

7. CONCLUSIONS

The relational model transformations offered in this paper may provide database
administrators with increased flexibility by easing the conversion process when

requirements change. Whether this set of transformations is at the right level of
abstraction, suits the needs of commercial environments, or is comprehensible by
practitioners needs to be tested empirically. We hope to gain more experience
with these transformations and see how they fit with relational query facilities

such as query-by-example or SQL.
Our goal is not to create a software product, but to demonstrate to implementers

of database systems that automatic conversion is viable. We hope that these

implementers will include some of our transformations or additional ones in new
systems so that their effectiveness can be tested.

We are investigating what further transformations may be useful, such as
combining two database systems or changing functional dependencies. More
sophisticated transformations which impact several relations at a time are being
considered in the context of the entity relationship or other high-level semantic
models. Extending the relational model to include interrelation integrity con-
straints opens the door to many interesting transformations, such as DISTRIB-
UTE and FACTOR, which we explored in the Pure Database System [8,10,16].
We are also trying to take a formal approach to demonstrating the completeness
of a set of transformations and to proving the correctness of a transformation.

ACKNOWLEDGMENT

We thank Michael Brodie, John Grant, and the referees for their comments.

REFERENCES

1. CODD, E.F. A relational model of data for large shared data banks. Commun. ACM 13, 6 (June

1970), 377-387.

2. COLLICA, J., SKALL, M., AND BOLOTOSKY, G. Conversion of federal ADP systems: A tutorial.

NBS Special Publication 500-62 (Aug. 1980).

3. HOUSEL, B. A unified approach to program and data conversion. In Proc. 3rd Itzt. Conf. Very

Large Data Bases (Tokyo, Oct. 6-8, 1977), ACM, New York.
4. JACOBS, B. Applications of database logic to automatic program conversion. Submitted for

publication.

5. NAVATHE, S.B. Schema analysis for database restructuring. ACM Trans. Database Syst. 5, 2

(June 1980), 157-184.

6. NAVATHE, S.B., AND FRY, J.P. Restructuring for large databases: Three levels of abstraction.

ACM Trans. Database Syst. 1, 2 (June 1976), 138-158.
7. SAKAI, H. Entity-relationship approach to the conceptual schema design. Proc. ACM SIGMOD

Conf. 1980, pp. l-8.

ACM Transactions on Database Systems, Vol. 7, No. 2, June 1982.

Automatic Relational Database System Conversion * 257

8. SHNEIDERMAN, B., AND THOMAS, G. Automatic database system conversion I: Data definition

and manipulation facilities. Computer Science Tech. Rep. Series TR-820, Univ. Maryland, College

Park, 1980, 39 pp. (Submitted for publication.)

9. SHNEIDERMAN, B., AND THOMAS, G. Path expressions for complex queries and automatic

database program conversion. In Proc. 6th ht. Con/. Very Large Data Bases (Montreal, Oct. l-3,

1980), ACM, New York, pp. 33-44.

10. SHNEIDERMAN, B., AND THOMAS, G. Automatic database system conversion: Schema revision,

data translation, and source-to-source program transformation. In Proc. National Computer

Conf., vol. 51, AFIPS Press, Montvale, N.J., 1982.

11. SHU, NC., HOUSEL, B.C., TAYLOR, R.W., GHOSH, S.P., AND LUM, V.Y. EXPRESS: A data

extraction, processing, and restructuring system. ACM Trans. Database Syst. 2, 2 (June 1977),
134-174.

12. SHU, N.C., HOUSEL, B.C. AND LUM, V.Y. CONVERT: A high level translation definition
language for data conversion. Commun. ACM 28, 10 (Oct. 1975), 557-567.

13. Su, S.Y.W. Application program conversion due to database changes. In Proc. 2nd ht. Conf

Very Large Data Bases (Brussels, Belgium, Sept. 1976), North-Holland, Amsterdam, pp. 143-158.

14. Su, S.Y.W., AND LAM, H. Transformation of data traversals and operation in application

programs to account for semantic changes in databases. Dep. Computer and Information Sciences,

Univ. Florida, Gainesville, 1979.

15. Su, S.Y.W., AND REYNOLDS, M.J. Conversion of high-level sublanguage queries to account for

database changes. In Proc. National Computer Conf., vol. 47, AFIPS Press, Montvale, N.J., 1978,

pp. 857-875.

16. THOMAS, G., AND SHNEIDERMAN, B. Automatic databasesystem conversion II: A transformation

language. Computer Science Tech. Rep. Series TR-821, Univ. Maryland, College Park, 1980, 46

pp. (Submitted for publication.)

17. THOMAS, G., AND SHNEIDERMAN, B. Specifications for automatic relational database system
conversion. Submitted for publication.

18. THOMAS, G., AND SHNEIDERMAN, B. Automatic database system conversion: A transformation

language approach to sub-schema implementation. In Proc. IEEE COMPSAC 1980 Conf.,‘IEEE,

New York, 1980, pp. 80-88.

Received October 1980; revised February 1981; accepted April 1981

ACM Transactions on Database Systems, Vol. 7, No. 2, June 1982.

