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1. INTRODUCTION 

As logical data requirements change, database administrators are faced with the 

enormous challenge of database system conversion. The new requirements may 
call for a simple addition/deletion of a relation or attribute or for a total 
restructuring of the logical relationships. Simple additions or deletions present a 
minor problem which can be handled easily, while a total restructuring may 
require complete rewriting of the database system from scratch [2]. 

Often the change in requirements is between these extremes, and it may be 

accommodated by a modest revision of the working system. The change may be 
to replace a one-to-one relationship with a one-to-many relationship, to add a 

field to the set of key fields, to decompose a complex record into several simpler 
records, or to partition a collection of records into two types based on the value 
of one field. 
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Revising the schema is a relatively simple task which can be accomplished in 

a few hours or days. Translating the stored database to match the new require- 

ments may be done by a program which creates the target database while 
verifying integrity constraints. The third task, rewriting the application programs 
or queries, is often the major bottleneck in system conversion. 

In a health insurance application, it was estimated that two person-months per 
program were required to convert and test each of the 600 PL/I-IMS application 

programs which had an average length of more than 1000 statements. Even with 
compact high-level query languages, it may take months of effort to convert the 
hundreds of programs and test them to make sure that they still work correctly 
on the translated database. The burden is greatest with complex, lengthy 

host-embedded data manipulation languages, but it is still considerable with 
high-level self-contained languages such as those proposed for the relational 
model. 

2. RESEARCH BACKGROUND 

Until now our research on automatic conversion has been based on a specially 

designed data model which was tailored to meet the needs of automatic database 
system conversion. Our Pure Data Definition and Manipulation Languages 
blended elements of the network and relational models to facilitate the design of 
a Pure Transformation Language processor [8, 10, 161. The eighteen transfor- 
mations which we proposed permitted name changes, addition and deletion of 
fields, records and sets, changes to set keys, and the movement of fields between 
owner and member record types. The FIND, STORE, and MODIFY data 
manipulation statements provided explicit descriptions of query semantics 
through the use of path expressions with Boolean qualifications [9]. 

In this paper we explore the possibility of developing an automatic database 
system conversion facility for the relational model [l] using the relational algebra 
as a data manipulation language. Su and Reynolds [ 13, 151 suggest some relation- 
ally oriented transformations and show how SEQUEL queries might be rewritten 
in certain cases. Sakai [7] informally proposes several relational transformations 

as aids in the schema design process. 

In related work with other data models, House1 [3] demonstrates the use of 
CONVERT [ll, 121 operators for querying and transforming hierarchically or- 

ganized, tabular databases described by DEFINE language statements. Su and 
Lam [14] describe transformations of data traversals and operations in a high- 
level semantic data model. Navathe [5] offers a high-level data model defined by 

“schema diagrams” and a set of useful schema diagram transformations. Jacobs 
[4] describes automatic conversion in the context of his database logic, which 
provides a formal mathematical foundation for database systems. 

Our contribution in this paper is the gross architecture for a complete conver- 
sion system. We build on the individual suggestions for schema transformations 
by describing the implementation issues and integrity constraints for a set of 
transformations on the schema, the stored database, and the application programs 
of a relational database system. We believe that our set of transformations, when 
used individually and in groups, can effectively support a database administrator 
in coping with changing user requirements. 
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3. BASIC MODEL 

In this section we present the basic concepts of the transformation process and 
a taxonomy of transformations. 

3.1 Transformation Process 

We consider a database system (DBS) to consist of a schema S, a stored database 
D, and a collection of programs 

P=Pl,pz,...,pn 

so that 

DBS = (S, D, P). 

Applying a program to the stored database yields an output 

Pi(D) = oi, for i = 1, . . . , n. 

A transformation applied to a database system yields a new database system 

T(DBS) = DBS’ = (S’, D’, P’), 

such that applying the new programs to the new database yields the output oi’ 

pi(D’) = o! I, for i = 1, . . . , n. 

If 0: is identical to oi for all i, the transformation maintains input/output 
equivalence, since the execution yields identical results (although ordering of 
tuples or attributes may vary) for the programs. Of course, input/output equiv- 

alence is possible only for informationpreserving transformations; that is, trans- 
formations that do not destroy information but merely change the logical data 
format. For other transformations the database administrator will have to judge 
the acceptability of the output. 

A weaker requirement might be for attribute subset equivalence, in which the 
target output attributes are a subset of the source output attributes. If a trans- 
formation eliminates attributes from the database, then a seven-column report 
may be acceptable in place of the ten-column report generated by the original 

program. In general, a database administrator may seek still weaker requirements 
and define acceptable equivalence to suit organizational needs. 

3.2 Taxonomy of Transformations 

We have found it useful to classify transformations on three features: information 
preservation, data dependence, and program dependence. These are features of 
a transformation type rather than a specific instance of a transformation. The 
deletion of an attribute from a relation is classified as not information preserving, 
even though there are instances when the deletion may result in no loss of 
information (if all values are nulls or the attribute appears twice). 

A transformation is information preserving if no information is lost. If a 
transformation is information preserving, then it is also invertible (the original 
format can be restored), but only immediately after the transformation is per- 
formed. After operations such as storing, modifying, or deleting a tuple, inverti- 
bility is no longer guaranteed. For example, adding attributes or relations to a 
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database system is information preserving, but deleting attributes or relations is 
not information preserving. 

A second feature for characterizing transformations is data dependence/inde- 
pendence. A transformation is data dependent if the stored database must be 
checked to determine whether the transformation is consistent with the logical 
format of the target system. For example, eliminating an attribute from the key 

may not be permissible if the remaining key attributes no longer guarantee 
uniqueness. If, while checking the stored database, the conversion system en- 
counters an inconsistency between the source and target databases the database 

administrator must decide on how to modify/delete the source database so that 
the conversion can continue. We prohibit the creation of a target database which 

does not adhere to the target schema. This checking process may be extremely 
costly, but it must be done if data integrity is to be ensured. Efficient techniques, 
such as scanning summary tables, data dictionaries, or indexes, will have to be 
implemented to reduce checking costs. 

A third feature for characterizing transformations is program dependence/ 
independence. A transformation is program dependent if the application pro- 

grams must be checked to determine whether the transformation is permissible. 
For example, eliminating an attribute that is the target of a query or is used in a 
Boolean qualification destroys the possibility of an input/output equivalent 
transformation. The database administrator must be informed of this condition 
so that he or she can decide whether the resultant transformation is acceptable. 
We have found it useful to distinguish between two forms of program dependence: 

query program dependence and update program dependence. Similar distinctions 
have been made by researchers in multiple view maintenance. 

Note that a transformation may be program independent but still require 
program modifications. For example, changing a relation name is program inde- 
pendent (assuming the new name is not already in use) even though the programs 
must be modified. If a transformation is program dependent, this implies that the 
collection of application programs must be checked to determine whether the 
transformation is permissible. Since this is a potentially costly process, efficient 

techniques for scanning on-line libraries of programs or summary information will 
be useful. 

Figure 1 shows how our fifteen proposed transformations fit this taxonomy. 
Section 4 presents an extended example of how our transformations might be 
used in a practical situation. Section 5 describes an architecture for a conversion 
system, and Section 6 provides more details about each transformation. 

4. TRANSFORMATION EXAMPLE 

We begin with an extremely simple situation and follow the impact of organiza- 

tional policy changes on the database system. At every stage the database will be 
kept in fourth normal form. Imagine a chemical plant that begins using a database 
system by maintaining basic employee data in the relation emp: 

emp (eno*, name, salary, dept, job, cartag) 

which has an employee number (eno) as a key (key fields will be marked with an 
asterisk), the employee’s name, the employee’s salary, the department he or she 
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INFORMATION PRESERVING 
(IMMEDIATELY INVERTIBLE) 

PROGRAM INDEPENDENT QUERY PROGRAM INDEPENDENT PROGRAM DEPENDENT 

UPDATE PROGRAM DEPENDENT 

DATA 
INDEPENDENT 

DATA 
DEPENDENT 

CHANGE NAME DECOMPOSE INFO 

ADD ATTRIBUTES REMOVE MULTIVALUED DEPENDENCY 

INTRODUCE 

PARTITION INTO 

PROMOTE TO KEY 
EXPORT PARTIAL DEPENDENCY 

DEMOTE FROM KEY EXTRACT TRANSITIVE DEPENDENCY 

DATA 
INDEPENDENT 

DATA 
DEPENDENT 

NOT INFORMATION PRESERVING 
(NOT IMMEDIATELY INVERTIBLE) 

PROGRAM INDEPENDENT QUERY PROGRAM INDEPENDENT PROGRAM DEPENDENT 
UPDATE PROGRAM DEPENDENT 

DELETE ATTRIBUTES 

SEPARATE 

COMPOSE FROM MERGE FROM 
IMPORT DEPENDENCY 

Fig. 1. Taxonomy of transformations. 

works in (dept), the title of his or her job, and the tag number for his or her car 
(cartag) in the parking lot. 

After some time, management recognizes that the database system can be used 
to keep the health records of each employee as well. Adding attributes for weight, 
lung capacity, blood pressure (bp), and the month (mo) and year (yr) of the 
most recent physical exam can be accomplished by issuing a transformation 
statement: 

ADD ATI’RIBUTES weight, lung, bp, mo, yr 
To emp. 
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to yield a new relation: 

emp (eno*, name, salary, dept, job, cartag, weight, lung, bp, mo, yr) 

This transformation is simple to implement and is supported by some currently 

available systems. The transformation is information preserving, data indepen- 
dent (the database does not have to be checked to verify the allowability of this 

transformation), and program independent (the programs do not have to be 
checked to verify the allowability of this transformation). Immediately after the 
transformation the new attributes have null values which the user can replace 

with actual values for each employee. 

Privacy concerns may prompt the database administrator to decouple the 
medical information from the accounting or personnel information. This decom- 
position separates the concerns of different users so each can deal with a single 
simpler relation. This transformation may be specified as 

DECOMPOSE emp INTO 
emp-acct (eno*, name, salary, dept, job, car-tag), 
emp-med (eno*, weight, lung, bp, mo, yr). 

yielding two relations. This is another simple information preserving, data inde- 

pendent, and query program independent transformation. However, this trans- 
formation requires translation of the database and revision of the programs. 

Queries directed to the emp relation now may require a join to retrieve or qualify 
attributes. Updates to the emp relation may now require updates to one or both 
new relations. 

Instead of maintaining only the most recent medical examination data, man- 
agement may decide to maintain a history of yearly examinations. This requires 
that the yr attribute be included as a key attribute in the medical relation 

PROMOTE yr IN emp-med TO KEY. 

Since the eno provided a unique key, adding an attribute yr to the key cannot 
be a problem. The stored database and the programs need not be altered, but 
future updates will have to satisfy the new integrity constraint about the key of 
the emp-med relation. Once multiple tuples have been added for an employee, 
queries that formerly returned a single tuple may now return several tuples. User 
programs may have to be modified if only the most recent medical report is 
desired. 

Now imagine that a new government safety regulation requires that workers 
coming into direct contact with hazardous substances must have a monthly lung 
capacity exam and complete historical records must be kept. To satisfy this new 
requirement, the high-risk employees (those with dept = ‘production’) must be 
separated out from the low-risk employees (all other departments). The PAR- 
TITION transformation can be used in this simple way to form a mutually 
exclusive partition of tuples in a relation: 

PARTITION emp-med INTO 

(emp-acct.eno = emp-med.eno AND emp-acct.job = ‘production’): 
high-emp-med (eno*, yr*, mo, weight, lung, bp); 

ELSE low-emp-med (eno*, yr*, mo, weight, lung, bp). 
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The number of tuples in emp-med will be equal to the sum of the number of 
tuples in high-emp-med and low-emp-med. 

To record the monthly lung capacity information and keep historical records 
requires that the month participate in the key 

PROMOTE mo IN high-emp-med TO KEY. 

so that the relations now are 

emp-acct (eno*, name, salary, dept, job, cartag) 
high-emp-med (eno*, yr*, mo*, weight, lung, bp) 
low-emp-med (eno*, yr*, mo, weight, lung, bp) 

This introduces a partial dependency of weight and bp on eno, yr in high-emp- 
med, because only lung capacity is measured monthly. Eliminating this partial 
dependency so as to restore the fourth-normal-form status requires the use of the 
EXPORT transformation 

EXPORT PARTIAL DEPENDENCY FROM high-emp-med 
GIVING high-annal (eno*, yr*, weight, bp). 

After issuing a trasformation to change names 

CHANGE NAME FROM high-emp-med TO high-monthly. 

we now have the following set of relations: 

emp-acct (eno*, name, salary, dept, job, cartag) 
high-annual (eno*, yr*, weight, bp) 
high-monthly (eno*, yr*, mo*, lung) 
low-emp-med (eno*, yr*, mo, weight, lung, bp) 

A further change in policy may require that all employees with the same job 
title earn the same salary. This means that a transitive dependency now exists 
among two nonkey fields of emp-acct. To EXTRACT this transitive dependency 
and to create a table of job titles with a salary attribute we could issue the 
following transformation: 

EXTRACT TRANSITIVE DEPENDENCY FROM emp-acct 
GIVING job-salaries (job*, salary). 

This leaves the emp-acct relation without the salary attribute, so queries on 
the salary attribute now require a join. This transformation is information 
preserving and program independent, but it is data dependent since the database 
must be checked to see if there is no conflicting information. 

Finally, the original assumption that employees brought only a single car to 
work must be changed to accommodate multicar families. This new assumption 
implies a multivalued dependency between eno and cartag in the emp-acct 
relation. The following transformation restores fourth-normal-form status: 

REMOVE MULTIVALUED DEPENDENCY FROM emp-acct 
GIVING car-registration (eno*, cartag). 

ACM Transactions on Database Systems, Vol. 7, No. 2, June 1982. 



242 - B. Shneiderman and G. Thomas 

The final set of relations is 

emp-acct (eno*, name, dept, job) 
high-annual (eno*, yr*, weight, bp) 
high-monthly (eno*, yr*, mo*, lung) 
low-emp-med (eno*, yr*, mo, weight, lung, bp) 
job-salaries (job*, salary) 
car-registration (eno*, cartag*) 

Throughout this example the focus has been on changes to the schema as 
described by the set of relations. For each transformation, there are precise rules 
for translating the database and revising the programs. 

5. SYSTEM ARCHITECTURE 

In the simplest case (Figure 2), we assume that the source schema, stored 
database, and application programs exist in available on-line libraries. The 
conversion processor reads transformation statements, checks syntax, matches 
variable names with those in the desired source schema, and prints error messages 
when there are problems. If all is well, then a target schema can be generated by 
the system. 

The second stage deals with data-dependent transformations which require 
checking the source stored database to ensure that the constraints of the trans- 
formation are satisfied. If attribute values produce constraint violations, error 
messages are printed and the database administrator must decide about changing 
or eliminating these values. If such modifications are not possible, then this 
transformation cannot be allowed to go forward. 

Assuming all constraints are satisfied, then the target database can be gener- 
ated. In the simple case, the source stored database can be quiesced and the 
target stored database can be generated without concern for concurrent access. 
If continuous access is required, then more elaborate algorithms and protection 
mechanisms are necessary. 

The third stage handles program-dependent transformations which require 
checking the source application programs to determine whether the transforma- 
tion is permissible. Here again the database administrator must decide what to 
do in cases where an input/output equivalent transformation is not possible. The 
database administrator must decide whether a transformation is acceptably 
equivalent or whether a manual application program revision is required. After 
responding to system messages and warnings, the database administrator can 
allow the generation of the target application programs. 

When all three database system components have been generated, there will 
probably have to be a testing phase to ensure that the target system functions 
properly before the old system is retired. In some cases both systems will remain 
available and in other cases the target system will be copied for use at another 
site while the source system remains active. 

Many variants of this conversion process can be envisioned. The source 
application programs may not exist in an on-line library; instead, they may be 
typed in at a terminal when needed. In this case the transformation commands 
must be maintained and a real time conversion can be made to produce the 
proper query or update operation. Dynamic transformation can be used to 
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support multiple views of a set of base relations [18]. Another variant would be 
to assume a distributed database environment where each site could maintain its 
own format for the database. In this case dynamic transformation of the database 
would be necessary to present data in the required format. 

If a sequence of transformation commands is issued, then there are some 
interesting optimization questions. In some cases the simple approach of process- 
ing each transformation command independently may be appropriate and effi- 
cient, but it may sometimes be more effective to pass units of data or individual 
application programs through a sequence of commands, thereby skipping inter- 
mediate stages. Optimization strategies may be tailored to the particular sequence 
of transformation commands. For automatic database system conversion to 
become practical, implementers will have to cope with some of these efficiency 
questions. 

6. TRANSFORMATION DEFINITIONS 

The following subsections present fifteen relational transformations with the 
constraints that the source database system must satisfy to guarantee input/ 
output equivalence. The target database and the revisions to the relational 
algebra application programs are described. Special attention is given to trans- 
formation side effects requiring database administrator intervention to obtain a 
target database system that is acceptably equivalent to the source database 
system. A more formal definition of these transformations is given in [16]. 

We use the notation 

to indicate that a relation R has n key attributes k(n 2 1) and m nonkey attributes 
f(m > 0). Where there is no ambiguity, 

RK*, F) 

indicates the relation R where K is a grouping of one or more key attributes and 
F a possibly empty grouping of nonkey attributes. The relational algebra projec- 
tion of R over a collection a, b, c, . . . of its attributes is denoted by 

R[a, b, c, . . .]a 

The Sz join of two relations R and S over the compatible attribute groupings A 
and B is given by 

R[A 8z B]S. 

Finally, the restriction of R to a subset of its tuples based on a Boolean condition 
is denoted by 

R[aa ul $ ba v2 $. . .] 

where a, b, . . . are attributes of R; v are constants or identifiers; a is one of =, 
<>, >, >=, <, or c=; and $ is AND or OR. 

6.1 Elementary Transformations 

Changing the name of an identifier and adding/deleting a relation or an attribute 
of an existing relation are elementary transformations that are available on some 
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commerically distributed systems. These transformations are included for com- 
pleteness and are not the focus of this paper. 

Changing an identifier (relation or attribute) requires that the schema and the 
application programs be revised, but the stored database is untouched. The 
CHANGE NAME transformation accomplishes this task. 

Adding an attribute to an existing relation (ADD ATTRIBUTES transfor- 
mation) requires a modification to the schema and some way of indicating that 
the stored database contains a new attribute with all null values. An application 
program may be written to populate the attribute with values. Source application 
programs still function correctly, but the database administrator may wish to 
manually rewrite update operations to provide values for the expanded relation. 

Deleting an attribute from an existing relation (DELETE A’ITRIEWTES 
transformation) requires a schema modification, elimination of the values from 
the database, and changes to the application programs. Any transformation that 
destroys information, as does the DELETE transformation, cannot be guaranteed 
to produce input/output equivalence. If it happens that the application programs 
do not refer to the deleted attribute, then it will be possible to produce input/ 
output equivalence. 

Introducing a new relation (INTRODUCE transformation) is a basic operation 
which requires an addition to the schema, but no change to the stored database 
or the application programs. Eliminating an existing relation (SEPARATE 
transformation) from the database system requires deletion frbm the schema and 
the stored database. Since information is lost in the SEPARATE transformation, 
application programs which reference the separated relation can no longer func- 
tion correctly. 

6.2 Promoting/Demoting Keys 

Assume that the relation R is defined by 

R(kI*,k2* ,..., kn*,fl,fi ,..., fm), 

where the n (~1) attributes Ki are key and the 172 (20) attributes fi are nonkey. A 
basic integrity assertion of the relational model is that there may never be two or 
more tuples of a relation that have the same value for the key attributes. 
Otherwise, it would be possible to have two tuples describing the same entity 
with possibly different and hence conflicting values for the nonkey attributes. 
When designing a DBS, the DBA (database administrator) must designate one 
or more attributes of each relation as the key. While the choice made may be 
appropriate at one time, changes in requirements may cause a redefinition of the 
key to include more or fewer attributes. The two transformations 

and 

PROMOTE “attribute name” IN “relation name” TO KEY 

DEMOTE “attribute name” IN “relation name” FROM KEY. 

allow such redefinition. 
With ,PROMOTE the DBA may add an existing attribute to the key of a source 

relation. DEMOTE allows the removal of an attribute from the key of an existing 
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relation. Both of these are perceived as being information preserving transfor- 

mations because all relationships implicit in the source schema S can be derived 

in the target schema S’. PROMOTE is data dependent because, although adding 
a new attribute to an existing key cannot violate the uniqueness constraint, the 
new attribute may contain nulls that are not permitted for key attributes. 
DEMOTE requires an examination of the source stored database D to determine 
whether or not the resulting shortened key will be sufficient to uniquely identify 

the tuples. Should any two or more tuples share the same value for the target 
key, the DBA must interact with the transformation system to obtain a target 
stored database LY that will not violate the uniqueness constraint. With both the 
hierarchical and network models, the value of a record key affects its logical 

position in the stored database. The relational model makes no use of keys 
beyond enforcing the uniqueness constraint above. For this reason programs 
accessing and/or updating the stored database are unaware of the designation of 
fields as key or nonkey. Hence both PROMOTE and DEMOTE are program 

independent, yielding a target set of programs that is identical to the source 
programs P. Insert commands which do not have values for all key attributes will 
fail, so at execution time some inserts which succeeded before may now fail, but 
the program needs no revision. PROMOTE may be inverted by DEMOTE, and 

DEMOTE may be inverted by PROMOTE. 

6.3 Decomposing/Composing Relations 

A particular schema S is a model of some environment. The entity types of 

interest may be represented by one or several relations having key attributes to 
identify instances of the entities and nonkey attributes to retain data about the 
instances. For a particular entity there may be several valid but different repre- 
sentations. For example, consider an entity E that may be uniquely identified by 
the values of the grouping K of attributes. It may be desirable to store data 
describing occurrences of this entity as n mutually disjoint groupings of attributes 
Fi. Two possible representations of E are 

and 
(4 R(K*, FI, Fz, . . . , F,J 

(b) RICK*, R) 
&(K*, Z-72) 

. 

kn(K*, Fn). 
Representation (a) implies that all data about an occurrence of the entity will 

be stored and accessed as a single tuple of the relation R. Should information 
about some subset Fi of the attributes be desired, this can be obtained by the 
projection R[K, FJ Specific user views may similarly be defined by projection 
over the desired attributes. Representation (b) stores data about an entity as n 
tuples-one for each relation Ri. All data about the entity may be retrieved by 
the equijoin of the n relations Ri on the common key attributes K. Hence it may 
be argued that both representations are equivalent. However, we feel they differ 
in two respects. 
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The first difference is at the logical level. With representation (b), the data for 
an instance of the entity E is scattered across n tuples. In fact, it is possible that 
for some entity there may be m(cn) tuples in the database. Hence a query for 
this instance might result in values for some attribute Fi and in the statement 
that there is no such entity for other attributes Fi(i #j). Under representation 
(a) there would be one tuple for this instance. While the same values might be 
presented for a query on Fi, the query on Fj would presumably produce the 
answer “null” or “unknown”. This semantic difference may be overcome by 
imposing the integrity constraint 

3U(Vri E Ri, Q[K] = (u} * Vh (1 5 h I n, i # h)% E Rh 3 h[K] = (v}) 

on representation (b) requiring that for each instance of E represented in any 
relation Ri, the entity must be represented in all relations Rj. If the underlying 
database management system enforces this integrity constraint, then the two 
representations are indeed equivalent. Otherwise they differ at the logical level 
because (b) represents components of the entity E by n separate and independent 
entities. 

The second difference between representations (a) and (b) occurs at the 
physical level. With most database management systems, the data values com- 
posing a tuple are stored in physically contiguous locations. Hence with represen- 
tation (a), should some attribute Fi be of extreme importance or require a high 
level of security, the entire relation will be physically stored or protected based 
on the attributes Fi. This may be wasteful of high-speed storage or impose 
needless security on some attributes Fj. Further, multiple projections may be 
required to materialize user views resulting in excessive CPU and channel use. 
Representation (b) may be preferable because it allows selecting storage devices 
and protection levels based on the importance of the individual attribute group- 
ings F, while more closely modeling diverse user views. Thus the DBA may prefer 
representation (b) for performance reasons, even though this might result in 
violation of the above integrity constraint. 

The transformations DECOMPOSE and COMPOSE [7] allow the transfor- 
mation of a DBS employing representation (a) to one employing representation 
(b), or vice versa. Whenever such a transformation is made, the DBA must be 
cognizant of the subtle logical differences between these representations. Espe- 
cially with representation (b), a policy decision is required to determine whether 
or not the n relations R, are independent or dependent. 

If they are dependent, this requires users to be aware of the dependence 
whenever the stored database is updated by INSERT, MODIFY, or DELETE 
commands. The syntax of these transformations is 

DECOMPOSE “relation name” INTO “relation definition list”. 

and 

COMPOSE “relation definition” FROM “relation name list”. 

where DECOMPOSE maps representation (a) to (b), and COMPOSE maps (b) 
to (a). 
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DECOMPOSE is an information-preserving, data-independent, and program- 
independent transformation, while COMPOSE is not information preserving, is 
data dependent, and is program independent. 

DECOMPOSE maps representation (a) to representation (b). Each of the n 

target relations must have the same key K as the source relation R. The n 
attribute groupings Fi must be pairwise disjoint. The target schema S’ is derived 
from S by replacing the source relation R by the n relations Ri. The target 

database D’ is obtained by executing the program 

RI +- R[K, FI]. 

RZ + R[K, RI. 

R, + R[K, Fnl. 

DELETE R. 

An examination of the program for populating the target database shows that 

R=RI[K=K]Rz[K=K] . . . Rn-I[K=K]R, 

holds at the instant of the transformation, This leads to the observation that all 
source program queries of the form 

Rl...), 

where ( . . . ) is some form of projection, join, or restriction, may be converted to 

an input/output equivalent form by substituting the above equijoin for the 
reference to R. Because of the semantic difference between representations (a) 

and (b), source program updates of the form INSERT R, MODIFY R, and 
DELETE R cannot be transformed in such a clean manner. If the n target 
relations are dependent, then source statements of the form INSERT R may be 
automatically transformed to a sequence of target statements 

INSERT R, . 

INSERT Rz. 

INSERT R, . 

with a control structure that guarantees that all succeed or none succeeds. Similar 
modifications may be made for MODIFY and DELETE. However, this implies 
that all programs yet to be written be aware of the dependency and be written in 
a manner that ensures the dependency will be maintained. If the n target relations 
are independent, then all source program statements that update the relation R 

must be deleted to create the target set of programs P’. Thus input/output 
equivalence of queries can be guaranteed, but the DBA must decide how to 
transform updates. DECOMPOSE may be inverted by COMPOSE. 

COMPOSE maps representation (b) to representation (a). In addition to the 
constraints that the target relations and source relation share the same key and 
that the attribute groupings Fi be pairwise disjoint, COMPOSE requires that the 
n relations Ri be dependent. This implies that the source database must be 
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examined to determine whether or not 

R,[K]=Rz[K]= .'.=R,[K] 

holds. If it does, then the target database may be populated by executing the 
program 

R +-R,[K= K]RyJK=K]...R,-l[K=K]R, 

and deleting the tuples of the relations Ri for i = 1, IZ. If the examination of the 
source database shows a violation of the above, then DBA interaction is required 
to resolve the violation before the transformation can be allowed. Hence COM- 
POSE is data dependent. At the schema level, the source schema relations R, are 

replaced by the target relation R. This is not information preserving, because the 
IX relations Ri lose their separate identity as a result of the transformation. All 

source program queries of the form 

Ri(- . . ), 

where (. . . ) is a projection, join, or restriction, may be replaced by 

R[K, Fil(. . . ) 

to preserve input/output equivalent behavior. Source program updates of the 
form INSERT Ri will require DBA interaction to yield equivalent target program 
updates. Because COMPOSE is not information preserving, there is no inverse 

for this transformation. 

6.4 Partitioning/Merging Relations 

Consider a source relation R defined by 

R(K*, F) 

where K and F are groupings of attributes. This relation may model a generic 

entity, such as employee. It may be desirable to partition [S] this entity into 
several disjoint specialized entities, such as machinist, plumber, or typist, where 

each is modeled by a relation of the form 

Ri(K*,F). 

having the same attribute groupings as the entity modeled by R. The two 
transformations PARTITION and MERGE [6] allow the DBA to partition a 
representation of an entity into disjoint representations or merge specialized 

representations into a single merged one. The syntax of these transformations is 

PARTITION “relation name” 
INTO “partition clauses” 
ELSE “relation definition”. 

and 

MERGE “relation definition” FROM “relation name list”. 

where “partition clauses” is one or more clauses of the form 

(“condition”) : “relation definition” 
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separated by semicolons. For the above relations, the transformations would be 

PARTITION R 
INTO (c,): R,(K*, F); 

(cd: Rz(K*, F); 

(G-d: Rn-, tK*, F) 

ELSE R,(K*, F). 

and 

MERGE R(K*, F) FROM RI, RP, . . . , R,. 

The constraints that these transformations must satisfy and their effects are 
presented using the above rotation. 

These transformations may be illustrated by a simple schema with only one 
relation, employees (name *, title *, age), and a second schema with three 

relations, managers (name*, title*, age), secretaries (name*, title*, age), 

and clerks (name *, title *, age). The partition transformation 

PARTITION EMPLOYEES 
INTO (title = ‘manager’): managers (name*, title*, age); 

(title = ‘secretary’ OR title = ‘typist’): 
secretaries(name*, title*, age); 

ELSE clerks(neme *, title *, age). 

would split the tuples in the EMPLOYEES relation into three relations. The 

value of TITLE in the MANAGERS relation would be the same for all the tuples 
and could be disposed of with a DELETE ATTRIBUTES transformation. The 
MERGE transformation 

MERGE employees (name *, title *, age) FROM managers, 
secretaries, clerks. 

would combine the tuples in these three relations into a single relation. Before 
the MERGE would be permitted, a check would have to be made to ensure that 

a name value did not appear in two of the relations to ensure uniqueness in the 
target relation. 

PARTITION is an information preserving, data-dependent, and query pro- 
gram-independent transformation. Each of the target relations defined by 

“partition clauses” must have the same key and non-key attributes as the relation 
being partitioned. Each of the n - 1 conditions cj is a Boolean condition that 
must evaluate to true or false for every tuple of the source relation R. Each tuple 

r E R will be mapped by PARTITION to one of the n relations Ri by evaluating 
the n - 1 conditions cj. If, for r, exactly one condition cj is true, r is mapped to Rj. 
If, for r, no condition cj is true, r is mapped to R,. Otherwise there must be two 

or more conditions cj that are true for r. In this case, the transformation system 
is unable to map r to a specific Ri without DBA intervention. Hence PARTITION 
is data dependent. The target schema is obtained from S by replacing the 
definition of the relation R with the definitions of the n relations Ri. The target 
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database is obtained by executing the following program 

set RI, Rz, . . . , R, empty 
for each r E R do 

ifclthenR1tR1Ur 
else if c2 then Rz c Rz U r 

else if c3 then R3 c RJ U r 

else if C,-I then R,-, + Rn-b U r 
else R, +R, U r. 

DELETE R. 

From the above program, we observe that R = RI U RB U - . - U R,. Hence, all 

source program queries of the form 

R(...) 

may be replaced by input/output equivalent queries of the form 

(RI U Rz u . . . U R,)(. . . ) 

where (...) is a projection, join, or restriction. Source program updates of the 

form 

INSERT R 

may be replaced by 

if cl then INSERT RI 
else if c2 then INSERT Rz 

else if c,-~ then INSERT R,,-l 
else INSERT R,. 

so long as the conditions c; will continue to map each occurrence of R into exactly 
one of the relations Ri for i = 1, n - 1. If this condition cannot be guaranteed, 

then the DBA must assume responsibility for transforming source updates to 
produce equivalent target updates. Finally, PARTITION may be inverted by 
MERGE. 

MERGE is a non-information-preserving, data-dependent, and program-depen- 
dent transformation. As with DECOMPOSE and COMPOSE, there is a subtle 
semantic difference between the source and target schemata. Merge creates the 
target relation R by taking the union of the source relations Ri. This implies that 
each higher level entity described by R may occur at most once as a lower level 
entity Ri. Hence the source database must satisfy the constraint 

3 U(ri E Ri, ri[K] = {u} 

* v h(1 I h I n, h # i), 3 rh E RI, 3 rh[K] = {u}) 

for all i (15 i I n). The validity of this constraint may be examined for the source 
database by determining whether or not Ri[K] rl RJK] = 9 for all i and j such 
that 15 i <j 5 n. Should any pairwise intersection be other than the empty set, 
this implies that an instance of the higher level generic entity is represented by 
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two lower level tuples ri(Ki, Fi) and ri(Ki, Fi) such that ri[Ki] = ri[Ki] holds, but 

the nonkey attribute values may not be equal. The transformation system will 
require DBA guidance in determining which of these tuples to map to the higher 

level target relation R. Because data may be lost as a result of this transformation, 

and because the lower level entities Ri lose their identity when mapped to R, this 

transformation is not information preserving. Data dependence follows from 
observing that the source database must be examined to determine whether or 
not it is valid with respect to the target database system. Program dependence 
can best be illustrated by considering a source query of the form 

Rite.. ), 

where (. . . ) is a projection, join, or restriction. Under the target system, the 
relations Ri may be materialized by a projection over R. However, the criteria 
needed to partition R into the disjoint relations Ri are not available to the 
transformation system. They could be made available in some cases by an 
elaborate MERGE statement, but in general only the DBA can provide these 

criteria. Hence, DBA interaction is required to modify every source query to an 
acceptable equivalent target query, if possible. Similary, all source updates will 
require DBA interaction to produce equivalent target updates. Because MERGE 

is not information preserving, it has no inverse. 

6.5 Functional Dependency Transformations 

We have assumed thus far that the source and target DBSs are in fourth normal 
form; that is, the key of every relation is minimal and there are no partial, 
transitive, or multivalued dependencies. As an example, consider the functional 
dependency fd, : K, P -+ F, G where K, P, F, and G are nonempty groupings of 
attributes. The relation 

R(K*, P*, F, G) 

is a fourth normal form relation representing this functional dependency. Should 
the environment change so that in addition to fd, the functional dependency 
fdz : P+ G becomes true, then R is no longer in fourth normal form. This can be 

rectified by replacing the relation R by the two relations 

and 

R’(K*, P*, F) 

TV’*, G), 

both of which are in fourth normal form. In a similar manner, the existence of 
transitive dependency td : F+ G or a multivalued dependency md : K, P++ G 
would imply that the relation R above was no longer in fourth normal form and 
should be replaced by other fourth normal form relations reflecting the new 
dependencies. The first three transformations in this class may be employed to 
restore DBSs to fourth normal form in response to dependency changes. The 
fourth transformation may be used to invert the effects of the first three. 

6.5.1 Partial Dependencies. The transformation. 

EXPORT PARTIAL DEPENDENCY FROM “relation name” 
GIVING “relation definition”. 
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may be employed to restore a DBS system to fourth normal form when “relation 
name” is no longer in fourth normal form as the result of the perception of a 
partial dependency of one or more nonkey attributes of “relation name” on the 
key. Specifically, the transformation 

EXPORT PARTIAL DEPENDENCY FROM R GIVING T(P *, G). 

transforms the relation 

R(K*, P*, F, G) 

to the two relations 

R’(K*, P*, F) 

and 

T(P*, G). 

EXPORT requires that the key attributes of the target relation T be a proper 
subset of the key attributes of R; the nonkey attributes of T be a subset of the 
nonkey attributes of R; and for all pairs of tuples (P,, G1) and (Pz, Gz) in the 
projection R[P, G] over the source database PI = P2 j G, = Gz holds. If these 

constraints are satisfied, EXPORT is an information preserving, data-dependent, 

and query program-independent transformation. Violation of the first two con- 
straints may be determined by an examination of the source schema S. The 
validity of the third constraint requires an examination of the source database to 
determine whether or not the attributes P are a key for the proposed target 
relation T. If they are not, DBA intervention is required to modify the source 

stored database. Information preservation follows from observing that the equi- 
join of R’ and T over the attributes P recreates the source relation R. Hence no 
information is lost in the transformation. The target database may be derived 
from the source database by executing the program 

T+R[P, G]. 

R’ + R[K, P, F]. 

Source queries of the form 

R(...) 

may be replaced by 

(R’[P = P]T)( . . . ) 

preserving input/output equivalent retrieval behavior. Source updates of the 
form INSERT R may not be handled so neatly because such a statement implies 
the insertion of an R ’ tuple and possibly a T tuple. Hence DBA interaction will 
be required to transform source updates. EXPORT may be inveted by the 
transformation IMPORT. 

6.5.2 Transitive Dependency Transformations. Let the source relation R de- 
fined by 

R(K*, F, G) 

model the functional dependency fd: K --+ F, G. With the passage of time, the 
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transitive dependency td: F + G may be perceived. In this case, R is no longer in 

fourth normal form. The transformation 

EXTRACT TRANSITIVE DEPENDENCE FROM R GIVING T(F*, G). 

yields the target relations 

and 

R(K*, F) 

T(F*, G). 

This transformation differs from EXPORT only in that the key of the target 
relation T must be a proper subset (if G is empty, then there is no transitive 

dependency) of the nonkey attributes of the source relation R. Otherwise the 
constraints and effects of this transformation are identical to those of EXPORT 
for like reasons. Hence EXPORT is information preserving, data-dependent, and 

query program independent with an inverse of IMPORT. 

6.5.3 Multivalued Dependency Transformations. The treatment of multival- 
ued dependencies differs from that for partial and transitive dependencies in that 

the target relation added to the schema is composed solely of key attributes. 
Hence, given a source relation R defined by 

R(K*, 4 G) 

and a change in the external environment resulting in the perception of the 
multivalued dependency md: K ++ F, the transformation 

REMOVE MULTIVALUED DEPENDENCY FROM R GIVING T(K *, F* ). 

yields a target database system containing the relations 

R’(K*, G) 

and 

T(K*, F*). 

Because the projection R[K, F] is a set and the target relation T is “all key”, 
this transformation is data independent. For reasons similar to EXPORT and 
EXTRACT, this transformation is information preserving and query program 
independent. The target schema is derived from the source by adding the relation 
T and deleting the nonkey attributes of R that are mapped to T from the 
definition of the target relation R’. The target database may be obtained from 
the source by executing the program 

T+R[K,F] 
R'+R[K,G]. 
DELETE R. 

Source program queries of the relation R may be replaced by input/output 
equivalent queries of the equijoin of T and R’ over the attributes K. Source 
program updates will require DBA interaction to produce acceptably equivalent 
target program updates. Inversion of REMOVE is a two-step process. In the first 
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step, the attributes F of the relation T are demoted from key to verify that the 
functional dependency fd: K -+ F has replaced the multivalued dependency md : K 
++ F. In the second step, the relation T is imported into R’ to restore the 
original source relation R. 

6.5.4 Importing Dependencies. The preceding three transformations allow the 
DBA to restore a database system to third normal form whenever a partial, 
transitive, or multivalued dependency is perceived. IMPORT is provided to invert 
these transformations. Consider the source relations 

and 

RW*, G) 

TV*, F) 

where P the key of T is a subset of the attributes of R, and the nonkey attributes 
F of the relation Tare not attributes of R. (We may have P = K, P C K, P = G, 
or P C (KU G). We must have F n (KU G) = 0.) The transformation 

IMPORT DEPENDENCY BY MAPPING T INTO R. 

yields a target database system in which the relation 

R’(K*, F, G) 

replaces both T and R. For this DBS to be in fourth normal form, the functional 
dependency fd: K -+ F must be true, as is the case when inverting the three 
preceding transformations. To ensure that no stored data values are lost, we 
require that for every source tuple in T there be at least one tuple in R having the 
same value for the key attributes P of T, and that for every source tuple in R 
there be exactly one tuple in T having the same value for the attributes P. These 
two constraints ensure that no tuple of T will be lost when mapping T into R and 
that for every tuple in R there is a tuple in T to map into R. They also imply that 
this transformation is data dependent and may require the DBA to add/delete 
tuples to or from T or R prior to allowing the transformation. IMPORT is not 
information preserving because the two tuples of T and R in the source schema 
are replaced by the single tuple of R’ in the target schema, losing information 
about the independent existence of T and R. The cardinality of R is the same as 
R’, but given only R’ it is impossible to determine the cardinality or contents of 
T. The target database is derived from the 

R’ c R[P = PIT. 
DELETE T. 
DELETE R. 

Source program queries of the form 

T(...) 

or 

R(...) 

may be replaced by 

R’[P, Fl)( . . . ) 
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and 

(R’[K (A)(.. . ), 
respectively, to preserve input/output equivalent retrieval behavior. 

Source program updates involving either T or R will require DBA interaction 
to obtain equivalent target program updates. Because IMPORT is not informa- 
tion preserving, it has no inverse. 

7. CONCLUSIONS 

The relational model transformations offered in this paper may provide database 
administrators with increased flexibility by easing the conversion process when 

requirements change. Whether this set of transformations is at the right level of 
abstraction, suits the needs of commercial environments, or is comprehensible by 
practitioners needs to be tested empirically. We hope to gain more experience 
with these transformations and see how they fit with relational query facilities 

such as query-by-example or SQL. 
Our goal is not to create a software product, but to demonstrate to implementers 

of database systems that automatic conversion is viable. We hope that these 

implementers will include some of our transformations or additional ones in new 
systems so that their effectiveness can be tested. 

We are investigating what further transformations may be useful, such as 
combining two database systems or changing functional dependencies. More 
sophisticated transformations which impact several relations at a time are being 
considered in the context of the entity relationship or other high-level semantic 
models. Extending the relational model to include interrelation integrity con- 
straints opens the door to many interesting transformations, such as DISTRIB- 
UTE and FACTOR, which we explored in the Pure Database System [8,10,16]. 
We are also trying to take a formal approach to demonstrating the completeness 
of a set of transformations and to proving the correctness of a transformation. 
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