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ABSTRACT
Motivations: Technological advances in biomedical research
are generating a plethora of heterogeneous data at a high rate.
There is a critical need for extraction, integration and manage-
ment tools for information discovery and synthesis from these
heterogeneous data.
Results: In this paper, we present a general architecture,
called ALFA, for information extraction and representation from
diverse biological data. The ALFA architecture consists of:
(i) a networked, hierarchical, hyper-graph object model for rep-
resenting information from heterogeneous data sources in a
standardized, structured format; and (ii) a suite of integrated,
interactive software tools for information extraction and rep-
resentation from diverse biological data sources. As part of
our research efforts to explore this space, we have currently
prototyped the ALFA object model and a set of interactive
software tools for searching, filtering, and extracting inform-
ation from scientific text. In particular, we describe BioFerret,
a meta-search tool for searching and filtering relevant inform-
ation from the web, and ALFA Text Viewer, an interactive tool
for user-guided extraction, disambiguation, and representation
of information from scientific text. We further demonstrate the
potential of our tools in integrating the extracted information
with experimental data and diagrammatic biological models
via the common underlying ALFA representation.
Contact: aditya_vailaya@agilent.com

1 INTRODUCTION
The completion of the draft sequence of the human gen-
ome has heralded a new era in molecular biology by opening
avenues for measurement of a large number of genes or pro-
teins in a single experiment. This has led to a huge paradigm
shift for life scientists, from the traditional research limited
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to experimenting with small, specific, and approximate bio-
logical models to the newer paradigm of high throughput
experiments. These experiments have the potential to revolu-
tionize academic and industrial research and discovery, with
breakthroughs in areas such as identifying genetic causes of
disease, predicting an individual’s response to drug treatment,
identifying biological drug targets, and deepening the basic
understanding of evolution and workings of biological organ-
isms. However, there still exist tremendous problems in
data and information integration and management before the
potential of these technologies can be realized.

The new experimental paradigm has led to an emergent
data-centric approach to research in molecular biology. The
emphasis is on mining the large amounts of data generated by
these high throughput experimental studies to yield specific
targets for further research. This approach is complement-
ary to the traditional hypothesis-centered research, where
biologists approached their research problems with specific
hypotheses, and experiments were conducted to refute or sup-
port these. In the traditional hypothesis-centered paradigm,
biologists worked within the realm of their domain expert-
ise, where they had sufficient knowledge to develop and test
various hypotheses. However, the new data-centric approach
is forcing biologists to move out of narrowly focused areas
to work more broadly with large numbers of genes or pro-
teins that they are otherwise unfamiliar with, i.e., they are
forced to incorporate broader range of scientific knowledge
drawn from disciplines beyond their own. A biologist now
has the need to draw insights across multiple data (e.g., com-
paring proteomic vs. gene expression information) and data
types (e.g., comparing information from scientific text, path-
way diagrams, and experimental data). Clearly, no one central
repository (either technological or human) exists with all the
biological knowledge. Thus, the challenge lies in providing
biologists with easier access to these highly fragmented and
distributed sources of data and information, and a means of
viewing, navigating, and synthesizing this information.

One major source of knowledge is scientific literature.
For generations the research community has represented
and shared its knowledge in the form of publications.
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More recently these are being shared freely in a digital
and computationally accessible format (mostly in the form
of abstracts, such as the PubMed repository at NCBI
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed)
and possibly as full articles in the future). With the explosion
in molecular biology literature (for example, there are over
14 million abstracts in PubMed as of March 2004), search-
ing for relevant information is becoming extremely difficult
with the user left to manually sift through large number of
retrieved documents. Therefore, simple access to digital forms
of text isn’t sufficient for analyzing high throughput experi-
mental data and a number of research groups have started to
address the problem of automatic information extraction (IE)
from text (Collieret al., 2000; Friedmanet al., 2001; Fukuda
et al., 1998; Humphreyset al., 2000; Iliopouloset al., 2001;
Krauthammeret al., 2000; Ng and Wong, 1999; Palakalet al.,
2002a,b; Parket al., 2001; Rindfleschet al., 2000; Sekimizu
et al., 1998; Stephenset al., 2001; Wong, 2001; Yakushiji
et al., 2001). However, there are several limitations of auto-
matic text extraction. It behaves as a black box to an end user
not knowledgeable in the text extraction domain, its accur-
acy and efficiency are not easily computable, and it often
fails to capture a user’s true context (in that its behavior is
uniform across all users). Moreover, automated extraction
systems are very specific in terms of the problem they are
solving. A study of biologists in pharmaceutical industry and
academic research labs indicates that most biologists do not
completely trust automated text extraction systems, for the
above-mentioned reasons (O’Dayet al., 2001).

Manual extraction of information by a user, on the other
hand, is true to the user’s intent, the user trusts it, and in this
method the user has a better understanding of the accuracy of
the extracted information. Also, capturing the user’s context is
implicit with manual extraction. However, manual extraction
is tedious and time consuming, and increases in difficulty as
data and models grow in complexity. Moreover, it becomes
potentially impossible to manually extract information in a
high throughput manner. Therefore, in order to overcome the
limitations and utilize the advantages of the automated and
manual approaches, we propose an interactive, user-guided
approach to information search and extraction. The follow-
ing verbal quote from a biologist in the Text Mining panel
discussion at the Pacific Symposium on Biocomputing 2002
(PSB 2002), at Kauai, Hawaii, succinctly captures the motiv-
ation behind our approach. ‘Biologists want interactive tools
to help them do their job better and not fully automated tools
whose reliability is hard to judge. Thus text mining should not
be an end product, but an interacting tool allowing users to
extract information they are interested in.’

Finally, extraction of information from text is not an end
in itself. Biologists need to relate the extracted information
with other sources of information, such as experimental data
or diagrammatic biological models. In other words, tools are
needed for (i) robust and reliable extraction and representation

of information from text, ideally in a high throughput manner;
(ii) providing biologists access to the relevant and interesting
information based upon the context of their experiments or
research; (iii) incorporating the relevant information in experi-
mental data analysis and model generation; and (iv) linking the
relevant information, experimental data, and models for reuse,
collaborative sharing, and knowledge synthesis. In this manu-
script, we describe our efforts to address the above issues via
a suite of integrated, interactive, user-guided software tools.
Our approach utilizes some of the more reliable information
retrieval and extraction technologies to automaticallyquery
multiple information repositories,filter the retrieved results
based on the user’s interests, andidentify relevant information
(what we refer to as potential entities (or concepts) and their
interactions (or relations)) in the filtered text corpus. How-
ever, rather than completely automate the extraction process,
we provide the users interactive tools toguide the extraction
process. We have further developed an architecture torep-
resent the extracted information in a hierarchical hyper-graph
data structure. This architecture, referred to as ALFA, allows
for easy transformations between textual, experimental, and
diagrammatic biological data by providing means for a stand-
ardized and structured representation of information present
in these data sources.

The rest of the manuscript is organized as follows. Section 2
presents a brief review of the information extraction literat-
ure. In Section 3, we discuss our architecture for representing
information from text, diagrammatic biological models and
experimental data. We describe our tools for searching and
extracting information from scientific text in Section 4. We
present applications of our technology in Section 5 and finally
conclude in Section 6.

2 IE REVIEW
Information extraction (IE) from text is defined as taking free
form text and producing a structured representation. Com-
mon methods for extracting information from text vary from
simple statistical methods such as term co-occurrences (Ili-
opouloset al., 2001; Stephenset al., 2001) or Hidden Markov
Models (HMMs) for term identification and classification
(Collier et al., 2000) to computationally intensive structural
methods such as Natural Language Processing (NLP) tech-
niques, which may utilize rule-based grammars, part of speech
taggers and parsers (Friedmanet al., 2001; Fukudaet al.,
1998; Humphreyset al., 2000; Krauthammeret al., 2000; Ng
and Wong, 1999; Palakalet al., 2002a,b; Parket al., 2001;
Rindfleschet al., 2000; Sekimizuet al., 1998; Wong, 2001;
Yakushiji et al., 2001). Irrespective of the method (statistical
or structural) the common tasks in information extraction from
text can be broadly classified as follows (Humphreyset al.,
2000):

(i) Named Entity Recognition and Template Element Filling:
Identifying names of genes, proteins, drugs, etc., in text and
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classifying the named entities into classes of interest such as
genes, proteins, organelles, cells, organs, diseases, drugs, etc.
(proper noun identification and classification) (Collieret al.,
2000; Fukudaet al., 1998; Krauthammeret al., 2000; Palakal
et al., 2002b). Automatic recognition of gene or protein names
is a very hard problem due to a number of factors, such
as a lack of proper naming conventions, ambiguous lexical
cues and constraints (multiple representations such as TNFA,
TNF-alpha, tnf alpha, TNFalpha; aliases like JNK, MAPK8,
JNK1, PRKM8, SAPK1, JNK1A2, JNK21B1/2; or ambigu-
ous acronyms like ALT for alanine aminotransferase), long
compound word names (tumor necrosis factor alpha), and
ambiguous symbols (mAB, which can stand for ‘monoclonal
antibody’ or ‘male abnormal’ gene).

(ii) Template Relation Filling: Extracting relations between
named entities such as protein-protein interactions, protein
localization (protein-cell interactions), protein-disease inter-
actions, disease-drug interactions, etc. (Friedmanet al., 2001;
Fukudaet al., 1998; Humphreyset al., 2000; Ng and Wong,
1999; Parket al., 2001; Rindfleschet al., 2000; Sekimizuet al.,
1998; Wong, 2001; Yakushijiet al., 2001). Automatic extrac-
tion of relations becomes very hard and error prone due to
problems in disambiguating subject from object and handling
common structures in natural language, such as coordination
(matching nouns to verbs), apposition (when to generalize),
and anaphora (handling pronouns). A thorough analysis of the
problems faced in automatic recognition of biological terms
and extraction of relations among them can be found in (Park
et al., 2001; Wong, 2001).

(iii) Discourse Analysis: Determine context around the
extracted entities and relations, such as organism, tissue,
cell type, disease model, control vs. treated, localization—
membrane, cytoplasm, nucleus, etc. (Iliopouloset al., 2001).
Discourse analysis is an even harder problem than extraction
of interactions, since this requires a more comprehensive lan-
guage analysis. The context of an interaction may be widely
separated from the text of the interaction, thus compounding
the problems due to anaphora resolution, coordination, and
apposition.

Recently Palakalet al. (2002a) have proposed an intelligent
information management system to sift through vast volumes
of heterogeneous data. Their tool, BioSifter, automatically
retrieves relevant text documents from biological literature
based on a user’s interest profile. The tool acts as a filter by
significantly reducing the size of the information space. The
filtered data obtained through BioSifter is relevant as well as
much smaller in dimension compared to all the retrieved data.
The expectation is that BioSifter would significantly reduce
the complexity associated with the next steps in informa-
tion management, that of transformation of information to
knowledge.

As in the system defined in Palakalet al. 2002a, we
are developing integrated and interactive software tools

to identify, filter and extract relevant information from
heterogeneous data sources. We utilize some of the more reli-
able information retrieval and extraction technologies to auto-
matically search and identify relevant information from text.
We further provide an architecture for representing the extrac-
ted information in a common structured format, which allows
for easy transformations between textual, experimental, and
diagrammatic biological data.

3 INFORMATION REPRESENTATION
We have developed an architecture, referred to as ALFA,
for qualitative representation of biological information. The
goals of ALFA are to capture and represent, in a structured
manner, information from free form text, experimental data,
and diagrammatic models by defining a common hierarch-
ical hyper-graph data structure to represent the underlying
information. While the emphasis of ALFA is to provide a
means for representing information present in various sources
of biological data in an abstract yet structured manner, the
hierarchical hyper-graph data structure also provides a visual
and computational framework to query, modify, and visualize
the represented information. Moreover, this model lends itself
to extensions for developing quantitative models of biological
processes.

3.1 ALFA architecture
The ALFA architecture consists of an object model and an
API layer to access the underlying objects. The architec-
ture provides mechanisms to annotate objects, add a list of
properties to the objects, and attach proprietary and external
ontologies as classifiable properties of the objects. The archi-
tecture further incorporates a set ofnative (scientific text,
experimental data, and diagrammatic biological models) data
viewers, which aid in extraction of information from each
of these native data sources into the ALFA object model and
conversely to incorporate information stored as ALFA objects
into the respective viewers.

Figure 1 shows a block diagram of the ALFA architecture.
Each of the native data viewers, ATV for ALFA Text Viewer,
ANV for ALFA Network Viewer, and AEV for ALFA Exper-
imental data Viewer, is an interactive tool that aids the user to
guide information extraction from the respective native data
source. Likewise, each tool can be used as a means of view-
ing its respective data type. As shown in the figure, the data
viewers incorporateuser context for identifying information
of interest to a user. We define user context as a set of ALFA
objects that are of interest to a user. They can be a list of genes
or proteins, terms identifying experimental processes, specific
interactions of interest, etc. Further details of the use of user
context for identifying interesting information from text is
described in Section 4.2 and its use in user-guided inform-
ation extraction (in terms of ALFA objects) is described in
Section 4.3. The ALFA architecture also consists of a base
ontology (a hierarchical classification scheme for common
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Fig. 1. A block diagram of ALFA architecture.

molecular biology terms, such as genes, proteins, metabol-
ites, diseases, processes, cells, tissues, organisms, etc.), which
can be assigned to ALFA objects as properties (details of
the base ontology are not included due to space limitations).
Further, ALFA provides a mechanism for easy incorporation
of external ontologies, such as the GO classification scheme
(Gene Ontology, 2004, http://www.geneontology.org/). These
ontologies can be used to classify ALFA objects, which can
be used to query, sort, or filter ALFA objects. Since an onto-
logy may have inherent relations between the ontological
terms, these relationships can also be used for defining rules
and performing automatic rule checking during interactive
information extraction.

3.2 ALFA object model
Figure 2 shows a simplified UML diagram of the hierarchical
ALFA object model, which consists of the following objects:
concept, relation, role, node, network, andclassifiable. For
sake of clarity, Figure 3 displays an example of an excerpt of
text and its respective ALFA representation.

A concept refers to a biological entity, such as a gene,
protein, molecule, ligand, disease, drug or other compound,
process, etc. A list of properties can be attached to every
concept, which may include name, aliases, sequence inform-
ation, contextual information about the concept, such as
state (active, inactive, post-translational modifications, etc.),
location, etc. Arelation is an interaction between multiple
concepts. Each concept plays a specificrole in the relation.
Currently defined roles in ALFA include upstream, down-
stream, mediator, container, and unknown. As with a concept,
a list of properties can be attached to a relation to specify its
name, type (such as activation, inhibition, catalytic, etc.), loc-
ation, etc. Anode object connects multiple relations together
by connecting the roles of a common concept between differ-
ent relations. For example, the node N3 in Figure 3 connects
the roles r3 and r4 of the concept C3 in two different rela-
tions. If the two roles of concept C3 were not connected,

Fig. 2. A simplified UML Diagram of ALFA Object Model.

R2 R1 
r4 r5 r3 

r1 
C1 

C3 

C2 

C4 

r2 

N1 

N2 

N3 N4

Fig. 3. An example of ALFA objects representing information in
the sentence, ‘HIP-55 binds to HPK1 and regulates JNK1 signal-
ing cascade’; C1-C4 represent the concepts HIP-55, HPK1, the
bound molecule of HIP-55 and HPK1, and JNK1 signaling cascade
(a concept that is also a network representing the JNK1 signaling cas-
cade, but not represented here), respectively. R1 and R2 represent
the ‘binding’ and ‘regulates’ relations, respectively; r1-r5 represent
the upstream and downstream roles played by the concepts C1-C4;
N1-N4 represent nodes in the representation.

then two different node objects would be created for the two
roles of C3. A node can thus act as a bridge between two or
more relations. Anetwork consists of a list of relations and
nodes. Hierarchical structure is incorporated into ALFA via
networks. A network is also a concept and when represented
as such, abstracts its list of relations to the user. For example,
the following relation, ‘epinephrine inhibits glycolysis’ would
represent epinephrine as an upstream concept and glycolysis
as a downstream concept of an inhibitory relation. However,
the process of glycolysis can also be represented as a set of
relations, specifying the steps in the anaerobic breakdown of
glucose to pyruvate yielding two molecules of ATP, and stored
as a network. Therefore, we can hierarchically represent
biological processes by allowing a network to be a concept. A
classifiable object defines an ontological term. Both concept
and relation objects are also classifiable objects to which
ontological terms can be attached.

4 INTERACTIVE TEXT EXTRACTION
As part of the ALFA architecture, we have developed inter-
active software tools for searching, filtering, and extracting
information from scientific text. The process for interactive
text extraction involves two sub-processes: (i) a meta-search
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engine called BioFerret, for searching and filtering inform-
ation, and (ii) an interactive tool called ALFA Text Viewer
(ATV) for user-guided information extraction. BioFerret
allows the user to search public and proprietary databases
based on keywords. The retrieved results are then automatic-
ally processed to identify interesting and relevant documents
based on the user’s context terms. The filtered set of relevant
documents is then processed by ATV, which aids in the
conversion of interesting information present in the text
document to ALFA objects. The extracted ALFA objects can
then be visualized as an ALFA network diagram, compared
with preexisting ALFA objects, which may have been extrac-
ted from biological diagrams, experimental data, or other text,
etc. Section 5 describes in detail further applications of the
ALFA architecture in integrating heterogeneous data. We next
describe the text extraction process in further detail.

4.1 User-guided meta-search
BioFerrert is a meta-search tool for automatically query-
ing multiple search engines (both public and proprietary)
in order to aid biologists facing the daunting task of manu-
ally searching for information from these multiple sources.
Figure 4 shows a screen shot of BioFerret. When a query
is entered, it is submitted to multiple user-selected search
engines, the retrieved results are fetched from their respect-
ive sources and merged to remove duplicates, the resultant
corpus is clustered based on hierarchical clustering (Jain and
Dubes, 1998) using a bag of words feature vector, and the
documents are classified into a set of user-defined categor-
ies using a probabilistic machine learning approach (details
are beyond the scope of this manuscript). The documents are
further ranked according to the weighted occurrence of the
search terms in the document’s title and text. These data min-
ing techniques are provided for organizing and navigating the
retrieved documents.

BioFerret can run queries in a batch mode for automatic-
ally dispersing multiple queries to the multiple search engines
and databases. The results are merged into a single set of
results and organized via ranking, clustering and categoriza-
tion. Queries can also be run in an alias resolution mode,
wherein every query term is automatically expanded to an OR
of all its aliases. Section 4.3.1 describes the alias resolution
method in more detail. BioFerret also provides a mechanism
to store search results in a Microsoft Access™ database, for
re-use, sharing, or re-analysis using different context terms.
BioFerret currently provides access to public databases such
as PubMed, OMIM, USPTO, and some common web search
engines, such as HotBot and AltaVista™.

4.2 User context and relevance ranking
We have developed a simple technique based on user defined
lexicons called “user context” to automatically sift through the
potentially large corpus of search results to quickly identify
information of interest to the user. A user context is defined as

The current list of User Context categories is displayed. 
Matching articles can be organized according to their 
relevancy to each of these categories. 

Sections of text relevant to the 

supplied User Context are 
extracted from individual articles 
and displayed in this summary 
view. 

Search 

results are 
stored in a 
Microsoft 
Access™ 
database.

An article is selected in the 
left panel. A detailed view 

of this article is then 
displayed in the right hand 
panel. 

Fig. 4. A screenshot of BioFerret.

a set of ALFA objects the user is interested in. For example,
it can be a list of genes or proteins in a pathway, a list of
experimental procedures, a list of disease conditions, a list
of drugs, a list of specific interactions of interest, etc. The
user context can vary for different users and is incorporated
at run-time in BioFerret to identify sentences in a document
that match the user context. Matching is performed in terms
of simple absence/presence of context terms in the given sen-
tence. Users can also set multiple contexts to process a corpus
of documents. A bucket is maintained for each of the user
contexts and when a sentence in a document contains a user
context term (word or phrase), the sentence and the document
are added to the respective bucket. The matching sentence is
referred to as an ‘interesting’ sentence. Each of the documents
in the corpus (search result) is assigned a score based on the
number of matching context terms and the number of ‘inter-
esting’ sentences. The documents are then ranked according
to their scores and organized into multiple categories, one for
each of the user contexts.

The set of ‘interesting’ sentences is further processed to
identify potential concepts/entities (gene and protein sym-
bols, drugs, compounds, processes, etc.) and their poten-
tial relations/interactions. We have used the user context
files and an open source tool, BNS (Kincaidet al., 2002,
http://openbns.sourceforge.net/), for identifying gene and pro-
tein names in text. BNS is an LDAP-based system that
uses the Lightweight Directory Access Protocol (LDAP)
(Wahl et al., 1997) to provide high performance and scalable
access to data derived from an identifier-mapping database
(LocusLink in this case). Every sentence is tokenized into
words and stemmed using the Porter stemmer (Porter, 1980).
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The stemmed words are filtered using a dictionary of com-
mon English words, which is based on the dictionary provided
with the UNIX operating system. BNS is used to query for
words that are either capitalized in text or not contained in
the dictionary. Words found in a BNS lookup are marked as
potential gene or protein symbols. The user context files are
also used to identify other potential entities of interest, which
may have been missed by the BNS lookup, to the user, such
as drugs, compounds, processes, etc. All the words in the text
document that match a user context term are also marked as
potential entities of interest.

An interactions specific user context, referred to as the
interaction lexicon, is also provided in BioFerret for identi-
fying potential interactions between the identified genes or
proteins. Each of the ‘interesting’ sentences, that has a poten-
tial gene or protein (as marked above), is further processed
to identify words matching terms present in the interac-
tion lexicon. If a match is found, the sentence is marked
as a potential ‘interaction’ sentence. These are further dis-
ambiguated using the interactive tool, ATV, as described in
Section 4.3.

Figure 4 shows an example query (search term MMP9) per-
formed using BioFerret. Three search engines were selected
for the query, namely Altavista, HotBot, and PubMed. Up
to a maximum of 25 queries were fetched from each of the
search engine. The retrieved results were merged to remove
redundancies, and then ranked, clustered and classified. All
documents classified as a publication are automatically pro-
cessed further to identify potential entities and interactions of
interest. In the current example, a set of user context files was
used to describe the user’s interest. These include interaction
lexicons (for example, the ‘BIND’ lexicon consists of terms
such as attach, assemble, bind, conjugate, createbond, etc.)
and a list of nouns of interest (for example the ‘SCI’ context
consists of genes, proteins, and disease specific terms related
to spinal cord injury that the user is interested in). The user
context files are used to determine relevancy of each of the
search results and for identification of potential entities and
interactions of interest. The search results are displayed in an
HTML page in descending order of the computed relevancy.
Results are also organized in terms of each user context and
can be viewed by clicking on the relevant context at the top of
the display. The user can select a specific article of interest,
which is then displayed in detail in the right hand panel, as
shown in Figure 4.

4.3 User-guided extraction
Automatic text analysis suffers from a number of limitations,
as described in Section 2. Anaphora resolution, coordination
resolution, and apposition resolution are still unsolved prob-
lems. Moreover, English language has inherent ambiguities.
We therefore, rely on automated methods only to identify
interesting and relevant information, and leave the final ambi-
guity resolutions to the user. We use user context, as described

b. 

a.

 

Disambiguating 
Interactions 

Graphical 
Interaction View Text Area 

Entity 
List 

Interaction 
List 

Fig. 5. A screenshot of ALFA Text Viewer (ATV); (a) an expanded
view of the Entities and Interactions panel; (b) demonstrating the
operation of disambiguating an interaction.

in Section 4.2, to identify potential gene and protein names
and their interactions quickly from a large corpus of text. We
then provide users with the ability to disambiguate the gene
and protein symbols, resolve aliases, disambiguate the inter-
actions, and encode the results as ALFA objects, via the ALFA
Text Viewer (ATV).

Text documents from a corpus (search results) identified as
relevant to the user based on relevance ranking in BioFerret are
fed into ATV. ATV consists of a text window, a diagrammatic
canvas, and two list-based editors. Figure 5 shows a screen
shot of ATV. Arbitrary pieces of text or entire documents can
be dragged or pasted into the text window. Potential entities
(gene or protein symbols identified via BNS lookup or other
nouns defined in user context files) and their potential interac-
tions are identified using the methods described in Section 4.2
and displayed in the two list- based editors. Automatic linking
is provided between the entities and interactions in list-based
editors and their occurrence in text, via back-pointers to text.
All occurrences of an entity are highlighted in the text, when
that entity is selected in the list-based editor. Similarly, when
an interaction is selected in its list-based editor, the sentence
in the text and the potential entities involved in the interaction
are highlighted in the text. Each interaction also highlights
the potential entities involved and their potential roles. Ini-
tially, all potential entities in an interaction are assigned the
‘unassigned’ role. The user can drag entities into ‘upstream’,
‘downstream’, and ‘mediator’ roles to disambiguate the direc-
tionality of the interaction. The diagrammatic canvas displays
a graphical representation of an interaction. While the user can
disambiguate interactions by dragging and dropping entities
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into specific roles in the list-based interaction editor, the user
can also work in the equivalent representation in the diagram-
matic canvas. All the windows are synchronized, such that any
change in one window is synchronously displayed in the other
windows. The tool further provides a simple user interface to
add, delete, and modify entities and interactions interactively.
Selected list of entities and interactions can be saved as ALFA
objects.

4.3.1 Alias Management One of the major limitations to
automatic identification of gene and protein names is the lack
of a standard naming convention (Wong, 2001). It is not
uncommon for a gene or protein to be known by a number of
different aliases. ATV offers a simple alias management tool,
which relies on BNS (Kincaidet al., 2002) and user context
files. Symbols identified via BNS are automatically converted
to the formal name as referred to in LocusLink. Moreover, all
the aliases are automatically mapped to the same formal name.
The user can interactively modify or update the name of an
entity, if it does not occur in LocusLink or if multiple matches
are found. Further, the user context files can also define entities
and their aliases. In our alias resolution strategy, user context
entries take precedence over the LocusLink entries.

4.3.2 Conversion to ALFA Object Model Entities and
interactions disambiguated by the user are converted to ALFA
objects by both of our text processing tools, BioFerret and
ATV. In case of BioFerret, since only potential entities and
interactions are identified (without performing any verifica-
tion or disambiguation), the underlying ALFA relation objects
are populated with ‘unknown’ roles and many of the prop-
erty fields of the ALFA concept and relation objects are not
set. However, if the user has disambiguated the entities and
relations via ATV, then the respective ALFA relation objects
contain defined roles, such as upstream, downstream, etc. In
both the cases, the source link (text document and sentence)
is also attached as a property of the ALFA concept and rela-
tion objects. If multiple documents refer to the same relation
or concept, the source link property of the respective ALFA
object is modified to contain the list of text sources. Thus,
ALFA objects always maintain a pointer to the original source
for later re-use, collaborative sharing, or verification. Multiple
relations for the same concepts can be created in ALFA, thus
allowing easy management of ambiguities and contradictions,
which commonly exist in scientific literature.

5 APPLICATIONS
Our motivation for developing the ALFA architecture is
based on collaborations with pharmaceutical and academic
researches and identifying their needs in integrating multiple
heterogeneous data sources for analyzing high-throughput
experimental data, synthesizing knowledge from these data,
and storing this knowledge for re-use later or for col-
laborative sharing. We next describe the potential of the

Fig. 6. A screenshot of the ALFA Network Viewer (ANV); the
pop up demonstrates the link to the original document and sentence
describing the selected relation.

ALFA architecture to aid biologists in their drug discovery
research.

5.1 Visualization
The ALFA object model easily lends itself to a visual graphical
representation as shown in Figure 3. ALFA relation objects
map to a hyper-graph, with ALFA role and node objects
mapping to the edges and nodes in the hyper-graph. We
are developing an ALFA Network Viewer (ANV) tool for
interactive visualization of the ALFA objects. The tool is cap-
able of displaying graphics consisting of static images (gif,
jpeg, or bitmap format) or manually constructed network dia-
grams. Users can manually construct a network diagram either
independently or by loading a pre-existing image and use it as
a background template to sketch over. The tool further con-
verts the constructed network diagrams to respective ALFA
object representations. Figure 6 shows a screen shot of an
ALFA network graphically displayed in the ANV.

5.2 Navigating text corpus
We are developing a novel scheme for displaying a visual
summary of a corpus of text documents (say a set of search
result documents) based on the identified ALFA concepts and
relations. The corpus of text can be generated through a query
using the meta-search engine, BioFerret, or processed through
the ATV tool. The resultant extracted ALFA objects (which
have links to the text source) are then displayed in the ANV as
a visual summary of the text corpus. By selecting a concept or
a relation, the user can easily navigate to the specific location
in a textual document where the concept or the relation was
found. Further, the ALFA objects can be used to filter the cor-
pus. For example, the corpus can be filtered with respect to all
relations containing a specific concept, say MMP9. The visual
interface thus, serves as a navigation and filtering tool to sift
through the text corpus. In other words, the network of rela-
tions serves as a visual Table of Contents for the text corpus.

5.3 Comparing disparate information
Due to its standardized representation of information, the
ALFA architecture allows easy comparisons of information
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extracted from heterogeneous sources of data. ALFA net-
works extracted out from scientific text can be computation-
ally compared with networks extracted from known pathway
databases (such as KEGG). The underlying ALFA models
from the two sources can be computationally compared to
visually highlight the similarities and differences between
the two models via well-known visualization techniques such
as overlays, coloring, or highlighting.

5.4 Extending network diagrams
BioFerret and ATV can also be used in conjunction with ANV
to extend pre-existing biological models. The user loads a
pre-existing ALFA network model and uses BioFerret to run
a batch query with each of the concepts in the current model.
The retrieved results are filtered to return only those relations
that have at least one concept from the original pre-existing
model. These relations are then integrated into the pre-existing
network in a two-step process. First, each of the filtered rela-
tions is added to the pre-existing network. Note that at this
stage, relations are not joined together by nodes. Next, all
new relations are joined at the common concept to the pre-
existing relations. In other words, the nodes for the concept
are combined to form a single node.

5.5 Microarray data analysis
Computational methods for analyzing microarray data find
statistical correlations, i.e., a set of up- or down-regulated
genes for specific conditions, and not causal relationships,
which biologists are most interested in. A recent study (Clare
and King, 2002) discusses the problem that most genes correl-
ated to disease mechanisms as identified by microarray studies
do not necessarily cluster together in terms of their GO func-
tional classifications. Therefore, biologists are interested in
finding how these sets of up- and down-regulated genes are
related to the disease mechanism. Further, they are interested
in the pathways that these genes are involved in and whether
these pathways are involved in the disease mechanism under
study.

The ALFA architecture can extract information specific to
a set of genes and disease mechanisms and relate these to
the microarray experimental data. Given a set of interesting
genes (say up- and down-regulated genes from a microar-
ray experiment), BioFerret first automatically retrieves a large
corpus of documents for all pairwise queries between the sets
of genes (and their aliases) and also for queries between the
genes in the set and concepts (user context) defining the dis-
ease mechanism of interest. For example, if genes MMP9 and
MMP1 were up-regulated and the disease context is SCI or
spinal cord injury, the following queries will be run on Bio-
Ferret: (i) (MMP9 OR GELB OR CLG4B) AND (MMP1 OR
CLG OR CLGN); (ii) (MMP9 OR GELB OR CLG4B) AND
(SCI OR other disease mechanism specific context terms);
(iii) (MMP1 OR CLG OR CLGN) AND (SCI OR other
disease mechanism specific context terms). The retrieved

documents are then filtered based on the user context and
BNS (Kincaidet al., 2002) to identify sentences that define
interactions between these genes or between the genes and the
disease mechanism. Given a set of 500 genes and a limit on
fetching 10 documents per query, the entire automated pro-
cess of query formulation, search, filtering, and identifying
relevant interactions from PubMed using BioFerret takes
approximately 30 minutes on a Pentium II processor with
800 MHz clock speed, 1GB RAM, and running Windows
2000 as the operating system. Most of the time (approxim-
ately 75%) is spent on retrieving documents (abstracts) from
the PubMed database.

The list of potential interactions can be either visualized
directly using ANV or first disambiguated using ATV and then
visualized in ANV. A priori knowledge can be incorporated
into ALFA via pre-existing pathway diagrams from say KEGG
or manually crafted ALFA network diagrams. Textual inform-
ation can be brought in to extend the existing knowledge
base as described in Section 5.4. Moreover, the knowledge
can be updated based on the inconsistencies between existing
knowledge and newer information extracted from text. Such
inconsistencies and discrepancies can be easily and automat-
ically highlighted in the ANV using the ALFA architecture.
Finally, experimental data can be overlaid from AEV (e.g.,
use of different colors for up- and down-regulated genes) on
top of the constructed diagrams for visual analysis.

6 CONCLUSIONS AND FUTURE WORK
There is a critical need for heterogeneous data and information
extraction, integration and management tools for knowledge
discovery and synthesis in life science research. Scientific text
is an important source of pre-existing biological knowledge
from which biologists want to extract information relevant to
their research. However, automatic extraction of information
from scientific text suffers from a large number of drawbacks.
The intended end users do not necessarily understand the
computational processes involved in the automated extrac-
tion and they have a hard time trusting the output. It is hard
to quantify the accuracy of automated methods in a general-
purpose extraction task. Moreover, automated extraction does
not take into account a user’s context, since these processes
are static and not user-trainable. For example, automated
techniques yield the same result to different users seeking
different bits of information from the same document corpus.
Finally, extraction of information from text is not necessar-
ily an end in itself. Biologists need to relate this information
to other sources of information, such as experimental data or
diagrammatic biological models.

We have therefore, proposed an architecture (ALFA) con-
sisting of a suite of integrated software tools for interactive,
user-guided extraction of information from heterogeneous
data sources and representation of the extracted information
in a structured format.
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The representation of information in a structured manner
aids in automatic linking, transformation, overlaying, and
comparison of information extracted from heterogeneous data
sources. Specifically, we describe a set of software tools
for user-guided extraction of information from scientific text
and linking of this information via the structured format to
other sources of biological information (such as diagrammatic
biological models and experimental data). We have developed
a meta-search tool (BioFerret) for information retrieval from
text, which uses ‘user context’ to filter, identify, and sift
through the retrieved documents for relevant information. An
interactive tool (ATV) further aids the user to guide the inform-
ation extraction process, allowing the user to easily select
interesting text, disambiguate the relationships described in
the text, and capture it in the structured format. These tools
can also be applied in the batch mode (over a corpus of text
or over results combined from multiple searches) to speed the
extraction process. While interactive information extraction
is potentially slower than automatic processing, we feel that
the advantages lie in the flexibility of our tools in applica-
tions to a diverse number of information extraction problems,
the easy to use and understand nature of these tools, their
ability to provide the user the control over the extraction pro-
cess, and their ability to transform the information extracted
from heterogeneous sources of data to a structured computa-
tional format. As part of our future work, we are developing
the visualization tools for biological diagrams and experi-
mental data (ANV and ATV) and integrating them into the
ALFA architecture. We are also closely working with a set of
research scientists in academia and pharmaceutical industry to
apply these tools to aid in the analysis of their high throughput
genomic and proteomic data.
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