
Submitted for publication 22 September 2003

An Architecture for Coordinating Multiple Self-Management Systems

Shang-Wen Cheng An-Cheng Huang David Garlan Bradley Schmerl Peter Steenkiste
School of Computer Science, Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA 15213
{zensoul, pach, garlan, schmerl, prs}+@cs.cmu.edu

Abstract

A common approach to adding self-management capa-
bilities to a system is to provide one or more external con-
trol modules, whose responsibility is to monitor system be-
havior, and adapt the system at run time to achieve various
goals (configure the system, improve performance, recover
from faults, etc.). An important problem arises when there is
more than one such self-management module: how can one
make sure that they are composed to provide consistent and
complementary benefits? In this paper we describe a so-
lution that introduces a self-management coordination ar-
chitecture and infrastructure to support such composition.
We focus on the problem of coordinating self-configuring
and self-healing capabilities, particularly with respect to
global configuration and incremental repair. We illustrate
the approach in the context of a self-managing video tele-
conference system that composes two pre-existing adapta-
tion modules to achieve synergistic benefits of both.

1 Introduction
With a growing trend toward changing environments and
variable user needs, software-based systems today are in-
creasingly expected to adapt dynamically and to manage
themselves to accommodate resource variability, changing
user needs, and system faults. A common approach to
adding self-management capabilities to a system is to pro-
vide one or more external control modules, whose respon-
sibility is to monitor system behavior, and adapt the system
at run time to achieve various goals.

There are many aspects to self-management, resulting in
different dimensions of control. For instance, IBM’s au-
tonomic computing initiative categorizes self-management
into Self-configuring (adapt automatically to dynamically
changing environments), self-healing (discover, diagnose,
and react to disruptions), self-optimizing (monitor and
tune resources automatically), and self-protecting (antici-
pate, detect, identify, and protect themselves from any at-
tacks) [7]. A self-managing system might exhibit any sub-

set of these four capabilities. Another important dimension
in system adaptation is that there are two common scopes
of adaptations: large-scale global configuration, and incre-
mental repair in response to local failures. Finally, different
quality dimensions such as performance, security, and reli-
ability may require management as well.

The different dimensions of control correspond naturally
with distinct modules of control. For example, consider
a video conferencing system with different user applica-
tions in a heterogeneous network environment, where the
aim is to provide the best service at the lowest cost. At
once, several potential dimensions of control exist, includ-
ing composition, change, performance, and cost of service,
each corresponding to different domain expertise, and thus,
modules of control. For many application domains like that
of video conferencing, managing a system requires man-
aging multiple dimensions. However, most existing self-
management modules (SMs) only address a single aspect
of self-management, which raises the challenge of coor-
dinating SMs from different dimensions to provide multi-
dimensional self-management.

To use multiple modules to manage a system, one sim-
ple approach is to let the different SMs run independently.
This can potentially lead to conflict, inconsistencies, and
modules working at cross purposes. Another approach is to
reimplement all of the combined self-management capabil-
ities into one monolithic control module, with the obvious
problem that it is ad hoc, not cost-effective, prevents reuse,
does not scale, and results in an overly complex system.

A better approach is to combine multiple SMs in a coor-
dinated fashion. However, such an approach has the difficult
challenges of maintaining consistency in information acqui-
sition and internal models and ensuring coherent decisions.
In this paper, we propose a coordination architecture em-
bodying points of shared system access, model translation,
and decision control patterns to integrate multiple SMs.

We begin with related works in Section 2, highlight the
challenges in Section 3, and describe our approach in Sec-
tion 4. Sections 5, 6, and 7 then present our case study, a
prototype implementation, and its evaluation, respectively.

We discuss and conclude in Section 8.

2 Related Work

Recently, considerable research has been done on self-
managing systems, including work from IBM’s autonomic
computing initiative. An important challenge in their work
is the coordination of multiple autonomic elements to form
a cooperative system, where an autonomic element embod-
ies a system element managed by an autonomic manager,
similar to what we term self-management module. Our
work shares a similar challenge in that we attempt to co-
ordinate multiple SMs to manage one system, which itself
contains multiple elements.

To the best of our knowledge, no one has explicitly ad-
dressed the problem of coordinating multiple SMs to man-
age a single system. A few approaches (e.g., [18]) show
promise of a comprehensive architecture to address multiple
aspects of self-management, but have not carried the results
through to implementation. In comparison, our work ad-
dresses this problem, with a focus on the aspects of global
configuration and incremental adaptation in the context of
self-configuring and self-healing capabilities. Various re-
searches address the dimensions of self-management men-
tioned before, including the areas of system composition,
smart components, and incremental adaptations.

Previous work on service composition frameworks have
attempted to automate the generation of global system
configuration given certain constraints and/or optimiza-
tion criteria. Most of these efforts explore a path-based
(e.g., Panda [24] and Ninja [11]) or graph-based (e.g.,
SWORD [23]) service composition model to transform the
given input(s) to the desired output using a series of format
adaptors. The Libra framework [15] aims to automate the
composition of services across the wide-area network using
more sophisticated optimization techniques.

Research on smart components (e.g., smart servers,
smart databases) that adapt to changes in the environ-
ment provide building blocks for self-management sys-
tems [17, 19]. Some of these have the ability to coor-
dinate toward a self-organizing system (e.g., [10]). Fi-
nally, several researchers take the approach of using ex-
ternalized mechanisms to dynamically adapt a running sys-
tem [3, 5, 6, 12, 22]. Due to the nature of dynamic, run-time
adaptation, their work have focused on incremental adapta-
tion.

Depending on application domains, different self-
management decisions might be based on different quality
attributes such as performance, security, and reliability. In
more complex cases, a combination of attributes may need
to be considered by using utility models. For example, some
of the work on dynamic adaptation applied their SMs to sys-
tems with primarily a performance concern [3, 5, 12].

3 Coordinating Self-Management Modules
To harness multiple self-management capabilities for a sys-
tem, we propose to use more than one existing SM in a co-
ordinated fashion. However, the question is, how can one
make sure that the modules work together to provide con-
sistent and complementary benefits?

Adopting IBM’s autonomic computing control loop
point of view, we can identify three essential problems:

Sense The SM first senses and aggregates information from
the system and updates its model(s) of the system.

Evaluate Sensed information is analyzed, based on certain
metrics, to decide on the course of corrective action.

Act The planned course of action is carried out on the sys-
tem to improve or correct the state of the system.

Central to all three of these are internal models to make
the overall control work. When multiple SMs have to be co-
ordinated, each of these aspects introduces a potential point
of conflict and inconsistency. As a result, there are four
technical challenges to address.

(1) Consistent sensing. Each SM needs to obtain some
information of the managed system, which also contributes
to the overall decision-making. For instance, SMs for a
video conferencing system might need to know the connec-
tion latency or component cost. If the the same informa-
tion is collected from multiple, different sources—e.g., one
source reports a cost of $10, and another a cost of $100—the
SMs may arrive at different conclusions about the system,
and thus potentially make conflicting decisions. A different
issue arises when a single observation such as latency may
require multiple sources of information. In such a case, con-
sistent interpretation in the sensors themselves is important.
Thus we need to ensure the consistency of sensed informa-
tion from the environment.

(2) Non-conflicting evaluation. The SMs must interpret
the sensed information to make decisions. To do so each
SM needs to base its interpretation and evaluation on cer-
tain metrics, possibly in the form of utility models, to make
decisions. These metrics might include performance, relia-
bility, security, or cost, and, as mentioned before, the SMs
might focus on different metrics. In the video conferencing
example, a composition SM might evaluate metrics of over-
all service requirement, while a service-change SM might
evaluate metrics on adding a user to the conference. Be-
cause of the different focus, the SMs can potentially make
conflicting decisions. For example, given the same com-
ponent cost of $100, the composition SM might consider
it a low cost, while the service-change SM might consider
it high. Therefore, we need to ensure non-conflicting and
complementary decisions.

2

(3) Coordinated action. Each SM needs to change the
managed system. In the previous example, the service-
change SM might need to join a new user to the video con-
ference, while the composition SM might instead want to
recompose the entire conferencing session. If each works
independently, the resulting changes could conflict with one
another, and possibly leave the system in a broken state.
Hence we need to coordinate the SMs’ actions to ensure
consistent outcome in the system.

(4) Consistent model. Each SM has an internal model of
the system, which will most likely focus on different as-
pects and reveal different level of details of the system. For
example, the service-change SM might maintain an archi-
tectural model of the video conferencing system, while the
composition SM might keep a detailed structure of all of
the conference elements. Because the models are the basis
of self-management decisions, the coordinated SMs must
have a consistent view to achieve synergy. Consequently,
we need to ensure consistency across the models.

A solution must address all parts of the coordination
problem by ensuring sensed information consistency, coor-
dinating metrics, coordinating decision control, and ensur-
ing model consistency.

4 Our Approach

Figure 1. Coordination Architecture

Our approach to address the core issues of consistency
and coherence identified in the previous section can be sum-
marized in three conceptual parts. First, we identify three
commonly recurring mechanisms for system access, and
propose an infrastructure that shares these mechanisms to
eliminate redundancy and conflicts due to system changes,
and to ensure that all models across the various SMs reflect
the system changes.

Second, in order to reach a single, coherent decision
among multiple SMs, coordination of the decision process
is crucial. Therefore, we propose to coordinate evaluation
metrics among the SMs and to enforce a control pattern that
allows the SMs to cooperatively make decisions.

Third, in order for the SMs to cooperate on a decision,
they need to exchange model information. Furthermore, the
sharing of the system access requires a common representa-
tion of system information, which may differ from the SMs’
internal models. Hence, we propose a translation infrastruc-
ture to enable model exchange and system access.

These three results are embodied in a coordination ar-
chitecture, shown in Figure 1. Self-management module 1
(SM1) interacts with SM2 via the model translator in the
translation infrastructure. SM3 corresponds to the general
case. Each SMi accesses the system and its surrounding
environment using the system access infrastructure, also by
way of translation. The system access components send no-
tifications to the SMs via translation. Finally, each of the
translation components uses the translation repository. In
the following subsections, we describe in detail the roles of
each part, and how they work together.

4.1 System Access

Most SMs use these three mechanisms to get information
into and out of the managed system:

Environment measurement. This mechanism supports
the observation and measurement of various states of the
system and the system environment, including component
properties such as load and liveness, and connection proper-
ties such as latency and bandwidth. The sensing mechanism
supports two ways to acquire environment information—
monitoring, where information is pushed from the system,
and querying, where information is pulled from the system

Resource discovery. This mechanism facilitates the dis-
covery of available resources in the environment that are not
part of the existing system, based on resource type and other
criteria. For example, an SM for a video conferencing sys-
tem might need to discover a new conferencing gateway to
replace a failed gateway. Furthermore, the discovery might
be based on proximity to existing users, load requirement,
and cost.

Action component. This mechanism enables the SM to
modify the configuration of the system. In the above ex-
ample, after the discovery of the replacement gateway, the
SM might use the action component to remove the old gate-
way from the system and put the replacement gateway into
service with certain configuration settings.

Because of the importance and recurrence of these three
mechanisms across SMs, when coordinating multiple SMs,
we can eliminate redundancy by sharing these mechanisms

3

among the SMs. Furthermore, since system access poten-
tially changes the system, all models need to reflect the
changes. Thus, our approach provides a shared system ac-
cess infrastructure responsible for keeping the models in
the various SMs updated through a notification mechanism
when any one of the SMs accesses the system. This helps
address the fourth challenge to ensure consistent models.
Since not all changes affect all models, only the SMs whose
models are affected need to be notified.

Consider an example where SM2 removes an existing
element from the system using the action component. The
action component would notify the other SMs of this new
change to the system. Next, SM2 might want to find a re-
placement element, which it does through resource discov-
ery. The resource discovery component would notify the
other SMs about the newly discovered resources. As a third
example, SM2 might want to know some property of one
of the new resources. It queries this property through the
environment measurement component, which would then
inform the other SMs of the queried property.

This shared system access infrastructure addresses the
first challenge to ensure the consistency of sensed informa-
tion from the environment, since all the SMs obtain their
information from a single source. In addition, sharing envi-
ronment measurement and resource discovery has the ben-
efit of enabling performance optimization such as measure-
ment caching. Sharing the action component facilitates
synchronization of system changes and addresses the third
challenge—that of coordinating the SMs’ actions to ensure
consistent outcome in the system. In contrast, synchroniz-
ing multiple action components requires more complex or-
ganization scheme, protocols, and algorithms.

4.2 Decision Coordination

The second part of our coordination architecture is the co-
ordination of the decision process as the SMs use sensed
information provided by the system access infrastructure to
evaluate and act on a solution.

As we already mentioned, evaluation depends on
application-specific metrics, which may differ for different
SMs. The problem is that the various metrics may be quite
independent, or even conflicting, for example performance
versus security. In such cases, the prioritization of the met-
rics is mostly a policy issue, so cannot be derived automat-
ically. Consequently, our approach defers the coordination
of metrics to the domain experts who are integrating the
SMs. The domain experts must provide a compatible set of
utility criteria to our coordination architecture to ensure that
the SMs apply compatible metrics.

Compatible metrics for the SMs is only the first step,
the next step is to ensure that when a problem arises, the
SMs can cooperatively arrive at a coherent decision through
some protocol of negotiation. In other words a control pat-

tern must be established, and a few examples include:

Balance of power Any module can veto the others.

Master-slave The master tells the slave to carry out some
subset of tasks.

Agent-based Agent-like, peer-to-peer interactions with ne-
gotiations.

Democracy Modules all work to decide on a solution using
different metrics, and the outcome is determined via
majority voting.

Mutual exclusion Only one active at any time, with ex-
plicit yielding of control.

One important factor that affects the choice of control pat-
tern is the number of SMs coordinated. For any control pat-
tern, the complexity of the interaction grows with the num-
ber of SMs coordinated, though the rate of growth differs.
The more complex control patterns would be less practical
for a large number of SMs. Relative priority of the self-
management dimensions is another factor. Ultimately, the
application domain and the stakeholders determine the best
control pattern to enforce.

In summary, we address the second challenge to ensure
non-conflicting and complementary decisions by (1) deter-
mining a set of compatible evaluation metrics for all the
SMs based on domain-specific knowledge, and (2) estab-
lishing a control pattern suitable to the application domain
that will ensure a single coherent decision from the various
SMs.

4.3 Translation Infrastructure

The third part of our coordination architecture is the trans-
lation infrastructure to enable the shared system access,
which requires a common representation of system infor-
mation, and the exchange of model information. To fulfill
the two purposes, the translation infrastructure consists of
separate translator components for exchange of model in-
formation and for each of the three system access functions.
All of the translator components share a translation repos-
itory to maintain the necessary mapping information. To-
gether with the notification mechanisms of the system ac-
cess infrastructure, the translation infrastructure addresses
the fourth challenge to ensure consistent models.

Translation knowledge. The translation repository stores
four kinds of mappings used by the translator components,
namely type, element, operation, and error mappings. The
use of a repository enables the translators to share the map-
ping knowledge.

4

Type mapping. The “type” refers to the class or cate-
gory of an element and defines a set of properties that the
element can have. The type mapping between two types t1
and t2 consists of a simple relation of their names, plus the
relations of each of the properties of t1 to the correspond-
ing property of t2. Each property is represented as a pair of
property type and property name. Type mapping must ex-
ist between different models, and between each model and
the system. For example, in a self-managed video confer-
encing system with two coordinated SMs, we might see the
following type mapping for a gateway element.

SM1 SM2 Sys
GatewayT Gateway Type Service Gateway

N/A (String, location) (InetAddress, ip)
(float, cost) (float, cost) (float, cost)

This table shows a mapping of a single type among
SM1, SM2, and the system. The mapping provides a rela-
tion of the type names GatewayT, Gateway Type, and Ser-
vice Gateway, and a set of relations between the properties
of the types. Notice that not all properties have a correspon-
dence in the other models and the system (e.g., location). In
addition, some properties, like location and ip require trans-
formation.

Element mapping. The “element” refers to an entity
in a model or the system, and is a tuple of the entity’s type
and its properties. Given an element in a particular model,
the element mapping allows us to obtain the corresponding
element in another model, or the system. Thus, the element
mapping is a simple relation between two elements. Con-
tinuing the previous example, we might see the following
element map for a gateway element.

SM1 SM2 Sys
(GatewayT,
cost=1.3)

(Gateway Type,
location=“PA”,
cost=1.3)

(Service Gateway,
ip=10.1.2.3,
cost=1.3)

Operation mapping. The “operation” refers to a unit
of action that the SM can issue to the action component,
which then carries it out on the system. Unlike the type and
element mappings, operation mapping only exists between
each of the SMs and the system. The operation mapping
between two operations op1 and op2 consists of a simple
relation of the operation names, plus the relations of each
of the parameters of op1 to the corresponding parameters
of op2. Each parameter is represented as a pair of param-
eter type and parameter name. For example, in the same
self-managed video conferencing system, we might see the
following operation map from SM1 to the system:

SM1 Sys
start start

(GatewayT, src) (Service Gateway, src)
(float, timeout) (float, timeout)

This table shows a mapping of an operation for starting

a gateway element, in which the gateway parameter needs
to be translated using the element mapping, but the timeout
parameter does not. Notice, however, that a more generic
parameter type can be specified to allow the operation to
accommodate more cases.

Error mapping. The “error” refers to a problem that
occurred during an operation. Like operation mapping, er-
ror mapping only exists between the system and each of the
SMs. The error mapping between two errors ex1 and ex2

consists of a simple relation of the error identifiers, plus
possible relations of the sources of error of ex1 to the cor-
responding sources of ex2. For example, consider the same
video conferencing system, where we might have the fol-
lowing error map from the system to SM1:

SM1 Sys
GatewayNotFound GatewayHostNotFoundException

Among the four types of mappings above, the type, oper-
ation, and error mappings are provided a priori to the trans-
lation infrastructure, and populated in the translation repos-
itory, before the system is deployed.

Types of translators. As mentioned before, there are four
kinds of translator components. The model translator en-
ables SMs to exchange model information with each other
and to maintain consistency with the system. It uses the
type mapping to transform individual elements of the source
model to elements in the target model, generating element
mappings in the process. For example, consider translat-
ing SM2’s model, which contains a gateway element (g2)
as shown in element mapping table, to SM1’s model. The
model translator would search for Gateway Type in the
type mapping, find the target type GatewayT, create the
target element (g1) of that type, then use the property map-
ping to fill in the properties. Finally, it stores the resulting
element mapping (g1 ↔ g2) in the repository.

The system access translators work similarly to the
model translator to enable the SMs to communicate with
the system access infrastructure. When an SM interacts
with the system, it refers to system entities and types us-
ing the vocabulary of its internal model. It is the respon-
sibility of these translators to transform those references to
specific system entities that the system access infrastructure
can understand and manipulate. Responses from the system
access infrastructure also needs to be translated back into
the vocabulary of the accessing module.

The environment measurement translator uses the ele-
ment mapping to translate the elements in queries from the
SMs. The resource discovery translator uses the type map-
ping to translate the resource type of the request, and the
element mapping to translate the discovered resource ele-
ments. The action translator uses the operation mapping to
translate the actions specified by the SMs, then the element

5

mapping to translate the individual parameters as necessary,
and finally the error mapping to translate any resulting error.

5 Case Study

To evaluate our approach, we performed a case study where
we coordinated two existing SMs—Libra and Rainbow—
to manage a single system. To test the resulting self-
management coordination, we chose a video conferencing
system as an example target system. The video conferenc-
ing system used did not dynamically adapt. It was therefore
a good candidate for applying multiple dynamic adaptation
techniques without being concerned with interfering adap-
tations from the system.

5.1 Overview

The Libra framework. The goal of the Libra framework
is to dynamically compose a “service instance” (consisting
of various components) that is optimized for the require-
ments and preferences specified in a particular user request,
taking into consideration the global environment character-
istics at the time of the request. In other words, Libra aims
to provide the global configuration capability. To achieve
this efficiently, Libra separates the domain-specific knowl-
edge of composition from the generic actions involved in
the actual composition. A service provider that wants to
use the Libra framework to provide a service would trans-
late its domain-specific knowledge into a “service recipe”
that specifies what components are needed given certain re-
quirements, what environment information should be ob-
tained for optimization, and so on. The central element in
Libra is the synthesizer, which interprets the recipe given
by the provider and carries out the actions accordingly, e.g.,
finding the necessary components, querying for the needed
environment information, calculating the optimal composi-
tion, and starting and connecting the components.

The Rainbow framework. Rainbow is an architecture-
based, dynamic self-adaptation framework that monitors
and incrementally adapts a target running system using the
system’s architectural model. The architectural model ex-
ternalizes the reasoning of system properties and conditions
for adaptation. The architectural model satisfies an architec-
tural style, which defines a family of architectures with a set
of types for components, connectors, interfaces, and prop-
erties together with a set of rules that govern how elements
of those types may be composed. The framework’s leverage
of architecture style enables analysis, system evolution, and
reuse of both adaptation expertise and infrastructure, thus
achieving cost-effectiveness [3, 8].

Video conferencing system. Our target system is a video
conferencing system that supports users with different con-
ferencing applications and hardware capabilities and in-
volves various components across heterogeneous network

� �
� �
� �
� �
� �

Vic/SDR
user

NetMeeting
user

Handheld
user

VGW

HHP

ESM
Overlay

ESMPESMP

ESMP

Figure 2. A video conferencing session exam-
ple

environments. Specifically, three types of user are sup-
ported: (1) Vic/SDR users, who use a combination of
conferencing tools [2] designed for the MBone multicast
testbed [1], (2) NetMeeting users, who use the NetMeet-
ing application [20], and (3) Handheld users, who use a
handheld device with an application that only receives video
from a conferencing session.

To support these different users in a single video confer-
encing session, a number of service components are needed.
For example, Figure 2 shows a video conferencing scenario
that involves one Vic/SDR user, one NetMeeting user, and
a handheld user. First, since Vic/SDR uses the Session
Initiation Protocol (SIP) [13] for session setup while Net-
Meeting uses the H.323 protocol [16], a “video conferenc-
ing gateway” (VGW) must be used to translate the differ-
ent negotiation protocols. Secondly, the handheld applica-
tion does not have the capacity to perform the session ne-
gotiations. Therefore, a “handheld proxy” (HHP) is used
to negotiate on behalf of the handheld user. Finally, the
communication among the Vic/SDR user, the VGW, and
the HHP requires IP multicast, which is not available in
the wide-area network. Therefore, an “end system multi-
cast” (ESM) approach is used that uses a number of “ESM
proxies” (ESMPs) to provide the IP multicast functionality
across the wide-area network.

5.2 Coordinating Libra and Rainbow

The Libra self-management framework has the expertise in
global configuration, while Rainbow has strength in incre-
mental adaptations. For managing a system, these two ca-
pabilities serve complementary roles, so it is natural to con-
sider a synergistic composition of the two frameworks. Tak-
ing the approach outlined in Section 4, we coordinated the
Libra and Rainbow frameworks by sharing a system access
infrastructure, creating a translation infrastructure, and es-
tablishing a control pattern to coordinate decisions.

The resulting framework is shown in Figure 3, using
matching shapes with Figure 1 to help relate correspond-
ing parts. Synthesizer is one of the SMs. Tailor with the
model manager together form the other SM. Details on the

6

Figure 3. Rainbow-Libra Coordination

rest of the framework follow.

System access. As described earlier, the system access
infrastructure provides the mechanisms of environment
measurement, resource discovery, and action components,
which are needed by the SMs, Libra and Rainbow. Our
general approach to providing these capabilities has been
outlined in Section 4.1. One part that is specific to this par-
ticular case study is the use of gauges and probes to support
environment measurement.

Environment measurement involves two aspects: moni-
toring and querying. In other words, the gauges and probes
support both push-based and pull-based methods for acquir-
ing environment information. A probe is able to observe or
measure certain properties of system elements. In the moni-
toring mode, the information gathered by a probe is period-
ically published to interested gauges, which then report the
information to an SM.

On the other hand, when an SM wants to acquire the
up-to-date value of a property, it can query the appropriate
gauge, which asks the corresponding probe to get the cur-
rent value of the property. The distinction between probes
and gauges is that gauges serve the function of the translator
for environment measurement.

Translation infrastructure. The translation infrastruc-
ture bridges the gap between the models of the SMs, and be-
tween the SMs and the system. In this case study, the Rain-
bow framework operates at the architecture level, so trans-
lation between the Rainbow module and the system is nec-
essary. For system access, translation is realized via gauges
for the environment measurement and resource discovery
components, and a repair translator for the action compo-
nent. The model translator works partly as we described, to
translate between the system and Rainbow’s model. Based
on our analysis of the video conferencing system, we gen-
erated the initial type mappings of system element types to
architectural element types for the translation infrastructure.

On the other hand, the Libra framework actually operates
at the system level, so translation between the Libra module
and the system is unnecessary. In addition, this simplified

the translation between the Rainbow module and the Libra
module as it requires the same translation knowledge de-
scribed above.

Decision coordination. To ensure a single coherent deci-
sion between the SMs, in this case study, the provider speci-
fies and provides non-conflicting evaluation metrics to both
Libra and Rainbow. The mutual exclusion control pattern
is used to coordinate decisions between Libra and Rainbow,
and changes to the system occur through the action compo-
nent in the shared access infrastructure.

The mutual exclusion pattern works well to coordinate
global configuration and incremental repair. Global config-
uration incurs a higher computation cost, but results in an
optimal configuration. On the other hand, incremental re-
pair incurs a lower computation cost on a shorter timescale,
but the resulting decision may not be globally optimal. The
natural arrangement is to alternate between the two, per-
forming global configuration only when necessary, and oth-
erwise performing incremental repair to handle the local-
ized problems.

The coordination works as follows: Initially, a user
sets up a video conferencing session, and the Libra frame-
work performs the initial conferencing system configuration
based on the user request and the provider’s recipe. It then
informs the Rainbow framework of the architectural model
of the system via the model translator, and hands the con-
trol to Rainbow. Rainbow begins monitoring the system for
problems and making incremental repairs when necessary.

Each time Rainbow detects a problem, it uses its evalua-
tion metrics to determine the best repair to fix the system. If
Rainbow cannot fix the problem, it will pass the control to
Libra for total reconfiguration. Libra then composes a new
video conferencing session using its own set of evaluation
metrics.

Although both frameworks access information about the
system, their difference in expertise means different kinds
of information are needed. The Libra framework queries
system information on demand so that it can make in-
formed, globally optimal decisions. On the contrary, Rain-
bow needs access to information quickly to make expedi-
ent, run-time decisions so it must cache observed or queried
states over a window of time, thereby trading off accuracy
and overhead (of data-caching) for a shorter latency of adap-
tation response. Therefore, within the general coordination
approach, customization will be necessary depending on the
SMs being coordinated.

6 Prototype Implementation
In this section, we describe in more details the prototype
implementation of the Rainbow and Libra integration.

Self-management module components. Tailor and the
model manager comprise the evaluation and decision com-

7

ponents in the Rainbow module. The model manager main-
tains an architectural model and provides a set of interfaces
for updating, changing, and querying the model, and for
querying the system. It evaluates the model to detect prob-
lems and triggers Tailor to repair them.

Synthesizer is the decision component in the Libra
framework. Our prototype implementation contains a spe-
cialized synthesizer for the video conferencing service.

Coordination architecture components. The high-level
components in the architecture are implemented in Java
and provide RMI interfaces for interaction with each other.
The communication between components is via XML re-
quest and response messages over RMI, where we have de-
fined message schemas for all communication to validate
the messages.

The environment measurement mechanism in the sys-
tem access infrastructure includes two subcomponents—
network measurement and monitoring gauges and probes.
The network measurement currently provides latency esti-
mates of network connections. This is achieved by using
the global network positioning (GNP) [21] approach, which
models the Internet as a geometric space. The monitoring
gauges and probes use the SIENA publish-subscribe infras-
tructure, and currently include probes that can monitor the
load and liveness of components in the system.

For resource discovery, we use the network-sensitive ser-
vice discovery (NSSD) infrastructure [15]. The Libra or
Rainbow module can look for a service component by send-
ing a request to the NSSD directory, specifying the desired
service type and a set of predicates, which indicates con-
straints and preferences on the values of certain attributes
of the service. Such attributes might include, for exam-
ple, cost, supported protocols, and even network latency to
a particular user.

The action component provides the mechanism for the
Libra or Rainbow module to modify the system configura-
tion. It comprises a high-level Java part to provide an RMI
interface to the rest of the infrastructure, and a low-level
C++ part to interact with the target system and carry out the
actual operations.

For the translation infrastructure, the translation reposi-
tory is realized by a complex hash data structure and an RMI
interface for the various translators to store and retrieve the
mappings. The data stored in the mappings are Java object
representations of the types, elements, operations, errors.
As an implementation artifact, we merged the functionali-
ties of the environment measurement and resource discov-
ery translators.

Video conferencing applications. In the video confer-
encing system, the user applications include NetMeeting
and Vic/SDR, which are existing applications, and the hand-
held conferencing application, which is a slightly-modified
version of Vic.

We use the following three system components. The
video conferencing gateway (VGW) supports interoperabil-
ity between H.323-based and SIP-based conferencing ap-
plications, i.e., it translates the session negotiations and for-
wards the video streams during the session [14]. We im-
plemented a handheld proxy (HHP) that is able to join a
conferencing session on behalf of a handheld user. Finally,
we use a “proxy-based” variant of the end system multi-
cast (ESM) approach described in [4], i.e., the ESM proxies
(ESMPs) establish a multicast overlay among themselves,
and each end system communicates with a particular ESMP
to send and receive multicast data.

Since all these applications are legacy components, we
implemented wrappers to allow the system access infras-
tructure to control these components.

7 Evaluation
We use the video conferencing system described in Sec-
tion 5.1 to test the prototype and demonstrate that a coordi-
nation framework designed and implemented according to
the recipes of the coordination architecture can consistently
and coherently manage a system. To do so, we performed
a case study of two adaptation scenarios: one to add a new
user and another to respond to component failure. Each re-
quired the interaction of the Libra and Rainbow modules to
compose and adapt the video conferencing system. The co-
ordinated Libra and Rainbow did achieve the desired adap-
tations, allowing the new user to join and recovering in the
presence of the component failure.

We also used the two scenarios to quantify the addi-
tional overhead introduced by the coordination architec-
ture, i.e., the overhead of the translation infrastructure (but
not the system access mechanisms because they would be
needed even without coordination). Since the Libra module
works at the system level and, thus, does not require trans-
lation, we measure the overhead added to the adaptations
performed by the Rainbow module. In each of our experi-
ments, the Libra module composes an initial video confer-
encing session as depicted in Figure 2 that includes one Vic
user, one handheld user, and one NetMeeting user, and the
users are connected by a VGW, an HHP, and three ESMPs.

Scenario 1: New Vic user. In the first scenario, a new Vic
user requests to join an already running video conferencing
session composed by the Libra module. This request causes
the Rainbow model manager to trigger Tailor to perform
an adaptation as follows. First, Tailor (through the query
translator) queries network measurement for the latency be-
tween the new Vic component and each of the three existing
ESMPs. After the three queries, Tailor chooses the ESMP
that is “closest” to the new Vic and issues a “connect” op-
eration, which goes through the repair translator and is ex-
ecuted by the action component to configure and start the
user’s conferencing application. This adaptation allows the

8

Run 1 2 3 4

Trigger repair 82 (ms) 90 91 75
1st query Rainbow 563 597 569 571

Query trans. 643 614 347 621
Net. measure. 650 599 619 610

2nd query Rainbow 19 8 8 8
Query trans. 16 30 15 14
Net. measure. 12 11 12 11

3rd query Rainbow 10 17 5 6
Query trans. 25 27 30 34
Net. measure. 13 15 13 12

Connect Rainbow 18 18 27 26
Repair trans. 738 692 641 655
Act. comp. 1556 1540 1488 1619

Total 4345 4258 3865 4262

Table 1. New Vic user scenario results

new user to join the session without disrupting the existing
users (while a global reconfiguration would require restart-
ing the entire video conferencing session).

Table 1 shows the results (in milliseconds) of four runs.
The overhead incurred by the translation infrastructure is
about 300 ms, which is reasonable. This is calculated by
summing up the time taken by the query and repair transla-
tors (about 1300 ms), minus their first-time invocation over-
head1 (total of about 1000 ms).

Scenario 2: Failed ESMP. In the second scenario, one of
the three existing ESMPs in the session fails. This failure
is detected by a liveness probe and reported to the model
manager, which triggers Tailor to perform an adaptation as
follows. First, Tailor (through the model manager and query
translator) queries the system resource discovery mecha-
nism to find a new ESMP to replace the failed one. Then,
Tailor issues the following operations, which are translated
by the repair translator and executed by the action com-
ponent: shutdown the failed ESMP, start the new ESMP,
connect the new ESMP to the two remaining ESMPs and
the end point served by the failed ESMP (three connect op-
erations), and finally activate the new ESMP. This adapta-
tion fixes the component failure quickly and allows users to
continue their session; without this adaptation, the affected
users would no longer be able to participate in the session.

Table 2 shows the results (in milliseconds) of four runs.
The overhead incurred by the translation infrastructure is
about 900 ms, which is reasonable. This is calculated in
the same manner as above, with the translators taking about
1900 ms, minus first-time invocation overhead of about
1000 ms.

8 Discussion and Conclusions
In this paper we presented a coordination architecture and
approach that address the challenges of composing mul-

1The first-time invocation is caused by the initialization of the XML
parser in the four components. Its effect can be clearly seen in the fact that
the first query takes significantly longer than the subsequent ones.

Run 1 2 3 4

Trigger repair 11 (ms) 23 65 20
Total time of Tailor 297 80 76 91
Discovery Model mgr. 837 670 675 711

Query trans. 869 957 937 907
Res. disc. 242 253 262 221

Shutdown Repair trans. 794 766 804 903
Act. comp. 463 472 464 459

Start Repair trans. 24 47 25 27
Act. comp. 14 13 12 12

Connect1 Repair trans. 28 68 32 31
Act. comp. 6 6 6 7

Connect2 Repair trans. 32 31 36 35
Act. comp. 5 6 6 6

Connect3 Repair trans. 12 19 20 20
Act. comp. 6 6 6 6

Activate Repair trans. 13 18 15 15
Act. comp. 1016 1011 1011 1016

Total 4669 4446 4452 4487

Table 2. Failed ESMP scenario results

tiple self-management modules in a consistent and coher-
ent manner to manage a system. We demonstrated our ap-
proach by integrating two self-management modules, Libra
and Rainbow, in a case study, and applying a prototype im-
plementation to an example video conferencing system.

We then showed that the approach works using two adap-
tation scenarios. Finally, our evaluation based on the pro-
totype shows that the coordination architecture achieves
reasonable performance. We believe that our approach is
more generally applicable to coordinating multiple self-
configuring and self-healing modules. However, a few un-
resolved issues remain.

First, to maintain consistency across n SMs, O(n2) pos-
sible paths of translation exist between the SMs and be-
tween each SM and the system, potentially requiring O(n2)
translators and complicating integration. However, the
number of dimensions, i.e., size of n, is unlikely to be large.
Also, the models might not overlap significantly because
they address different dimensions of the system. Finally,
more sophisticated representation of translation knowledge
can help reduce the number of translators to O(n).

Second, there are other self-management dimensions in
addition to what we explored in the case study. The co-
ordination of these potentially conflicting dimensions ulti-
mately depends on the policy set forth by the stakeholders.
For example, domain experts coordinating the performance
and security dimensions of a system might stipulate that se-
curity overrides performance in all cases. As long as the
coordination policy can be expressed as a set of compatible
metrics and enforced by a control pattern, then we believe
that our approach would still be applicable.

Third, there are many other control patterns than what
is used in the case study. The sophisticated control pat-
terns enable the SMs to engage in intricate interactions. For
example, the democracy pattern might be used to coordi-

9

nate five equivalent SMs to increase fault tolerance. Or, the
balance of power pattern might be used so that a security-
oriented SM could veto a potentially insecure change from
a performance-oriented SM.

For future work, we plan to expand our case study as fol-
lows. (1) We will explore the applicability of our approach
to the self-optimizing and self-protecting capabilities from
IBM’s classification. (2) We will add reconfiguration mech-
anisms to the prototype and conduct a more comprehensive
evaluation to include total reconfiguration at system run-
time and incorporate greater use of utility evaluation in the
coordination between Rainbow and Libra. (3) We will ex-
amine performance bottlenecks in the coordination archi-
tecture and attempt to optimize our prototype.

Acknowledgments
The research described in this paper was supported by

DARPA, under Grants N66001-99-2-8918 and F30602-00-
2-0616. Views and conclusions contained in this document
are those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied,
of DARPA.

References
[1] Introduction to the MBone. http://www-itg.lbl.gov/mbone/.
[2] Mbone Conferencing Applications. http://www-

mice.cs.ucl.ac.uk/multimedia/software/.
[3] S.-W. Cheng, D. Garlan, B. Schmerl, J. P. Sousa, B. Spitz-

nagel, and P. Steenkiste. Using architectural style as a basis
for self-repair. In J. Bosch, M. Gentleman, C. Hofmeister,
and J. Kuusela, editors, Software Architecture: System De-
sign, Development, and Maintenance, pages 45–59, Mon-
tral, Qubec, Canada, Aug. 25–30 2002. Kluwer Academic
Publishers.

[4] Y. Chu, S. Rao, and H. Zhang. A Case for End System
Multicast. In Proceedings of ACM Sigmetrics, June 2000.

[5] N. Combs and J. Vagel. Adaptive mirroring of system of
systems architectures. In Garlan et al. [9], pages 96–98.

[6] E. M. Dashofy, A. van der Hoek, and R. N. Taylor. Towards
architecture-based self-healing systems. In Garlan et al. [9],
pages 21–26.

[7] A. G. Ganak and T. A. Corbi. The dawning of the autonomic
computing era. IBM Systems Journal, 42(1):5–18, 2003.

[8] D. Garlan, S.-W. Cheng, and B. Schmerl. Increasing sys-
tem dependability through architecture-based self-repair. In
R. de Lemos, C. Gacek, and A. Romanovsky, editors, Ar-
chitecting Dependable Systems, New York, NY, USA, 2003.
Springer-Verlag Inc.

[9] D. Garlan, J. Kramer, and A. Wolf, editors. Proceedings of
the First ACME SIGSOFT Workshop on Self-Healing Sys-
tems (WOSS ’02), Charleston, SC, USA, Nov. 18–19 2002.
ACM Press.

[10] I. Georgiadis, J. Magee, and J. Kramer. Self-organizing soft-
ware architectures for distributed systems. In Garlan et al.
[9], pages 33–38.

[11] S. D. Gribble, M. Welsh, R. von Behren, E. A. Brewer,
D. Culler, N. Borisov, S. Czerwinski, R. Gummadi, J. Hill,
A. Joseph, R. Katz, Z. Mao, S. Ross, and B. Zhao. The
Ninja Architecture for Robust Internet-Scale Systems and
Services. IEEE Computer Networks, Special Issue on Per-
vasive Computing, 35(4), Mar. 2001.

[12] P. N. Gross, S. Gupta, G. E. Kaiser, G. S. Kc, and J. J.
Parekh. An active events model for systems monitoring. In
Proceedings of the Working Conference on Complex and Dy-
namic Systems Architecture, Brisbane, Australia, Dec. 12–
14 2001.

[13] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg.
SIP: Session Initiation Protocol. RFC 2543, IETF, Mar.
1999.

[14] J.-C. Hu and J.-M. Ho. A Conference Gateway Supporting
Interoperability Between SIP and H.323 Clients. Master’s
thesis, Carnegie Mellon University, Mar. 2000.

[15] A.-C. Huang and P. Steenkiste. Network-Sensitive Service
Discovery. In Proc. USITS ’03 (to appear), Mar. 2003.

[16] ITU-T Recommendation H.323. Packet-based Multimedia
Communications Systems, Nov. 2000.

[17] J. Jann, L. M. Browning, and R. S. Burugula. Dynamic re-
configuration: Basic building blocks for autonomic comput-
ing on ibm pseries servers. IBM Systems Journal, 42(1):29–
37, 2003.

[18] J. C. Knight, D. Heimbigner, A. L. Wolf, A. Carzaniga, J. C.
Hill, P. Devanbu, and M. Gertz. The Willow survivabil-
ity architecture. In Fourth Information Survivability Work-
shop, Vancouver, British Columbia, Oct 2001. Postponed to
March 2002.

[19] V. Markl, G. M. Lohman, and V. Raman. Leo: An autonomic
query optimizer for db2. IBM Systems Journal, 42(1):98–
106, 2003.

[20] Microsoft Windows NetMeeting.
http://www.microsoft.com/windows/netmeeting/.

[21] T. S. E. Ng and H. Zhang. Predicting Internet Network Dis-
tance with Coordinates-Based Approaches. INFOCOM ’02,
June 2002.

[22] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner,
G. Johnson, N. Medvidovic, A. Quilici, D. S. Rosenblum,
and A. L. Wolf. An architecture-based approach to self-
adaptative software. IEEE Intelligent Systems, 14(3):54–62,
May-June 1999.

[23] S. R. Ponnekanti and A. Fox. SWORD: A Developer Toolkit
for Web Service Composition. WWW2002 (Web Engineer-
ing Track), May 2002.

[24] P. Reiher, R. Guy, M. Yarvis, and A. Rudenko. Automated
Planning for Open Architectures. In Proc. OPENARCH
2000 – Short Paper Session, pages 17–20, Mar. 2000.

10

