From: AAAI Technical Report SS-94-03. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved.

An Architecture for
Information Retrieval Agents*

Craig A. Knoblock and Yigal Arens
Information Sciences Institute
University of Southern California
4676 Admiralty Way
Marina del Rey, CA 90292, USA
{KNOBLOCK,ARENS }QISI.LEDU

Abstract

With the vast number of information resources
available today, a critical problem is how to lo-
cate, retrieve and process information. It would
be impractical to build a single unified system that
combines all of these information resources. A
more promising approach is to build specialized
information retrieval agents that provide access
to a subset of the information resources and can
send requests to other information retrieval agents
when needed. In this paper we present an archi-
tecture for building such agents that addresses the
issues of representation, communication, problem
solving, and learning. We also describe how this
architecture supports agents that are modular, ex-
tensible, flexible and efficient.

Introduction

With the current explosion of data, retrieving and in-
tegrating information from various sources is a critical
problem. We are addressing this problem by building
information retrieval agents. This paper describes how
these agents communicate with one another, model the
information that is available from other agents, effi-
ciently retrieve information from other agents, and im-
prove their performance through experience.

The architecture presented in this paper is based
on the SIMS information server, which was previ-
ously described in [Arens et al., 1993]. This paper
reviews the relevant details of SIMS, focusing on the
aspects and features that support multiple collabora-
tive agents. Each information agent is a separate SIMS
server. Thus, each agent contains a detailed model of
its domain of expertise and models of the information

*The research reported here was supported by Rome
Laboratory of the Air Force Systems Command and the De-
fense Advanced Research Projects Agency under contract
no. F30602-91-C-0081. Views and conclusions contained in
this report are the authors’ and should not be interpreted
as representing the official opinion or policy of DARPA, RL,
the U.S. Government, or any person or agency connected
with them.

49

sources that are available to it. Given an informa-
tion request, an agent identifies an appropriate set of
information sources, generates a plan to retrieve and
process the data, uses knowledge about the data to re-
formulate the plan, and then executes it. This paper
describes our approach to the issues of representation,
communication, problem solving, and learning, and de-
scribes how this approach supports multiple, collabo-
rating information retrieval agents.

Representing the Knowledge of an
Agent

Each information agent is specialized to a particular
area of expertise. This provides a modular organiza-
tion of the vast number of information sources and pro-
vides a clear delineation of the types of queries each
agent can handle. In complex domains, the domain
can be broken down into meaningful subparts and an
information agent can be built for each subpart.

An agent contains a model of its domain of expertise,
which provides the terminology for interacting with
agents, as well as models of all information sources
that are available to that agent. Both the domain and
information source models are expressed in the Loom
knowledge representation language [MacGregor, 1988,
MacGregor, 1990). The domain model provides class
descriptions, subclass and superclass relationships,
roles for each class, and other domain-specific infor-
mation. The information source models describe both
the contents of the information sources and the rela-
tionship between those models and the domain model.

Modeling the Domain

Each information agent is specialized to a single “ap-
plication domain” and provides access to the available
information sources within that domain. The largest
application domain that we have to date is a trans-
portation planning domain, which involves information
about the movement of personnel and materiel from
one location to another using aircraft, ships, trucks,
etc.

The application domain models are defined using
a hierarchical terminological knowledge base (Loom)

port_name

vehicle_type _|Vehicle
max_draft
| Ship

channel_of

channel_depth

Figure 1: Fragment of the Domain Model

port_nam
M
o

¢
/ ff"’”
; 4
; i
i
ALE’
geo.port_nm }
geo.glc_cd s

geo.shore_cranes

e

«,09
+* geoloc_co
&

\ ? floating_cranes

shore_cranes

geo.floating_cranes

= wee iNdicates a mapping relation

Figure 2: Relating an Information Source Model to a Domain Model

with nodes representing each class of objects, and re-
lations on each node that define the relationships be-
tween the objects. For example, Figure 1 shows a frag-
ment of the domain model in the transportation plan-
ning domain. In this figure, the nodes represent classes,
the thick arrows represent subclass relationships, and
the thin arrows represent relations between classes.

The classes defined in the domain model do not nec-
essarily correspond directly to the objects described in
any particular information source. The domain model
is intended to be a description of the application do-
main from the point of view of providing access to users
or other information agents that need to obtain infor-
mation about the particular application domain. How-
ever, the domain model is used as the language with
which to define the contents of an information source
to the agent.

Modeling Information Sources

The critical part of the information source models
is the description of the contents of the information
sources. This consists of a description of the objects

50

contained in the information source, as well as the rela-
tionship between these objects and the objects in the
domain model. The mappings between the domain
model and the information source model are needed for
transforming a domain-level query into a set of queries
to actual information sources.

Figure 2 illustrates how an information source is
modeled in Loom and how it is related to the domain
model. All of the concepts and relations in the in-
formation source model are mapped to concepts and
relations in the domain model. A mapping link be-
tween two concepts indicates that they represent the
same class of information. Thus, if the user requests
all seaports, that information can be retrieved from the
GEO agent, which has information about seaports.

Communication

Queries to a SIMS information agent are expressed in
Loom. These queries are composed of terms in a gen-
eral domain model, so there is no need to know or
even be aware of the terms or language used in the un-
derlying information sources. Instead, the information

agent translates the domain-level query into a set of
queries to the underlying information sources. These
information sources may be other information agents,
databases, knowledge bases, or other application pro-
grams.

Figure 3 illustrates a query expressed in the Loom
language. This query requests all seaports and the
corresponding ships that can be accommodated within
each port. The first argument to the retrieve expres-
sion is the parameter list, which specifies which param-
eters of the query to return. The second argument is
a description of the information to be retrieved. This
description is expressed as a conjunction of concept
and relation expressions, where the concepts describe
the classes of information, and the relations describe
the constraints on these classes. The first subclause of
the query is an example of a concept expression and
specifies that the variable ?port describes a member of
the class seaport. The second subclause is an exam-
ple of a relation expression and states that the relation
port.name holds between the value of ?port and the
variable ?port name. This query describes a class of
seaports and a class of ships, and requests all seaport
and ship pairs where the depth of the port exceeds the
draft of the ship.

(retrieve (7portname 7depth 7ship_type ?draft)
(and (seaport 7port)

(portname 7port ?port._name)
(channel of ?port ?channel)
(channel depth ?channel 7depth)
(ship ?ship)
(vehicle.type 7ship ?ship_type)
(max_draft ?ship 7draft)
(> ?depth 7draft)))

Figure 3: Example Loom Query

Given a query such as the one described above, an in-
formation agent identifies the appropriate information
sources and issues queries to these information sources
to obtain the requisite data for answering the query.
The queries to the underlying information sources are
also expressed as Loom queries. This simplifies the
overall system since it only needs to handle one un-
derlying language, although each information source
may have different processing capabilities. Since all
of the information agents use Loom as the query lan-
guage, queries can be sent to another information agent
without any translation. To handle existing informa-
tion sources systems such as databases, a wrapper for
each type of system must be constructed, which takes
a Loom query as input and maps the query into the
language of the underling information source.

Communication between information agents is done
using the Knowledge Query Manipulation Language
(KQML)[Finin et al., 1992]. This language handles the

51

interface protocols for transmitting queries, returning
the appropriate information, and building the appro-
priate structures. This language can also be used to
combine a database system with an appropriate wrap-
per to form a limited type of information agent. This
agent is limited in the sense that only it has access to
its own internal database. This approach has been suc-
cessfully applied to building a set of restricted agents
that can access relational databases using the Loom
Interface Manager (LIM) [Pastor et al., 1992]. The
agents described in this paper use these LIM agents
for accessing the data in a set of relational databases.

Planning to Access Information Sources

The core part of an information agent is the ability
to intelligently retrieve and process data. Information
sources are constantly changing; new information be-
comes available, old information may be eliminated or
temporarily unavailable, and so on. Thus, we need a
system that dynamically generates plans for informa-
tion retrieval, and monitors and updates the plans as
they are executed.

To process a domain-level query requires first select-
ing an appropriate set of information sources that can
be used to answer a query and then generating an ap-
propriate query plan for processing the data. This sec-
tion describes these two steps in turn.

Selecting Information Sources

The first step in answering a query expressed in the
terms of the domain model is to select the appropriate
information sources. This is done by mapping from
the concepts in the domain model to the concepts in
the information source models. If the user requests
information about ports and there is an information
source concept that contains ports, then the mapping
is straightforward. However, in many cases there will
not be a direct mapping. Instead, the original domain-
model query must be reformulated in terms of concepts
that correspond to the information sources.

Consider the fragment of the knowledge base shown
in Figure 4, which covers the knowledge relevant to
the example query in Figure 3. The concepts Sea-
port, Channel and Ship have subconcepts, shown by
the shaded circles, that correspond to concepts whose
instances can be retrieved directly from some infor-
mation agent or database. Thus, the GEO informa-
tion source contains information about both seaports
and channels, and the PORT information source con-
tains information about only seaports. Thus, if the
user asks for seaports, then the query must be trans-
lated into one of the information source concepts —
GEO.Seaports or PORT.Ports.

Reformulation Operations. In order to select the
information sources for answering a query, an agent ap-
plies a set of reformulation operators to transform the
domain-level concepts into concepts that can be re-

A ort_name
Vehlcle‘_ty} 6’9h|¢|e> p

Py

max_draft

-

channel_depth

Figure 4: Fragment of Domain Model

trieved directly from an information source. The sys-
tem has a number of truth-preserving reformulation
operations that can be used for this task. The oper-
ations include Select-Information-Source, Generalize-
Concept, Specialize-Concept, Partition-Concept, and
Decompose-Relation. These operations are described
briefly below.

Select-Information-Source maps a domain-level
concept directly to an information-source-level con-
cept. In many cases this will simply be a direct map-
ping from a concept such as Seaport to a concept
that corresponds to the seaports in another infor-
mation source. There may be multiple information
sources that contain the same information, in which
case the domain-level concept can be reformulated
into any one of the information source concepts. In
general, the choice is made so as to minimize the
overall cost of the retrieval.

Generalize-Concept uses knowledge about the rela~
tionship between a class and a superclass to reformu-
late a requested concept in terms of a more general
concept. In order to preserve the semantics of the
original request, one or more additional constraints
may need to be added to the query in order to avoid
retrieving extraneous data.

Specialize-Concept replaces a concept with a more
specific concept by checking the constraints on the
query to see if there is an appropriate specializa-
tion of the requested concept that would satisfy the
query. Identifying a specialization of a concept is
implemented by building a set of Loom expressions
representing each concept and then using the Loom
classifier to find any specializations of the concept
expression.

Partition-Concept uses knowledge about set cover-

ings (a set of concepts that include all of the in-
stances of another concept) to specialize a concept.

52

This information is used to replace a requested con-
cept with a set of concepts that cover it.

Decompose-Relation replaces a relation defined be-
tween concepts in the domain model with equivalent
terms that are available in the information source
models. For example, channel of is a property of
the domain model, but it is not defined in any infor-
mation source. Instead, it can be replaced by joining
over a key that occurs in both seaport and channel,
which is geoloc-code in this case.

The Reformulation Process. Reformulation is
performed by treating the reformulation operators as a
set of transformation operators and then using a plan-
ning system to search for a reformulation of the given
query description. The planner searches for a way to
map each of the concepts and relations into concepts
and relations for which data is available.

For example, consider the query shown in Figure 3.
There are two concept expressions - one about ships
and the other about seaports. The first step is to
translate the seaport expression into an information-
source-level expression. Unfortunately, none of the
information sources contain information that defines
channel of. Thus, the system must first reformu-
late channel of using the decompose operator. This
is done using the fact that channel_of is equivalent
to performing a join over the keys for the seaport and
channel concepts. The resulting reformulation is shown
in Figure 5.

The next step is to reformulate the seaport concept
into a corresponding information source concept. The
channel and ship concepts would then be similarly re-
formulated. The final query, which is the result of re-
formulating all of these concepts, is shown in Figure 6.

(retrieve (7portname 7depth 7ship_type 7draft)
(:and (seaport 7port)

(portname ?port 7portname)
(geoloc_code 7port ?geocode)
(channel ?channel)
(geoloccode 7channel ?geocode)
(channel.depth 7channel ?depth)
(ship ?ship)
(vehicle_type 7ship 7ship_type)
(max-draft 7ship 7draft)
(> ?depth ?draft)))

Figure b5:
channel_of

Reformulated Query that Eliminates

(retrieve (?portmame ?depth 7ship_type ?draft)
(:and (seaports 7port)

(glccd 7port ?glc_cd)
(portmm ?port 7portname)
(channels 7channel)
(glccd ?channel 7glc_cd)
(ch-depth £t 7channel 7depth)
(notionalship ?ship)
(max_draft 7ship 7draft)
(shtnm 7ship 7ship_type)
(< ?draft 7depth))))

Figure 6: Reformulated Query that Refers Only to In-
formation Source Models

Generating a Query Access Plan

Once the system has generated a query in the terms
used in the information source models, the final step is
to generate a query plan for retrieving and processing
the data. The query plan specifies the particular oper-
ations that need to be performed as well as the order
in which they are to be performed.

There may be a significant difference in efficiency
between different possible plans for a query. There-
fore, the planner searches for subqueries that can be
implemented as efficiently as possible. To do this the
planner must take into account the cost of accessing
the different information sources, the cost of retrieving
intermediate results, and the cost of combining these
intermediate results to produce the final results. In
addition, since the information sources are distributed
over different machines or even different sites, the plan-
ner takes advantage of potential parallelism and gen-
erate subqueries that can be issued concurrently.

There are three basic operators that are used to plan
out the processing of a query:

e Move-Data — Moves a set of data from one informa-
tion source to another information source.

e Join — Combines two sets of data into a combined
set of data using the given join relations.

e Retrieve-Data — Specifies the data that is to be re-
trieved from a particular information source.

Each of these operators manipulates one or more sets
of data, where the data is specified in the same terms

53

that are used for communicating with an agent and
between agents. This simplifies input/output, since
there is no conversion between languages required at a
later time.

The job of the planner is to find a partially ordered
sequence of operations that can be used to retrieve the
set of data specified in the given query. The plan-
ner is implemented in a version of UCPOP [Penberthy
and Weld, 1992, Barrett et al., 1993] that has been ex-
tended to generate parallel execution plans [Knoblock,
1994]. The system searches through the space of possi-
ble plans using a best-first search until a complete plan
is found. The plan generated for the example query in
Figure 6 is shown in Figure 7.

Since the information retrieval agent must act au-
tonomously in the real world, it builds a plan that is
tailored to the current world model. In order to handle
failures and unexpected results, we plan to tightly in-
tegrate the planner with an execution and monitoring
component. This will enable the information agent to
react intelligently to problems in retrieving data. For
example, other agents, networks, or databases may be
down, the system may get back more data than ex-
pected, or it may not get back any of the data it ex-
pected and it must retrieve it from somewhere else. So
while the system is executing an information retrieval
plan, it will constantly monitor the status and consider
alternative plans. If part of a plan fails, then the sys-
tem will immediately replan that part, or if another
plan appears to be more promising than the one cur-
rently executing, it will switch to the new plan.

Learning

An intelligent agent for information retrieval should be
able to improve its performance over time. To achieve
this goal, the information agents currently support two
forms of learning. First, they have the capability to
cache frequently retrieved or difficult to retrieve infor-
mation. Second, for those cases where caching is not
appropriate, an agent can learn about the contents of
the information sources in order to minimize the costs
of retrieval. Since information retrieval agents serve as
information sources for other agents, both caching and
learning can be applied to information agents as well
as data and knowledge bases. This section describes
these two forms of learning.

Caching Retrieved Data

Data that is required frequently or is very expensive
to retrieve can be cached in the Loom knowledge base
and retrieved directly from Loom. An elegant feature
of using Loom to model the domain is that caching
the data fits nicely into this framework. The data is
currently brought into Loom for local processing, so
caching is simply a matter of retaining the data and
recording what data has been retrieved.

To cache retrieved data into Loom requires formu-
lating a description of the data. This can be extracted

retrieve {?ship-type ?ship ?draft)
(and

(notional_ship ?ship)
{max_draft 2ship ?draft)
{sht_nm ?ship ?ship-type))

move -data
assets local

retneve (?port_name ?port ?channel ?depth)
{(and

(seaports ?port)

{glc_cd ?port ?glc_cd)

{port_nm ?port ?port_name)

{channels ?channel)

{glc_cd ?channel ?temp3)

(= ?temp3 ?glc_cd)

{ch_depth_ft ?channel ?depth))

move-data

{(< 2draft 2depth))

move -data

Figure 7: Parallel Query Access Plan

from the initial query since queries are expressed in
Loom in the first place. The description defines a new
subconcept and it is placed in the appropriate place in
the concept hierarchy. The data then become instances
of this concept and can be accessed by retrieving all the
instances of it.

Once the system has defined a new class and stored
the data under this class, the cached information be-
comes a new information source. The reformulation
operations, which map a domain query into a set of in-
formation source queries, will automatically consider
this new information source. Since the system takes
the retrieval costs into account in selecting the infor-
mation sources, it will naturally gravitate towards us-
ing cached information where appropriate. In those
cases where the cached data does not capture all of
the required information, it may still be cheaper to re-
trieve everything from the remote site. However, in
those cases where the cached information can be used
to avoid an external query, the use of the stored in-
formation can provide significant efficiency gains. See
[Arens and Knoblock, 1993] for a detailed description
of the caching performed by the agents.

Learning about the Contents of
Information Sources

The agent’s goal is to provide efficient access to a set
of information sources. Since accessing and process-
ing information can be very costly, the system strives
for the best performance that can be provided with
the resources available. This means that when it is
not processing queries, it gathers information to aid
in future retrieval requests. The information agents
improve performance by learning about the contents

54

of the information sources [Hsu and Knoblock, 1993a).
They do this by building abstract descriptions of the
contents of an information source, these abstractions
are then used to reformulate the query plans generated
by the system [Hsu and Knoblock, 1993b]. This allows
the information agent to optimize individual queries,
reduce intermediate data, and even eliminate the need
to issue queries in some cases.

Advantages of the Architecture

Now that we have described the basic architecture, this
section first reviews the critical features of this archi-
tecture and then describes the advantages provided by
these features.

The critical features of this architecture that sup-
ports multiple cooperating agents are:

1. A uniform query language that is used as the in-
terface for the user as well as the interface between
agents.

2. Separate models for the domain and the contents of
the information sources.

3. A flexible planning system that selects an appropri-
ate set of information sources.

4. Generation of parallel query access plans.

5. A learning system that constantly attempts to im-
prove the performance of an agent by caching fre-
quently used information and learning about the
contents of the information sources.

First, the uniform query language and separate mod-
els provide a modular architecture for multiple infor-
mation agents. An information agent for one domain

can serve as an information source to other informa-
tion agents. This is can done seamlessly since the in-
terface to every information source is exactly the same
— it takes a Loom query as input and returns the data
requested by the query. The separate domain mod-
els provide a modular representation of the contents of
each of the information agents. The contents of each
agent is represented as a separate information source
and is mapped to the domain model of an agent. Each
information agent can export some or all of its domain
model, which can be incorporated into another infor-
mation agent’s model. This exported model forms the
shared terminology between agents.

Second, the separation of the domain and informa-
tion source models and the dynamic planning of in-
formation requests make the overall architecture easily
extensible. Adding a new information source simply
requires building a model of the information source
that describes the contents of the information source
as well as how it relates to the domain model. It is not
necessary to integrate the information with the other
information source models. Similarly, changes to the
schemas of information sources require only changing
the model of the schemas. Since the selection of the in-
formation sources is performed dynamically, when an
information request is received, the agent will select the
most appropriate information source that is currently
available.

Third, the separate domain and information source
models and the dynamic planning make the agents very
flexible. The agents can choose the appropriate in-
formation sources based on what they contain, how
quickly they can answer a given query, and what re-
sources are currently available. If a particular infor-
mation source or network goes down or if the data is
available elsewhere, the system will retrieve the data
from sources that are currently available. An agent
can take into consideration the rest of the processing
of a query, so that the system can take advantage of
those cases where retrieving the data from one source is
much cheaper than another source because the remote
system can do more of the processing. This flexibility
also makes it possible to cache and reuse information
without extra work or overhead.

Fourth, the generation of parallel access plans, the
caching of retrieved data, and the ability to learn
about information sources provide efficient access to
large amounts of distributed information. The plan-
ner generates plans that minimize the overall execu-
tion time by maximizing the parallelism in the plan
to take advantage of the fact that autonomous infor-
mation sources can be accessed in parallel. The abil-
ity to cache retrieved data allows an agent to store
frequently used or expensive-to-retrieve information in
order to provide the requested information more effi-
ciently. And the ability to learn about the contents
of the information sources allows the agent to exploit
time when it would not otherwise be used to improve

55

its performance on future queries.

Related Work

A great deal of work has been done on building agents
for various kinds of tasks. This work is quite diverse
and has focused on a variety of issues. First, there
has been work on multi-agent planning and distributed
problem solving, which is described in [Georgeff, 1990].
The body of this work deals with the issues of coordi-
nation, synchronization, and control of multiple au-
tonomous agents. Second, a large body of work has
focused on defining models of beliefs, intentions, capa-
bilities, needs, etc., of an agent. [Shoham, 1993] pro-
vides a nice example of this work and a brief overview
of the related work on this topic. Third, there is more
closely related work on developing agents for informa-
tion gathering.

The problem of information gathering is also quite
broad and the related work has focused on various
issues. Kahn and Cerf [1988] proposed an architec-
ture for a set of information-management agents, called
Knowbots. The various agents are are specifically de-
signed and built to perform particular tasks. Etzioni et
al. [1992, 1993] have built agents for the Unix domain
that can perform a variety of Unix tasks. This work
has focused extensively on reasoning and planning with
incomplete information, which arises in many of these
tasks. Levy el al. [1994] are also working on build-
ing agents for retrieving information from the Inter-
net. The focus of this work has been on efficient query
processing with Horn rules.

In contrast to much of this previous work, the focus
of our work is on flexible and efficient retrieval of infor-
mation from heterogeneous information sources. Since
most of these other systems have in-memory databases,
they assume that the cost of a database retrieval is
small or negligible. One of the critical problems when
dealing with large databases is how to issue the ap-
propriate queries to efficiently access the desired infor-
mation. We are focusing on the problems of how to
organize, manipulate, and learn about large quantities
of data.

Research in databases has also focused on building
integrated or federated systems that combine infor-
mation sources [Reddy et al., 1989, Sheth and Lar-
son, 1990). The approach taken in these systems is to
first define a global schema, which integrates the infor-
mation available in the different information sources.
However, this approach is unlikely to scale to the large
number of evolving information sources (e.g., the In-
ternet) since building an integrated schema is labor in-
tensive and difficult to maintain, modify, and extend.

Conclusion
This paper described the SIMS architecture for intelli-
gent information retrieval agents. As described above,
this particular architecture has a number of important
features: (1) modularity in terms of representing an

information agent and information sources, (2) exten-
sibility in terms of adding new information agents and
information sources, (3) flexibility in terms of selecting
the most appropriate information sources to answer a
query, and (4) efficiency in terms of minimizing the
overall execution time for a given query.

To date, we have built information agents that
plan and learn in the transportation planning domain
[Arens et al., 1993]. These agents contain a detailed
model of this domain and extract information from a
set of nine relational databases. The agents select ap-
propriate information sources, generate parallel plans,
execute the queries in parallel, and learn about the
information sources.

Future work will focus on extending the planning
and learning capabilities described in this paper. An
important issue that we have not yet addressed is how
to handle the various forms of incompleteness and in-
consistency that will inevitably arise from using au-
tonomous information sources. Our plan is to address
these issues by exploiting available domain knowledge
and employing more sophisticated planning and rea-
soning capabilities to both detect and recover from
these problems.

References

[Arens and Knoblock, 1993] Yigal Arens and Craig
Knoblock. On the problem of representing and
caching retrieved data. Information Sciences Insti-
tute, University of Southern California, 1994.

[Arens et al., 1993] Yigal Arens, Chin Y. Chee, Chun-
Nan Hsu, and Craig A. Knoblock. Retrieving and
integrating data from multiple information sources.
International Journal on Intelligent and Cooperative
Information Systems, 2(2):127-158, 1993.

[Barrett et al., 1993] Anthony Barrett, Keith Golden,
Scott Penberthy, and Daniel Weld. Ucpop user’s man-
ual (version 2.0). Technical Report 93-09-06, Depart-
ment of Computer Science and Engineering, Univer-
sity of Washington, 1993.

[Etzioni et al., 1992] Oren Etzioni, Steve Hanks,
Daniel Weld, Denise Draper, Neal Lesh, and Mike
Williamson. An approach to planning with incom-
plete information. In Proceedings of the Third Inter-
national Conference on Principles of Knowledge Rep-
resentation and Reasoning, Cambridge, MA, 1992.

[Etzioni et al., 1993] Oren Etzioni, Keith Golden, and
Daniel Weld. Tractable reasoning about locally com-
plete information. Department of Computer Science
and Engineering, University of Washington, 1993.

[Finin et al., 1992] Tim Finin, Rich Fritzson, and Don
McKay. A language and protocol to support intelli-
gent agent interoperability. In Proceedings of the CE
and CALS, Washington, D.C., June 1992.

[Georgeff, 1990] Michael P. Georgeff. Planning. In
Readings in Planning. Morgan Kaufmann Publishers,
San Mateo, CA, 1990.

56

[Hsu and Knoblock, 1993a] Chun-Nan Hsu and Craig
A. Knoblock. Learning database abstractions for
query reformulation. In Proceedings of the AAAI

Workshop on Knowledge Discovery in Databases,
1993.

[Hsu and Knoblock, 1993b] Chun-Nan Hsu and
Craig A. Knoblock. Reformulating query plans for
multidatabase systems. In Proceedings of the Second
International Conference of Information and Knowl-
edge Management, Washington, D.C., 1993.

{Kahn and Cerf, 1988] Robert E. Kahn and Vinton G.

Cerf. An open architecture for a digital library sys-
tem and a plan for its development. Technical report,
Corporation for National Research Initiatives, March
1988.

[Knoblock, 1994] Craig A. Knoblock. Generating par-
allel execution plans with a partial-order planner. In-

formation Sciences Institute, University of Southern
California, 1994.

[Levy et al., 1994] Alon Y. Levy, Yehoshua Sagiv, and
Divesh Srivastava. Efficient information gathering
agents. AT&T Bell Laboratories, 1994.

[MacGregor, 1988] R. MacGregor. A deductive pat-
tern matcher. In Proceedings of AAAI-88, The Na-
tional Conference on Artificial Intelligence, St. Paul,
MN, 1988.

[MacGregor, 1990] R. MacGregor. The evolving tech-
nology of classification-based knowledge representa-
tion systems. In John Sowa, editor, Principles of Se-
mantic Networks: Ezplorations in the Representation
of Knowledge. Morgan Kaufmann, 1990.

[Pastor et al., 1992] Jon A. Pastor, Donald P. McKay,

and Timothy W. Finin. View-concepts: Knowledge-
based access to databases. In Proceedings of the
First International Conference on Information and
Knowledge Management, pages 84-91, Baltimore,
MD, 1992.

[Penberthy and Weld, 1992] J. Scott Penberthy and
Daniel S. Weld. Ucpop: A sound, complete, partial
order planner for adl. In Proceedings of KR-92, pages
189-197, 1992.

[Reddy et al., 1989] M.P. Reddy, B.E. Prasad, and
P.G. Reddy. Query processing in heterogeneous dis-
tributed database management systems. In Amar
Gupta, editor, Integration of Information Systems:
Bridging Heterogeneous Databases, pages 264-277.
IEEE Press, NY, 1989.

[Sheth and Larson, 1990] Amit P. Sheth and James A.
Larson. Federated database systems for managing dis-
tributed, heterogeneous, and autonomous databases.
ACM Computing Surveys, 22(3):183-236, 1990.

[Shoham, 1993] Yoav Shoham. Agent-oriented pro-
gramming. Artificial Intelligence, 60(1):51-92, 1993.

