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* . An Architecture for intelligent Assistance
in Software Development

) me.xalhu'.mu.rm
./I\L ot Tis The
C)-m define an for a engineering environment that behaves as

an intelligent sssistant. architecture of two key aspecis, an objectbase and a model/ ;.

' of the software development process. ‘objectbase is adapted from other ressarch, but ‘fh‘—
model is unique in that is consists primarily of ruies that define the preconditions and mukiple
posiconditions of software development tools. Metarvies define forward and backward chaining

among the rules. most significant contribution is opportunistic processing, whereby the
environment performe software development activities at some time between when
their preconditions satisfied and when their postconditions are required. Further, model
defines strategies guide the assistant in choosing an appropriate point for carrying put each

activity,
1 introduction

In 1973, Winograd [30) presented his dream of an intelligent assistant for programmers that
would understand what R does: R would be based on an explick model of the programming worid.
Winograd described an imaginary programming environment, A, that would assist programmers
by providing early emor checking, by answering questions about the program and the interactions
among program parts, by handling trivial programming problems, and by automating simple
debugging tasks.

Astificial inteligence research has moved closer 1o achieving this dream by developing a
knowiledge-based approach 10 programming, which includes relationships among program units,
both in the abstract and with respect to a particular target system. The Masterscope package of
interlisp [27] and the CommonLisp Framework (CLF) [5] maintain cross-referencing information to
answer queries about interactions among program units. Also, CLF's knowledgebase under-
stands the abstract relationships among program units. For example, CLF ‘knows’ that a system
consists of modules and individual software objects (functions, variables, efc.) and that object
classes have particular properties, such as a maintainer and whether & has been compiied.

A knowledge-based programming enviconment also includes the rules goveming the software
development process. For example, wide-spectrum languages such as V [23] and Gist [1] have
been augmented with rules that aid the programmer in transiating from higher- 1o lower-level
speciiications and from specifications to executable code. CMS [13] provides a formal represen-
tation of the software project model, time (for scheduling), and software development activities.
For example, ¥ & ‘capability’ is a desired feature of the target system, then it must be realized by
a ‘component’ of the system; a ‘task’ must be defined to specify who is in charge of the com-
ponent and when R is due. Genesis’s Activity Manager [19] provides similar facilities.

The research presenied in this paper was conducied while Dr. Kaiser was a Visiting Computer Scientist at the
Sofwere Engineering instiute, Camegie-Melion University, Pitisburgh, PA.
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While work in Al was progressing, researchers in traditional software were addressing their ver-
sion of Winograd's dream. Tools were developed that automated certain aspects of the program-
ming process. For example, Make [8] automatically rederives an executable system when part of
the source code changes. SCCS [22] requires programmers to reserve modules for change, thus
ensuring orderly software evolution. RCS [28] supports multiple versions of software objects and
manages separaie ines of development.

Collections of tools were integrated into interactive programming environments that support a
particular programming language. The Synthesizer [26] combines language-oriented editing that
prevents syntactic errors with immediate feedback about static semantic errors; it also permits
programmers 1o interleave execution and debugging with editing. The Gandalf Prototype
{16] added a module interconnection language with incremental, intermodule consistency check-
ing to a C programming environment similar to the Synthesizer.

Unfortunately, the knowledge-based approach and the tools approach have progressed more-or-
less independently. The individual tools incorporate a small bit of knowledge about a particular
programming problem, but this knowledge cannot be augmented. The programming environ-
ments are hardcoded with a particular view of the software development process that defines the
interaction between the programmers and the target system, but this knowledge is not available
to the users of the environment. The knowledge-based environments are much more general,
but represent only a fraction of human expertise about software development and maintenance.

Working within the tools approach, the members of the Gandalf project {including the authors)
developed a distributed, multi-user software engineering environment called SMILE [24, 7], which
is relatively close to achieving intelligent assistance. SMILE presents a ‘fileless environment’ o its
users, answers queries, and automatically invokes various tools. However, SMILE's knowledge of
software objects and the programming process is hardcoded into the environment.

Our experience with SMILE provided insights into the development of practical environments and
convinced us that a generalization of SMILE's internal architecture would aid in developing an
intelligent assistant for software development and maintenance. Our architecture for intelligent
assistance combines tools with knowledge. From the tools approach, we gain the years of ex-
perience of other computer scientists building and using particular tools and environments. From
the knowledge-based approach, we gain a suitable structure for choosing among tools and
automating the invocation of tools. Our architecture defines a basis for intelligent assistance that
consists of two key aspects: an objectbase and a model of the software development process.

The objectbase maintains all software objects, including tools, and provides the environment with
insight into the various classes of objects and the relationships among objects. For example, one
object is a component of another, and a particular object may be applied to another object to

produce a third.

The mode! imposes a structure on programming activities. It consists of an extensible collection
of rules that specify the particular conditions that must exist for particular tools to be applied to
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particular software objects. Metarules permit the environment to understand the rules and sup-
port opportunistic processing, where the environment performs activities when it knows the
results of these activities will soon be required by its users. Opportunistic processing is the
primary focus of this paper. )

in this paper, we explain our architecture and how it meets certain fundamental requirements for
supporting a software engineering environment that understands what it does. Section 2
presents the basis for intelligent assistance defined by our architecture. Section 3 describes how

' an intelligent assistant built on this framework can perform software development activities
automatically to provide intelligent assistance to its users. Section 4 briefly describes our im-
plementation.

2 A Basis for Intelligent Assistance

An intelligent assistant should understand what it is doing [30]. Most software tools are "moronic
assistants” that know what they are doing, but do not understand the purpose of the objects they
manipulate or how their tasks fit into the software development process. In other words, they
may know the ‘how’ but not the ‘why’.

For example, Make has a simplistic world model consisting of files and command lines. A ]
‘makefile’ defines dependencies among files and gives the command lines necessary for restor- ’
ing consistency among dependent files. Make's notion of consistency is based on files and time:
H the timestamp of an input file ig later than the timestamp of an output file, then the indicated
command line should be passed to the Unix™ shell. Make is used widely for generating a new :
executable version of a system after source files have been modified. :

However, Make's knowledge’ is primitive. Its objectbase consists of files that have a single
attribute, their timestamp. Make knows nothing about applying tools to files: it just handles com-
mand lnes as indivisible units. Make does not understand source files vs. object files, modules

vs. gystems, programmers or programming.

To give Make this knowledge we could define a notion of an object, which belongs to a class, \
such as ‘system’ or ‘module’. Each class would define the attributes, or properties, of its objects.

A ‘module object code’ object might have a ‘history’ attribute describing its generation and a

‘derivation of’ attribute pointing to the object representing the corresponding source code.

We could then define rules that model the part of the software development process relevant to
Make. One rule might be that a ‘programmer’ object can modify a ‘module’ object; another rule
might state that after such a modification, the ‘module’ object is no longer consistent with its
‘derivation’ attribute and there is an obligation to restore this consistency. A third rule might state |
that a precondition for a ‘programmer’ to test a ‘system’ is that all ‘module object code’ objects
that are components of the corresponding ‘executable system’ must be consistent with their
‘module’.
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Given this knowledge, Make could be considered to be relatively more intelligent. Make would be
easier 10 integrate with other tools that support configuration management, version control, task
management, efc., assuming these tools had similar knowledge of software objects and their
roles in the development process.

We believe that an objectbase and a model of the development process are prerequisites to
intelligent assistance. An assistant cannot understand why it performs particular activities unless
& knows

o the properties of the objects it manipulates,

o the capabilities of certain objects (programmers and tools) to manipulate other ob-
Jects,

 the preconditions required by each activity,

« the postconditions of each activity.
Therefore, our architecture specifies a general objectbase and an extensible collection of rules
describing the preconditions and postconditions of activities, as well as hints and strategies that
determine the degree of the environment's contributions. We briefly describe the objectbase
here; the rules, hints and strategies are the topic of the following section.

Objectbase

We considered several possible forms for our objectbase. One possibility was the entity-relation-
attribute model proposed for Genesis [20]. However, weaknesses of relational databases make
them inadequate for software engineering environments [15]. To maximize flexibility, we chose
an objectbase similar to those of object-oriented programming languages, such as Loops [25]. In
particular, we adopted their support for multiple inheritance and active values. Unlike most such
languages, however, we require a ‘persistent’ objectbase, one that retains its state across invoca-
tions of the environment. The same concepts are found in the objectbases supported by other
knowledge-based environments, such as AP3 [2] and Refine™ [23].

In our objectbase, each object is an instance of a class, which defines certain attributes of each
object and inherits other attributes from its superclass(es). Some attributes define the relation-
ships among objects; others trigger activities when accessed and/or updated. The activities ap-
plicable to a class are defined as methods for the class.

This enables an intelligent assistant to expose its users only to the logical structure of the target
software system. The environment consists of a set of typed, interconnected software objects
representing the system and its history. The interconnections among software objects represent
the logical structure of the system. Object types include module, procedure, type, design descrip-
tion, user task (or development step), user manual, etc. Typing permits the assistant to provide
an object-oriented user interface similar to the Smalitalk-80™ environment [11], where the en-
vironment makes available to each user only those commands that are relevant to the object
under consideration.




3 Opportunistic Processing

The objectbase also maintains the rules that model the software development process. These
rules provide the meta-knowledge required for an environment to apply tools automatically. We
call this behavior opportunistic processing, which offloads simple activities onto the intelligent
assistant—menial activities, such as invoking the compiler and recording any errors found during
compilation. This approach contrasts with some intelligent assistance systems, such as the
Programmer's Apprentice (KBEmacs)[29] and CHI (previously PSI) [23], which focus on the
separate problem of automatic programming.

3.1 Rules

We represent our model as a collection of rules similar to the production rules of Ops5 [4] in that
each rule has a condition and action. When the condition is true, the action may be executed.
Our rules differ from production rules in that the action is divided into two parts, an activity and a
postcondition. Because our rules have postconditions, we refer to the original conditions as

preconditions.

The activity part of a rule represents an integral software development task. For example,
“compile module” is one activity and "change component” is another (a ‘component’ is a facility
defined within a module, such as a procedure, a variable, a type, etc.). The specific editing
commands applied during the course of the "change component™ activity are not considered
activities. “Fix bug” is not an aclivity, since it involves many tasks, perhaps involving several
users. Thus our notion of an activity represents a middle-ground granularity.

Each activity is associated in the objectbase with a tool that performs the activity. One attribute of
each tool is whether it can be invoked by the environment without human intervention. For
example, the "compile module” activity is associated with the compiler, which can be applied by
the intelligent assistant; the "edit component” activity is associated with a text editor (or a syntax-
directed editor), which requires human interaction.

The precondition part of a rule — a boolean expression — must be true before an activity can be
performed. The operands of a precondition include software objects and the attributes of
software objects. For example, "notcompiled(module)” might be an appropriate precondition for
the "compile module” activity. Another precondition for “compile module” would be *for all com-
ponents ¢ such that in{module, component ¢): analyzed(component ¢)*, where "analyzed(c)” is
true only if a static semantic analysis of component ¢ finds no errors. An activity may have
multiple preconditions that must be satisfied.

A posteondition becomes true when an activity is completed. Both preconditions and postcon-
ditions are written as well-formed formulas (wifs) in the first order predicate caiculus. Our rules
are based on Hoare's assertions [12], where a programming language construct is associated
with its preconditions and postconditions; if the preconditions are true before the language con-
struct is executed, then the posiconditions will be true afterwards.
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However, a programming activity may have multiple postconditions, exactly one of which is true
after the activity terminates. Which of the various possibilities is true can be determined only by
invoking the corresponding tool. For example, two postconditions for the "compile module” ac-
tivity might be "compiled(module)” and "errors(module)”. Here we follow the extension of Hoare's
assertions proposed by Perry [18], where there must be multiple postconditions to represent the
exceptional results of executing a procedure. This notion of postconditions distinguishes our
architecture from CLF, Genesis’' Activity Manager, and other expert systems that rely on
condition/action rules. The most important advantages are that we can separate an activity from
its results and therefore consider several alternative results within our model.

Two example rules are given in Figure 3.1. The first states the preconditions and the two
postconditions for the "compile module” activity. The preconditions are given first, followed by the
activity (within braces), followed by the posiconditions. The altternative postconditions are
separated by semicolons.

notcompiled (module) and
for all components ¢ such that in(module, component c):
analyzed(component c):
{ compile module }
{ compiled (module) ;
1 ezrors (module) ;

equals (module, focus(userid)) and in(module, component);
{ edit component }
notanilyszed(component) and notcompiled(module);

Figure 1: Compile Rule and Edit Rule

3.2 Meta Rules

Our architecture supports the definition of metarules that guide the intelligent assistant's use of
rules. One metarule states that if the preconditions of an activity are satisfied, and the activity
can be performed by the assistant, then the assistant may perform the activity automatically.
Consider the first rule in Figure 3.1. The metarule interprets this rule to mean that the assistant
may compile any modules M such that all the components of M have been analyzed but M has
not been compiled.

In this example, "notcompiled(module)” is one of the preconditions to the “compile module™ ac-
tivity; "errors(module)” is included as one of the possible postconditions. lf the previous compila-
tion failed, “errors(module)” will be true. The "compile module” activity cannot be performed
when “errors(module)” is true, because its preconditions cannot be satisfied. If a user then edits
a component, perhaps to fix the error, the second rule of Figure 3.1 states that
"notcompiled(module)” will be set to true and the metarule permits compilation.

importantly, this metarule states that the intelligent assistant may perform an activity when




preconditions are satisfied; it does not state that the assistant must perform the activity as soon
as the preconditions are true, or at any time thereafter. However, the intelligent assistant may
apply the tool and use forward chaining to determine additional activities whose preconditions are
satisfied by the postconditions of the first activity. Therefore, we call this metarule the Yorward
chaining metarule’.

Forward chaining supports behavior similar to language-oriented editors, such as the Synthesizer

and Gnome [9). When the user makes a subtree replacement in the abstract syntax tree )
representing the program, the editor automatically performs several actions. In the case of \
editors generated from attribute grammars [21], the editor automatically re-evaluates the values 3
of attributes whose values may have changed. These attributes might represent the content of

the symbol table and the object code for the program. Other editor generators automatically

invoke action routines for type checking or code generation for modified program parts [6].

A second metarule states that if a user invokes a tool with unsatisfied preconditions, the intel-
ligent assistant should use backward chaining to find activities it can perform whnse postcon-
ditions might satisfy the preconditions of the activity requested by the user. In this case, the
metarule states that the intelligent assistant must exhibit this behavior. We call this metarule the
‘backward chaining metarule’.

Backward chaining supports behavior similar to Make, DSEE™ [14], Toolpack [17] and other
software engineering tools in which a user may request regeneration of an executable system
after changes have been made to its source code. The environment uses dependency infor- \
mation previously supplied by the software development team to determine which source files to )
recompile.

Sometimes our intelligent assistant attempts backwards chaining, but finds that the preconditions
cannot be satisfied; in this case, the user is informed of the problem. The intelligent assistant is
not expected to, for example, correct source code so that it will compile successfully. For ex-
ample, our intelligent assistant might support a large team where multiple users should not :
change the same module simultaneously. Here, each user must reserve a module before chang- A
ing 1. The preconditions and postconditions for the “reserve module” activity are stated in the first )
rule shown in Figure 2 ("saved(module)" is true when the module has been saved by the version

control tool), and the second rule states that the "change component” activity cannot be per-

formed unless the module containing the component is reserved. 3

The “change component™ activity permits the user to modify the specification of a component
("edit component” permits the user to modify only the body). The third rule of Figure 2 states that
the containing module must be reserved along with any other modules that depend on it (¢ and k
distinguish multiple objects of the same type). The backward-chaining metarule enables our
intelligent assistant to automatically reserve modules whose components may have to be
modified to restore consistency with the changed component. The metarule also prevents the
user from modifying the specification of a component when dependent modules cannot be
reserved (according to the first rule).

- 4 1
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not reserved (module) and saved(module);
{ reserve module }
reserved (module, userid);

reserved (module, userid)

{ change component )}
notanalyzed (component) and notcompiled (module) ;

for all componants k such that in(module, component k)
and uses (component k, component ¢):
reserved (module, userid);
{ change component c }

Figure 2: Change Rules and Reserve Rule

3.3 Strategies and Hints

We chose the name ‘opportunistic processing’ for these chores because the assistant may per-
form an activity as the opportunity arises any time after its preconditions are satisfied and before
another activity whose preconditions depend on its postconditions. Rules may be tagged so their
activities are performed immediately after their preconditions are satisfied (i.e., forward chaining
applies) while other activities are performed only when their postconditions are required (forward
chaining does not apply). Since we need to choose other points on this spectrum, we have
included hints and strategies in our model! to aid the intelligent assistant in making decisions.

A hint is similar to a rule, but without postconditions. The preconditions of a hint are used to
guide the intelligent assistant in choosing when to apply a tool whose other preconditions are
satisfied. Consider again the first rule from Figure 3.1. Suppose we do not want the assistant to
compile a module, even though the preconditions are satisfied, while a user with modification
rights is browsing through the module: The user may decide 1o change some components of the
module, and the compilation will have been wasted. So we use a hint, Figure 3, giving this
precondition for the "compile module” activity (angle brackets are used for parentheses). When
the assistant follows a strategy inckuding this hint, compilation is delayed until the user changes to
another module.

not reserved(module) ox
< reserved (module, userid) and
not equals(module, focus(userid)) >
[ compile module ]

Figure 3: Compile Hint

Since we want the human user to be able to invoke the compiler without changing to another
module, we give this precondition to "compile module” in a hint, rather than as part of a rule.




Hints apply only 10 the opportunistic processing of the intelligent assistant, not to activities in-
Risted by a human user. In other words, hints are considered during forward chaining and ig-
nored during backward chaining.

A strategy consists of a collection of hints and rules, which apply only when the strategy is in
force. The third (and currently final) metarule from our model enables the intelligent assistant to
empioy sirategies by combining its rules and hints with the rules normally considered. Zero or
more strategies may be employed at the same time. When thig results in more than one rule for
the same activity, all their preconditions must be satisfied; only one set of postconditions is per-
mitted.

Currently, our assistant cannot choose its own strategies; the knowledge to support this capability
requires additional research on user modeling. Instead, each user will select appropriate
strategies by informing the environment that he Is, for example, a manager vs. a programmer,
developing a new system vs. maintaining an old system, or making major changes vs. a minor
revision. A strategy whose rules and hints result in automatically performing type checking im-
mediately after each component is edited would be appropriate for & minor revision, but not for a

large-scale changes involving many interrelated components.

3.4 Activities as Side-Effects

Often a 100l performs additional activities as side effects. For example, the analysis tool invoked
for the "analyze component” activily may change the values of several attributes of components.
For the purposes of our rules, setting the value of an attribute is considered an activity, resulting
in a situation where one action of the intelligent assistant is embedded inside another rather than
being a consequence of forward or backward chaining. This case demonstrates a limitation of
our rules: Secondary actions whose arguments cannot be determined in the general case cannot
be expressed easily as postconditions. Instead, potential side effects are indicated by atiributes
of the tool.

in such cases, the secondary activities are often described by their own rules, and these must be
considered for further processing. For example, some rules related to the “uses” attribute of a
component are given in Figure 4. The “uses"” attribute lists the components that the component
depends on.

The first rule gives the obvious preconditions and postconditions for the "analyze component”
activity. The second rule states a component ¢ cannot use another component k unless k is in
the same module or is imported into the module. The third rule means that a component cannot
be imported by a module M unless k is exported by another module N. The fourth rule states that
a component cannot be exported by a module unless it is in that module.

What happens when the analysis 100l finds that procedure p (a component) calis procedure q
(another component) and tries to set the "uses” attribute of procedure p to include procedure q?
i g is in the same module as p, there is no problem; the attribute is set and the analysis con-




motanalysed (component) ;

{ analyxze component }
analyzed (component) ;
errors (Component) ;

in (module, component ¢) and
< in(module, component k) or imports(module, component k) >;
{ component ¢ uses component k }

uses (component ¢, component k)

exports (module N, component) and
not equal (module M, module N);
{ impozt component )}

imports (module M, component);

in(module, component):;
{ export component }
exports (module, component)

Figure 4: Analyze Rule, Uses Rule and Import/Export Rules

tinues. ¥ g is not in the same module, the intelligent assistant checks whether It is imported. In
the case where q I8 not already imported, the assistant notes that “imports(module, component)”
is a posicondition of the “import component” activity (third rule) and realizes it can perform the
“import component” activity without human intervention. It considers the preconditions of this
activilty. The assistant queries its objectbase to find the module that contains q. If q is already
exported from that module, the assistant performs the “import component™ activity. If not, the
backward-chaining metarule permits the assistant to follow the preconditions of the activity given
in the fourth rule of Figure 4. The assistant can add q to the exports of its module, then actually
import g into the original module, and then permit the analysis 0ol to set the "uses™ attribute of p.

in the above scenario, we ignored the possibility that distinct procedures named g might be found
in more than one module. Sometimes language-specific typing information can be used to nar-
row down the possibilities, but generally the intelligent assistant must interrupt the human user to
explain ks dilemma and to ask which q is intended. The assistant can then proceed as described
in the previous paragraph.

#f no component named q is in the objectbase, the assistant considers the "add component q"
activity, whose postcondition is the existence of q. A sufficiently intelligent assistant could carry
out this activity by creating a stub for the procedure within the module where the use occurs; the
Gnome programming environment for Karel does this automatically [10]. If this is not feasible, an
altemative would be 10 ask the user to create the procedure (or stub) before continuing the
analysis, but this would be intrusive; a preferred alternative is to inform the analysis tool of the
problem and prevent & from performing the "procedure p uses procedure q" activity. This causes
the analysis 100! t0 terminate unsuccessfully, generating the "errors(p)” predicate among its
posiconditions.
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In this discussion, “import component” and “"export component” are among the activities that can
be performed by the intelligent assistant without human intervention, permitting the assistant to
carry out the repairs lllustrated by the example. An alternative strategy would require the assis-
tant to take the imports and exports as given. This might be appropriate for languages, such as
Ada™, that include their own module constructs, where reference to an external component with-
out the appropriate "with" clause should be detected as an error.

3.5 Implicit Queries

in the previous example, the assistant automatically queried its objectbase to locate procedure q.
When the environment performs a query on its own, rather than in response to a user command,
we call this an implicit query. Implicit queries are necessary to determine whether the precon-
ditions of rules and hints are satisfied and to find the next rules to be applied in forward and
backward chaining.

Another application is 1o anticipate the postconditions of activities, enabling the environment to
warn the user when an action is likely to lead to adverse results. Consider again the two rules
shown in Figure 5. Through forward chaining, changing a component will lead to semantic
analysis, which may result in errors. When a user invokes the editor on a particular component,
the environment anticipates this forward chaining and notes the possible “errors(component)”
postcondition. This causes it to perform an implicit query to determine likely causes of the errors.

reserved (module, userid)

{ change component )
notanalyzed (component) and notcompiled(module) ;

notanalyzed (component) ;
{ analyze component }

analyzed (component) ;

errozs (component) ;

Figure 5: Change and Analyze Rules

The intelligent assistant cannot guess what modifications the user will make and how these will
affect other components. However, it can take advantage of the “used-by" attribute to determine
those components most likely to be affected. Both the "used-by” attribute and its inverse (“uses”)
are listed in the objectbase among the potential side effects of the editor tool. The environment
informs the user of potential sources of semantic inconsistencies by presenting the list of com-
ponents given by the "used-by" attribute of the component argument to the editor. The user can
take this information into account and choose whether or not 1o abort the “change component™
command.

A further application of implicit queries was implied in Figure 2. A user gave the “change
component” command, and backward chaining led the assistant to query the objectbase to deter-
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mine whether all the modules affected by the proposed change were reserved by this user. If not,
the environment would attempt to reserve all the necessary modules. However, this cannot
succeed i some of these modules are reserved by other users. In this circumstance, the assis-
tant presents the resuls of its implicit queries to the user to explain why the requested activity is
not permitted.

3.6 Summary

The main points of our architecture for modeling the software development process are as fol-
fows.

+ Rules define the preconditions that must be satisfied before a tool can be applied
and the alternative postconditions of each tool.

¢ Hints define the preconditions that must be satisfied before a tool can be applied by
the environment; unlike rules, hints do not affect the activities of human users.

o Two metarules define forward chaining from the postconditions of completed ac-
tivities to the preconditions of other tools and backward chaining from the precon-
ditions of desired activities to the postconditions of other tools.

« Tools may have side effects that cannot be expressed directly as postconditions, but
these are nevertheless considered with respect to forward and backward chaining.

o The environment performs implicit queries to determine the attributes of software
objects and the potential side etfects of tools.

e Strategies group rules and hints appropriate for particular users and for particular
phases of software development and maintenance. Our third metarule enables the
intelligent assistant to consider these strategies during forward and backward chain-
ing.

4 implementation

We are implementing our intelligent assistant by reimplementing the internal mechanisms of
SMILE. The advantages of starting with SMILE are (1) we can implement in place, retaining at all
times a more-or-less working environment; (2) we have continued to use much of the previous
SMILE code, most notably its disaster recovery mechanisms — approximately 30% of SMILE’s
source code protects against internal failures and supports recovery from external failures (disk
full, system crashes, abort signals, etc.); and (3) we can continue to support the many systems,
including SMILE, that have been developed and maintained using SMILE.

We are cumrently replacing SMILE's hardcoded knowledge about the software development
process with the rules, hints and strategies of our model. The preconditions and postconditions
of rules are translated into C routines that perform the corresponding queries and changes to the
objectbase. The metarules are currently hardcoded. For example, forward chaining is performed
by hashing on the actual postconditions of the most recently completed activity to find rules with
potentially matching preconditions, which are then checked by the procedures that implement the
preconditions.
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We have 80 far retained SMILE's original objectbase, which is mapped onto the Unix file system,
but we are currently designing a more flexible mapping that will support an extensible objectbase.
We expect 1o complete this design and its implementation within three months. We have also
retained the same user interface and tools, but expect to later replace the user interface to take
advantage of bimapped displays.

5 Conclusions

Our general architecture for intelligent assistance consists of an objectbase and a model of the
software development process. The advantage of an objectbase is it permits the assistant to
present a fileless environment’ to ks users, 80 the users are concermned only with the logical
entities associated with software development and not with the details of the underlying file sys-
tem and operating system. The advantages of a model of the software development process is
that it can automate bookkeeping chores and other simple development activities and can con-
strain the invocation of tools to maintain consistency among the software objects.

These notions have been promoted by other researchers as the fundamental basis for a program-
ming environment that understands what it does. The specific contribution of our research is the
formalization of opportunistic processing, including implick querying. Opportunistic processing is
made possible by rules that describe the preconditions and postconditions of software develop-
ment activities, metarules that permit the intefligent assistant to take advantage of these rules to
enable automatic processing, and strategies that guide the assistant’s application of the
metarules. The result is a significant improvement in the assistance that the environment can
provide for software development and maintenance by individuals as well as by teams of
programimers, managers and other staff.
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