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An Architecture for Intelligent Assistance

In Software Development

dolin IN-9for ir a engineeirng envronmntW that behaves as
an I consoats two key aspects, an objobase and a modl/,

of" w aftware dsvLs80 1pms,t posss. 4oI.sbs W adapted from othe research, butiourl TA a-
mdlIs untique I *ha Is consists Pimaril of wnse tho define the precondiin and multiple

potOnr I of g we development tools. Ustmnjiss define forward and backward chaidning
amn the rule. moa signlt conrbukitlon is qoodun~st procesing, whereby the

eewlonmm amam~lly prfors sftware devlopment activdss atsome time between when
their prcnhn4satisded and when their postoonditions are required. Further, model
defineOWS str1egse thtiuldle Ithe assistant i choosing an appropriat point for carrying ut each

In 1973, WlNWga 130 presented his dream of an IntUlige assistant for programmers tha
w outd unde stan what kt does: it would be based on an expici model of the programming world.
Winogirad dasb-e an Imaginary programming environment, A, that would assist programmers
by providing early ermo chdng, by anWering questions about the program and the interactions;
anmn progrs. Parts, by hNdlingtrivia programng problems, and by automating simple

AsthicItligence research has moved closer to achieving this dream by developing a
lam- dge-bsod approach to programming, which Includes relationships among program units,
both i the abstract and with respect to a particular target system. The Masterscope packtage of
klrisp 1273 and the Common~imp Frameworkc (CLF) [5) nmftain cross-referencing information to
answer queries About interactions among program units. Also. CL~s knowledgebase under-
stands the abstract relationships among program units. For example, CLF lnows' that a system

conist of modules and Individual software objet (functions, variables, etc.) and that objec
dasshave particuar properties, such as a mintainer ant whether it has been compled.

A knwidg-bae pgamming environment also includes the rules governing the software
development proess. For example, wide-spectrum languages such as V [231 and GINt [1I have
been augmentled with rules that aid the programmer In translating from higher- to lower-level
specifications and from specifications to executable code. CMS [131 provides a formal repesen-
tatlion of the software project model, time (for schedulInrg), and software development activities.
For example, Nf a 'capabilty' Is a desired feature of the target system, then it must be realized by
a 'component' of the system; a 'task' must be defined to specify who Is in charge of the com-
ponent and when It is due. Genesis's Activity Manager (191 provides similar facilities.

'The --c!rd p serIs i tols pMWe was conduclmd while Dr. Kaisar was a Vising Conputer scimntist at the



WNIe work in A was progressing. researchers In traditional software were addressing their ver-

slonof WbxWiga dream. Tools were developed that automated certain aspects of the program-

afgpro For exanple, Make [8] automatically rededves an executable system when part of

t souce code changes. SCCS [22] requires programmers to reserve modules for change, thus

enlung orderly software evolution. RCS [281 supports multiple versions of software objects and

manages separe ines of development.

Colecftn of tools were Integrated Into Interactive programming environments that support a

p l progranning language. The Synthesizer [261 combines language-oriented editing that

prevents syntactic errors with Immediate feedback about static semantic errors; it also permits

programmers to interleave execution and debugging with editing. The Gandalf Prototype

[16 added a module Interconnection language with Incremental, intermodule consistency check-

ing to a C pmgramming environment similar to the Synthesizer.

Unkkmately, the knowledge-based approach and the tools approach have progressed more-or-

ls independently. The Indhvdual tools Inorporate a small bit of knowledge about a particular

programmng problem, but this knowledge cannot be augmented. The programming environ-

ments are hardooded with a particular view of the software development process that defines the

Iteraction between the programmers and the target system, but this knowledge is not available

to the users of the environment. The knowledge-based environments are much more general,

but represent only a fraction of human expertise about software development and maintenance.

Working within the tools approach, the members of the Gandall project (Including the authors)

developed a distributed, multi-user software engineering environment called SMILE [24, 7], which

is relatively close to achieving Intelligent assistance. SMILE presents a 'fileless environment' to its

users, answers queries, and automatically invokes various tools. However, SMILE's knowledge of

software objects and the programming process is hardcoded into the environment.

Our experience with SMILE provided Insights Into the development of practical environments and

convinced us that a generalization of SMLE's Internal architecture would aid In developing an

i~ ealgent assistani for software development and maintenance. Our architecture for Intelligent

assistance comines tools with knowledge. From the tools approach, we gain the years of ex-

perience of other computer scientists building and using particular tools and environments. From

the knowledge-based approach, we gain a suitable structure for choosing among tools and

automating the invocation of tools. Our architecture defines a basis for intelligent assistance that

consists of two key aspects: an objectbase and a model of the software development process.

The objectbase maintains all software objects, including tools, and provides the environment with

insight into the various classes of objects and the relationships among objects. For example, one

object is a component of another, and a particular object may be applied to another object to
produce a third.

The model Imposes a structure on programming activities. It consists of an extensible collection

of rubs that specify the particular conditions that must exist for particular tools to be applied to
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paricar software objects. Metarules permit the environment to understand the rules and sup-

port opporlunistlc procesing, where the environment performs activities when t knows the
resais of these activities will soon be required by its users. Opportunistic processing is the

priwy focus of this paper.

In Oil paper, we explain our architecture and how it meets certain fundamental requirements for
o i a software engineering environment that understands what it does. Section 2

presents the basis for Intelligent assistance defined by our architecture. Section 3 descnbes how

an Intellgent assistant built on this framework can perform software development activities
mutomatcal to provide Inteligent assistance to its users. Section 4 briefly describes our im-

plementation.

2 A Basis for Intelligent Assistance

An Intelligent assistant should understand what t is doing [301. Most software tools are "moronic

ssstats" that know what they are doing, but do not understand the purpose of the objects they
manipulate or how their tasks fit Into the software development process. In other words, they
may know the how' but not the 'why'.

For example, Make has a simplistic world model consisting of files and command lines. A

'makefile' defines dependencies among files and gives the command lnes necessary for restor-
ing consistency among dependent fleas. Make's notion of consistency is based on files and time:
If the timestamp of an Input file is later than the timestamp of an output file, then the Indicated

command lie should be passed to the Unixm shell. Make is used widely for generating a new
executable version of a system after source files have been modified.

However, Make's %nowledge' is primitive. Its objectbase consists of files that have a single
attribute, their timestanip. Make knows nothing about applying tools to files: it just handles com-

mand lies as indivisible units. Make does not understand source files vs. object files, modules

vs, systems, programmers or programming.

To give Make this knowledge we could define a notion of an object, which belongs to a class,

such as 'system' or 'module'. Each class would define the attrbtes, or properties, of its objects.

A 'module object code' object might have a 'history' attribute describing Its generation and a
'derivation of' attribute pointing to the object representing the corresponding source code.

We could then define tules that model the part of the software development process relevant to

Make. One rule might be that a 'programmer' object can modify a 'module' object; another rule

might state that after such a modification, the 'module' object is no longer consistent with its
'derivation' attribute and there is an obligation to restore this consistency. A third rule might state

that a precondition for a 'programmer' to test a 'system' is that all 'module object code' objects

that are components of the corresponding 'executable system' must be consistent with their

'Vodule'.
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Given this knowledge. Make could be considered to be relatively more Intelligent. Make would be

easier to Integrate with other tools that support configuration management, version control, task

management, etc., assuming these tools had similar knowledge of software objects and their

rols I the development process.

We believe that an objectbase and a model of the development process are prerequisites to

Intelligent assistance. An assistant cannot understand why It performs particular activities unless

k knows

* the properties of the objects t manipulates,

* the capabilities of certain objects (programmers and tools) to manipulate other ob-
Ject.,

* the preconditions required by each activity,

* the posiconditions of each activity.
Therefore, our architecture specifies a general objectbase and an extensible collection of rules

describing the preconditions and postonditons of activities, as well as hints and strategies that

determine the degree of the environment's contributions. We briefly describe the objectbase

here; the rules, hints and strategies are the topic of the following section.

Objectbase

We considered several possible forms for our objectbase. One possibility was the entity-relation-

attribute model proposed for Genesis [20]. However, weaknesses of relational databases make
them inadequate for software engineering environments [15]. To maximize flexibility, we chose

an objectbase similar to those of object-oriented programming languages, such as Loops [25]. In

particular, we adopted their support for multiple Inheritance and active values. Unlike most such

languages, however, we require a 'persistent' objectbase, one that retains its state across invoca-

tions of the environment. The same concepts are found In the objectbases supported by other

knowledge-based environments, such as AP3 [2] and RefineTM [23].

In our objectbase, each object is an Instance of a class, which defines certain attributes of each

object arrJ Inherits other attributes from its superclass(es). Some attributes define the relation-

ships among objects; others trigger activities when accessed and/or updated. The activities ap-

plicable to a class are defined as methods for the class.

This enables an Intelligent assistant to expose its users only to the logical structure of the target

software system. The environment consists of a set of typed, Interconnected software objects
representing the system and its history. The Interconnections among software objects represent

the logical structure of the system. Object types Include module, procedure, type, design descrip-

tion, user task (or development step), user manual, etc. Typing permits the assistant to provide
an object-oriented user Interface similar to the Smaltalk-8OTm environment [11], where the en-

vironment makes available to each user only those commands that are relevant to the object

under consideration.

4
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3 Opportunistic Processing

The objecbase also maintains the rules that model the software development process. These

rules provide the meta-knowledge required for an environment to apply tools automatically. We

call this behavior opportunistic processing, which off loads simple activities onto the intelligent

assistant--menial activities, such as invoking the compiler and recording any errors found during

complation. This approach contrasts with some Intelligent assistance systems, such as the
Programmer's Apprentice (KBEmacs) [291 and CHI (previously PSI) [23], which focus on the
separate problem of automatic programming.

3.1 Rules

We represent our model as a collection of rules similar to the production rules of Ops5 [4] in that
each rule has a condition and action. When the condition Is true, the action may be executed.

Our ules differ from production rules in that the action is divided Into two parts, an activity and a

postoondition. Because our rules have postconditions, we refer to the original conditions as

preconditions.

The activity part of a rule represents an integral software development task. For example,

"compile module" is one activity and "change component" is another (a 'component' is a facility
defined within a module, such as a procedure, a variable, a type, etc.). The specific editing

commands applied during the course of the "change component" activity are not considered

activities. "Fix bug' is not an activity, since it involves many tasks, perhaps Involving several

users. Thus our notion of an activity represents a middle-ground granularity.

Each activity is associated in the objectbase with a tool that performs the activity. One attribute of

each tool is whether it can be Invoked by the environment without human Intervention. For

example, the "compile module" activity is associated with the compiler, which can be applied by
the Intelligent assistant; the "edit component" activity is associated with a text editor (or a syntax-
directed editor), which requires human Interaction.

The precondition part of a rule - a boolean expression - must be true before an activity can be

performed. The operands of a precondition Include software objects and the attributes of

software objects. For example, "notcompiled(module)" might be an appropriate precondition for

the "compile module" activity. Another precondition for "compile module" would be "for all com-
ponents c such that in(module, component c): analyzed(component c)", where "analyzed(c)" is

true only if a static semantic analysis of component c finds no errors. An activity may have

multiple preconditions that must be satisfied.

A postcondition becomes true when an activity is completed. Both preconditions and postcon-

ditions are written as well-formed formulas (wffs) In the first order predicate calculus. Our rules
are based on Hoare's assertions [12], where a programming language construct Is associated

with ts preconditions and postconditions; If the preconditions are true before the language con-

struct Is executed, then the postconditions will be true afterwards.



However. a programming activity may have multiple postconditions, exactly one of which is true

after the activity terminates. Which of the various possibilities is true can be determined only by
invoking the corresponding tool. For example, two postconditons for the "compile module" ac-

tivity migit be "complied(module)" and "errors(module)". Here we follow the extension of Hoare's
assertions proposed by Perry [181, where there must be multiple postconditions to represent the

exceptional results of executing a procedure. This notion of postconditions distinguishes our
architecture from CLF, Genesis' Activity Manager, and other expert systems that rely on

conditionaction rules. The most Important advantages are that we can separate an activity from

its results and therefore consider several aternative results within our model.

Two example rules are given In Figure 3.1. The first states the preconditions and the two

postconditlons for the "compile module" activity. The preconditions are given first, followed by the
activity (within braces), followed by the postconditons. The alternative postconditions are
separated by semicolons.

uotco.p led (module) and
for all comonents c such that in(module, component c):

analyzed(component c);
I colPe module )

co.WPled (module);
errors (module) ;

equals (module, focus (userid)) and Ln (module, component);
( edit ompoOnent )

notalyzed (comPonent) and notcompLled (module);

Figure 1: Compile Rule and Edit Rule

3.2 Meta Rules

Our architecture supports the definition of metarules that guide the Intelligent assistant's use of

rules. One metarule states that if the preconditions of an activity are satisfied, and the activity

can be performed by the assistant, then the assistant may perform the activity automatically.
Consider the first rule in Figure 3.1. The metarule Interprets this rule to mean that the assistant

may compile any modules M such that all the components of M have been analyzed but M has

not been compiled.

In this example, "notcompiled(module)" is one of the preconditions to the "compile module" ac-

tity; "errors(module)" is included as one of the possible postconditions. If the previous compila-

tion failed, "errors(module)" will be true. The "compile module" activity cannot be performed

when "errors(module)" is true, because its preconditions cannot be satisfied. If a user then edits

a component, perhaps to fix the error, the second rule of Figure 3.1 states that

"notcompiled(module)" will be set to true and the metarule permits compilation.

Importantly, this metarule states that the intelligent assistant may perform an activity when

6



preconditions are satisfied; it does not state that the assistant must perform the activity as soon

as the preconditions are true, or at any time thereafter. However, the Intelligent assistant may
apply the tool and use forward chaining to determine additional activities whose preconditions are

satisfied by the postconditions of the first activity. Therefore, we call this metarule the 'forward

chaining metarule'.

Forward chaining supports behavior similar to language-oriented editors, such as the Synthesizer

and Gnome [9]. When the user makes a subtree replacement in the abstract syntax tree
representing the program, the editor automatically performs several actions. In the case of

editors generated from attribute grammars [21], the editor automatically re-evaluates the values

of attributes whose values may have changed. These attributes might represent the content of
the symbol table and the object code for the program. Other editor generators automatically

invoke action routines for type checking or code generation for modified program parts [6].

A second metarule states that if a user invokes a tool with unsatisfied preconditions, the intel-

ligent assistant should use backward chaining to find activities It can perform whrise postcon-
ditions might satisfy the preconditions of the activity requested by the user. In this case, the

metaruile states that the Intelligent assistant must exhibit this behavior. We call this metarule the

'backward chaining metarule'.

Backward chaining supports behavior similar to Make, DSEETM [14], Toolpack [17] and other

software engineering tools In which a user may request regeneration of an executable system
after changes have been made to its source code. The environment uses dependency infor-
mation previously supplied by the software development team to determine which source files to

recompile.

Sometimes our intelligent assistant attempts backwards chaining, but finds that the preconditions
cannot be satisfied; in this case, the user is informed of the problem. The intelligent assistant is

not expected to, for example, correct source code so that it will compile successfully. For ex-

ample, our Intelligent assistant might support a large team where multiple users should not
change the same module simultaneously. Here, each user must reserve a module before chang-

Ing it. The preconditions and postonditions for the "reserve module" activity are stated in the first

rule shown In Figure 2 ("saved(module)" is true when the module has been saved by the version

control tool), and the second rule states that the "change component" activity cannot be per-

formed unless the module containing the component is reserved.

The "change component" activity permits the user to modify the specification of a component
("edit component" permits the user to modify only the body). The third rule of Figure 2 states that

the containing module must be reserved along with any other modules that depend on it (c and k
distinguish multiple objects of the same type). The backward-chaining metarule enables our
intelligent assistant to automatically reserve modules whose components may have to be

modified to restore consistency with the changed component. The metarule also prevents the

user from modifying the specification of a component when dependent modules cannot be

reserved (according to the first rule).
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not meeved (module) and saved (module);
( reserve module )

reserved (module, userid);

reserved (moduile, userLd)
( change Component)

notanalyzed (component) and notcompiled (module);

for all components kc such that in (module, omponent kc)
and uses (component kc, component c):

reserved (module, uaer±d);
( chang component a )

Figure 2: Change Rules and Reserve Rule

3.3 Strategies and Hints

We chose the name 'opportunistic processing' for these chores because the assistant may per-
form an activity as the opportunity arises any time after Its preconditions are satisfied and before
another activity whose preconditions depend on its postconditions. Rules may be tagged so their
activities are performed Imimediately after their preconditions are satisfied (iLe., forwardf chaining
applies) while other activities are performed only when their postconditlons are required (forward
chaining does not apply). Since we need to choose other points on this spectrum, we have
Included hints and strategies In our model to aid the Intelligent assistant In making decisions.

AhMWIts simlar to arule butwithout postconditions. The preconditions of ahint are used to
guide the liteligert assistant In choosing when to apply a tool whose other preconditions are
satisfied. Consider again the first rule from Figure 3.1. Suppose we do not ward the assistant to
compie a module, even though the preconditions are satisfied, while a user with modification
rigft Is browsing through the module: The user may decide to change some components of the
module, and the compilation will have been wasted. So we use a hint. Figure 3, giving this
precondition for the "compile modulew activity (angle brackets are used for parentheses). When
the assistant folows a strategy Including this hint, compilation Is delayed until the user changes to
another module.

not resered (module) or
< zesrvd(module, usezid) and

not equals (module, focus (usexid)) >
[ compile module ]

Figure 3: Compile Hint

Since we want the human user to be able to Invoke the compiler without changing to another
moduile, we give this precondition to *compile mroduiem in a hint, rather than as part of a rule.

8



Hints apply only to the opportunistic processing of the Intelligent assistant, not to activities In-

lted by a human user. In other words, hints are considered during forward chaining and Ig-

nored during backward chaining.

A itrategy consists of a colection of hints and rules, which apply only when the strategy is In

force. The third (and currently final) metarule from our model enables the iW~eligent assistant to

employ strategies by cofming its rules and hints with the rules normally considered. Zero or

more strategies may be employed at the same time. When this results in more than one rule for

the samen activity, all their preconditions must be satisfied; only one set of postconditions is per-
nmtd.

Currently, our assistant cannot choose its own strategies; the knowledge to support this capability

requires additional research on user modeling. Instead, each user will select appropriate

strategies by Informing the environment that he Is, for example, a manager vs. a programmer,
developing a new system vs. maintaining an old system, or making major changes vs. a minor

revision. A strategy whose rules and hints result in automatically performing type checking im-

mediately after each comnponent is edited would be appropriate for a minor revision, but not for a

large-scale changes involving many Interrelated components.

3.4 Activities a Side-Effects

Often a tool performs additional activities as side effects. For example, the analysis tool invoked

for the "analyze componenr" activity may change the values of several attrbutes of components.
For the purposes of our rules, setting the value of an attribute is considered an activity, resulting

in a silation whom one action of the tllge assistant is ernbedded inside another rather than

being a consequence of forward or backward chaining. This case demonstrates a limitation of

our rules: Secondary actions whose arguments cannot be determined in the general case cannot

be expressed easy as postcondltions. Instead, potential side effects are indicated by attributes

of the fool

In such cases, the secondary activities are often described by their own rules, and these must be

considered for further processing. For example, some rules related to the "uses" attribute of a
component are given In Figure 4. The "uses" attribute lists the components that the component
depends on.

The first rie gives the obvious preconditions and postconditlons for the "analyze component"

activity. The second rule states a component c cannot use another component k unless k Is In

the ane module or Is Imported Into the module. The third rule means that a component cannot

be Ionoed by a module M unless It I exported by another module N. The fourth rule states that

a component cannot be exported by a module unless It Is In that module.

What happens when the analysis tool finds that procedure p (a component) calls procedure q

(another component) and tries to set the "uses" attribute of procedure p to Include procedure q?
N q Is in the same module as p, there s no problem; the attribute Is set and the analysis con-

9



alyed (Cooent);
( analyse component )

analyzed (mclonent);
rrowa (comqonent);

In (module, oponent a) and
< in(module, omponent k) oz importa(module, component k) >;
( omonent a uses component k

use (component a, component k);

exports (module N, component) and
not equal (module N, module N);
( Import component )

Impost (module M, component);

In (module, component) ;
( ezport component )

eports (module, component);

Figure 4: Analyze Rule. Uses Rule and Import/Export Rules

*Km. I q Is not In the same module, the Intelligent assistant checks whether it Is Imported. In

the case where q Is not already Imported, the assistant notes that "imports(module, component)"

Is a polconditlon of the import component" activity (third rule) and realizes it can perform the

knmprt componen" activity without human Intervention. It considers the preconditions of this

activity. The assistant queries Its objectbase to find the module that contains q. If q Is already

expoId from that module, the assistant performs the "import component" activity. If not, the

backwmid-chaing metarule permits the assistant to follow the preconditions of the activity given

in the Sourth rule of Figure 4. The assistant can add q to the exports of its module, then actually

Import q nto the original module, and then permit the analysis tool to set the "uses" attribute of p.

In the above scenario, we Ignored the possibility that distinct procedures named q might be found

In more than one module. Sometimes language-specfic typing Information can be used to nar-

row down the possUlties, but generally the intelligent assistant must interrupt the human user to

explain Its dilemma and to ask which q is Intended. The assistant can then proceed as descnbed

in the previous paragraph.

If no component named q Is In the objectbase, the assistant considers the "add component q"

ctivity, whose postconditon is the existence of q. A sufficiently Intelligent assistant could carry

out this activity by creating a stub for the procedure within the module where the use occurs; the

Gnome programming environment for Karel does this automatically [101. If this is not feasible, an

detve would be to ask the user to create the procedure (or stub) before continuing the

analy"s but this would be Intrusive; a preferred altemative is to Inform the analysis tool of the
proble and prevent it from performing the "procedure p uses procedure q" activity. This causes

the analysis tool to terminate unsuccessfully, generating the "errors(p)" predicate among its
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In this discussion, "import component" and "export component" are among the activities that can

be performed by the intelligent assistant without human Intervention, permitting the assistant to

carry out the repairs Illustrated by the example. An alternative strategy would require the assis-

tart to take the Imports and exports as given. This might be appropriate for languages, such as
AdaT, that Include their own module constructs, where reference to an external component with-
out the appropriate "with" clause should be detected as an error.

3.5 Implicit Queries

In the previous example, the assistant automatically queried its objectbase to locate procedure q.

When the environment performs a query on its own, rather than In response to a user command,

we call this an i/Tcit query Implicit queries are necessary to determine whether the precon-
ditions of rules and hints are satisfed and to find the next rules to be applied In forward and
backward chaining.

Another application is to anticipate the postconditions of activities, enabling the environment to
warn the user when an action Is likely to lead to adverse results. Consider again the two rules

shown in Figure 5. Through forward chaining, changing a component will lead to semantic

analysis, which may result In errors. When a user Invokes the editor on a particular component,
the environment anticipates this forward chaining and notes the possible "errors(component)"
postcondition. This causes t to perform an implicit query to determine likely causes of the errors.

zeae ved.(module, uae:Jd)
J dhange coqonent )

notanalyzed(component) and notcoqled (module);

notanalyed (c plonent) ;
( analyze comonent

analyzed (component);
e=zos (coponent):

Figure 5: Change and Analyze Rules

The Intelligent assistant cannot guess what modifications the user will make and how these will
affect other components. However, it can take advantage of the "used-by" attribute to determine

those components most likely to be affected. Both the "used-by" attribute and its Inverse (*uses")
are listed In the objectbase among the potential side effects of the editor tool. The environment

Informs the user of potential sources of semantic inconsistencies by presenting the list of com-

ponents given by the "used-by" attribute of the component argument to the editor. The user can
take this Information Into account and choose whether or not to abort the "change component"

command.

A further application of Implicit queries was Implied In Figure 2. A user gave the "change

componenr command, and backward chaining led the assistant to query the objectbase to deter-

11



mine whether all the modules affected by the proposed change were reserved by this user. If not,

the environment would attempt to reserve all the necessary modules. However, this cannot
succeed I some of these mocules are reserved by other users. In this circumstance, the assis-

tanl presents the results of Its implicit queries to the user to explain why the requested activity is

no permitted.

3.6 Summary

The main points of our architecture for modeling the software development process are as fol-
lows.

" Rules define the preconditions that must be satisfied before a tool can be applied
and the alternative postconditions of each tool.

" Hints define the preconditions that must be satisfied before a tool can be applied by
the environment; unlike rules, hints do not affect the activities of human users.

" Two metarules define forward chaining from the postconditions of completed ac-
tivities to the preconditions of other tools and backward chaining from the precon-
ditions of desired activities to the postconditions of other tools.

" Tools may have side effects that cannot be expressed directly as postconditions, but
these are nevertheless considered with respect to forward and backward chaining.

" The environment performs Implicit queries to determine the attributes of software
objects and the potential side effects of tools.

* Strategies group rules and hints appropriate for particular users and for particular
phases of software development and maintenance. Our third metanle enables the
Intelligent assistant to consider these strategies during forward and backward chain-

3 ing.

4 Implementation

We are imlementing our intelligent assistant by reimplementing the internal mechanisms of

SMILE. The advantages of starting with SMILE are (1) we can implement in place, retaining at all
times a more-or-less working environment; (2) we have continued to use much of the previous
SMLE code, most notably its disaster recovery mechanisms - approximately 30% of SMILE'S
source code protects against Internal failures and supports recovery from external failures (disk
ful, system crashes, abort signals, etc.); and (3) we can continue to support the many systems,

including SMLE, that have been developed and maintained using SMILE.

We are currently replacing SMILE'S hardcoded knowledge about the software development
process with the rules, hints and strategies of our model. The preconditions and postconditions

of rules are translated Into C routines that perform the corresponding queries and changes to the

objibase. The metarules are currently hardcoded. For example, forward chaining is performed
by hashing on the actual postconditions of the most recently completed activity to find rules with
potentially matching preconditions, which are then checked by the procedures that implement the
plon .

12



We have so far retained SMiLE's original objectbase, which is mapped onto the Unix file system,
but we are currently designing a more flexible mapping that will support an extensible objectbase.
We expect to complete this design and its riplementation within three months. We have also
retained the same user interface and tools, but expect to later replace the user interface to take
advantage of bTmappe displays.

5 Conclusions

Our general architecture for inteligent assistance consists of an objectbe and a model of the
software developbent process. The advantage of an objectbase is it permits the assistant to
present a lileless environment' to its users, so the users are concemed only with the logical
entities associated with software development and not with the details of the underlying file sys-
tem and operating system. The advantages of a model of the software development process is
that it can automate bookkeeping chores and other simple development activities and can con-
strain the invocation of tools to maintain consistency among the software objects.

These notions have been promoted by other researchers as the fundamental basis for a program-
ming environrment that understands what t does. The specific contribution of our research is the
formalization of opportunistic pmcessing, Including implict querying. Opportunistic processing is
made possible by rules that describe the preconditions and postconditlons of software develop-
ment activities, metarules that permit the Intelligent assistant to take advantage of these rules to
enable automatic processing, and strategies that guide the assistant's application of the
metarules. The result is a significant improvement In the assistance that the environment can
provide for software development and maintenance by Individuals as well as by teams of
programmers, managers and other staff.
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