
AN ARCHITECTURE FOR NETWORK PATH SELECTION

A Thesis

Presented to

The Academic Faculty

by

Murtaza Motiwala

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy in the

College of Computing

Georgia Institute of Technology

May 2012

AN ARCHITECTURE FOR NETWORK PATH SELECTION

Approved by:

Dr. Nick Feamster, Advisor

College of Computing

Georgia Institute of Technology

Dr. Karsten Schwan

College of Computing

Georgia Institute of Technology

Dr. Mostafa Ammar

College of Computing

Georgia Institute of Technology

Dr. Dave Andersen

Computer Science Department

Carnegie Mellon University

Dr. Ellen Zegura

College of Computing

Georgia Institute of Technology

Date Approved: 19 December 2011

To my parents Zarina and Mohsin,

and to my brother Mustafa,

for their belief and encouragement.

iii

ACKNOWLEDGEMENTS

Research is rarely done alone, and this thesis is a product of interaction with a number of

people I have had the fortune to be part of my life. They have all had direct or indirect

contributions to this final product and I wish to use this opportunity to acknowledge them.

My advisor, Prof. Nick Feamster has had the most influence on my research work

and there would be no exaggeration in saying that I would not have had much success in

grad school if it was not for Nick’s constant guidance and presence in my career. Nick’s

motivation to push the boundaries and challenge conventional thinking have been instru-

mental in driving my research. His constant availability was something that really helped

me in my initial years and I am extremely grateful to Nick for keeping his faith even during

unproductive periods.

I would also like to thank the thesis committee. The insightful comments and feedback

helped me to improve the thesis. I was extremely lucky to get to work with Prof. Santosh

Vempala during my PhD. His amazing enthusiasm and encouragement were extremely

useful during the initial years of my PhD. Anukool Lakhina hosted me at his startup in

India, and helped me develop the cost model framework as part of my thesis, for which I

am grateful. I have also had the opportunity to learn and seek advice from Prof. Jennifer

Rexford, which has been very beneficial. I would also like to thank Vijay Gill and Ed

Crabbe who hosted me at Google for my internship and gave me the opportunity to see

how networking is deployed in the real-world.

Over the years, I have had the fortune to meet and become friends with a number of ex-

tremely bright and hard-working graduate students. My colleagues in the Networking Lab

have been my family away from home. Among them Amogh, Partha, Ahmed, Srikanth,

Sam, Hyojoon, Robert, Illias, Saiedeh, Samantha have tolerated me over the years and I

iv

am thankful for their company. Valas, apart from being my labmate, my housemate, has

also been a very close friend. I have relied on his support to help me through the ups and

downs in graduate school. Also friends outside the lab, Binh, Rohan, Qingyang, Vandana

who have made me feel at home and helped me escape when networking research got a bit

too much. Also, special mention to Mukarram, who has been a close friend and mentor

throughout my PhD years. He has always been available when I needed advice.

I would like to acknowledge Mohammed, my friend since school, and I am very grateful

that he followed me to US. He has been a pillar of support and encouragement. Last

but not the least, I would like to acknowledge and dedicate this thesis to my family. My

parents, Zarina and Mohsin, who have cherished every step of my academic life. My

brother, Mustafa, for always being proud of my achievements. My entire extended family

who have always believed in my abilities. I have been truly fortunate to have such a loving

and supporting family.

v

BIBLIOGRAPHIC NOTES

Chapters 2 contains material from our paper [57]. Chapter 3 contains material from our

papers [62, 60, 61]. Chapter 4 contains material from the implementation and evaluation

sections of our paper [57]. Chapter 5 contains material from our paper [59] and additional

material on a cost-based path selection architecture. The implementations described in the

dissertation are publicly available at [3].

vi

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . xi

LIST OF FIGURES . xii

SUMMARY . xiv

I INTRODUCTION . 1

1.1 Thesis Contributions . 5

1.2 Roadmap . 5

II DESIGN OF AN INTERFACE FOR NETWORK PATH SELECTION . . . 7

2.1 Introduction . 7

2.2 Background and Motivation . 9

2.2.1 Path Selection Mechanisms . 10

2.2.2 Diverse Application Needs . 12

2.3 Designing the Narrow Waist . 14

2.3.1 Path Bits Design . 14

2.3.2 Design Properties . 17

2.4 Summary . 19

III CREATING NETWORK PATHS: PATH SPLICING 21

3.1 Introduction . 21

3.2 Design Goals . 25

3.2.1 High Reliability . 25

3.2.2 Fast Recovery . 27

3.2.3 Low Stretch . 28

3.2.4 Control to End Systems . 29

3.3 Related Work . 29

3.4 Path Splicing: Main Idea . 31

vii

3.5 Intradomain Path Splicing . 33

3.5.1 Control Plane . 33

3.5.2 Data Plane . 35

3.5.3 Deployment: Path splicing in 4D 39

3.5.4 Optimizations . 39

3.6 Interdomain Path Splicing . 40

3.6.1 Control Plane . 41

3.6.2 Data Plane . 42

3.6.3 Loop Prevention and Detection 46

3.6.4 AS-level forwarding consistency 48

3.7 Evaluation . 48

3.7.1 High Reliability . 48

3.7.2 Fast Recovery . 53

3.7.3 High Novelty, Low Stretch . 56

3.7.4 Comparison to Routing Deflections 59

3.7.5 Incremental Deployability . 60

3.7.6 Infrequent (and avoidable) Loops 61

3.7.7 Minimal Disruption to Traffic . 62

3.8 Proofs . 64

3.8.1 Reliability Analysis . 64

3.8.2 Stretch Analysis . 65

3.9 Discussion and Open Issues . 66

3.10 Summary . 68

IV NETWORK AND END SYSTEMS SUPPORT FOR PATH BITS 70

4.1 Introduction . 70

4.2 Supporting Path Bits in the Network . 71

4.2.1 Network Support . 72

4.2.2 Network Implementations . 73

4.3 End-system Support . 82

viii

4.3.1 Software Interface Design Decisions 82

4.3.2 Implementation . 84

4.3.3 Path Monitoring and Selection 86

4.4 Does “Blind” Path Selection Work? . 91

4.4.1 How many trials to find a path? 91

4.4.2 Which monitoring works well? 94

4.4.3 Can path bits increase throughput? 100

4.4.4 Can path bits find wide-area paths? 102

4.5 Summary . 103

V COST-BASED PATH SELECTION . 104

5.1 Introduction . 104

5.2 Network Traffic Cost: A Model . 107

5.2.1 Interconnect Costs . 107

5.2.2 Backhaul Costs . 108

5.2.3 Cost Model . 109

5.3 Applications of the Traffic Cost Model 113

5.3.1 Routing Decisions - Cost Optimization 113

5.3.2 Planning Decisions . 120

5.4 Evaluation . 122

5.4.1 Setup . 122

5.4.2 Shapley Value Computation . 124

5.4.3 Greedy Cost Reduction . 126

5.4.4 Peering Decisions . 128

5.5 Cost-based Path Selection . 132

5.5.1 Centralized Controller . 133

5.5.2 Feedback mechanism . 134

5.6 Related Work . 134

5.7 Discussion and Summary . 136

ix

VI CONCLUDING REMARKS . 138

6.1 Towards a Path Selection Architecture 138

6.2 Summary of Contributions . 139

6.3 Future Directions . 141

6.3.1 Narrow Waist in Datacenter Networks 141

6.3.2 Alternate slice generation schemes in path splicing 142

6.3.3 Comparison of multipath routing algorithms 143

REFERENCES . 144

x

LIST OF TABLES

2.1 Summary of mapping multipath protocols to path-bits interface. 13

3.1 Path splicing: Summary of results. 49

3.2 Sprint topology: Reliability for single node failures 51

4.1 Path characteristics of emulated paths on Emulab. 95

4.2 Round-trip latency from BGP poisoning experiment. 102

5.1 Interconnect Traffic Costs. 107

5.2 Notation for optimization problem formulation. 115

5.3 Egress points for traffic flows. 124

5.4 Paths with similar cost . 128

xi

LIST OF FIGURES

1.1 Outline of dissertation. 2

1.2 Alternate suggestion for reading this thesis 6

2.1 Path bits as a narrow-waist interface. 10

3.1 Motivation for path splicing. 23

3.2 Example for calculating novelty. 27

3.3 Example of a spliced path in a network. 34

3.4 Path splicing header format. 35

3.5 4D-Style deployment of path splicing. 38

3.6 Overview of interdomain path splicing. 43

3.7 Structure of splicing bits for intradomain and interdomain splicing. 45

3.8 Example of interdomain splicing causing forwarding loops. 46

3.9 Reliability of path splicing for the Sprint topology. 50

3.10 Reliability using a 2,500 node policy-annotated Internet AS graph. 52

3.11 Recovery using end-system recovery and Sprint topology. 54

3.12 Recovery using end-system recovery and a 2,500 node policy-annotated

Internet AS graph. 55

3.13 Recovery using network-based recovery and Sprint topology. 56

3.14 Stretch and novelty for degree-based perturbations of the paths in the Sprint

topology. 57

3.15 Comparison of recovery for splicing vs. routing deflections with stretch < 2. 58

3.16 Comparison of stretch for recovered paths for splicing vs. routing deflec-

tions. 59

3.17 Interdomain path splicing: Incremental deployment. 60

3.18 Effect of path splicing on traffic in the network (Abilene topology). 62

3.19 Effect of path splicing on traffic in the network (Sprint topology). 63

4.1 Path bits implementation of multipath routing schemes using Click. 74

4.2 Topology used for Emulab experiments using path bits. 74

4.3 Click implementation of path splicing. 75

xii

4.4 Click implementation of routing deflections. 77

4.5 Click implementation of ECMP++ . 78

4.6 Router pipeline for the NetFPGA implementation of path splicing. 81

4.7 Interaction of the end-system components for different types of monitoring. 84

4.8 Customized path monitoring mechanisms at the end system. 87

4.9 Number of trials for failure recovery: random v/s semantic. 92

4.10 Failure recovery using active monitoring. 96

4.11 Number of path switches and corresponding throughput using passive mon-

itoring. 97

4.12 Number of path switches and corresponding throughput using passive mon-

itoring (wide-area paths characteristics). 98

4.13 Number of path switches and corresponding throughput using transport

monitoring. 100

4.14 TCP throughput when using multiple paths simultaneously. 101

5.1 Classification of traffic costs for a flow f 110

5.2 Which PoP to egress traffic to a prefix from? 114

5.3 Which peer to send traffic on? . 114

5.4 Peering Location Decision. 120

5.5 Existing Peering Contracts. 120

5.6 Fractional cost savings when using greedy heuristic with capacity constraints.123

5.7 Co-effecient of variation for estimated shapley values. 125

5.8 Contribution of interconnect cost savings to the total cost savings. 127

5.9 CDF of savings from selecting a new PoP for an existing neighbor. 129

5.10 CDF of savings from depeering an existing peer. 130

5.11 CDF of savings from selecting a new peer. 131

5.12 Cost-based path selection framework . 133

xiii

SUMMARY

Traditional routing protocols select paths based on static link weights and converge

to new paths only when there is an outright reachability failure (such as a link or router fail-

ure). This design allows routing scale to hundreds of thousands of nodes, but it comes at

the cost of functionality: routing provides only simple, single path connectivity. Networked

applications in the wide-area, enterprise, and data center can all benefit from network pro-

tocols that allow traffic to be sent over multiple routes en route to a destination. This ability,

also called multipath routing, has other significant benefits over single-path routing, such

as more efficiently using network resources and recovering more quickly from network

disruptions.

This dissertation explores the design of an architecture for path selection in the network

and proposes a “narrow waist” interface for networks to expose choice in routing traffic

to end systems. Because most networks are also business entities, and are sensitive to

the cost of routing traffic in their network, this dissertation also develops a framework

for exposing paths based on their cost. For this purpose, this dissertation develops a cost

model for routing traffic in a network. In particular, this dissertation presents the following

contributions:

• Design of path bits, a “narrow waist” for multipath routing. Our work ties a large

number of multipath routing proposals by creating an interface (path bits) for decou-

pling the multipath routing protocols implemented by the network and end systems

(or other network elements) making a choice for path selection. Path bits permit

simple, scalable, and efficient implementations of multipath routing protocols in the

network that still provide enough expressiveness for end systems to select alternate

paths. We demonstrate that our interface is flexible and leads to efficient network

xiv

implementations by building prototype implementations on different hardware and

software platforms.

• Design of path splicing, a multipath routing scheme. We develop, path splicing, a

multipath routing technique, which uses random perturbations from the shortest path

to create exponentially large number of paths with only a linear increase in state in

a network. We also develop a simple interface to enable end systems to make path

selection decisions. We present various deployment paths for implementing path

splicing in both intradomain and interdomain routing on the Internet.

• Design of low cost path-selection framework for a network. Network operators

and end systems can have conflicting goals, where the network operators are con-

cerned with saving cost and reducing traffic uncertainty; and end systems favor bet-

ter performing paths. Exposing choice of routing in the network can thus, create

a tension between the network operators and the end systems. We propose a path-

selection framework where end systems make path selection decisions based on path

performance and networks expose paths to end systems based on their cost to the

network. This thesis presents a cost model for routing traffic in a network to enable

network operators to reason about “what-if” scenarios and routing traffic on their

network.

xv

CHAPTER I

INTRODUCTION

The Internet is composed of many Autonomous Systems (ASes) and the interconnections

among the ASes makes the interdomain topology. Border Gateway Protocol (BGP) [75]

is the interdomain routing protocol used to construct interdomain paths. Each AS has

forwarding devices or routers that route traffic. ASes typically use an intradomain routing

protocol like OSPF [63] or IS-IS [65] to construct intradomain routes.

Routing protocols compute paths to provide reachability. Traditional routing proto-

cols (both intradomain and interdomain) have been carefully designed to compute paths

without creating forwarding loops; routing protocols are designed to create a shortest path

forwarding tree for every destination. This simplicity has made routing scale to hundreds

of thousands of routers, but it also comes at a cost: there is no mechanism for selecting

alternate paths in the network, and the routing protocols only trigger the selection of a new

path when an outright failure of a link or network device occurs.

Applications that run at the edges of the network are agnostic about the routing proto-

cols that compute end-to-end paths. This decoupling has enabled both the rapid evolution

of diverse applications at the edge [89] and of different network technologies for building

complex networks. Unfortunately, this decoupling also has a cost: routing protocols lack

knowledge of the end-to-end performance of each path. Also, applications cannot request

an alternate path in case the current path does not fit its requirements.

Applications have different notions of availability that depend on a number of metrics

such as available bandwidth, packet loss, jitter, and latency. A network path that works for

a particular application could be completely unusable for some other application depend-

ing on their notions of availability. This distinction has become even more stark with the

1

Figure 1.1: Outline of dissertation: Interaction among the different components of the

path selection architecture.

proliferation of real-time applications like voice over IP, online multiplayer games (about

6% of the total Internet traffic in US in 2010 is real-time [47]). Because current routing

protocols have no knowledge of application performance the paths that they compute may

not be the best path for all applications using it.

Several studies have demonstrated that the default path on the Internet is often sub-

optimal [66]. Unfortunately, a link with a high loss rate (e.g., 5%) may not trigger path

reconvergence and traffic from a large number of source-destination pairs could potentially

be sharing that link. Many real-time applications or even bulk-transfer applications would

find the path completely or partially unusable. This path could still be usable by certain

other applications (e.g., e-mail or web traffic). Thus, giving applications more control over

the path their traffic takes in the network is beneficial [9, 85, 41].

Unfortunately, providing applications (or end systems) the ability to select paths in the

network may cause problems, since end systems and network operators sometimes have

conflicting goals. Applications are concerned with using the best available network path

for carrying their traffic, whereas network operators are concerned with reducing the cost of

2

carrying traffic in the network [37]. Providing applications with control over path selection

can conflict with the network operator’s goals of routing traffic on paths which are low cost.

Thus, there is a tension between providing applications ability to select paths and the need

for the network operators to control their traffic costs that needs to be resolved [24].

This dissertation develops a network path selection architecture, which uses a semantic-

free interface, as shown in Figure 1.1, with the following division of labor.

• Networks provide a choice of paths

Routing protocols must create and maintain a large number of diverse paths in the

network. There are many proposals for multipath routing protocols [99, 96, 52], and

some like ECMP (Equal Cost Multi-Path) [44] are widely deployed. Unfortunately, a

number of such proposals suffer from not being able to provide a large choice of paths

for a small increase in resulting state in the routers. We develop path splicing [62, 60],

a multipath routing primitive that uses random perturbations from the default shortest

path to create an exponential number of paths in the network. The alternate paths

have several desirable properties e.g., their path lengths are comparable to the length

of the shortest path (small stretch) and they have high path diversity to be able to

recover from a large combination of failures. We show how to construct these paths

in a network by perturbing existing link weights that are assigned to each link in the

network, and running existing shortest path routing protocols to compute the alternate

paths in the network. We also extend path splicing to the interdomain setting with

minimal changes to BGP, and without exchanging any additional BGP messages [61].

We modify the BGP route selection procedure to select multiple policy-compliant

routes from the routes already received from neighboring networks.

• Applications make path selection decisions

Applications can best make a decision regarding the performance they observe on a

3

particular network path; enabling applications to select paths can greatly benefit ap-

plication performance. We propose path bits as a “narrow waist” for implementing

multipath routing in the Internet [57]. The path-bits interface is simple and scalable,

and imposes no semantics on the underlying network to interpret them while select-

ing a network path. We demonstrate by implementing a variety of multipath routing

protocols, on both hardware and software platforms, to show the benefits of such a

narrow waist architecture. Path bits achieve decoupling by letting routing protocols

do what they can do best: construct a large number of diverse paths in the network

and leave the task of making path selection decisions to applications (or end-systems)

that best understand their own availability requirements. The lack of semantics im-

plies that applications (or end-systems) need a way to discover paths. We implement

extensions to the end-system to support path bits and then build a number of moni-

toring applications that can benefit different types of applications.

To resolve the tension between application requirements for selecting paths and the net-

work operators need to control the cost of routing traffic in their network, this dissertation

develops cost-based path selection by the network to restrict the choice of available paths

to the end-systems based on the cost of routing traffic on the particular path.

• Cost-based path selection Routing traffic has associated costs. Reasoning about

the cost of routing traffic requires a cost model. Towards this goal, we develop a

cost model that an operator could use to ensure that the network only exposes low-

cost alternate paths to end systems. The cost model is also useful in justifying a

number of “what-if” decisions. Our cost model is generic to be applicable to a variety

of networks like access networks, transit providers. The proposed path selection

system would act as a black box that takes the cost model as input along with other

information like routing, network topology, traffic matrix and outputs a set of paths

that the network can expose to end-systems.

4

1.1 Thesis Contributions

This dissertation makes the following contributions:

• We identify the need for a standard interface for path selection in the Internet and

describes the design of one such architecture (path bits), which is semantic-free.

• We present path splicing as a multipath routing scheme that provides exponential

path diversity with only a linear increase in state. We also show how path splicing’s

path selection mechanism can be mapped easily to the path-bits interface.

• We implement a number of multipath routing schemes, in both hardware and soft-

ware. We make our implementations available for researchers to experiment with

implementing their own custom path creation mechanisms using the path-bits inter-

face.

• We develop a holistic traffic cost model for a network, to allow operators to attribute

costs to traffic in their network. This model enables a cost-based path selection mech-

anism that operators can use to expose paths to end-systems by also taking into con-

sideration the cost of sending traffic on the different paths.

1.2 Roadmap

The rest of the thesis is organized as follows. The relations between the different chapters

in the thesis are as shown in Figure 1.1.

• Chapter 2 presents the “narrow-waist” architecture for enabling path selection in the

Internet. We focus there on the motivation and high-level design requirements from

such an interface.

• Chapter 3 presents path splicing, a multipath routing primitive that enables routing

protocols to create large number of alternate paths in the network.

• Chapter 4, presents the implementation of different path selection mechanisms that

use the “narrow-waist” in both hardware and software. We also describe extensions

5

required to end-systems to efficiently utilize the paths exposed by the network to

benefit large number of applications.

• Chapter 5 presents a holistic traffic cost model for network to attribute cost to traffic

flows and then show how to augment the path creation mechanism in the network to

respect traffic costs.

• Chapter 6 presents concluding remarks from this dissertation and lists few directions

for future research.

How to read this thesis? The best way to read the thesis would be to read the chapters

in the serial order to grasp all the ideas that we develop as part of the thesis. Another way

to read the thesis would be to read Chapter 2 and then jump to Chapter 4 to read about

the design and implementation of the path selection architecture described in Chapter 2.

The reader can then choose to either read Chapter 3 or Chapter 5 in any order, followed by

Chapter 6. Figure 1.2 illustrates the alternate reading suggestion for this dissertation.

Chapter 2
narrow-waist

Chapter 4

implementation of

path selection

architecture

Chapter 6

conclusion and

future directions

Chapter 3

path splicing

Chapter 5

low cost paths

Figure 1.2: Alternate suggestion for reading this thesis

6

CHAPTER II

DESIGN OF AN INTERFACE FOR NETWORK PATH SELECTION

2.1 Introduction

Networked applications in the wide-area, enterprise, and data center can all benefit from

network protocols that allow traffic to be sent over multiple paths en route to a destination.

This mechanism, called multipath routing, can reduce latency, improve throughput, or im-

prove robustness to network failures. Applications that can benefit from multipath routing

range from real-time applications such as network voice over IP and video to bulk-transfer

applications; notably, each of these obtains a different benefit from multipath routing e.g.,

voice over IP can pick a path which has lower latency and jitter to improve the voice quality

and a bulk-transfer application can simultaneously utilize multiple paths to achieve higher

throughput.

Providing these desired benefits are numerous mechanisms for multipath routing, each

of which may be more or less beneficial to different classes of applications [60, 96, 99, 36].

Each multipath mechanism has typically come with its own, unique way of allowing appli-

cations to specify a path to use. The unfortunate consequence of this is that there is neither

a standard multipath interface, nor a set of applications ready to make use of any multi-

path mechanisms that could become available. The lack of a flexible, widely-applicable

interface inhibits adoption of multipath mechanisms (there exist no applications that can

use them) and imposes high barriers for researchers attempting to compare different ap-

proaches.

The premise of this part of the thesis is that many multipath implementations can be

adapted to use a common application interface: a narrow waist for multipath routing. Be-

low the narrow waist, multipath routing schemes can evolve, and network service providers

7

can replace one multipath routing scheme for another. Above the waist, any application

can gain access to multipath routing capabilities, as long as its socket layer conforms to

the interface specified by this narrow waist. This interface embodies a natural separation

between the network, which provides access to multiple paths; and the end-systems and

applications, which can use these multiple paths.

To be successful, this narrow waist must meet four requirements: It must be general

enough to support a wide set of applications, powerful enough to take advantage of the

capabilities provided by multipath mechanisms, and easy to adopt in applications without

major rewriting. Finally, it must admit efficient implementation in networking hardware

and software.

Though, admittedly, there can be a variety of path-selection interface that can be de-

veloped, the design this thesis proposes for this narrow waist is an opaque string of path

bits that provides simple but powerful semantics: two packets with the same destination

address, but with different path bits, will (with high probability) take different paths to the

destination. At the end-system, the networking stack sets the path bits, and modifies them

when it wants to use a different path (e.g., in the event of failure or performance degra-

dation); in the network, routers interpret these bits as a “selector” for different outgoing

interfaces to a destination. Figure 2.1 summarizes how the right narrow waist can decou-

ple the multipath protocols below the waist and the applications and users of the multipath

above the waist.

In our design of path bits, we make an explicit choice concerning the amount of control

that an end system has over the paths that its traffic takes en route to a destination. Path bits

do not explicitly select hops along an end-to-end path, but instead correspond to some path.

Making path bits opaque provides an interface to applications that divorces the interface

from any specific implementation of multipath routing. This abstraction is based on the

insight that end systems typically do not care about the specific sequence of hops that traffic

takes through the network, as long as they can have easy access to a set of good paths or

8

alternately can avoid bad (e.g., lossy or failed) paths [9, 41]. Although we recognize that

associating some semantics to path bits may afford some benefits, we explicitly choose not

to do so.

Although making path bits opaque could require applications to perform trial-and-error

to discover a desirable path (e.g., testing alternate paths by setting different combinations

of path bits), keeping the path bits relatively free of semantics keeps the interface generic

with respect to the types of path properties that an application might want, thereby making

the interface both simple and future-proof. This simplicity allows the path bits interface to

remain fixed as application requirements and multipath mechanisms evolve. An application

can still discover the path bits to use for the path it wants, albeit in a slightly more ad hoc

manner than would be necessary with an explicit path selection interface.

To simplify presentation, we focus on the design decisions and properties of the narrow

waist. We also show how many existing multipath routing protocols can be mapped to a

path-bits interface. We show how our design achieves two goals:

1. Decouple the end systems and multipath routing mechanism so that multipath mech-

anisms can evolve independently from the applications that use them.

2. Provide a simple interface to applications that allows them to achieve application-

appropriate benefits from multipath.

The rest of this chapter is organized as follows. Section 2.2 presents the background

and motivates the need for a narrow-waist. Section 2.3 presents the design of the narrow

waist and Section 2.4 summarizes the chapter. We follow up on our goal of evaluating

how the interface achieves our goal of allowing for efficient implementations of multipath

routing protocols in both hardware and software in Chapter 4.

2.2 Background and Motivation

As with the narrow waist in the network stack itself, a narrow interface for multipath routing

could accommodate diversity and evolution on both sides of the interface. We describe

9

Figure 2.1: Path bits serve as a narrow interface between applications that want to use

multipath routing and the different implementations of multipath routing.

several multipath routing proposals to show the need for a consistent, narrow interface

between applications and multipath routing implementations. Figure 2.1 depicts several

“below the waist” multipath routing protocols and “above the waist” applications that can

benefit from a choice of paths.

2.2.1 Path Selection Mechanisms

Multipath routing exposes multiple paths for each destination to each end system; we use

the term to refer to any scheme that does so either for intra-domain or inter-domain routing.

Multipath routing can improve failure recovery by allowing end systems to react to failures

more quickly than the underlying routing system would. If a multipath routing system

allows an end host to use multiple paths simultaneously, it can also improve throughput.

We survey various types of multipath routing mechanisms.

10

Many mechanisms and environments In source-controlled routing, the source controls

the path that its traffic takes through the network. Sources annotate packets to signal in-

formation about a choice of network path. The control ranges from implicit—from an

opaque interface much like path bits—to explicit source routing. Implicit approaches in-

clude routing deflections [99] and path splicing [60, 62]. Explicit methods, such as pathlet

routing [36], allow the source to specify the path that traffic takes en route to the destination,

by, for example, specifying a sequence of virtual nodes (“vnodes”).

Some schemes, such as IP fast reroute [79] and MPLS fast reroute [21], operate entirely

within the network. They maintain multiple paths to act as backups in response to failures.

With equal cost multipath routing (ECMP) [44], the network dynamically balances traf-

fic across equal cost intra-domain paths. In other network-controlled multipath schemes,

nodes along the path annotate packets with failure information; other routers along this

path use this information to route around paths that include the failed node or link [54].

Some network-controlled multipath routing mechanisms operate across domains. In

MIRO [96], networks request access to alternate paths from neighbors. Similarly, R-

BGP [52] and Anomaly-Cognizant Forwarding (ACF) [28] add functions to the network

that enable it to send traffic over a backup path when a failure occurs; neither of these ap-

proaches provides control directly to applications or end systems, although path bits could

augment these approaches to allow an end-host to explicitly select a backup path in the ab-

sence of path failures. BANANAS [49] allows networks to stitch together an inter-domain

path using a single Path ID, in the same way that a single MPLS label can be used in interdo-

main MPLS. This Path ID or MPLS label is similar in spirit to path bits. NIRA [98] allows

edge networks some control over end-to-end paths; because path selection in NIRA is ex-

plicit, assumes that hosts use provider-based addressing, and requires significant changes

to packet headers, it would be difficult to accommodate NIRA with a path-bits interface.

Data centers are also increasingly using multipath routing to improve utilization and

enable fast recovery from failures. Many recent data center architecture proposals design

11

the data center network to have many parallel paths between each pair of servers [38, 42, 1].

TRILL proposes using ECMP-based multipath routing with special bits set by the switches

in the TRILL header. VL2 uses ECMP internally, and its network design relies on im-

plementing Valiant Load Balancing (VLB) where a server randomly picks an intermediate

switch to forward the packet to the destination. This scheme essentially performs a two

“hop” path selection, and can be mapped to using path bits.

Many implementations There are many options for implementing multipath routing

protocols in hardware and software. The multipath interface should not be specific to a par-

ticular implementation technology (hardware, software, DRAM, TCAM, etc); we evaluate

our design using several options that exist today in order to gain confidence that the mech-

anism will work on future options as well. Supercharged PlanetLab offers programmable

network processors [87]. OpenFlow [64] allows a controller to install flow table entries

that can match fields in each packet header and direct traffic out certain switch ports. This

abstraction could implement a multipath routing scheme based on path bits: extra bits in a

packet-header field (e.g., MAC address, IP ID, VLAN ID) could be used to index into dif-

ferent flow-table entries. Similarly, path bits demultiplex packets into different forwarding

tables on a NetFPGA card [2]. Of course, multipath routing protocols can also be imple-

mented in software. Any interface for multipath routing should make it easy to realize a

variety of multipath routing implementations in both hardware and software. In Chapter 4,

we demonstrate how path bits can afford a wide variety of implementations in both hard-

ware and software with a variety of reference implementations in Click, OpenFlow, and

NetFPGA.

2.2.2 Diverse Application Needs

Applications differ in both their requirements and their ability to take advantage of multiple

paths. We discuss a set of applications that could credibly benefit from using different

criteria for the ways they use paths. Because this list of applications is likely to evolve

12

Table 2.1: Many multipath routing protocols map easily to the path bits interface. We

implement the ones in bold and describe their implementation details in Chapter 4.

Multipath Scheme Representation with Path Bits

Path splicing (Chapter 3) IP ID field stores the “splicing bits”; TTL field indexes in to

those bits at each hop.

Routing Deflections [99] IP ID field and TTL fields are used to calculate the index into

the deflection table at the router

ECMP [44] Hash the (src ip, dst ip, path bits) tuple instead of just (src ip,

dst ip) to select one of the equal cost paths

TRILL [1] End-systems or switches can set bits in the TRILL header to

use ECMP-based multipath routing in the network.

VL2 [38] VLB mechanism can be implemented using path bits. Path

bits can also be used by ECMP deployed within the network

to select path to the intermediate switch and then the final

destination.

BCube [42] BCube also relies on multiple paths between different end-

systems in a datacenter environment. The BCube multipath

mechanism can be implemented using path bits in the packet

header.

Pathlet Routing [36] Encode each pathlets (i.e., a sequence of virtual nodes) onto

a set of opaque bits

MIRO [96] Path bits can be included in the IP ID field, or as an interdo-

main MPLS tag to indicate the tunnel to use for forwarding

packet to an intermediate AS different from the default.

as new applications emerge, a good interface to multipath routing should be agnostic to

the criteria applications use to select paths and the ways that applications use the available

paths. We consider several representative examples.

Improving throughput. Many file transfer systems balance data transfers across mul-

tiple TCP streams to improve throughput [45, 100, 86], and recent work is exploring a

multipath TCP congestion control standard [94].

13

Improving quality or responsiveness Voice applications often use a weighted combina-

tion of loss, latency, and jitter to evaluate path quality, using the Mean Opinion Score, or

MOS, to make this judgement [85]. Depending on the path quality, these applications might

use multipath to avoid degradation due to packet loss or failures, to reduce end-to-end la-

tency, or to bond two low-bandwidth channels to be able to use a higher-quality encoding.

Low-bandwidth interactive applications (e.g., telnet) might simply send two copies of each

packet, wasting bandwidth to improve responsiveness.

Improving availability Another reason that applications may use multipath routing is to

improve availability in the face of failure. The Domain Name System can benefit from

sending queries over different paths to different servers, allowing it to avoid failed DNS

servers as well as failed paths [10]. A video client, on the other hand, may want fast failover

to a new path in the event that the current path fails. Although such clients might also

use multiple paths concurrently, they may not wish to pay the implementation complexity

of doing so. Selecting a path based upon the success of a TCP SYN packet provides a

simple, effective way to load balance requests upon multiple paths and avoid many path

failures [10, 4, 41]. Although this technique is best-suited for small, stateless requests such

as HTTP traffic, its simplicity makes it attractive for some applications.

2.3 Designing the Narrow Waist

We describe the design of the narrow waist (Section 2.3.1) and its properties (Section 2.3.2).

2.3.1 Path Bits Design

Design overview Each packet carries a string of path bits that identifies some path in

the network. Routers select an appropriate outgoing interface for each packet based on

both the destination IP address and the path bits. End systems use path bits to influence the

forwarding decisions that routers along the path make. Path bits may reside in an additional

header or in unused fields in the IP header.

14

We are not the first to propose an interface like path bits—indeed, it is inspired by the

interface used by several multipath routing designs (e.g., routing deflections [99] and path

splicing [60]). Our intention in this section, and for the remainder of this chapter, is to

generalize the design of this interface and explore its practicality for real applications in

Internet-like environments. In developing a general design for path bits, we explore two

main questions: (1) What semantics should the bits carry and how much control should

they give to end hosts? and (2) How many bits should the interface have?

Decision #1: Minimal semantics At one extreme, path bits might denote an entire source

route; at the other, the bits might simply encode the desire for a source to have a new path.

We design path bits to have minimal semantics.

To provide a simple, scalable interface to hosts and to balance control between end

hosts and the network, path bits should be opaque; they should not explicitly encode any

specific path. Rather, they should provide the property that changing the bits will, with

high probability, yield a different path to the destination. This abstraction is based on the

insight that end systems typically do not care about the specific sequence of hops that traffic

takes through the network, as long as they can have easy access to a set of good paths or

alternately can avoid bad (e.g., lossy or failed) paths [9, 41].1

Opaque bits still offer some flexibility: The bits might explicitly encode information

about how each node along the path should forward traffic (e.g., having a fixed number of

bits per hop), or they might simply encode a request for the network to change the path (a

request that could be encoded in a small number of bits, or even a single bit). Encoding

only minimal semantics in the path bits also allows independently operated networks to

retain some control over how network devices along the path interpret bits, allowing them

1One often-hypothesized requirement is that a path might wish to avoid going through a particular lo-

cation or country; such an application is compatible with a path bits specification. In contrast, expressing a

requirement for a particular route is more difficult, but such requirements mostly arise in a functional context,

such as wishing to route traffic through a firewall [90], a capability beyond the intent of our architecture to

provide.

15

to retain some autonomy concerning routing policy and traffic engineering.

We aim to provide syntactic and semantic isolation between applications and multipath

mechanisms by imposing two minimal constraints on the semantics:

• Per-host consistent path selection The network must interpret the path selection in-

formation such that the same path preference expression will result in the same path

choice until a routing reconfiguration occurs. Consistent path selection allows hosts

to learn path properties and to ensure that flows that should receive similar treatment

will follow the same path. The interface does not specify that this information be

consistent across end systems. This choice is pragmatic—ECMP and similar mech-

anisms already provide such a guarantee. It does, however, preclude shared path

information approaches, such as SPAND [78].

• Ability to explore alternate paths The interface should allow end systems to explore

available paths in the network. Just as any multipath routing protocol might not

expose every route to a destination, the path bits interface need not expose every path.

Rather, it should facilitate exploring enough paths to allow a variety of applications

to find working paths.

Decision #2: Small number of bits The number of path bits could range from a single

bit to l log2 k bits, where l represents the maximum number of hops along any network path

and each hop has as many as k bifurcations. Using only a single bit (i.e., to indicate that

the path should change) offers only coarse control, but is obviously compact. The opposite

extreme—encoding each hop as a sequence of bits—offers maximal flexibility because the

bits encode the forwarding choice at every hop. In our prototype implementations of the

path-bits interface, we opted to use only sixteen bits. We explain this rationale below.

The path bits are included in packet headers and hence must not introduce substantial

overhead; on the other hand, the bits should also be expressive enough to give end systems

sufficient options for exploring alternative paths. Picking a specific number is obviously an

16

engineering tradeoff, but practical limits suggest, that the number should be constant—not

based upon the path length—and that it should be small, but not so small that it forces

implementations to maintain complex mappings between the bits and the resulting path.

Using a small number of bits also allows them to be embedded in the IP ID or TOS fields

of the IPv4 header; in the case of IPv6, packets already include a flow label that could be

used to carry path bits. We describe our implementation using IP ID field in the IPv4 header

in Chapter 4. A small number of bits can still provide sufficient control and flexibility at

each hop. For example, a router could select among n possible outgoing interfaces to a

destination based on the output of a hash function, H(s,d, p), where (s,d) represents the

source-destination pair and p represents the path bits.

Can a small number of bits still support many multipath implementations? Can an

interface that provides only minimal semantics still be useful? Table 2.1 explains

how path bits map to existing multipath routing protocols. Our implementations of three

different multipath protocols in software and hardware (described in Chapter 4) demon-

strate that the interface is powerful and flexible enough to support efficient implementa-

tions of many protocols in both hardware and software, as well as varied approaches to

path monitoring and selection. Our evaluation in emulated settings and on real-world paths

(Chapter 4) shows that, despite not providing explicit choice over the network path, path

bits still provide applications enough control to quickly find alternate paths.

2.3.2 Design Properties

The path bits design has two desirable properties: (1) It decouples the end systems from the

specific multipath routing mechanisms so that multipath mechanisms can evolve indepen-

dently from the applications that use them, and online service providers can use different

multipath routing protocols without having to rewrite applications. As a corollary, it also

decouples the interface from the mechanisms that use the interface, so that the multipath

protocols can evolve independently of the interface. (2) It provides a simple interface to

17

applications and affords a simple implementation.

Property #1: Decoupling End Hosts from Protocols Decoupling end-hosts path se-

lection from the underlying protocols and mechanisms that implement multipath routing

achieves the following goals:

• Interoperation among different multipath protocols The interface allows differ-

ent networks to provide different multipath routing protocols, while permitting an

end host to take advantage of multipath routing across two or more such domains.

A key requirement for interoperability is ensuring that the interface makes minimal

assumptions about how the path selection information is interpreted within the net-

work. Backwards compatibility with conventional routing approaches is also one of

our goals and follows naturally from this requirement.

• Shared control between end hosts and the network The interface balances control

between end systems and routing protocols. End systems should be able to improve

throughput or balance load without introducing unpredictable or oscillatory traffic

patterns.

In contrast, a control mechanism that tells routers which path to select (e.g., classical source

routing), or indicates to the routers a set of properties that the chosen path must satisfy (e.g.,

the original ToS bits in the IP header) couples the application and the semantics of path

selection. As a result, applications built to such an interface could assume a degree of con-

trol that might not be available with other protocols, and the network’s routing protocols

could become reliant upon receiving this information from applications. Future applica-

tions would be forced to provide sufficient information for this interface, and future path

selection mechanisms would be required to provide (a superset of) the existing semantics.

Property #2: Simple Interface and Implementation The path-bits interface is simple,

easy-to-use, easy-to-interpret at end systems, and easy for network devices to implement,

18

regardless of the choice of the underlying multipath routing protocol implementation.

• Easy and flexible for end-system applications Path bits shield applications and

hosts from the complexity of the underlying multipath routing, but still provide con-

siderable flexibility. For example, an application programmer may wish to bind a

flow to a path, only changing the path when a failure occurs; another application pro-

grammer may wish to split a flow across multiple paths to improve throughput. The

path-bits interface enables both of these modes.

• Easy to implement on network devices Because decoding the path bits signal in

each packet is straightforward and does not require much state in the routers and

switches beyond that required by the underlying multipath routing protocol, we could

easily and efficiently implement three multipath routing protocols that use the path-

bits interface, in both programmable hardware and software routers. The interface

also scales well with multipath mechanisms that expose many paths: The memory

requirements and processing required to map from the path bits to routes remains

constant as the number of available paths increases.

2.4 Summary

We have motivated the problem which is the premise of the thesis, that of a unified narrow

waist interface for path selection in the Internet. Despite a large body of work in providing

multiple paths in the network, we believe that lack of a standard multipath interface is

hampering development of compelling applications and pervasive deployment of multipath

routing protocols in the Internet. As we illustrate, many networked applications can benefit

from access to multiple paths for improved performance and rapid failure recovery. A

unifying interface for path selection that divorces the applications from the actual multipath

details could lead to independent evolution of applications utilizing path selections and of

underlying multipath routing protocols.

We describe the design of path bits, a narrow waist for multipath routing—a standard

19

interface that makes minimal demands of applications and of the network—that we believe

will enable evolution of protocols and implementations below the waist, and applications

above it. Path bits is simply a string of opaque bits included in the packet header, inserted

by the application or end-system. The interpretation of the path bits to select a path is left

to the particular multipath implementation. The only requirement is that changing the path

bits should with high probability select a different path to the destination.

The path-bits interface is simple and easy for applications to use. It is general and

admits efficient implementation in both hardware and software. We will discuss more

about these implementations and their evaluation in Chapter 4. We will also show how the

simplicity of the interface permits different path monitoring implementations at the end-

system that can suit different applications. We make our implementations available as the

first framework that allows both different multipath algorithms and different monitoring

and recovery frameworks in a common context [3].

In the next chapter we present a multipath routing scheme, path splicing that also allows

end-systems to be able to influence the path their traffic can take in the network by using

a separate shim header in the packets. This path selection interface of path splicing can

be mapped easily to the path-bits interface. We will present prototype implementations of

path splicing using path-bits in Chapter 4.

20

CHAPTER III

CREATING NETWORK PATHS: PATH SPLICING

3.1 Introduction

The narrow waist assumes that the network (or the routing protocol) creates multiple paths

in the underlying network. In this chapter, we describe the design and evaluation of a

multipath routing primitive, path splicing, that can also benefit from a path-bits interface.

Path splicing uses a set of bits, splicing bits in the packet header to allow end-systems

control over path selection. This can be easily mapped to path-bits interface.

Multipath routing, which provides nodes access to multiple paths for each destination,

can increase availability by providing fast (or simultaneous) access to backup paths; it can

also improve capacity by increasing the number of paths that endpoints can use to com-

municate with one another. As Internet applications demand higher availability and faster

recovery from failures, multipath routing and pre-computed backup paths have emerged as

promising mechanisms for recovering from failures.

Despite the need for, and the promise of, multipath routing, many such schemes require

considerable precomputation to achieve even a small number of paths through the network.

Two obstacles have hindered many multipath routing solutions; the first is scalability. Ex-

isting schemes typically compute a small number of backup paths that can protect against

certain failure scenarios, but they do not provide recovery from many others. Instead, the

routing system should provide much stronger guarantees: Unless the underlying network

is partitioned, the routing system should provide at least one path that allows endpoints to

communicate. The second obstacle is control: an endpoint (or intermediate point) should

have some ability to change the path or paths that it uses to send traffic to each destina-

tion. Unfortunately, granting too much control to end systems can interfere with traffic

21

engineering and may potentially result in traffic oscillations [71].

This chapter presents the design, implementation, and evaluation of a new routing prim-

itive called path splicing, a scalable mechanism for providing network nodes or endpoints

access to a very large number of alternate paths. Path splicing has three key features: (1) it

constructs multiple routing trees over a single fixed physical topology; (2) it allows traffic

to take a path that switches between these trees at intermediate hops en route to the destina-

tion; (3) it allows end systems to change the forwarding path by changing a small number of

additional bits in the packet header. Intermediate nodes can also change the path on which

traffic is forwarded. These building blocks, of course, could apply to any routing protocol.

In this chapter, we study them in the context of intradomain and interdomain routing.

We explore how path splicing can improve availability according to two metrics: re-

liability and recovery. Reliability measures whether the routing information that is dis-

seminated between routers reflects the connectivity in the underlying topology. In other

words, it measures whether the paths that each router knows create a connected graph in

the underlying topology, even when links or nodes in the underlying topology fail. Re-

covery measures how quickly endpoints can re-establish working paths with one another

by finding a working path in among the available choices in the routing tables. Our eval-

uation demonstrates that, with just a few slices, path splicing can achieve reliability that

approaches that of the underlying graph (i.e., the best possible), and that, in the face of

failures, end systems can discover a new working path within two trials (which are inde-

pendent and can be run simultaneously), even without any knowledge about the location of

the failure. The actual time to recover from a failure, of course, also comprises the time to

detect the existence of a failure, which we do not consider in this work. Our results suggest

that, when combined with a fast failure detection mechanism, path splicing can provide

end systems with enough resilience to quickly recover from failures without waiting for

dynamic routing protocols to converge to a new working path.

To illustrate why path splicing can be so effective, consider Figure 3.1. A conventional

22

Figure 3.1: With k paths between the pairs of nodes, any k failures, one on each path

disconnects the network. With splicing, a graph cut must be created to disconnect the

network.

routing algorithm would compute one path between the nodes at each end. Multipath rout-

ing typically aims to compute k edge-disjoint paths between these nodes. Unfortunately, if

at least one link fails on each path, the nodes may become disconnected, even if the under-

lying topology remains connected. Path splicing computes multiple paths and also allows

traffic to change paths at intermediate nodes, thus “splicing” paths together. By providing

access to these spliced paths, path splicing can sustain connectivity in the face of many

more link and node failure scenarios. In Figure 3.1, the pair of nodes on each side of the

graph will become disconnected if a link fails on each of the k edge-disjoint backup paths.

With path splicing, k links must fail in the same cut to create a disconnection, a much less

likely event (since this is only one specific way in which all k paths could be broken). If

we assume that links fail at random, then O(k logk) failures will disconnect all k paths with

high probability1, and the probability of a cut is exponentially small.

Despite its conceptual simplicity, path splicing faces several practical challenges. First,

splicing forwards traffic along paths that do not constitute a single tree to a destination,

which creates the possibility for paths to contain loops. We show, both analytically and em-

pirically, that in practice these loops are neither persistent nor long. Second, splicing gives

end hosts some control over where traffic is forwarded, which can interfere with operators’

traffic engineering goals and potentially cause oscillations if all end systems forward traffic

1This result follows from the coupon collector problem.

23

over the same set of links. Path splicing’s interface for path selection carries no explicit se-

mantics about the actual path, however, which means that end systems have no mechanism

or incentive to select the same alternate path when a path fails. Our experiments show that

spliced paths do not adversely affect the traffic distribution or load across the network links.

Finally, there is an inherent tradeoff between the extent to which alternate slices provide

paths with a diverse set of edges and the additional latency (“stretch”) incurred along the

spliced paths. For intradomain routing, path splicing can achieve near-optimal reliability

with a stretch of about 30%; for interdomain routing, splicing can achieve near-optimal

reliability with negligible stretch in terms of the number of AS hops.

Although this chapter focuses on how splicing applies to Internet routing (specifically,

we focus on applications of splicing to both intradomain and interdomain routing), the

mechanism is general and could certainly be applied in other contexts (e.g., routing in dat-

acenter networks or overlays). We discuss possible extensions to datacenter networking in

Chapter 6. This chapter explores how path splicing can improve availability by facilitat-

ing rapid recovery from failures; however, splicing is useful in any scenario that requires

access to multiple paths. We also defer the details of implementing path splicing, on both

hardware and software platforms, to Chapter 4.

The rest of the chapter is organized as follows. Section 3.2 summarizes our design

goals. Section 3.3 presents related work. Section 3.4 provides an overview of path splicing

and describes the high-level properties of the technique. Section 3.5 describes how splicing

can be applied to intradomain routing, and Section 3.6 describes an extension of splicing to

interdomain routing. Section 3.7 presents experiments that quantify how splicing improves

both reliability and recovery, and explores splicing’s effects on and interactions with traf-

fic. Section 3.9 describes a possible implementation path for splicing, as well as security

concerns, and Section 3.10 concludes.

24

3.2 Design Goals

To achieve high availability, routing must exploit the underlying diversity of the network

graph. Routing should maintain paths between nodes in the network unless the underlying

network graph itself is disconnected. Current routing protocols, which are typically single-

path, cannot achieve this. The challenge in providing multiple paths in the network to

provide high path diversity is to disseminate the information about the multiple paths in a

simple, scalable fashion. Specifically, a routing system should have the following design

goals:

• High reliability. A routing protocol should allow nodes to maintain information

about connectivity between pairs of network nodes, even as nodes or links in the

network fail. (Section 3.2.1)

• Fast recovery. In addition to providing many alternate paths, the routing protocol

should allow end systems to discover and use these alternate paths. (Section 3.2.2)

• Small stretch. The alternate paths should not be significantly longer, in terms of

latency or number of hops, than the default path. (Section 3.2.3)

• Control to end systems. End systems should have some control over the paths that

traffic uses. (Section 3.2.4)

The rest of this section describes these goals in more detail and formally defines metrics

that we use to evaluate them.

3.2.1 High Reliability

Many attempts to improve reliability through diverse, multiple paths have operated without

a clear definition of either reliability or path diversity, although they have typically im-

plicitly assumed an “operational” definition of masking path failures along paths between

endpoints. To capture the effect of increasing path diversity on the actual availability of

25

the network, we introduce a formal metric for reliability, which describes how the graph

behaves under failure. Reliability essentially measures the extent to which nodes in an un-

derlying graph remain connected when nodes or edges in the underlying graph fail. We

first formally define reliability.

Definition 3.1 (Reliability). For a given graph G, and any 0 ≤ p ≤ 1, let R(p) denote

the fraction of node pairs that are disconnected when each edge fails independently with

probability p. Reliability is then represented as a function y = R(x), where x ranges from 0

to 1.

The intuition behind reliability is that it reflects the probability that the graph expe-

riences disconnection given that links in the graph fail with certain probabilities. While

we could certainly represent reliability as a binary metric (i.e., does the graph remain con-

nected or not?), it is convenient to talk about reliability in terms of the fraction of node

pairs become disconnected when a certain fraction of edges fail.

This metric has an edge version and a vertex version. We have stated the edge version,

but the vertex variant is quite similar. Note that this metric can apply to any graph, includ-

ing the underlying network graph; we can assess the reliability of a routing protocol by

comparing the reliability achieved by the routing protocol to that of the underlying graph.

To achieve high reliability (i.e., to attain a reliability curve that mirrors as closely as possi-

ble that of the underlying graph), a routing protocol should exploit the path diversity that

exists in the underlying graph.

Conventionally, previous routing protocols have achieved high path diversity by pro-

viding systems access to node-disjoint paths. However, paths do not need to be completely

node disjoint to provide high reliability (particularly if edges are failing, as opposed to

nodes). To capture this property, we quantify the diversity that is achieved by two paths

using a notion we call novelty. Essentially, the novelty of two paths is the fraction of edges

between the two paths that are distinct.

26

Definition 3.2 (Novelty). Given a (source,destination) pair, let Ps be the path with fewer

edges and Pl be the path with more edges. Formally, novelty is

1− |Pl ∩Ps|
|Ps|

s t

Figure 3.2: Two partially disjoint paths; the novelty value is 2/3.

Novelty provides a diversity metric for any two paths between a source-destination pair.

Note that novelty captures disjointness in some fashion: For example, two paths that are

completely edge disjoint will have novelty 1. Figure 3.2 shows two partially disjoint paths

between two nodes s and t. This pair of paths has a novelty value of 2/3: The two paths

share one link in common, and the length of the shorter path is 3. As with reliability, novelty

has a vertex version, but we focus on the edge version in this thesis. In our experiments,

we use novelty to quantify the diversity of the paths in each alternate slice relative to the

original shortest path.

3.2.2 Fast Recovery

Simply achieving high reliability is not of much use if the routing system cannot quickly

discover working paths when nodes or edges fail. Beyond simply achieving high reliability,

a routing system should quickly, scalably, and simply provide working paths to nodes and

end systems when links or nodes fail. We define the time it takes for a pair of nodes to

establish a working path after a failure has occurred the recovery time.

Definition 3.3 (Recovery Time). Recovery time is the time that the routing system takes

to re-establish connectivity between a (source,destination) pair after the existing path has

failed.

27

In the absence of pre-computed backup paths or other “fast recovery” techniques, the

recovery time is simply the convergence time of the routing protocol (i.e., the time it takes

to re-establish a working path after a failure has occurred). In the case where backup paths

are available, however (e.g., in the cases of fast reroute and path splicing), recovery can

be faster than convergence time, because a failure can trigger an immediate failover to a

backup path.

When we consider recovery time of path splicing, we are interested in quantifying how

long it takes for end systems to discover alternate working paths after a failure occurs.

Recovery time should ideally be measured in units of time and include both the detection

time (i.e., the time taken to detect a failure) and the time to discover a new working path.

Without a complete implementation, however, it is difficult to express recovery time in

units of time. For our evaluation in Section 3.7, we express recovery in terms of number

of trials—the number of recovery attempts before a working path is found. One could

estimate recovery time as detection time plus the recovery time, where recovery time is the

number of trials required for recovery divided by the number of trials that can be executed

in parallel.

3.2.3 Low Stretch

Routing protocols should provide access to alternate paths that are not significantly longer

than the “default” path between those nodes, both in terms of the actual latency of the

alternate paths and in terms of the number of hops that they traverse. We define a notion of

stretch to quantify the additional latency that is incurred by alternate paths over the default

path.

Definition 3.4 (Stretch). Stretch is defined as the ratio of the latency on a path (between a

pair of nodes) in the perturbed topology to the ratio of the shortest path (between the same

pair of nodes) in the original topology.

We use total path cost as a proxy for latency. Path diversity and stretch are somewhat

28

conflicting goals. Thus, we must generate slices to have low stretch, but high novelty.

An easy approach to creating paths with high novelty with acceptable stretch is to create

slices at random (i.e., by using random link weights for creating each slice). Selecting link

weights in this way would lead to paths with high stretch.

3.2.4 Control to End Systems

The notions of availability and failure are specific to the application sending traffic along

these paths. In the case of real-time applications such as VoIP, it matters if the packets

cannot reach the destination in a certain bounded time. For other applications (e.g., bulk

file transfer), these constraints may matter less, but end systems may wish to find paths with

high throughput. Because end systems have differing requirements for what constitutes a

“good” path, building a “one size fits all” routing system that provides good paths to all

applications without taking input from the end systems themselves about the quality of

paths is difficult.

If an end system deems some path in the network to be non-functional or detrimental

to application performance, it should be able to signal to the network the desire to send its

traffic along a different path. Of course, because network operators have traffic engineering

goals and constraints of their own, the routing system should provide this control without

introducing too much instability to the offered traffic load in the network.

3.3 Related Work

We survey related work in three areas—multihoming and multi-path routing, fast recov-

ery schemes, and overlay networks—and explore the tradeoffs of each of these recovery

schemes in terms of processing overhead, storage overhead, recovery time, and required

modifications to existing routers.

29

Multihoming and multipath routing. Multihoming and multi-path routing provide nodes

multiple paths for exchanging traffic. Various mechanisms manipulate routing to take bet-

ter advantage of multiple underlying network paths [23, 46]. These schemes can operate

without changing hosts or routers but are more coarse-grained, since they still only forward

traffic along one path to each destination at any time. Perlman designed a routing protocol

that floods routes in a way that is robust to Byzantine failure [67]. MIRO [96] and R-

BGP [52] allow networks to discover additional interdomain routes to recover from failure.

MIRO provides more explicit control over the AS path that traffic travels to a destination

(e.g., it allows a network to explicitly select the ASes that its traffic traverses) and it re-

quires no modifications to the data plane (i.e., packet headers or forwarding functions), but

it requires establishing additional state at routers for each alternate path and additional out-

of-band control-plane signaling, which may make it too heavyweight as a general recovery

mechanism. R-BGP provides similar interdomain failure recovery as splicing, without re-

quiring any modifications to the packet headers. Like splicing, it requires additional state

in forwarding tables like splicing. Unlike splicing, however, R-BGP provides only local

recovery at routers.

Path splicing relates to multi-topology routing, which precomputes backup topologies

for specific failures by removing edges from the underlying topology or by setting high

costs on some edges [13, 35, 53]; in contrast, path splicing computes alternate paths for

arbitrary failure combinations. Path splicing allows traffic to traverse multiple topologies

along a single path, whereas multi-topology routing only allows traffic to switch topolo-

gies once en route to the destination. It also allows end systems to divert traffic along

different paths. Aspects of multi-topology routing have been standardized [70], and Cisco

has recently incorporated a related mechanism called multi-topology routing into their IOS

routing platform [22]; a small variant could ultimately enable path splicing.

30

Fast recovery and reroute. Path splicing uses bits in the IP header to affect how routers

along a path forward traffic to a destination. This mechanism is similar to the “deflection”

mechanism recently proposed by Yang et al. [99]. Although path splicing’s mechanisms

for deflecting traffic along a new end-to-end path are similar, we show in Section 3.7 that

path splicing achieves more path diversity than this deflection mechanism with consid-

erably shorter paths. Establishing parallel backup paths resembles various techniques pro-

posed by the IETF routing working group [77] and router vendors, including load balancing

mechanisms such as equal-cost multipath [44], link protection mechanisms such as MPLS

Fast Reroute [21], IP Fast Reroute [79] (as well as various optimizations [80, 14]), but fast

reroute requires manual configuration and requires additional routing state for each link or

node to be protected. Furthermore, rerouting is triggered only by local failure detection,

not by end systems. Failure-carrying packets (FCPs) carry information about failed links;

this information allows routers to re-route data packets around failed links [54]. Like fast

reroute mechanisms, FCPs allow routers to circumvent node and link failures without wait-

ing for the routing protocol to reconverge, but the mechanism only provides local recovery

and requires inserting large amounts of information into packets as well as potentially ex-

pensive dynamic computation.

Improving reliability with overlays. Overlay networks can improve diversity by routing

traffic on alternate paths above the network layer [9, 11, 41]. Others have investigated how

to improve connectivity by strategically placing overlay nodes within a single ISP [19].

Splicing provides a similar recovery capability without requiring continual probing of al-

ternate paths.

3.4 Path Splicing: Main Idea

Path splicing is a general mechanism for giving end systems access to multiple paths com-

posed from multiple routing trees. Any instantiation of path splicing relies on the following

three aspects:

31

1. Generate many alternate paths by running multiple routing protocol instances.2 In-

stead of running a single instance of a routing protocol over a topology, routers run k

routing protocol instances on the same topology, each with a slightly different con-

figuration. The goal is to design the configuration of the routing protocol instances

such that the trees to each destination do not share many edges in common. Every

node then stores k forwarding table entries for each destination (one corresponding

to each tree).

2. Allow traffic to switch between paths at intermediate hops. Rather than routing traffic

over a single topology, path splicing allows traffic to switch topologies at any inter-

mediate hop along the path. Thus, rather than having k options, a source gains access

to considerably more paths to a destination (in theory, as many as kl , where l is the

number of hops on a path between the source and destination).

3. Give end systems the control to switch paths. To select a path, an end system includes

splicing bits3 in the packet, along with the packet’s destination. These splicing bits

control which of the k forwarding tables is used at each hop en route to the destina-

tion. In later sections, we describe several possible designs for the splicing bits.

Path splicing has many possible realizations in various contexts. For example, it does

not mandate the use of any particular routing protocol, nor does it specify how alternate

topologies are generated. In the rest of this thesis, we study path splicing in the context

of Internet routing. Section 3.5 discusses the application of path splicing to intradomain

routing; Section 3.6 discusses path splicing in the context of interdomain routing. In each

case, the methods for generating alternate paths are slightly different, but both share the

above three properties.

2We describe splicing as running k routing protocol instances for conceptual simplicity. Later, we describe

how the same function can be achieved by only running a single routing protocol instance.
3As noted earlier, this is similar to path bits concept.

32

3.5 Intradomain Path Splicing

In this section, we describe the design of path splicing in the context of intradomain routing.

However many of the design features described in this section are also generally applicable

for splicing on other types of networks. We also define some of the terminology we use

when talking about splicing in the later sections.

3.5.1 Control Plane

The first step in splicing is to create a set of slices for the network. A slice is essentially a

set of shortest path trees for a particular view of the network graph.

Constructing slices. The path splicing control plane computes multiple routing trees

based on perturbations of the underlying network topology. The control plane comprises

of two main components: (1) random perturbations of link weights to help deflect traffic

off the shortest paths for some gains in diversity; and (2) pushing these routes in the data

plane so that they can be used by the routers in making forwarding decisions.

Conventional shortest paths routing is designed to route traffic along low-cost paths,

but it may create bottlenecks between various source-destination pairs. To allow endpoints

to discover paths other than shortest paths between any two nodes in the network, path

splicing creates routing trees that are based on random link-weight perturbations.

Path splicing perturbs link weights based on the original weight of the link to ensure

that the length of the new shortest path is not very long compared with the original shortest

path (stretch). The following expression defines the link weight perturbations:

L′(i, j) = L(i, j)+Weight(a,b, i, j) ·Random(0,L(i, j)) (3.1)

where L(i, j) is the original link weight of the link from nodes i to j, Weight(a,b, i, j) is a

function of some properties of nodes i and j (e.g., the degrees of the nodes), a and b are

constants and Random(0,L(i, j)) is a random number chosen in the range of 0 to L(i, j).

33

61

2 4

3 5

Slice 1

Slice 2

Figure 3.3: Example of path splicing: The two different slices shown with dotted lines

on top of the original topology reflect two different trees, both rooted at node 6. Traffic can

reach node 6 by traversing one or more trees.

The nature of the perturbation can be changed by using different Weight() and Random()

functions. The particular Weight() function used will have an effect on the types of shortest

paths selected by the shortest-path algorithm.

Degree-based perturbations of link weights. The function Weight(a,b, i, j) is selected to

be a linear function of the sum of the degrees of i and j, i.e.

∀i, jWeight(a,b, i, j) = fab(degree(i)+degree(j))

where fab is a linear function in degree(i)+degree(j) ranging from a to b. This function

will cause the perturbations to depend on the end vertices i and j of a link. Links connected

to nodes with a high degree may be perturbed more than links connected to nodes with

smaller degree, which reduces the likelihood of many shortest paths using the same link.

To describe a degree-based perturbation, we use the notation Degree-Based [a,b], where a

and b correspond to the minimum and maximum values that can be taken by the Weight(i, j)

function. The intuition behind degree-based perturbations is to discourage the use of links

between high-degree nodes, introducing more diverse path choices.

34

IP Header 011001100 ... PayloadTransport Header

Each hop examines/removes lg(k) bits

Figure 3.4: The path splicing header sits between the IP and the transport headers, facil-

itating incremental deployment: routers without path splicing simply forward traffic based

on the IP header.

3.5.2 Data Plane

Once we have precomputed multiple slices in the network, a spliced path can be constructed

by “splicing” together path segments from one or more slices. For example, as shown

in Figure 3.3, a spliced path from node 1 to 6 is constructed by starting on slice 1 and

then switching to slice 2 at the next hop (node 2). Thus, a spliced path is composed of

multiple path segments from different slices. It is also easy to construct, since at each hop

an independent forwarding decision could be made to either let the packet be forwarded on

the same slice or switch to another slice. As we describe further, the packet could carry

splicing bits (shown in Figure 3.4), which dictate the slice on which the packet is to be

forwarded at each hop along the path. Because each hop stores the forwarding table entries

(FTEs) for each slice in a separate forwarding table, the bits can index the forwarding table

to use (since a forwarding table corresponds to a slice).

Header format End systems insert a “shim” splicing header in between the network and

transport headers. End systems can set splicing bits in this header to control the path taken

by the packets in the network by indicating, for each hop, which forwarding table should

be used to forward the packet en route to the destination.

We propose a simple encoding where the shim header contains, for n hops along the

network path, lg(k) bits that indicate an index into the forwarding table that should be

used to forward the traffic at that hop, where k is the number of slices used to splice the

network paths. Thus, if the size of the splicing header is n · lg(k) bits, then the header

35

Algorithm 1 Algorithm for forwarding packets

dst ⇐ destination IP address

src ⇐ source IP address

f wdbits ⇐ splicing bits from the shim header

if f wdbits > 0 then

slice ⇐ f wdbits & (2k −1)
else

slice ⇐ Hash(src,dst)
end if

f wdbits >> lg(k)
nexthop ⇐ Lookup(dst,slice)
forward packet to next-hop

allows the packet to switch between k slices for as many as n hops along the network.

Our experiments in Section 3.7 indicate that reliability of path splicing approaches the best

possible reliability (as limited by the underlying network topology) with only about 4 or 5

slices. Given that most network-level paths are typically less than 30 hops [15], even this

inefficient encoding would require only 30lg(4) = 60 bits. Other encodings could reduce

the overall size of the splicing header.

Forwarding algorithm. As shown in Algorithm 1, to forward packets, each node along

the path: (1) reads the rightmost lg(k) bits from the splicing header to determine the for-

warding table to use for forwarding the packet; and (2) shifts the bitstream right by lg(k)

bits to allow subsequent hops to perform the same operation.

In the default case, an end system sets the splicing bits in the splicing header to direct

traffic along a path in a single routing tree (i.e., as would be the case with a conventional

routing protocol). A network can achieve some load balance if sources select their initial

slices at random: in the absence of failure, a different subset of all sources can route traffic

in each perturbed slice, achieving better “spread” of traffic across the network than could

be obtained by routing all traffic along a single tree. We evaluate the effects of splicing on

traffic in the network in Section 3.7.7.

36

Splicing bits carry no explicit semantics; this characteristic has two important implica-

tions. First, it allows path splicing to scale well, since end hosts never need to learn the

details of actual paths through the network; rather, they simply use the splicing bits as an

opaque identifier for some path, and they can change the path through the network simply

by changing the splicing bits. We believe that this function is sufficient: end systems tend

to care less about the specific hop-by-hop details about the paths their traffic is traversing

than they do about whether or not they can route around a poorly performing (or faulty)

path with high likelihood.

Because splicing bits control which path segments from the different slices are used to

construct a spliced path, the selection of the bits determines whether an end-to-end path

could be found between two nodes for which the path on the default path is disconnected.

Our evaluation shows that even an extremely simple choice for the splicing bits ensures

that end systems will be able to find an available path within two trials.

Because the splicing bits are opaque and have no explicit semantics (e.g., they do not

specify node addresses for a path), path splicing is incrementally deployable: routers that

have implemented path splicing can inspect the splicing header and route packets out a

different outgoing interface based on the rightmost lgk bits in the header. Nodes along the

path that do not support path splicing simply forward data packets as they normally would,

based on the destination IP address in the IP header.

Failure recovery. When a failure occurs, traffic must be redirected to a different slice;

an end host can perform this redirection simply by changing the bits in the splicing header,

which will cause an end-to-end path to the destination to be spliced from a different set of

slices. This redirection could be performed by either a node along the path that detects the

failure or the end system, end systems can detect poorly performing paths from a variety of

causes (e.g., queueing, packet loss, etc.), and they are better equipped to detect when traffic

should be deflected off of a poorly performing end-to-end path.

37

Figure 3.5: 4D-Style deployment of path splicing. The decision plane consists of a

centralized server, which computes slices and distributes the computed routes to the routers

via the dissemination plane.

There are many possible ways to attempt recovery. Perhaps the simplest approach is

for an end host to select a new random bit-string for the splicing header upon detection

of a failure, which will cause traffic to be sent, with high probability, along a completely

different path, thus avoiding the cause of the faulty path. If an end system were able to

determine the location of a failure, however, it could change only the bits in the splicing

header that were needed to divert traffic around the failure. As a third option, an end

system could divert traffic to a different slice at an early point along the path (i.e., close

to the source) so as to divert traffic to a network slice that avoided the failure with high

likelihood.

Nodes in the network can also take advantage of splicing to divert traffic from default

paths during network failures or high congestion. If a router detects that the next-hop for a

particular destination is unreachable, it can send the packet on some other connected slice

while waiting for the routing protocol to converge.

38

3.5.3 Deployment: Path splicing in 4D

Path splicing could be deployed within the context of the 4D architecture [97], as shown

in Figure 3.5. The 4D architecture factors the network architecture into decision, dis-

semination, discovery and data planes. The decision plane computes the routes for each

corresponding slice, possibly at a centralized server. Instead of running a routing proto-

col, the decision plane computes routes from the topology information it receives from the

discovery plane and uses perturbations of that discovered topology to create routes. The

server then uses the dissemination plane to disseminate these routes to the nodes in the

network. Given enough slices, a network that computes and disseminates paths with path

splicing could mask a significant set of link and node failures without requiring the rout-

ing protocol to recompute new routes. In other words, path splicing implemented in the

4D context could eliminate the need for any intradomain routing protocol, beyond simple

topology discovery.

3.5.4 Optimizations

We describe few optimizations to make the splicing implementation more efficient in the

network. We implement few of these in our hardware implementation of splicing described

in Chapter 4.

Single routing protocol instance. It is easy to think of path splicing as running multiple

instances of the routing protocol, where each instance runs with a slightly perturbed version

of the topology. Unfortunately, running multiple instances of a routing protocol introduces

additional unnecessary overhead including additional routing messages, as well as resource

consumption on the nodes running multiple instances of the routing software.

Instead, we can implement path splicing within the context of a single routing protocol

instance, with a few minor modifications. As in any intradomain routing protocol, each

node would discover the complete network topology via link-state advertisements. Each

39

node could then generate multiple variants of this topology by perturbing the weights on

each edge in the graph in the same way as on other nodes in the topology and could compute

forwarding tables for each slice locally, without having to run multiple routing protocol

instances to advertise perturbed link costs.

Single forwarding table. The basic splicing scheme requires inserting FTEs correspond-

ing to each slice in a separate forwarding table at each node, essentially having a forwarding

table for every slice. Given that every node has a fixed number of neighbors, there could be

many common entries for a particular destination among the different forwarding tables.

For example, if a node has only two neighbors and we compute 3 slices, then at least two of

them will have the same next hop for any destination. Thus, maintaining separate forward-

ing tables for every slice can lead to inefficient use of memory. One possible optimization

involves having only a single forwarding table for all slices and maintain a separate column

which records the different slices for which a particular entry is valid.

Embed splicing bits into the IP header. As we have described path splicing, the splicing

bits explicitly control which slice each node on the path should use to forward traffic. In

this case, the size of the shim header is proportional to the length of the path. To reduce

this overhead, the splicing bits could instead be encoded in a smaller number of bits and

embedded into the type-of-service and IP ID fields in the IP header; each router could then

select the slice on which to forward traffic based on, say, a hash of these bits (and possibly

also the source and destination IP address).

3.6 Interdomain Path Splicing

This section describes the application of path splicing to interdomain routing. Interdomain

splicing can be deployed without modifying BGP’s message format and with no additional

routing messages. In fact, it can be deployed using only a single BGP instance.

The key idea involves exploiting the fact that each router learns one BGP route to each

40

destination per session, and most BGP-speaking routers already have multiple BGP ses-

sions to neighboring routers. Rather than selecting a single best route per destination, a

router inserts the best k routes for each destination; a packet’s splicing bits can then di-

rectly indicate which of these k routes a router should use to forward traffic to each des-

tination. This section describes the control-plane and data-plane modifications to routers,

and practical considerations (e.g., ensuring that spliced BGP routes do not violate business

policy).

3.6.1 Control Plane

Routers typically learn multiple routes to any given destination prefix both from neigh-

boring ASes and from other routers within the same AS (via internal BGP), as shown in

Figure 3.6. Some of these routing table entries may correspond to alternate highly disjoint

paths in the network. Routers may thus already learn multiple diverse routes for each des-

tination. Today, BGP selects only a single best route for each destination prefix. Instead,

a router could select the best k routes and push them into the forwarding table. The splic-

ing bits in a packet then index to the appropriate FTE at each hop. Using splicing bits to

access alternate FTEs contrasts with existing multipath interdomain routing schemes (e.g.,

MIRO [96], R-BGP [52]), which rely on the control plane to discover and exercise these

alternate routes.

A naı̈ve approach for selecting the top k best routes would be to repeat the route se-

lection k times, each time removing the best route and pushing it into the IP routing table

of the router. A more efficient approach would be to modify the BGP decision process to

select the k best routes instead of a single best route.

Algorithm 2 shows a more efficient algorithm for selecting the top k BGP routes but

requires modifications to the BGP route selection process. The process of updating the

routes in the IP routing table of the router will also need to be modified to update the

appropriate forwarding table whenever the route corresponding to that table changes.

41

Algorithm 2 Modified BGP route selection process for interdomain splicing

Type ⇐ highest-local-pref

All ⇐ all routes for a given prefix

k ⇐ number of slices

call Sel routes(Type,All,k)

// Definition of function Sel routes

procedure Sel routes(Type,All,k)
Best ⇐ NULL

if Type == highest-local-pref then

RSet ⇐ Routes with highest local pref (All)
if |RSet|< k then

k ⇐ (k−|RSet|)
// Order these routes based on the next priority rule

Best ⇐ Best ∪Sel routes(shortest-as-path, RSet, |RSet|)
All ⇐ All −RSet

// Select remaining routes from next highest local pref

Best ⇐ Best ∪Sel routes(highest-local-pref, All,k)
else

Best ⇐ Best ∪Sel routes(shortest-as-path, RSet,k)
return Best

end if

else if Type == shortest-as-path then

RSet ⇐ Routes with shortest AS path length (All)
// Similar to the code in the above if statement

.

else if Type == lowest-orig-type then

Rset ⇐ Routes with lowest origin type (All)
.

else if Type == lowest-med-value then

Rset ⇐ Routes with lowest MED value (All)
.

end if

3.6.2 Data Plane

Unlike intradomain splicing, interdomain splicing uses alternate routes already in the BGP

routing tables to achieve path diversity. However, the data plane of the router needs to be

modified to support path splicing.

Splicing bits As described before, an end system inserts splicing bits into the packet

header; the ingress and egress routers in each AS read these bits to determine how to

forward the packet, as shown in Figure 3.6. The ingress router learns multiple paths to

42

A

D

C

B

dst

B

C

tunnel to egress router

Splicing bits

select one of

the routes to

dstSplicing Bits

select one of

the tunnels

Figure 3.6: Interdomain splicing. The bits at the ingress router select the egress router to

use. The packet is tunneled to the egress router and from there one of the external routes is

used to forward the packet to a neighboring AS.

a destination prefix from the various border routers using iBGP (either via a “full mesh”

iBGP or via its connections to multiple route reflectors) and thus may learn multiple exit

points (“egress routers”) from the network for each destination prefix. For each packet,

an ingress router reads the rightmost lg(k) routing bits to determine which egress router

should receive the packet and tunnels the packet to one of the egress routers. Similarly, an

egress router learns multiple routes to a destination from the various border routers of the

neighboring ASes via eBGP. It uses the rightmost lg(k) routing bits to determine which of

the k eBGP-learned routes (i.e., which FTE) to use.

As with intradomain splicing, the ingress or egress router removes the rightmost bits

from the splicing header to allow the next router that supports interdomain splicing to read

the next rightmost bits. Using this approach, an n-hop AS path requires 2n · lg(k) routing

bits. To further reduce overhead, interdomain splicing can also use an encoding that is

similar to those described in Section 3.5.2.

When a packet arrives at an AS’s ingress router, that ingress router uses the bits to select

one of the routes in its forwarding table for the corresponding destination. This operation

also requires no additional modifications to BGP: it effectively corresponds to selecting

an egress router from that AS (i.e., the “next-hop” route attribute for different routes in

43

the table). The router then sends the packet along the IGP path to the destination, where

intermediate routers may route to the same egress router; the path to that egress router

may also, in fact, be spliced using intradomain splicing. When the packet reaches an AS’s

egress router, that router then inspects the bits to select one of the routes learned from BGP

sessions to neighboring ASes.

When a packet is being tunneled to an egress router from the ingress router, the inter-

mediate routers in the network along the path may use intradomain splicing to reach the

egress router. Note that the same splicing bits could be used for intradomain as well as

interdomain splicing. Splicing bits act as an index to the corresponding forwarding table

entry; this function requires additional logic to read the splicing bits and to use them to

select an entry from the corresponding forwarding table and use that for forwarding the

packet.

Forwarding tables The data plane for interdomain splicing can be implemented in the

following way:

• Simple case: Multiple forwarding tables. A router’s routing table contains one

route for each destination per BGP session. In interdomain splicing, routers select

the k best paths from the RIB and insert these entries into forwarding tables on the

router line cards, Interdomain splicing requires that the line cards provide support for

multiple forwarding tables.

• Optimization: Single forwarding table. Creating k copies of the forwarding ta-

bles could introduce significant memory overhead on line cards, given the large (and

growing) size of the default-free BGP routing tables. However, note that in many

cases, the next-hop for a destination may be the same for different slices. In these

cases, FTEs could be coalesced to save space, similar to how routers can coalesce

FTEs for contiguous IP prefixes that use the same outgoing interface. In future work,

we will study the extent to which this coalescing can reduce this overhead.

44

I G P s p l i c i n g b i t s

p o l i c y

. . .

e g r e s s n e x t - h o p A S

A S 1 A S 2

B G P s p l i c i n g b i t s

Figure 3.7: Structure of splicing bits for intradomain and interdomain splicing.

Interdomain and intradomain splicing Path splicing’s splicing bits must direct traffic

along an end-to-end path that ultimately traverses multiple domains. To achieve this func-

tion, these bits must carry semantics for both interdomain and intradomain paths as shown

in Figure 3.7. Additionally, the interdomain paths that splicing takes must also comply with

ISPs’ business policies. To achieve this function, we divide the splicing bits into several

segments. The first segment is for interdomain routing (i.e., selecting at both ingress and

egress routers which alternate paths to use); the second segment is for intradomain routing.

We envision that the interdomain splicing bits will be used at each hop along the path to the

destination; in contrast, the same intradomain bits can be re-used in different ISPs along

the end-to-end path.

Finally, we use a single bit in the packet header to indicate whether the packet has tra-

versed a “peer” or “customer” edge (in the parlance of Gao-Rexford [34]); if this bit is set,

the interdomain bits can only be used to select a BGP route through a customer AS. Routers

can easily implement this mechanism by dividing the forwarding table into two separate ta-

bles: routes to provider and peer ASes, and routes to customer ASes. A router sets this bit

before it sends a packet along a customer or peer edge. With this additional bit set, the

interdomain splicing bits will be used to select only routes from the latter forwarding table.

This mechanism ensures that all interdomain paths are valley-free.

45

3.6.3 Loop Prevention and Detection

Because interdomain splicing constructs a single end-to-end interdomain path from multi-

ple routing trees, interdomain paths can also have loops. Here we describe examples where

interdomain splicing can introduce loops, as well as mechanisms for preventing them.

Figure 3.8: Splicing can cause loops: In the figure, S is the source AS and D is the target

AS. The solid lines show the customer-provider kind of relationship among the ASes while

the dotted lines show peering relationship among the ASes. On the side of each AS, the

learned routes to AS D are listed. An AS picks one of the routes based on the routing bits

in the packet header.

Loops can occur among peers or in customer-peer-provider relationships, as illustrated

in Figure 3.8. In Figure 3.8(a), consider the scenario in which AS S chooses the route

through one of its providers to forward the packet to D. When the packet reaches a provider

(A, B, or C), even though each AS has a direct path to D, the routing bits may cause the

packets to be forwarded among a sequence of peers, resulting in a forwarding loop. Note

that such a loops can occur even if standard preference and filtering rules are applied [34],

since the actual forwarding graph is an overlay of three separate policy-compliant routing

trees. Figure 3.8(b) shows the possibility of a 3-hop loop between ASes S, A and B which

can arise if S selects a path from its provider A, while B chooses a path through its peer S.

46

In each of these cases, a packet will not loop forever, because there are a limited number

of routing bits in the header. Once the routing bits get exhausted, the packet is forwarded

on the default loop-free BGP path. Nevertheless, in the interdomain case, we treat any loop

as undesirable, since even a loop involving two ASes may traverse a significant distance.

Accordingly, we propose the following two mechanisms to limit the extent and occurrence

of forwarding loops.

Solution 1: Include AS Path in the packet One approach to detecting loops involves

inserting 16-bit hashes of each of the first four hops of the AS path that the packet traverses

in its header. We choose four since most paths in the Internet pass through four ASes or

fewer [55]. An AS’s border router can examine these bits and avoid selecting a next-hop AS

that has already been visited by the packet (unless there is no other route available). This

mechanism does not prevent loops altogether, but it does limit the extent to which packets

can be caught in a loop. Of course, the mechanism only prevents short loops (i.e., those less

than four AS hops), but the average length of Internet paths and standard policy constraints

(i.e., preferring customer routes over peer routes, etc.) make long loops unlikely.

Solution 2: Deflection Counter To deal with larger loops, we introduce a 2-bit “counter”

in the header. We observe that forwarding loops can only occur when a packet is deflected

from a best customer (or peer) route to a peer/provider (or provider) route (i.e., AS-level

loops are not likely on spliced valley-free paths, except for the case of an all-peer loop).

Accordingly, we introduce a deflection counter to limit the number of times a packet is

deflected from its most preferred class of routes: If a router in some AS has a best path

to a destination through its customer but it instead chooses a peer or provider path for

forwarding a packet (or a provider route instead of a peer route), that router decrements

deflection counter of the packet. This mechanism bounds the number of times the packet

can be deflected and prevents a packet from being repeatedly forwarded “uphill” (which

would be required for a persistent loop). An end system that has no tolerance for loops may

47

set this counter to zero; increasing this counter increases a router’s flexibility in choosing

paths that are not policy-compliant, at the cost of increased potential for routing loops.

3.6.4 AS-level forwarding consistency

In interdomain splicing, traffic might be forwarded along any of the top k best routes for a

prefix, but the AS announces only a single best route to its neighbors. Some might view

using a route that was not announced to its neighbors as a violation of protocol semantics,

but we note that an AS will use a non-default path only if the splicing bits in the packet

explicitly request this behavior or if the default path has failed. We also note that, even

today, the AS-level forwarding path is by no means guaranteed to match the advertise AS

path, and many such violations occur in practice [92].

3.7 Evaluation

This section evaluates path splicing in terms of the reliability it achieves, the ability to

allow paths to quickly recover from failures of nodes and links, the latency stretch of the

resulting paths, the reliability when only a fraction of ASes deploy it, the frequency of

loops in spliced paths, and the effects on traffic. Table 3.1 summarizes the results of our

evaluation. We find that path splicing provides high reliability and rapid recovery from

failures and provides end systems access to a large number of low-latency, relatively loop-

free paths. We also find that path splicing balances traffic across links in the network in

much the same fashion as the “base” set of link weights and, to some extent, even balances

this traffic slightly more evenly.

3.7.1 High Reliability

This section presents the results for reliability experiments performed with splicing for

intradomain and interdomain networks. We find that, in both cases, path splicing achieves

reliability that approaches that of the underlying network.

48

Table 3.1: Path splicing: Summary of results.

Result Summary Section

Reliability with splicing approaches optimal. For intradomain splicing,

5 slices and for interdomain splicing, only 2 slices achieve near-optimal

reliability.

3.7.1

Splicing has fast recovery. An end system can recover from failure in

about 2 trials when trying splicing bits at random.

3.7.2

Perturbations achieve high novelty with low stretch. Intradomain splic-

ing has an average stretch of 20% while gaining 80% paths which are dif-

ferent from the original. For interdomain, the average hop stretch is only

3.8% when 5% of AS links have failed.

3.7.3

Splicing provides better recovery than routing deflections. Path splic-

ing with only 5 slices can provide better recovery than routing deflec-

tions [99] with bounded stretch. Path splicing generally provides much

shorter recovered paths, and the recovered paths have much lower vari-

ance in terms of stretch.

3.7.4

Splicing is incrementally deployable. Splicing offers significant benefits

even if only a fraction of ASes deploy it.

3.7.5

Loops are rare. Forwarding loops are transient and infrequent. In intrado-

main splicing, we observe only 1 loop longer than 2 hops and no persistent

loops, even with 10% of links failed.

3.7.6

Splicing causes minimal disruption to traffic. Splicing does not have

much adverse effect on traffic in the network. Our evaluation using real

traffic data on Abilene shows that total load on links increases only by 4%

on average.

3.7.7

49

 0

 0.1

 0.2

 0.3

 0 0.02 0.04 0.06 0.08 0.1

F
ra

c
ti
o

n
 o

f
s
o

u
rc

e
-d

e
s
ti
n

a
ti
o

n
 p

a
ir
s

d
is

c
o

n
n

e
c
te

d

Probability of link failure (p)

k = 1 (normal)
k = 2
k = 3
k = 4
k = 5

k = 10
Best possible

Figure 3.9: Reliability of path splicing for the Sprint topology.

Intradomain splicing To evaluate the reliability of path splicing under a variety of link-

failure scenarios, we implemented a simulator that takes as input a “base” network topology

(with link weights) and outputs the different shortest paths trees for that network using

degree-based perturbations. To simulate link failures, we removed each edge from the

underlying graph with a fixed failure probability. We used the Sprint backbone network

topology inferred from Rocketfuel, which has 52 nodes and 84 links [83]. We computed the

reliability curves for graphs generated using path splicing and compared this characteristic

both to “conventional” shortest paths routing and to that of the original underlying graph,

whose reliability reflects the best possible reliability that could be achieved by any routing

protocol.

A spliced graph with k slices is constructed by taking the union of the k slices, each of

which is a random perturbation, generated as described in the previous section. Next, we

50

Table 3.2: Sprint topology: Reliability for single node failures

Slices Fraction of pairs disconnected

k = 1 0.0256

k = 2 0.0204

k = 3 0.0187

k = 5 0.0176

Best possible 0.0171

remove each edge from the graph independently with probability p. We start with k = 1,

evaluate the reliability for the resulting graph, increase k to 2 (i.e., add edges to the graph

by taking the union of the two graphs) and evaluate the reliability of the resulting graph

by failing the same set of links (simulating the effects of a link failure in the underlying

network). We perform this process 1,000 times; in other words, for each k and p, we con-

struct a k-slice graph with appropriate edges “failed”, and compute the average reliability

for those 1,000 trials.

Figure 3.9 shows the reliability curves for Sprint using degree-based perturbations with

Degree-based(0,3). Adding just one slice (i.e., increasing k to 2) significantly improves

reliability; adding more slices improves reliability further. Figure 3.9 demonstrates that

even with just a few slices (i.e., 5) and a simple scheme for generating alternate graphs

(i.e., link-weight perturbations), the reliability of path splicing approaches the reliability of

the original underlying network. We also performed a reliability experiment for single node

failures and found similar results. Table 3.2 summarizes the results for the experiment.

Interdomain splicing To evaluate the reliability of interdomain splicing, we used C-

BGP [72], an open-source BGP routing solver. C-BGP takes as input a policy-annotated

graph of ASes and calculates the interdomain routes for each AS. For our experiments, we

use a 2,500 node policy-annotated AS graph generated by Dimitropoulos et al. [25]. Once

C-BGP computes the interdomain routes, we removed AS edges at random with probability

p. Next, on this modified AS graph, we checked for connectivity between random pairs of

51

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 0.01 0.02 0.03 0.04 0.05

F
ra

c
ti
o
n
 o

f
s
o
u
rc

e
-d

e
s
ti
n
a
ti
o
n
 p

a
ir
s

d
is

c
o
n
n
e
c
te

d

Probability of link failure (p)

k = 1 (normal)
k = 2
k = 3
k = 4
k = 5

Best possible

Figure 3.10: Reliability using a 2,500 node policy-annotated Internet AS graph.

ASes in the graph (testing reliability for all pairs is not tractable).

In cases where the default path was disconnected, we checked to see if a “spliced” path

existed for the disconnected AS pair using up to k choices for the next-hop. We repeated

this process 50 times for each value of p and k. Figure 3.10 shows the average fraction of

pairs disconnected for a range of values for p and k. We observe that adding just one more

slice significantly improves the reliability of the AS graph. For the “best possible” case, we

evaluated reliability for the base graph (without policy restrictions). The reliability curve

for interdomain splicing that respects policy is so close to the best possible reliability curve,

which demonstrates that BGP, even with policy restrictions, has near-optimal path diversity

if multiple routes are used. Path splicing can thus exploit this diversity without violating

AS-level policies or any modifications to BGP message format.

52

3.7.2 Fast Recovery

In this section, we demonstrate how an end system or a network node can quickly re-

cover from failures by selecting spliced paths in the network at random. We evaluate two

approaches to recovery: end-system recovery is network-agnostic and relies on the end sys-

tem (e.g., user, proxy, edge router) to initiate recovery; network-based recovery assumes

that the node in the network can detect a failure on an incident link and initiate recovery

by diverting traffic to a different slice. To generate a spliced graph with failures on the

Sprint topology, we use a simulation setup similar to the one for the intradomain reliability

experiment in Section 3.7.1. We only show results from end-system recovery.

For all disconnected source-destination pairs, we evaluate whether splicing allows pairs

of nodes to discover working alternate paths. If splicing can recover the path in five or fewer

trials (we assume that the end system or node could run these trials either in sequence, in

parallel, or even in advance), we consider the path recoverable. As discussed in Section 3.2,

our simulations do not allow us to explicitly compute recovery time in terms of seconds,

but we can estimate what this time might be from the number of trials: Because it would

take about one round-trip time to estimate whether a new set of splicing bits resulted in a

functional path, we can estimate the recovery time as the number of trials times the round-

trip time, divided by the number of trials that the system makes in parallel.

If a user typically makes the attempts one after another till he/she finds a working path,

then the recovery time would be the number of attempts times the time for each trial. If the

number of attempts are small, then the user could also make the trials in parallel and the

recovery time would simply be the time needed to make a trial. The time to make a trial

translates to the time spent by the end-user after sending a packet to conclude that the path

is “non-workable”. TCP typically declares a data packet as lost, if the ACK is not received

within the time-out interval which is a function of the round-trip time (RTT) of the path.

Thus, recovery time would be at least the RTT of the path.

53

 0

 0.1

 0.2

 0.3

 0.4

 0 0.02 0.04 0.06 0.08 0.1

F
ra

c
ti
o
n
 o

f
s
o
u
rc

e
-d

e
s
ti
n
a
ti
o
n
 p

a
ir
s

d
is

c
o
n
n
e
c
te

d

Probability of link failure (p)

k = 1 (no splicing)
k = 3 (recovery)
k = 3 (reliability)
k = 5 (recovery)
k = 5 (reliability)

Figure 3.11: Recovery using end-system recovery and Sprint topology.

End-system recovery. Figure 3.11 shows the recovery where the end system controls the

spliced path to the destination. In our experiments, we used a header that allows 20 hops

to be spliced. For a failed path, the new shim header (i.e., the splicing bits) is constructed

as follows: A coin is tossed for every hop in the shim header; if the result is a head, a

different slice is selected at random for that hop (i.e., at every hop we switch slices with

0.5 probability). We check to see if a failed path can be recovered in fewer than 5 trials.

The average number of trials in any case where splicing could recover from the failure

was slightly more than 2. Paths were on average 1.3 times longer (in terms of path cost)

compared to the shortest path in the “base” topology; the resulting paths typically used

about 50% more hops compared to the original shortest path. In any particular slice, 99% of

all paths in each tree had stretch less than 2.6. Figure 3.12 shows recovery for interdomain

splicing. The recovery is slightly worse because we consider only policy-compliant paths

as recoverable. These results show that splicing provides effective recovery, even with the

simplest possible recovery scheme and no knowledge about the location of failures.

54

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 0.01 0.02 0.03 0.04 0.05

F
ra

c
ti
o
n
 o

f
s
o
u
rc

e
-d

e
s
ti
n
a
ti
o
n
 p

a
ir
s

d
is

c
o
n
n
e
c
te

d

Probability of link failure (p)

k = 1 (no splicing)
k = 2 (recovery)
k = 2 (reliability)
k = 3 (recovery)
k = 3 (reliability)

Figure 3.12: Recovery using end-system recovery and a 2,500 node policy-annotated

Internet AS graph.

To understand how these recovery numbers compare to a simpler scheme that simply

tries to recover by using one of k paths at the source (closer to what a simple multipath

scheme might do), we compared path splicing to a recovery scheme that selects one slice at

the first hop and does not switch at intermediate hops. We found that splicing’s end-system

recovery still exhibits slightly better recovery: With 2 slices and a 10% failure probability,

splicing was able to recover about 7% more paths. This margin may, in some cases, not

justify the additional cost of path splicing, but path splicing may also be able to perform

better with a more sophisticated recovery scheme that uses specific information about the

location of network failures.

Network-based recovery. Figure 3.13 shows results for network-based recovery: When

a router x receives packets destined to d with next-hop y and discovers that link (x, y) has

failed, it finds in its forwarding table an alternate slice with a connected next-hop for d (if

55

 0

 0.1

 0.2

 0.3

 0.4

 0 0.02 0.04 0.06 0.08 0.1

F
ra

c
ti
o
n
 o

f
s
o
u
rc

e
-d

e
s
ti
n
a
ti
o
n
 p

a
ir
s

d
is

c
o
n
n
e
c
te

d

Probability of link failure (p)

k = 1 (no splicing)
k = 3 (recovery)
k = 3 (reliability)
k = 5 (recovery)
k = 5 (reliability)

Figure 3.13: Recovery using network-based recovery and Sprint topology.

one exists). If a path between two endpoints is discovered using this process we consider

the path recoverable. All paths between connected endpoints need not be recoverable since

the packet could end up in a dead-end from where there is no connected next-hop to reach

the destination, due to the specific slices selected by the routers. The average stretch for

network-based recovery was 1.33; there were 55% more hops in the recovered paths.

3.7.3 High Novelty, Low Stretch

Recall from our design goals in Section 3.2 that the paths generated in each slice should

have low stretch and high novelty. Our evaluation shows that, for intradomain splicing,

random perturbations achieve reasonable novelty while keeping the stretch of each slice—

and the stretch of the overall spliced paths—low.

Intradomain splicing. We show the results of our stretch and novelty experiments using

the Sprint topology. We vary the Weight(a,b, i, j) function from Equation 3.1 (Section 3.2)

56

 0.0001

 0.001

 0.01

 0.1

 1

 1 2 3 4 5 6

F
ra

c
ti
o

n
 o

f
T

o
ta

l
P

a
th

s
 (

C
C

D
F

)

Path Stretch

Degree-Based [0, 3]
Degree-Based [0, 4]
Degree-Based [0, 5]
Degree-Based [0, 10]
Degree-Based [0, 20]

Random

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

c
ti
o

n
 o

f
T

o
ta

l
P

a
th

s
 (

C
D

F
)

Novelty

Degree-Based [0, 3]
Degree-Based [0, 4]
Degree-Based [0, 5]
Degree-Based [0, 10]
Degree-Based [0, 20]

Random

(b)

Figure 3.14: Stretch and novelty for degree-based perturbations of the paths in the Sprint

topology.

and observe its effects on novelty and stretch. We also compared the results of degree-based

perturbations with the random case in which link weights are set randomly in the range of

[0, 5000]. For these experiments, we ran the simulator to generate 100 different slices for

different values of b with a = 0, in Weight(a,b, i, j), which controls the magnitude of the

perturbations.

Figure 3.14 shows the stretch and novelty for the Sprint topology with degree-based

perturbations; each line reflects a different Weight(a,b, i, j) function. Degree-based pertur-

bations achieve almost as much novelty as random link weight settings, but with far less

stretch (particularly in the worst case). For example, in the case of Degree-Based[0,3],

the average stretch is only 1.2; the worst-case stretch is also far better than the random

link-weight settings. In fact, only about 3.5% of paths have stretch of more than 2. The

corresponding average novelty value for the slices for degree-based perturbations is 0.41

and 80% of paths have one or more links different than those in the original shortest paths.

Increasing the value of the Weight() function results in small improvements in novelty but

higher stretch.

Uniform perturbations also have low stretch, but they provide less novelty than degree-

based perturbations. For example, the average stretch for the case of Weight() = 1 is only

1.03. The corresponding average novelty for this case is 0.22. On average, 57% of paths

57

 0

 0.05

 0.1

 0.15

 0.2

 0 0.02 0.04 0.06 0.08 0.1

F
ra

c
ti
o
n
 o

f
te

s
te

d
 s

o
u
rc

e
-d

e
s
ti
n
a
ti
o
n

p
a
ir
s
 d

is
c
o
n
n
e
c
te

d

Probability of link failure (p)

Routing Deflections
Recovery (5 slices)

Recovery (10 slices)
Reliability (5 slices)

Reliability (10 slices)

Figure 3.15: Comparison of recovery for splicing vs. routing deflections with stretch < 2.

differ by one link or more from the original shortest paths.

Not only is the stretch of the paths in each slice low, but the stretch of the actual spliced

paths after recovery is also low. In the case of end-system recovery, paths were on average

1.3 times longer in delay compared to the shortest path in the “base” topology; the resulting

paths typically use about 50% more hops compared to the original shortest path. In any

particular slice, 99% of all paths in each tree have stretch of less than 2.6. The average

stretch network-based recovery was 1.33, while there were 55% more hops in the recovered

paths; these numbers are slightly higher compared to the end-system recovery scheme.

Interdomain Splicing. We computed the average hop-count stretch for the interdomain

reliability experiment in Section 3.7.1. The hop-count stretch with 5% of the AS links

failed was only 1.038, or 3.8% more hops than in the default AS paths.

58

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

F
ra

c
ti
o
n
 o

f
re

c
o
v
e
re

d
 p

a
th

s

Path Stretch

Routing Deflections
Splicing (5 slices)

Splicing (10 slices)

Figure 3.16: Comparison of stretch for recovered paths for splicing vs. routing deflec-

tions.

3.7.4 Comparison to Routing Deflections

We compared the end-system recovery achieved by intradomain path splicing to that achieved

by the routing deflection mechanism proposed by Yang et al. [99]. We re-implemented the

deflection routing system and compared the reliability achieved by this scheme to that

achieved by path splicing. Previous work on routing deflections does not consider the

stretch of the resulting paths and considers all possible recovered paths. With routing

deflections, the number of neighbors that a node can potentially send a packet to is not

bounded, whereas in path splicing it is bounded by the number of slices; hence, routing

deflections may require significantly more storage. To provide a fair comparison between

the two schemes, we consider a path “recovered” only if it has a stretch of less than 2.

Figure 3.15 shows the recovery achieved by path splicing for different numbers of slices

compared to routing deflections. Path splicing recovers more paths than routing deflections

using just five slices.

59

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 0.01 0.02 0.03 0.04 0.05

F
ra

c
ti
o
n
 o

f
te

s
te

d
 s

o
u
rc

e
-d

e
s
ti
n
a
ti
o
n

p
a
ir
s
 d

is
c
o
n
n
e
c
te

d

Probability of link failure (p)

k = 3 slices

0% ASes
25% ASes
50% ASes
75% ASes

100% ASes

Figure 3.17: Interdomain path splicing: Incremental deployment.

In addition to directly comparing recovery, we compared the stretch of the recovered

paths using each of the schemes for this experiment. Figure 3.16 shows the resulting statis-

tics. The results show that path splicing can recover paths that have lower stretch than the

stretch of the paths recovered using routing deflection. Path splicing generated paths with

an average stretch of 1.26, whereas the path stretch using routing deflections was 1.78.

Path splicing also generates shorter paths more consistently: the variance of stretch values

for paths generating using path splicing was 0.09; in contrast, the variance of stretch for

recovered paths using routing deflections was 4.83.

3.7.5 Incremental Deployability

Interdomain splicing requires ASes to independently decide to deploy additional function-

ality. It is reasonable to ask, then, how well interdomain splicing would perform if only a

fraction of ASes deployed it. Our experiments show that path splicing provides significant

60

benefits even if only a small fraction of a fraction of ASes deploy it. To evaluate the ben-

efits of partial deployment, we use the same AS topology as in the interdomain reliability

experiments. We fixed the number of slices and performed the reliability experiment as

before; for each experiment, we let only a fraction of ASes select an alternate AS-level

path if the next-hop on the default route has failed. We evaluate reliability for five levels

of deployment: 0% to 100% with 3 slices, as shown in Figure 3.17. Reliability improves

significantly even if only 25% of the ASes deploy interdomain splicing. We expect that the

benefits might be even higher if all “Tier-1” ISPs deployed splicing.

3.7.6 Infrequent (and avoidable) Loops

Because traffic is not forwarded along a single routing tree, splicing does create the po-

tential for transient forwarding loops if some precautions are not taken. Forwarding loops

are a concern because they increase the total length of the end-to-end path, and they also

unnecessarily use extra network capacity and node resources (note that these detriments

are the same as paths with longer stretch; we have already shown that spliced paths have

reasonable stretch).

Fortunately, certain recovery strategies can avoid persistent forwarding loops entirely.

First, a persistent loop would require the splicing bits to be repeated in exactly the right

sequence. Second, in the design we presented in Section 3.5.2, the splicing header will

eventually run out of splicing bits as each node shifts lg(k) bits from the header; at this

point, the packet stays in the same tree to the destination. Second, paths that never switch

back to a previously used slice would never contain persistent forwarding loops of any

length; recovery strategies could pick only these paths. Although it would not necessarily

prevent transient loops entirely, restricting the number of switches between slices that any

packet takes would also limit the likelihood of loops significantly. Our evaluation shows

that loops were quite infrequent. Using network-based recovery, there was less than 1 loop

on average with length greater than 2 when recovering from the case where the network

61

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12 14

T
ra

ff
ic

 (
M

B
)

Link ID

No splicing
k = 2
k = 5
k = 9

Figure 3.18: Abilene Network: Effect of splicing on traffic in the network using real

traffic traces.

had 10% of links failed. Two-hop loops occurred more frequently (about one per 100 trials

for k = 2, and about one in ten trials for higher values of k). Using any of the schemes

discussed above could eliminate loops entirely, at the cost of restricting the paths available

for recovery.

3.7.7 Minimal Disruption to Traffic

We studied the effects of splicing on traffic loads within a single ISP. We extended C-

BGP to support intradomain path splicing and provided C-BGP with BGP routing tables,

IGP configurations, and NetFlow traffic traces for the Abilene network; we then used it to

determine the traffic load on each link in the network in the default case and for various in-

stantiations of splicing. Abilene has only 11 nodes and 14 links, but we ran our experiments

using this network because it makes routing and traffic data publicly available.

For the experiment, we create k slices for the Abilene topology in C-BGP; we used

degree-based perturbations to generate the slices. C-BGP computes shortest paths for each

62

 0

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60 70 80 90

T
ra

ff
ic

 (
u
n
it
s
)

Link ID

No splicing
k = 2
k = 5
k = 9

Figure 3.19: Sprint Network: Effect of splicing on traffic in the network using synthetic

traffic.

slice and loads the routes into the respective forwarding tables on each of the nodes. Next,

we load the BGP routing table dumps obtained from Abilene on each of the nodes. We then

“play” 5-minute NetFlow traces through the network; we load a NetFlow trace onto each

node that corresponds to the traffic collected from the node in the actual Abilene network.

For every packet reflected in the trace statistics, C-BGP selects a slice based on the hash

value of the source and destination IP addresses in the packet. So traffic is split randomly

among the k slices. Figure 3.18 shows the resulting link loads.4 We also performed a similar

experiment using the Sprint topology and a synthetic traffic matrix, which consisted of unit

traffic for all node pairs. Figure 3.19 shows the results of this experiment.

The plots sort links on the basis of their load in the case without splicing and show the

corresponding load on the same links using splicing. The plots demonstrate that splicing

does not cause significant adverse effects on traffic. Splicing can increase stretch if traffic is

4We repeated the experiment with different 5-minute NetFlow packet traces and found similar results.

63

routed on paths other than the shortest path in the network. As a result, the sum of the load

on the links in the network will be higher when using splicing. Fortunately, the utilization

is not that much greater: the sum of the load on the links is on average only about 4%

higher (and never more than 10% higher) than without splicing. In the Sprint network,

traffic under splicing is 9% higher on average (and never more than 12%).

3.8 Proofs

In this section, we present sketches of proofs to show how splicing is ability to achieve

high reliability with a low, bounded stretch and also that the probability of forwarding

loops occurring on spliced paths is rare. Our analysis shows that the number of slices

required to achieve near-optimal connectivity with bounded stretch scales well with the

size of the graph. Specifically, Theorem 3.8.1 shows that the number of slices required to

achieve connectivity that is close to that of the underlying graph scales as logn, where n is

the number of nodes in the graph.

3.8.1 Reliability Analysis

Fix a maximum allowable stretch D. Then, for each pair of vertices s, t, we consider the

subgraph G(D,s, t) induced by paths of length at most D from s to t. Let χG(D,s, t) be the

connectivity of this graph and χG(D) = mins,t χG(D,s, t). We show that the connectivity of

the paths used by path splicing approaches χ(D) (i.e., that of the underlying graph).

Theorem 3.8.1. Let H denote the union of k shortest path trees to a destination t, each ob-

tained from a graph G by independent random perturbations of the link weights uniformly

in the range (L,2DkL). Then for any k > c0 logn, with high probability, the connectivity of

H is at least c1χG(D) where c0,c1 are universal constants and n is the number of nodes in

the graph.

We only give the idea of the proof here. We argue that every cut of H has Ω(k) edges.

This uses two ideas: (1) there are at most n(n−1)/2 mincuts in an undirected graph with

64

n vertices and at most 2ln(n− 1)/2 cuts of with at most l times the minimum number of

edges (2) An cut C with |C| edges has an edge subset set of support Ω(|C|) with the property

that each edge is chosen roughly uniformly in a shortest path tree with perturbed weights.

Combining (1) and (2) along with a Chernoff bound gives the claimed result.

3.8.2 Stretch Analysis

In this section, we show that stretch is bounded and that, as a consequence, long forwarding

loops are unlikely.

Theorem 3.8.2. Assume the perturbations of a link i with original weight Li are uniform

in the range [−cLi,cLi]. Consider a packet traveling from source s to destination t that has

made m hops of perturbed lengths L′ = (L′
1, . . . ,L

′
m) on a single slice and reached a node

u. Let P be a shortest path from s to t. Then, for any r > 1,

Pr

(

(1− c)d(u, t)≤ ||P||1 −||L′||1 +
rc√

3
||P||2

)

≥ 1− 1

r2
.

Proof. We begin with a simple probabilistic bound on the perturbed length of any fixed

path. Let Xi be the perturbed length of a traversed link with original length Li. Then

E(Xi) = Li. Further,

Var(Xi) = Var(Xi −Li))
2

= E((Xi −Li)
2)−E(Xi −Li)

2

= E(Y 2
i)

where Yi is uniform in the interval [−cLi,cLi]. Thus,

Var(Xi) =

∫ cLi

−cLi
y2 dy

2cLi

=
c2

3
L2

i .

Let X = ∑
m
i=1 Xi. Using Chebychev’s inequality, we have

Pr

(

|X −L| ≥ r
c√
3
|L|2

)

<
1

r2
.

65

Let d′(., .) denote the shortest path distances with perturbed weights in the current slice.

Let P be a shortest path between s and t with the original weights.

d(u, t)≤ 1

1− c
d′(u, t)

=
1

1− c
(d′(s, t)−||L||1)

≤ 1

1− c
(d(s, t)+

rc√
3
||Pst ||2 −||L||1)

where the equality follows from the property of a shortest path and the inequality holds

with high probability using the above analysis.

3.9 Discussion and Open Issues

This section explores the changes both to hosts and to routers that would be required to

deploy and evaluate various aspects of splicing in practice (e.g., recovery time).

Changes to routers. Path splicing requires changes to the forwarding plane in routers in

order to support multiple routes for a destination and the ability to select one of those routes

based on the splicing bits. Recently, multi-topology routing has been standardized [70], and

router vendors are also supporting this function [22, 56]. The basic forwarding mechanism

required for splicing is very similar to multi-topology routing. We expect that the data-

plane implementation of splicing will entail only a small extension to MTR. Additionally,

we have developed a Click element that uses bits in the IP ID and type of service fields and

to index into separate forwarding tables generated by the path splicing control plane; we

plan to use this in conjunction with the changes to end systems described below to evaluate

the recovery time of splicing in practice.

Changes to end systems. Path splicing relies on a failure detection mechanism before it

can find a new working path. As we discussed in Section 3.7, detection could take place

either at the routers themselves (as it is done today with other recovery mechanisms, such

as fast reroute) or at end hosts (which might allow for recovery from different classes of

66

“failures”, such as paths that exhibit high packet loss or jitter, as well as those that might

exhibit complete outages). Instrumenting applications to take advantage of path splicing

will require designing and developing mechanisms for receiving information about path

quality as well as an extension to the sockets API for setting splicing bits in the packet

headers.

Automatic tuning. Previous work has examined ways to tune network routing protocols

to achieve desirable properties (e.g., low congestion) [32, 33], but these mechanisms are

offline and potentially quite sensitive to small changes in the network topology (e.g., link

or node failures). Similarly, planned maintenance events on links or nodes in the network

require careful manipulation of the routing protocol parameters to minimize disruption and

reduce the possibility of congesting certain links. By generating multiple non-overlapping

routing trees on the same topology and splitting traffic across those trees, a single link

failure (or planned maintenance event) will, on average, disrupt fewer end-to-end paths

(we examine this property empirically in Section 3.7).

Alternate slicing and recovery mechanisms. Rather than generating slices at random,

each slice could be configured with some consideration of the edges that were already cov-

ered by other slices. Other approaches to generating backup trees (e.g., multi-router con-

figuration, multi-topology routing) might be used to achieve reliability with fewer slices.

Similarly, other approaches for setting splicing bits could result in even faster recovery;

particularly if end systems have additional information about the location of a failure along

a path from auxiliary monitoring systems [31, 58].

Adversarial concerns. An adversary could set splicing bits that send packets into a for-

warding loop, thus wasting resources. This attack seems unlikely, because it requires an

adversary to actually discover splicing bits that will induce a loop. An adversary cannot

use the splicing bits to create arbitrary loops. Path splicing gives end systems some control

67

over the paths that traffic takes, which introduces the possibility that all end systems will

react the same way upon seeing a faulty network path. If all end systems choose the same

backup path when a link or node fails, the resulting traffic shifts could introduce congestion

on certain links. Because each end system selects a new sequence of forwarding bits at ran-

dom, we expect that traffic will disperse evenly across the network topology upon failure

recovery; still, examining the effects of failures on traffic dynamics deserves further study.

3.10 Summary

In this chapter, we presented the design and evaluation of path splicing, a primitive for

increasing reliability by composing routes from multiple routing protocol instances. Path

splicing has three salient features that can be applied to any routing protocol: (1) Nodes run

multiple routing protocol instances (or, alternatively, a single instance with many variants of

the underlying configuration) to obtain alternate paths to each destination; (2) Intermediate

nodes can forward traffic to the destination on any of these slices, effectively allowing

traffic to “switch midstream”; (3) End systems can switch the path along which their traffic

is sent using opaque bits in the packet header.

We have applied path splicing to both intradomain and interdomain routing and evalu-

ated its ability to allow end systems to find alternate paths when links fail. Our experiments

show that running just a few slices in parallel allows path splicing to achieve reliability

that is close to that of the underlying graph (i.e., as long as endpoints remain connected in

the underlying graph, there will be some spliced path that connects them). We have also

demonstrated that even simple recovery schemes, such as switching slices without prior

knowledge of failure at intermediate hops, allows end systems to realize this reliability

using alternate paths with small stretch.

Path splicing can be deployed on existing routers with small modifications to existing

multi-topology routing functions. We also foresee many possible applications to other

routing protocols (e.g., wireless, overlay routing) and to many other applications that could

68

take advantage of having access to multiple paths in parallel. In Chapter 4, we present

several implementations of path splicing, in both software and hardware platforms. We also

demonstrate the simplicity and flexibility of the path-bits interface by implementing the

splicing path selection using path bits. We discuss extensions of path splicing in datacenter

environment in Chapter 6.

69

CHAPTER IV

NETWORK AND END SYSTEMS SUPPORT FOR PATH BITS

4.1 Introduction

We have so far presented the motivation and design of path bits in Chapter 2 and the design

of a multipath routing primitive, path splicing, that can be easily mapped to a path-bits

interface, in Chapter 3. In this chapter, we present the implementation of the narrow waist.

We explore two questions: (1) Can an opaque path-selection mechanism be generalized

to support many multipath routing protocols and implementations (in both hardware and

software)? and (2) Can end systems use an opaque path-selection mechanism to effectively

and quickly discover good alternate network paths in practice, on real Internet paths for real

applications? Our evaluations show that “blind” path selection works well: For example,

on the Level 3 Rocketfuel topology with a 5% link-failure rate, multipath routing using the

path bits interface required only 1.3 more attempts on average to recover from a failed path

than a technique than an optimal approach that knew the exact failure location.

In particular, our “narrow waist” design achieves two goals:

1. Decouple the end systems and multipath routing mechanism so that multipath mecha-

nisms can evolve independently from the applications that use them. We evaluate this

goal by implementing several multipath routing mechanisms that expose the simple

path bits interface. Our evaluation shows that many existing multipath routing im-

plementations can be controlled using path bits, and that path bits affords a simple

design and implementation of these mechanisms. We also describe how to implement

path bits by using existing fields in the IP header.

2. Provide a simple interface to applications that allows them to achieve application-

appropriate benefits from multipath. To evaluate this goal, we show how several

70

existing applications can be easily modified to take advantage of the path bits in-

terface. We also show that, if path bits are managed by the kernel, the path bits

interface allows existing applications to use multipath routing with no modifications

whatsoever.

We make three contributions. First, we propose a generic interface between a network

that supports multiple paths and for end-systems to be able to efficiently select and use

those multiple paths. Second, we demonstrate the simplicity and efficiency of the interface

by implementing a number of recent multipath routing architectures on a variety of soft-

ware and hardware platforms. Third, we implement extensions to the end host to support

path bits manipulation in the kernel; using that interface we implement simple monitoring

techniques that can benefit from the path bits interface to make intelligent path selection

decisions and demonstrate the utility of such a framework for applications like failure re-

covery, improved throughput and better reliability for real-time applications. We show how

the path bits interface at the end-system could be integrated with either a passive or active

monitoring framework.1

The rest of this chapter is organized as follows. Section 4.2 presents implementations

of different multipath routing schemes using the path-bits interface. Section 4.3 presents

our prototype implementation of supporting path bits at end systems and describes our path

monitoring implementations. Section 4.4 presents our evaluation of the path monitoring

schemes and Section 4.5 concludes the chapter.

4.2 Supporting Path Bits in the Network

We describe the mechanisms that network devices need for supporting path bits, as well as

the implementations we have done on both software and hardware platforms.

1Some of the multipath schemes we consider defer forwarding decisions to end hosts rather than network-

ing elements [54, 96, 44]. Path bits applies to these approaches as well, although in our exposition, we focus

on end-host path selection.

71

4.2.1 Network Support

Forwarding devices along the path interpret the path bits in a packet to direct traffic to the

appropriate outgoing interface. We provide network support for different multipath routing

protocols by having the bits serve as an index into different forwarding table entries and

changing how the path bits are used to index into the different forwarding table entries.

Routing deflections [99] could be implemented at a router by using the path bits to switch

forwarding to a pre-computed next-hop that is closer downstream to the destination. Path

splicing [60] could be implemented by using the bits as an index into one of k pre-computed

slices. Pathlet routing [36] could be implemented by pre-computing labels for pathlets, and

setting up those paths in the forwarding tables, and using the bits to index into different

pathlets. A variant of ECMP could be implemented by installing multiple paths of almost

equal length into the forwarding table and using the path bits to select one of multiple

possible next hops (see Table 2.1).

A key design decision for implementing the narrow waist at network devices is which

bits the devices should use to index into different forwarding table entries. Options include

the IP ID and TOS fields in the IP header to the VLAN ID in the layer-two header. The

main criteria are: (1) every network device along the path that interprets path bits should

interpret the same set of bits; (2) the path bits should not affect other functions in the

network. For our Click implementation, we used the TTL field instead of the TOS field,

since we ran our experiments on Emulab, which filters non-standard TOS values in the IP

headers of packets. Similarly, our OpenFlow implementation uses the VLAN ID instead of

the IP ID and TOS fields because the current implementation of OpenFlow does not allow

rules for these fields.

72

4.2.2 Network Implementations

To understand the generality, power, and efficiency of the path bits interface, we imple-

mented three multipath routing schemes on a mix of four different platforms: software-

based implementations in Click, and hardware implementations on NetFPGA, OpenFlow [64],

and the Intel IXP network processor. One of the goals of this exercise is to demonstrate

that the simple interface provided by path bits—and its function as an index into multi-

ple forwarding tables—can support a variety of multipath routing schemes in few lines of

code, using only modest resources. In all cases, we embed path bits in the IP ID field in

the IP header. The TTL field value is used to index into the appropriate set of bits in the

IP ID field by the routers along the path. All of our implementations, along with details on

configuration, are publicly available on our website [3].

Click-based software router We implement three multipath schemes as Click elements:

Path splicing, Routing Deflections, and a modified version of ECMP that we call ECMP++.

The Click modules for these are available for use by researchers on our Web site [3]. Fig-

ure 4.1 describes the basic structure of the Click modules of our implementation. The

implementation has a path bits extractor component that extracts the path bits from the

packet header (the IP ID and TTL fields in our case). We have a custom implementation

for each multipath scheme, which interprets the path bits based on the particular multipath

scheme. Finally, the custom code derives an index number which corresponds to a choice

of the forwarding table that must be used to lookup the destination. Our design generalizes

to implementations on other platforms as well, as we show later in this Section.

• Path Splicing Figure 4.2 shows the experimental topology with an example of how

path bits can indicate a path to the routers in the network. The IP ID field encodes

the forwarding tree that each router along the path should use to forward the packet

en route to the destination. Routers read the appropriate bit position in the IP ID

field according to the index in the TTL field; the IP ID serves as an index into the

73

Path bits
Extractor

pkt

Multipath
Scheme

Path
Splicing

Routing
Deflections

ECMP++

Routing Tbl
Selector

table
index

path
bits

Extract path
bits from the

packet header

Perform lookup
from the routing

table specified by
table index

Figure 4.1: Click implementations of three different multiple routing schemes using path

bits.

Figure 4.2: Topology used for Emulab experiments. The arrows and corresponding path

bits show the next hop for reaching the destination along an example path.

forwarding table (“slice”) that the router should use to forward the packet. As men-

tioned above, we use the IP ID and TTL fields to carry the path bits. The code for the

Path Splicing implementation consists of a new Click element that reads the IP ID

field in the packets and selects the appropriate routing table to use for forwarding the

packet. This element (PathSplicing) required only seven semicolon-containing lines

of C++, as shown in Figure 3(a). Lines 11–12 extract the table index number from

the IP ID and TTL fields of the packet. The Click element then outputs the packet on

the appropriate output port of the element (Line 15).

74

1 void Pa t hSp l i c i n g : : push (i n t p o r t , P a c k e t ∗ p i n)

2 {
3 c o n s t c l i c k i p ∗ i p i n = p i n−>i p h e a d e r () ;

4 a s s e r t (i p i n) ;

5

6 / / Path B i t s E x t r a c t o r

7 u i n t 1 6 t p a t h b i t s = n t o h s (i p i n −> i p i d) ;

8 u i n t 8 t t t l = i p i n −> i p t t l ;

9

10 / / S p l i c i n g S p e c i f i c t o d e t e r m i n e t h e s l i c e number

11 u i n t 8 t b i t s i n d e x = t t l % 8 ;

12 u i n t 1 6 t t a b l e i n d e x = ((p a t h b i t s & (0 x0003 << (2 ∗
b i t s i n d e x))) >> (2 ∗ b i t s i n d e x)) & 0 x0003 ;

13

14 / / Push t h e p a c k e t o u t t o t h e o u t p u t

15 o u t p u t (t a b l e i n d e x) . push (p i n) ;

16 }

(a) Click element code.

1 e l e m e n t c l a s s R o u t i n g T a b l e s

2 { | $s rc , $ d s t |
3 i n p u t −> r t a b l e : : RadixIPLookup ($ s r c 0 , $ d s t 1 , 0 / 0 2 ,) ;

4 r t a b l e [0] −> [0] o u t p u t ;

5 r t a b l e [1] −> [1] o u t p u t ;

6 r t a b l e [2] −> [2] o u t p u t ; }
7

8 / / Cr e a t e r o u t i n g t a b l e s

9 r t a b l e 0 : : R o u t i n g T a b l e s (s r c i p , d s t i p) ;

10 r t a b l e 1 : : R o u t i n g T a b l e s (s r c i p , d s t i p) ;

11 . . .

12 / / P a t h S p l i c i n g c o n n e c t e d t o

13 / / t h e a p p r o p r i a t e r o u t i n g t a b l e

14 s p l i c i n g : : P a t h S p l i c i n g () ;

15 s p l i c i n g [0] −> DecIPTTL−> r t a b l e 0 ;

16 s p l i c i n g [1] −> DecIPTTL−> r t a b l e 1 ;

17 . . .

18 / / C o n n e c t i o n s f o r t a b l e 0

19 s p l i c i n g [0] −> t o r o u t e r 0

20 s p l i c i n g [1] −> t o r o u t e r 4

21 s p l i c i n g [2] −> U n s t r i p (1 4) −> ToHost () ;

22 / / r e m a i n i n g r o u t i n g t a b l e s

(b) Click configuration file.

Figure 4.3: Path Splicing.

75

Each router has a Click configuration file that specifies the connections for the mul-

tiple routing tables at the router and connects the output of the Click element Path-

Splicing with the appropriate forwarding table. Figure 3(b) shows the Click config-

uration for router R2 in Figure 4.2. Lines 15–17 direct the output of PathSplicing to

the appropriate routing table, whose connections are specified for example in Lines

19–21 in Figure 3(b).

• Routing Deflections Routing Deflections [99] uses the bits in a similar manner as

Path Splicing. Each router has a deflection set consisting of next hops that may be

used for a packet depending on the packet’s previous hop and destination address.

Thus, the deflection set is a function of (ingress interface, destination ip address).

The IP ID and TTL fields index into the deflection set at each router, as described

in [99]. We implemented Routing Deflections by precomputing the deflection set for

each router and including it in the Click configuration files. We also implemented a

Click element that reads the IP ID and TTL fields to output the index number in the

deflection set. The Click element is similar to the code snippet shown in Figure 3(a),

and as shown in Figure 4(a), is about nine semicolon-containing lines of C++. Lines

11–15 compute the tag, which is extracted only if the TTL is greater than 160 and

less than 200. The tag is then used to compute the index into the deflection set for

the incoming interface and destination IP address (Line 19).

Figure 4(b) shows the Click configuration for the Routing Deflections elements at

Router R2. The configuration is similar to the Path Splicing configuration, except

the configuration now specifies a deflection set for each neighbor, as opposed to in-

dividual routing tables per slice. Lines 3–7 configure the RoutingDeflection element

and the connections to the routing tables (deflection set) for packets coming from

neighbor R0.

• ECMP++ ECMP++ is a version of ECMP where the outgoing interface for a packet

76

1 void Rou t i n gDe f l e c t i o n : : push (i n t p o r t , P a c k e t ∗ p i n)

2 {
3 c o n s t c l i c k i p ∗ i p i n = p i n−>i p h e a d e r () ;

4 a s s e r t (i p i n) ;

5

6 / / Path B i t s E x t r a c t o r

7 u i n t 1 6 t p a t h b i t s = n t o h s (i p i n −> i p i d) ;

8 u i n t 8 t t t l = i p i n −> i p t t l ;

9

10 / / R o u t i n g D e f l e c t i o n s s p e c i f i c

11 p a t h b i t s = p a t h b i t s & 0 x 0 3 f f ; / / u se o n l y t h e l a s t 10 b i t s

12 u i n t 1 6 t tag = 0 ;

13 i f (t t l > 160 && t t l < 200) {
14 tag = p a t h b i t s ;

15 }
16 u i n t 1 6 t t a b l e i n d e x = (tag % prime) % s i z e ;

17

18 / / Push t h e p a c k e t o u t t o t h e o u t p u t

19 o u t p u t (t a b l e i n d e x) . push (p i n) ;

20 }

(a) Click element code.

1

2 / / D e f l e c t i o n s e t f o r n e i g h b o r R0

3 d e f l e c t 0 : : R o u t i n g D e f l e c t i o n (2) ;

4 r t a b l e R 0 0 : : RTable (s r c i p , d s t i p) ;

5 r t a b l e R 0 1 : : RTable (s r c i p , d s t i p) ;

6 d e f l e c t 0 [0] −> DecIPTTL −> r t a b l e R 0 0 ;

7 d e f l e c t 0 [1] −> DecIPTTL −> r t a b l e R 0 1 ;

8

9 / / D e f l e c t i o n s e t f o r n e i g h b o r R3

10 d e f l e c t 3 : : R o u t i n g D e f l e c t i o n (2) ;

11 r t a b l e R 3 0 : : RTable (s r c i p , d s t i p) ;

12 r t a b l e R 3 1 : : RTable (s r c i p , d s t i p) ;

13 . . .

14

15 / / C o n n e c t i o n s f o r p k t s coming from n e i g h b o r R0

16 r t a b l e R 0 0 [0] −> t o r o u t e r 0 ;

17 r t a b l e R 0 0 [1] −> t o r o u t e r 4 ;

18 r t a b l e R 0 0 [2] −> U n s t r i p (1 4) −> ToHost () ;

19

20 r t a b l e R 0 1 [0] −> t o r o u t e r 0 ;

21 r t a b l e R 0 1 [1] −> t o r o u t e r 3 ;

22 r t a b l e R 0 1 [2] −> U n s t r i p (1 4) −> ToHost () ;

23 / / S i m i l a r l y f o r o t h e r n e i g b o r s

(b) Click configuration file.

Figure 4.4: Routing Deflections.

77

1 void ECMPplus : : push (i n t p o r t , P a c k e t ∗ p i n)

2 {
3 c o n s t c l i c k i p ∗ i p i n = p i n−>i p h e a d e r () ;

4 a s s e r t (i p i n) ;

5

6 / / Path B i t s E x t r a c t o r

7 u i n t 1 6 t p a t h b i t s = n t o h s (i p i n −> i p i d) ;

8 u i n t 8 t t t l = i p i n −> i p t t l ;

9

10 / / ECMP++ s p e c i f i c

11 u i n t 8 t i n d e x = t t l % 8 ;

12 u i n t 1 6 t b i t s = ((p a t h b i t s & (0 x0003 << (2 ∗ i n d e x))) >> (2 ∗
i n d e x)) & 0 x0003 ;

13 i n t s r c a d d r = i p i n −> i p s r c . s a d d r ;

14 i n t d s t a dd r = i p i n −> i p d s t . s a d d r ;

15 i n t t a b l e i n d e x = Hash (s r c add r , ds t add r , b i t s) ;

16 t a b l e i n d e x = t a b l e i n d e x %2;

17

18 / / Push t h e p a c k e t t o t h e o u t p u t

19 o u t p u t (t a b l e i n d e x) . push (p i n) ;

20 }

Figure 4.5: ECMP++.

is determined based on a hash of (src ip, dst ip, path bits) in the packet header.

The path bits are included as part of the IP ID field in the packet header; the TTL

field can be as in the path splicing implementation to help the routers index in the

IP ID field to read the path bits corresponding to the router. Figure 4.5 shows the

implementation of this Click element; in the interest of space, we have not shown

the Click configuration for this setup. It is similar to that for other multipath routing

implementations. Lines 7–11 are same as in implementation of path splicing, while

Lines 12–16 determine the output port (either 0 or 1) by hashing the ip addresses

with the path bits.

For evaluating our end-system support for path bits we used the above software imple-

mentations of multipath routing schemes. We now move to describing how path bits can

be supported on hardware platforms as well.

78

Openflow-based implementation We describe our design and implementation of Path

Splicing using OpenFlow. OpenFlow is suited for deployment in an enterprise network or

in a datacenter network environment, where all the network elements (i.e., the routers and

switches) are owned by a single entity. OpenFlow setup consists of switches which support

the OpenFlow specification and an OpenFlow controller. The controller has a full view

of the topology and can communicate with the OpenFlow switches to install forwarding

rules. The controller also receives any frames that do not match the forwarding rules in the

switches.

Using the switch topology information, the OpenFlow controller computes multiple

spanning trees for the network topology and installs the appropriate forwarding rules in the

OpenFlow switches. When a new end host sends a frame to the switch that it is attached

to (e.g., for an ARP request), the switch will not find a matching rule in the flow table and

forwards the frame to the controller. The controller uses this frame to learn the location (i.e.,

switch and port) of the host. The controller then installs multiple forwarding rules on all the

switches in the network, based on the spanning trees that it has computed. Subsequently,

as other hosts send frame to this host, the switches forward them using the rules installed

by the controller.

Because current OpenFlow switches allow specifying forwarding rules based on limited

number of fields in the Ethernet frames or IP packets, we cannot use the IP ID or TTL fields

for the path bits. Instead, we use the source VLAN ID tag field to carry the path bits; this ID

actually lends itself to a natural mapping between a single network that provides multiple

paths and a network that is overlaid with multiple networks. Using the VLAN ID field also

preserves semantics at layer two and higher, since no other fields in the Ethernet frame or

IP header are modified. Unfortunately, unlike the IP header fields, the VLAN ID is not

modifiable by applications. To allow hosts to modify the VLAN ID, hosts must implement

a module that copies path bits to the VLAN ID tag field in the packets when they are sent

on the network. This design is feasible, because an enterprise (or datacenter operator) has

79

much tighter control over the host operating systems.

We have implemented the above design with a custom NOX controller [40] and refer-

ence software switches for a three switch and two host network topology, similar to NetF-

PGA testbed topology shown in Figure 4.2. We are in the process of implementing the host

modifications to allow setting the VLAN ID.

Implementing path splicing using OpenFlow requires additional space in the switch

flow tables, as well as additional communication overhead with the controller. If there are

k trees and N active hosts in the network, then we need k ·N rules in the flow table of every

switch. By comparison, a classical learning switch that is part of a single spanning tree

maintains N entries in its bridge table. Second, the network incurs overhead in terms of

communication with the controller. If there are M switches in the network, the controller

sends k ·M messages: one message per switch per spanning tree. The host’s switch only

forwards the first frame from a host to the controller, so this overhead is fixed. Our current

implementation does not refresh the rules or expunge stale entries; these functions are

important if hosts are silent for extended periods, leave the network, or relocate in the

network. Implementing these features requires k ·M ·N messages per refresh cycle across

all switches.

NetFPGA-based implementation We implemented Path Splicing and Routing Deflec-

tions using NetFPGA [2]. Our implementations are loosely based on the implementation

for building a fast, virtualized data plane with NetFPGA [12]. We implemented these

schemes on the Xilinx Virtex-II Pro 50 FPGA.

The path splicing implementation instantiates four forwarding tables and four ARP

tables in the base router. Because a destination IP address can exist in multiple forwarding

tables, the implementation requires separate ARP tables to have different ARP entries for

same IP address. The implementation uses four 32-entry TCAMs and four 32-entry ARP

tables. The lookup modules are implemented using SRL16e; ARP CAMs are implemented

80

Tab 3

MAC

Rx 0

input

inte rfaces

MAC

Rx 1

MAC

Rx 2

MAC

Rx 3

Path bits

extractor &

Input Arbite r

Multi Path Protocol

Tab 0 Tab 1 Tab 2 Tab 3

Output Queues

MAC

 Tx 0

MAC

 Tx 1

MAC

Tx 2

MAC

Tx 3

Se lect

output

based on

path bits

output

inte rfaces

Splicing/

Deflections

Output Port Lookup

Figure 4.6: Router pipeline for the NetFPGA implementation of path splicing.

using dual port Block RAM (BRAM). These 32-entry tables correspond to available re-

sources on the NetFPGA base router implementation: the card has one 32-entry TCAM

longest-prefix match module with its lookup table and one 32-entry ARP table.

The implementation creates the path bits using three bits from the TTL field, plus the IP

ID field. The high three bits are used to divide the lower 16 bits into eight entries. Each en-

try determines which of the four routing tables to use at each hop. We use on-chip memory

to store the forwarding tables. For a base router, we use the reference router implementa-

tion from the NetFPGA group [2]. Figure 4.6 shows the base router implementation and

the modules that are added or modified in the reference design. The path splicer performs

collects the path bits and informs the output port lookup module which forwarding table to

use to determine the next hop.

By separating forwarding table selection from forwarding, the multipath module in Fig-

ure 4.6 allows designers to use any kind of path bits selection mechanism that can act on

the packet header. We use this feature to ease the implementation of both path splicing

81

and routing deflections. As observed the common denominator among different multipath

schemes is to have separate forwarding tables for different paths; different multipath algo-

rithms merely change how the path bits are used to select among these forwarding tables.

Our multipath module can be used easily to implement a new multipath routing scheme by

changing the table selection register shown in Figure 4.6.

4.3 End-system Support

This section describes the design and implementation of the end-system support for the

path-bits interface. In Section 4.3.1, we explain key design decisions for allowing end

systems to set (and modify) path bits in packets. Our implementation of path bits runs

on a Linux end host, which we describe in Section 4.3.2, and comprises (1) the path bits

manager, a kernel interface for manipulating path bits; and (2) a socket capture library for

providing path bits support to unmodified legacy applications. We also implement a few

simple path monitoring agents that use path bits to monitor and select paths. Section 4.3.3

describes the interface between the path bits manager and monitoring agents that can induce

the path bits manager to change a flow’s path bits.

4.3.1 Software Interface Design Decisions

Our primary goal for the software interface is to balance ease-of-use—making it as close

to transparent as possible for applications to benefit from path bits—with flexibility—the

ability for an application to meet precisely its unique needs from the underlying multi-

path capabilities. To meet this goal, our interface is based upon three high-level design

decisions:

1. The kernel controls the assignment of path bits to packets. Application program-

mers often think in terms of sockets or flows. Furthermore, particularly when using

TCP, they may not have the control or timing needed to decide on a packet-by-packet

basis what path bits to assign. As a result, we place the kernel in charge of setting

82

the per-packet path bits, and define an interface for either the application or a higher-

level protocol (e.g., TCP) to modify them. We have implemented one such mapping

using a Click [50] kernel module called the path bits manager, which replaces the

networking stack and incorporates a table that maps flows to path bits.

2. It should be easy for either senders or receivers to trigger a path bits change, as

needed. The sender sets path bits, but the receiver can directly measure the quality of

the paths that reach it. Some protocols such as TCP already provide the end-to-end

feedback that the sender needs to determine path quality, but sometimes the receiver

may wish to trigger a path change on the forward path (e.g.real-time applications

like VoIP or online games might want such control). To make this option easier

for applications to use, we add a feedback mechanism to the path bits manager at

the sender and receiver to allow the receiver to trigger a change of the path bits for

packets sent to it (assuming the sender allows this). An implementation of this trigger

would be to change the bits on the forward flow whenever the bits on the reverse flow

change.

3. Share the implementation work of monitoring path quality. Many applications

may have similar requirements for path quality (and therefore, similar criteria for

selecting and changing paths). A shared implementation of path quality monitoring

could relieve application developers of the need to implement their own monitor-

ing and decision logic to achieve objectives such as high throughput or low latency.

Multipath-aware applications, or those with specific requirements such as concurrent

multipath use, could instead use lower-level flow-binding mechanisms. As a proof

of concept, we implement two simple end-system path monitoring agents that set

path bits for applications. The first actively sends packet trains to monitor path qual-

ity, and the second passively monitors application traffic to estimate the path quality.

We also provide a simple in-kernel failure recovery mechanism for those applications

83

Application

User Space

Kernel

Socket Capture

Library

Path Bits

Manager outgoing traffic

Monitoring

Agent

1. connect()

 or sendto()

2. Create flow

 table entry

3. Send notification

4. Modify

path bits

(a) Shared Monitoring

Application

User Space

Kernel

Socket Capture

Library

Path Bits

Manager outgoing traffic

1. connect()

 or sendto()

2. Create flow

 table entry

3. Modify

path bits

Monitoring

Agent

(b) Application Monitoring

Application

User Space

Kernel

Path Bits

Manager outgoing traffic

1. connect()

 or sendto()

2. Modify

path bits

Transport

Monitoring

(c) Transport Monitoring

Figure 4.7: Interaction of the end-system components for different types of monitoring.

that care only about availability. We describe these implementations in Section 4.3.3.

4.3.2 Implementation

End-system support for path bits consists of an interface for applications to set and modify

the path bits corresponding to the traffic flows that belong to the application. This requires

the end-system kernel to maintain path bits corresponding to the active traffic flows (path

bits manager as shown in Figure 4.7). We implement this feature using Click running as a

kernel module. Our Click implementation provides an RPC interface for interacting with

the path bits manager from user-space. Applications can modify these bits corresponding to

their traffic flows. We realize that all applications may not care about fine-grained control

84

over the network paths as long as the paths are of reasonable quality. In order to facil-

itate this, we implement, as a prototype, a user-space shared monitoring application that

monitors paths on behalf of the applications and a socket capture library that can trigger

monitoring of paths on behalf of the application.

Figure 4.7 shows an overview of the extensions we make to end hosts to support the

path bits interface. This framework has two components: (1) a kernel interface to access

the path bits maintained by the path bits manager; (2) a socket capture library for running

legacy applications. We describe these components below:

• Path Bits Manager

Our implementation of path bits manager runs in Click [50] as a kernel module to

replace the Linux network stack. The path bits manager consists of a table that stores

information about which path bits are currently used for a particular flow. The Click

module captures packets from the network interface, matches the packet flow iden-

tifier with the entries in the path bits manager table, and applies the corresponding

path bits if there is a match. The Click module also provides an RPC-based API to

read, modify, and delete entries from the path bits manager. The module supports

wild-card entries for any tuples in the traffic flow that are over-ridden if a specific

entry for a flow exists in the table. For example, to add bits for a particular TCP

flow, add tcp bits(flow identifier, path bits) is used, which sets the appropriate path

bits for the TCP flow. If the flow identifier has the source port number zeroed then

the path bits manager will match all IP flows to the particular destination port (unless

a more specific match is present). The wild-card is only allowed for applications

running with root permissions. The monitoring agent implementations use this API

to interact with the path bits manager.

• Socket Capture Library

Legacy applications can use the path-bits interface using a socket capture library. To

85

keep track of a set of desirable paths for each application, we implement a socket

capture library that intercepts connect() calls for TCP and sendto() calls for UDP

flows. The library determines when new flows are initiated from the end host, as

shown Figure 4.7. If applications need explicit control of their paths, they can make

use of the API provided by the operating system to modify their path bits. All modern

operating systems support the dynamic linker option, which we exploit to dynami-

cally link our socket capture library to an unmodified application binary. For exam-

ple, in GNU/Linux, we can use the environment variable LD PRELOAD to specify our

custom library to load for the application binary. Similar provisions are available

in Microsoft Windows and Mac OS X operating systems. The path bits manager

kernel module can check if the process making the RPC call owns the flow to prevent

unauthorized applications from modifying the path bits for a flow.

Now, we show how to build a path monitoring and selection framework using the above

components.

4.3.3 Path Monitoring and Selection

Our design makes it easy to implement several distinct mechanisms for the end host to

monitor and select paths. We implement three proof-of-concept monitoring mechanisms to

demonstrate the variety of implementation choices available using path bits:

• Shared monitoring, which estimates the path quality for applications running on the

end host, and sets the path bits on their behalf;

• Application monitoring, implemented directly by the applications themselves;

• Transport monitoring, which is provided by the end host networking stack to all

applications.

Other possibilities include using a combination of the above techniques. Our goal in

investigating these techniques is not to advocate any particular technique, but rather to

86

Skype Flash

Video

(legacy

app)

SSH

Voice

Quality

Monitoring

Module

VoIP

traffic

Set

path bits

directly

Transport

monitoring

(sets path bits)

User-space

Monitoring

Agent

(shared)

Set path bits

on behalf of

application

SSH

traffic

HTTP

traffic

Figure 4.8: How path bits enable building customized path monitoring mechanisms at the

end host.

emphasize the power and flexibility offered by the path bits interface. Figure 4.8 shows

the three path-selection mechanisms. A real-time application like Skype can build its own

monitoring module. An application like ssh, which may not care about anything other

than simple connectivity could use the default recovery provided by the TCP stack at the

end host. It also enables running unmodified legacy applications, by running a shared

monitoring agent as a separate user-space process.

Shared monitoring application A common monitoring application can be implemented

for applications running at the end system that choose to delegate the path monitoring and

selection decision to some other application. To demonstrate the utility and simplicity of

path bits for this purpose, we implement two simple prototype monitoring applications. We

note that these monitoring applications are only suggestive of the possibilities of doing path

monitoring with the help of path bits. The first application uses active probes to determine

path performance and also to probe alternate paths so that the application traffic can be

87

moved to an alternate path quickly when there is a perceived degradation in path quality

from the desired. The second monitoring application passively monitors the application

traffic to measure the performance. These applications demonstrate that the interface works

and is general.

For both of these monitoring agents, an important parameter is the time the path evalu-

ation interval, which is that the agent waits before deciding to initiate a path switch.

1. Active Monitoring

When an application initiates a flow, the socket capture library sends a notification to

the active monitoring agent. The current implementation receives the identification

of each flow (the four tuple <src ip, dst ip, src port, dst port>), as well as acceptable

thresholds for the latency and loss rate for the flow for each application type. The

application can specify how many alternate paths to monitor for any given flow. This

could be implemented using setsockopt by the application or done by the socket

capture library on behalf of the application.

The agent monitors a set of paths for performance and picks the best one for the

application. The agent then periodically sends packet trains on each of the paths in

the set, and records and maintains their performance in a monitoring table for the

particular flow. If the performance of the current path falls below the application’s

performance thresholds, the agent tells the path bits manager to switch paths. The

monitoring agent periodically replaces paths in its monitoring table that do not meet

the thresholds with new random paths. The monitoring agent interacts with the path

bits manager to set path bits for the monitored flows. We evaluate the impact of the

number of packets send in a single probe on the ability of the monitoring agent to

effect path selection in Section 4.4.2.

2. Passive Monitoring

Active probing may observe different performance than the application traffic. There

88

is a rich literature on passively observing application traffic to determine the quality

of the network path the traffic is using [7, 8, 48]. The passive monitoring agent only

monitors TCP flows. As with the active monitoring agent, the passive agent receives

a notification from the socket capture library about a flow; it then passively monitors

the flow by capturing the flow packets using the standard libpcap interface. As

with the active monitoring agent, the passive monitoring module can trigger a path

change for the traffic flow via the path bits manager. To track performance of a flow,

the agent applies an EWMA to calculate the round-trip time of the flow. it also uses

the technique described in Allman et al. [7] to estimate the loss rate of the TCP flow:

it counts the number of retransmitted TCP segments, discounting the retransmits that

the sender may have sent that do not correspond to packet loss. We implement this

passive monitoring technique in fewer than 300 lines of Ruby.

A critical choice in passive monitoring is how aggressively an implementation will

switch to a new path upon perceiving poor performance, vs. waiting to have more

confidence that the performance change was real and long-lasting. We evaluate the

effects of the path evaluation timeout in Section 4.4.2.

Application Monitoring Different applications have different traffic patterns and hence,

have their own understanding of what constitutes a “good” network path. One of the bene-

fits of a path bitsinterface is that it frees the application to make its own decisions about the

network path that its traffic takes without relying on some predefined metrics which may

not take into account the specific needs of the application. In such situations, path bits pro-

vides the ability for the application to perform its own monitoring and make path selection

decisions based on what the application deems to be a “working” or “non-working” path.

We use VoIP as an example application, where the notion of a “good” path is not easily

captured by the standard network metrics of delay and loss rate. Tao et al. [85] show

that the relation between path latency and loss rate for VoIP quality is complex and also

89

depends on other factors like the audio codec used by the VoIP application. We implement

a VoIP quality algorithm, that measures the loss rate and the latency on a set of paths and

determines the VoIP quality metric called Mean Opinion Score (MOS). The MOS metric

is subjective and depends on the quality of the voice signal as perceived by a human and

ranges from 1 to 5 (best quality). The ITU-T E-model [74] provides a way to approximate

MOS by combining different elements that contribute towards reducing the voice quality.

We use the non-linear mapping from path loss rate, latency and the codec features to MOS

as described in previous work [85] as our path quality metric.

Transport Monitoring Finally, we implement a path selector in the network stack that

runs as a Click kernel module. The module observes traffic on an interface and when it

sees that for a flow, the same TCP packet (with the same sequence number) is retransmitted

without receiving any acknowledgement from the receiver, then the current path to the

destination is deemed as not working after it exceeds a configurable threshold. The agent

then communicates with the path bits manager to modify the path bits corresponding to that

flow in the path bits manager. For applications such as ssh, a simple recovery approach such

as this may be sufficient to recover from prolonged network path failures. In Section 4.4, we

evaluate the recovery benefits of this technique and also the tradeoffs between the number

of switches and the switching threshold.

We define a configurable retransmission timeout, and evaluate the effectiveness of ap-

plication monitoring under different settings. This approach works well if the path is un-

usable either because of link failure on the path or extremely high loss rate; it works less

well for detecting paths with high latency or jitter. In Section 4.4, we evaluate the recov-

ery benefits of this technique and also the tradeoffs between the number of switches and

retransmission timeout.

90

4.4 Does “Blind” Path Selection Work?

In this section, we focus on whether the path-bits interface can help applications respond

more quickly to failure or take advantage of diverse paths in the network, even with an

opaque, semantic-free interface. We focus on the following questions:

1. How quickly can the path-bits interface find a better end-to-end path in the network,

as compared to an interface that has semantics? (Section 4.4.1)

2. What monitoring strategies work well with the path-bits interface? (Section 4.4.2)

3. Can applications use path bits to increase throughput, by using multiple paths simul-

taneously? (Section 4.4.3)

4. Can path bits be used to discover diverse paths in the wide area? (Section 4.4.4)

4.4.1 How many trials to find a path?

The first and perhaps most important question is whether an interface like path bits could

still allow end systems to find working paths without having to explore too many alterna-

tives. To evaluate this question, we performed an experiment where we fail links in the

Rocketfuel intradomain ISP topologies [83] and compare two different path recovery ap-

proaches: one where the end system explicitly signals to the network to select a different

forwarding tree (“slice”) at a specific place along the path (as in path splicing [60]), and an-

other where the end system selects bits completely at random. In the experiment, we create

multiple paths in the network (forwarding trees or “slices”) using the random perturbation

method used by path splicing. We perform two experiments: one where we fail each link

in the topology with some probability, p, and second, where we fail only links that belong

to highly connected nodes. For each setup, we measure the number of trials for the end

system to find a new working path after the links are failed. We average our results over

1,000 runs for each failure probability.

Figure 4.9 shows the results for this experiment, for Sprint and Level 3. The result is a

pleasant surprise: Random selection performs better than a method that can explicitly avoid

91

 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4
 4.2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
vg

.
#

 o
f

tr
ia

ls Semantic
Random

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

 0 0.05 0.1 0.15 0.2

A
vg

.
#

 o
f

tr
ia

ls

Failure probability (p)

Semantic (full)
Random (full)

(a) Level 3

 1.5
 2

 2.5
 3

 3.5
 4

 4.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
vg

.
#

 o
f

tr
ia

ls Semantic
Random

 1.5
 2

 2.5
 3

 3.5
 4

 4.5

 0 0.05 0.1 0.15 0.2

A
vg

.
#

 o
f

tr
ia

ls

Failure probability (p)

Semantic (full)
Random (full)

(b) Sprint

Figure 4.9: Number of trials to recover from path failures for Sprint and Level 3 topolo-

gies. The top plots are when links are failed from a selected set of most connected links.

The bottom plots are when all links in the network are failed with equal probability.

92

a specific node along the path! In the case of Level 3 (Figure 9(a)), the average number of

trials when 5% of the links are failed is 1.3 when using path bits which is about 30% higher

than the best-case scenario, where the end-system “knows” exactly which link has failed

and explicitly tries to avoid that link.

Recovering from failures in the Sprint topology requires more trials (Figure 9(b)) be-

cause the Rocketfuel ISP topology is sparse, and many nodes have low degree. Random

path selection works better because attempts to avoid a single link or node failure with

coarse bit settings might ultimately not avoid the failed link or node, depending on how the

underlying multipath routing protocol is implemented. (For example, a link failure might

occur in multiple “slices” in path splicing, along multiple equal-cost paths in ECMP, and

so forth.)

We aimed to determine how sensitive our results were to the location of failures in the

underlying network topology. For example, because path splicing constructs additional

paths in the network by trying to avoid highly connected nodes. To study the sensitivity of

our results, we repeated the previous experiment but failed only a set of links that belong

to highly connected nodes. The top plots in Figure 4.9 shows the result for this experiment.

As before, random selection requires fewer trials to find a working path (if one exists) as

compared to the approach used by path splicing.

This experiment demonstrates that random selection of path bits performs better than

a method that selects path bits based on slices. However, there could possibly be some

other path bits selection mechanism that is aware of the underlying multipath scheme and

uses that information to recover from failures better than the random selection. But, still

it is important to note that random selection does not perform much worse than the best

possible and only requires 30% additional trials.

93

4.4.2 Which monitoring works well?

We evaluate whether path bits can be integrated with the different monitoring approaches

that we described in Section 4.3.3 to recover from failures. Our intention is not to design

the best monitoring approach for failure recovery, as there is a significant amount previous

work in path monitoring and recovery (e.g., for overlay networks and intelligent routing).

Rather, our goal is to evaluate whether the path-bits interface can be integrated with a

variety of path-monitoring algorithms for failure recovery.

Experiment Setup We performed our experiments on Emulab; the end system is a Linux

host running the host instrumentation described in Section 4.3. We used two different

experimental setups: (1) A small topology, as shown in Figure 4.2, where the Emulab

nodes (acting as routers) are running the Click software router implementations of Path

Splicing, Routing Deflections, and ECMP++ (to emulate intradomain path properties); and

(2) Using the Linux tc utility to emulate four paths with different round-trip times, jitter,

and loss rates between the src and dst nodes (to emulate wide-area path properties).

This path emulator selects a path based on the last two bits in the packet’s IP ID field.

The emulator has three different sets of paths: two synthetic path sets, and one based on

data obtained from wide-area measurements where we used path bit-like path selection

to explore alternative wide-area paths (using the BGP poisoning experiment described in

Section 4.4.4). We chose the synthetic paths in a way that illustrates various properties of

the monitoring algorithms: Because the shared monitoring algorithms can monitor paths

based on round-trip time and loss rate, we selected values for the synthetic experiment

where two paths have high round-trip times and two paths have high loss rates. Table 4.1

shows the details of these paths. We use iperf to create the traffic flows and record the

changes to the instantaneous throughput of the traffic while introducing network events.

We evaluate active monitoring, passive monitoring, and transport monitoring using path

emulation because it enabled us to quickly emulate different path characteristics. Active

94

Table 4.1: Path characteristics of emulated paths on Emulab. For the wide-area exper-

iment setup we also had jitter on the path based on what was measured in the wide-area

BGP poisoning experiment.

Experiment

Path Properties Threshold

RTT Loss Tput RTT Loss

(ms) (Mbps) (ms)

Synthetic 1
30 1% 3.86

50 4%30 7% 0.87

(Figure 4.11)
130 3% 0.49

150 2% 0.56

Wide-area
235 0% 37.40

260 3%315 0% 9.67

(Figures 4.10 and 4.12) 276 3% 0.22

258 2% 36.51

Synthetic 2
30 1% 3.86

- -30 15% 0.37

(Figure 4.13)
130 30% 0.06

150 20% 0.08

monitoring works with TCP or UDP, but we only show the results for TCP. Because we

designed passive monitoring and the transport monitoring to operate with TCP, we evaluate

them using TCP traffic only.

We also evaluated the monitoring algorithms using the setup described in Figure 4.2 to

demonstrate integration with our multipath implementations from Section 4.2. The results

are similar to the emulated setup. The path monitoring algorithms assume anything about

the underlying multipath routing protocol. Our evaluation demonstrates that even simple

monitoring algorithms can work well with path bits.

Shared Monitoring We present the resuts for the shared monitoring implementations

here:

1. Active Monitoring

95

 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 1 10

N
u
m

b
e
r

o
f

S
w

it
ch

e
s

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0.6
 0.65

 1 10

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Number of packets in probe

Figure 4.10: Active Monitoring: Failure recovery using active monitoring and TCP traf-

fic.

We present results using the wide-area emulated path setup (Table 4.1). The monitor-

ing agent triggered a path change if the round-trip latency exceeded 260 milliseconds

or the loss rate exceeded 3%. The monitoring agent monitored two paths and varied

the number of packets to send in a probe on the paths being monitored. We sent a

two-minute TCP flow from the source to destination and record the throughput and

the number of times the monitoring agent switches the path. We perform ten experi-

ment trials for each value of the number of packets in a probe.

Figure 4.10 shows the median throughput and the average number of path switches

as we vary the number of packets in the packet-probing train. Sending too few probes

results in poor performance because the measurement quality is poor if there are too

few packets in a probe, but sending too many probes can interfere with the application

traffic. Even in the best case, the throughput is considerably less than the maximum

possible because the monitoring agent sends the probes continuously, which inter-

feres with the performance of the iperf traffic. Also, because the probing interferes

96

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0.1 1 10

N
u
m

b
e
r

o
f

S
w

it
ch

e
s

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5

 0.1 1 10

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Path Evaluation (seconds)

Best

Average

Figure 4.11: Passive Monitoring: Average number of switches and median throughput

for Synthetic 1 from Table 4.1. We set the threshold to 50 ms and 4% loss rate.

with TCP traffic, it doesn’t accurately measure the path metrics and makes a large

number of path switches. A better active-monitoring implementation could mitigate

this interference.

2. Passive Monitoring

We evaluate the passive monitoring agent by sending a two-minute TCP flow using

iperf from the src to the dst node through the path emulator, which emulates four dif-

ferent wide-area Internet paths, for the three scenarios in Table 4.1. We show results

from the “synthetic 1” and “wide-area” paths. The utility of the passive monitoring

scheme is in situations where the network has paths all of which are usable. In the

“synthetic 2” setup, where the network has very poor quality paths, a much simpler

scheme like the transport monitoring works equally well. The effectiveness of this

approach depends on the value of path evaluation timeout, and that the right value for

this parameter depends on the application requirements and the round-trip latency.

97

 0

 2

 4

 6

 8

 10

 12

 0.1 1 10

N
u
m

b
e
r

o
f

S
w

it
ch

e
s

 5
 10
 15
 20
 25
 30
 35
 40

 0.1 1 10

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Path Evaluation (seconds)

Best

Average

Figure 4.12: Passive Monitoring: Average number of switches and median throughput

for the wide-area paths from Table 4.1.

Figure 4.11 shows the results for the first setup, where we vary the path evaluation

timeout and measure the average number of switches and the median throughput

for ten trials. When the value of the path evaluation timeout is small relative to the

round-trip time, the round-trip and loss-rate measurements are inaccurate, causing

many path switches and degrading throughput. As seen in the plot, for the given path

setup, there is a “sweet spot” for the value of the path evaluation timeout around 1–2

seconds that achieves a low number of switches and a throughput close to the best

possible.

Figure 4.12 performs the same experiment with different paths and thresholds; the

result shows that the optimal setting of the path evaluation timeout depends on the

round-trip time of the path. Selecting a smaller value for the path evaluation timeout

causes the monitoring agent can quickly move away from a bad path, but it also

causes higher noise in the measured path properties, resulting in unnecessary path

switches. A higher timeout value allows for better estimate of the path properties

98

but less chance of switching paths. Because only one of the paths matches both the

round-trip latency and loss rate threshold (the path with a 30-millisecond round-trip

latency and 1% loss rate), there is only a 25% chance of a path switch resulting in the

selection of the best path, which increases the recovery time when the timeout value

is high.

The performance of a monitoring agent also depends on the threshold for switching

paths. We performed a second experiment with the same setup as in Figure 4.12, but

where the monitoring agent triggered a path only if current path round-trip time ex-

ceeded 300 milliseconds. In this case, there was no benefit over the average through-

put because the monitoring agent would only attempt to switch paths if it were se-

lecting the path with the highest round-trip time.

Application Monitoring Application-specific metrics can also trigger changes to path

bits. Tao et al. [85] previously showed that the ability for a VoIP application to rapidly

switch between multiple paths can greatly improve VoIP quality. We verified that a similar

application could realize similar gains using path bits. We developed an application moni-

toring agent that used a VoIP path-quality algorithm to monitor a set of paths in Figure 4.2

with varying packet-loss rates, calculated the mean opinion score (MOS) for the resulting

stream based on the observed RTT and loss rates, and set path bits accordingly. We found

that selecting the best path using MOS works well.

Transport monitoring To evaluate the effectiveness of transport monitoring, we used

the same Emulab setup as for passive monitoring. We found that for those path setups, the

loss rates are not significant enough to trigger a path switch. (Our transport monitor counts

retransmissions but does not measure round-trip latency.)

We show results here from a path setup with high loss rates, as shown in the “synthetic

2” row in Table 4.1, where only one path has a low enough loss rate to sustain TCP traffic.

In the experiment, we ran 100 trials, where each trial had a 20-second TCP transmission.

99

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

0 0.001 0.01 0.1 1

N
u
m

b
e
r

o
f

S
w

it
ch

e
s

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

0 0.001 0.01 0.1 1

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Retransmission timeout (seconds)

Best

Average

Figure 4.13: Transport Monitoring: Average number of switches and median throughput

for Synthetic 2 from Table 4.1.

We varied the retransmission timeout parameter for the path failure detection and measured

its effect on throughput and the number of paths switches. Figure 4.13 shows the average

number of switches and median throughput achieved when using the transport-based moni-

toring technique. The average number of switches is constant, as is the achieved throughput

for low values of the retransmission timeout (< 200ms); higher retransmission timeouts re-

duce both switched and average throughput. Interestingly, the algorithm performs well

even if we let it switch paths whenever it sees a retransmission; more extensive evaluation

could uncover whether this works well in all scenarios.

4.4.3 Can path bits increase throughput?

Bulk transfer applications can benefit from simultaneous use of multiple paths. The path

bits manager provides an interface to dynamically turn on or off the simultaneous use of

multiple paths on a particular flow; in this mode, it keeps multiple entries corresponding to

each flow in its path bits table. To enable the use of multiple paths, the path bits manager

100

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300 350 400

C
D

F

Throughput (Kbps)

Multipath
Normal

Figure 4.14: Higher TCP throughput by simultaneously using multiple paths in parallel

for a single TCP connection.

simply multiplexes packets from a flow on each of the multiple paths in a simple round-

robin fashion.

Although this type of splitting across paths may induce reordering, and many multipath

approaches that achieve flow affinity do exist (e.g., [82]), our goal is merely to demonstrate

blind path selection of the nature that path bits enables can increase throughput. We use the

setup in Figure 4.2, where there are four available paths between the source and destination

nodes. We ran the experiment for ten minutes, intermittently enabling and disabling the

use of multiple paths at the source. Figure 4.14 shows the CDF of the TCP throughput

of the flow for the normal and the multipath settings. The plot demonstrates that, even

using a naı̈ve multipath routing approach, applications can achieve significantly higher

throughput with path bits. An interesting question is the interaction of multipath routing

with congestion control; this approach could be integrated with a multipath congestion

control algorithm such as mptcp [94], which may yield even better performance.

101

Table 4.2: The fraction of destinations for which the end-to-end round-trip latency dif-

fered by a certain amount after BGP poisoning.

RTT diff. (ms) Pct. of destinations # paths

10 16.34% 2.43

30 3.23% 2.44

50 1.26% 2.14

70 0.54% 2

100 0.18% 2

4.4.4 Can path bits find wide-area paths?

We study how likely path bits would be to discover diverse paths in the wide-area. To do so,

we used data from a BGP poisoning experiment performed using the Transit Portal [88] to

evaluate the available path diversity in interdomain routing that could be discovered using

a path bits interface. To explore a random set of interdomain paths to a destination, we

“poisoned” the BGP announcement [16] with a specific AS number for a prefix allocated

to Transit Portal. Our goal is to discover alternate BGP paths, which networks will select if

the poisoned AS was on the default path for the Transit Portal prefix. After each poisoning

announcement, and letting the BGP announcement propagate throughout the Internet, ping

probes were sent to a set of 650 PlanetLab nodes from one of the Transit Portal locations

in Atlanta. We poisoned each route announcement with 30 distinct AS numbers. Table 4.2

shows the percentage of destinations whose round-trip times differed by more than a cer-

tain amount after poisoning. From our results we found for example, if we select 30 ms

as the minimum round-trip time difference then > 3% destinations have on average 2.44

such paths. This may not be enough path diversity but we may also underestimate it: we

poison only a fraction of ASes, and some paths may have similar round-trip times but have

different capacity or loss rate.

102

4.5 Summary

Many networked applications benefit from access to multiple paths for improved perfor-

mance and rapid failure recovery. Despite the benefits of a unifying interface, none has yet

emerged.

We presented the implementation of the “narrow waist” architecture for path selection,

in both hardware and software. The implementations are based on the design of the path

bits interface described in Chapter 2. We have successfully demonstrated that the path-bits

interface leads to simple and efficient network implementations of multipath routing proto-

cols, in hardware and software. It is also general as demonstrated by our implementations

of three different multipath mechanisms.

The path-bits interface is also simple and flexible to allow different path selection mech-

anisms at end systems as demonstrated by our implementations of three monitoring and

path selection mechanisms. One likely drawback of a semantic-free interface is that end

systems must use trial and error to discover paths. However, we show a surprising result,

random path selection performs better than a selection that relies on semantics when us-

ing path splicing as the multipath mechanism. This result is encouraging that random path

selection can be effective.

We make our implementations available as the first framework that allows both differ-

ent multipath algorithms and different real-time monitoring and recovery frameworks in

a common context [3]. We hope that both researchers and practitioners will extend and

evolve this reference implementation to support new multipath routing protocol implemen-

tations and new applications that use the interface.

End systems and network operators can have conflicting goals. Giving end systems

unrestricted access for selecting paths in the network can be in conflict with the network

operator’s goal of reducing traffic costs in the network. We explore this question and pro-

pose a way of allowing operators to limit the set of paths based on the cost of carrying

traffic over those paths to the network in the following chapter.

103

CHAPTER V

COST-BASED PATH SELECTION

5.1 Introduction

So far the dissertation has focussed on making alternate paths available in the network so

as to benefit a variety of applications. The network path selection architecture delegates

the responsibility of creating and maintaining a large number of paths to the network. The

network can use any number of multipath routing schemes (e.g.path splicing 3) to create

alternate paths. Multipath schemes (including path splicing) create alternate paths with the

goal of providing failure tolerance (in case of link or node failures). However, networks

(especially commercial networks) are also business entities and would like to run their

network for as low a cost as possible. Multipath schemes do not consider this added cost

dimension of carrying traffic in the network when creating alternate paths. In this chapter

we argue that this is an important consideration and the adoption of multipath schemes

in the real-world is likely hampered due to the lack of this consideration when creating

alternate paths in the network.

We then propose a cost-based path selection framework, where the network is aware of

the costs of carrying traffic on the alternate paths and can then make a decision on which to

expose to end-systems. However, in order to build such a framework, networks must first

be able to assign traffic cost to traffic flows. This is the focus of this chapter, to propose a

holistic traffic cost model and its applications.

Towards a Traffic Cost Model Carrying traffic in an IP network incurs many costs, in-

cluding transit fees, port costs, backhaul, and various other personnel and capital costs.

How traffic is routed across a network and exchanged with neighboring ISPs can signifi-

cantly affect the overall costs of routing traffic over the network. For example, the costs of

104

carrying traffic over trans-oceanic or satellite links is more expensive than routing traffic

over underutilized commodity backhaul links; similarly, routing traffic over transit links in-

curs more cost than routing over settlement-free peering or customer links. Although traffic

costs may not be the dominant cost in running a network, they can play a significant role in

helping operators make decisions about planning, provisioning, and traffic engineering.

Currently, operators understand how individual elements contribute to operational costs,

but they lack a holistic cost model that maps traffic flows to the costs of carrying the traffic.

As a result, although business-level decisions about peering, provisioning, and intercon-

nection may consider costs of individual elements (e.g., the cost of peering, interconnec-

tion, or a committed rate), these decisions are currently ad hoc. For example, a decision

about whether an operator should peer at a particular location should not only take into

account the cost of that individual peering session, but also potential costs saved by send-

ing less traffic over backhaul links. The inability to attribute costs to traffic flows can

result in missed opportunities for cost savings and ad hoc decisions about routing and in-

terconnection. Previous work jointly optimized cost and performance in a multihomed stub

network [37], but no similar approach exists for transit networks or networks that peer in

multiple locations.

Making decisions about traffic based on cost is challenging for two reasons. First,

information about traffic costs is relatively inaccessible; if this information is available, it

typically comes as individual cost elements, rather than as a holistic model. Further, some

aspects of traffic costs are not linear (e.g., commit rates, traffic symmetry constraints, 95th

percentile pricing), and these costs do not map naturally to individual flows. We solve this

problem by developing a holistic cost model that attributes a cost to each traffic flow, which

incorporates both interconnection and backhaul costs, as well as non-linear cost elements

(like percentile pricing) with approximate functions. Using this model, operators can input

values for various aspects of cost that they are likely to know from other sources; the

model outputs an overall cost for routing each traffic flow. Second, the number of traffic

105

flows and the number of possibilities for routing each flow makes it difficult to efficiently

find a solution that reduces cost. To solve this problem, we use our cost model to identify

the most expensive traffic flows in the network and apply heuristics to move those flows

to less expensive links. We also demonstrate how attributing costs to traffic flows can

help operators in rationalizing planning decisions like peering location, peer selection and

evaluating existing peering arrangements.

Our evaluation shows that network operators can realize significant cost savings by

moving only a small fraction of overall traffic flows: For example, we find that, for three

realistic cost scenarios, moving 10% of the flows that reduce traffic cost in the network can

help operators achieve at least 65% of total possible cost savings.

Many network planning tools and techniques could build on our holistic cost model. We

expect that our model might ultimately be coupled with tools that help network operators

make the actually configuration changes to reassign these flows. It could also be incorpo-

rated with tools that help network operators perform forecasting, to better help make better

decisions regarding network upgrades and provisioning. In Section 5.7 we discuss future

research directions and issues with our cost model.

Cost-based Path Selection As we described in Chapter 1, network operators and end

systems can have conflicting goals. Giving end systems unrestricted access to paths in the

network can conflict with the network operator’s goal of reducing the cost and uncertainty

of traffic in the network. We develop a cost-based path selection framework that operators

can use to only expose low cost paths to end systems. Network operators can use the cost

model and use it in combination with a multipath routing scheme to create paths which

have low cost. We present a sketch of how this can be achieved when using path splicing

as the scheme for creating alternate paths and our traffic cost model.

106

Type Components Factors influencing Examples

Usage-

based

Transit fees, cus-

tomer revenue

Dependent on geography, typi-

cally 95th percentile pricing

$2-$5 in US to $40 in

Asia

Port Port costs, inter-

face cards, installa-

tion fees

Price based on total volume of

traffic exchanged e.g.1GE v/s

10GE port. Also depends if the

peering is public or private

$550 to $2040 at

LINX for 1GE v/s

10GE ports1

Misc. Exchange fees,

equipment costs

Depends on the Exchange LINX charges $2500

as annual fees1

Table 5.1: Interconnect Traffic Costs.

5.2 Network Traffic Cost: A Model

We develop a model for reasoning about the various costs incurred by a network for car-

rying IP traffic. To build this model, we first need to understand the various components

which contribute towards the cost of carrying traffic in a network. Based on where the cost

is incurred, Figure 5.1 shows a breakdown of cost into two components: interconnect costs

and backhaul costs. We further discuss what contributes to these cost components.

5.2.1 Interconnect Costs

We refer to the cost associated with the place where traffic is exchanged with neighboring

networks, including providers, peers, or customers, as interconnect cost. Depending on the

agreement between the two networks, a network might pay for transit based on the volume

of traffic exchanged, be paid by the other network, or engage in settlement-free peering.

Transit fees vary depending on the geographic location of the interconnect point (e.g., tran-

sit fees vary from $2−5 per Mbps in the United States to about $40 in Asia [26, 43]). For

transit providers, which charge customers, the interconnect cost would be negative.

A network must also pay recurring port costs at a public exchange. These port costs

1data from LINX website

107

include costs associated with buying network interface cards and paying for installation

fees for buying ports. The port and installation costs are dependent on the exchange and

the transmission medium. At a public exchange, the member network can exchange traffic

with other networks present at the exchange using a single port; adding a peer at the same

exchange has no incremental cost, as long as the aggregate traffic from all the peers does

not exceed the port capacity. If the traffic exchanged exceeds the port capacity then the

network can pay for additional ports at the exchange. A private peering (sometimes called

a “private interconnect”) between two networks requires purchasing a separate port (and

interface cards) for every neighbor network. Although private peering is more expensive

than public peering, the traffic over the interconnect may be more predictable; this option

may be cost-effective if two peers exchange a lot of traffic. In addition, there exist other

fixed costs at an exchange, such as paying an annual (or monthly) fee for being a member

of the exchange and a one-time installation fee.

To simplify reasoning about interconnect costs, we consider all of these cost compo-

nents as the cost per neighbor network at a given geographic location (PoP or exchange).

For the interconnect costs that depend on traffic volume, we make the above cost propor-

tional to the rate of traffic (in Mbps), whereas for fixed costs, the operator can choose to

amortize the cost over a period of, say, a few years. Although we may not know the current

or accurate values for each of the contributors to interconnect costs, we expect that network

operators can fill in the values for the different cost components.

5.2.2 Backhaul Costs

A network must carry traffic across its own network to reach either a customer network or

send it to another neighboring network; a network incurs costs from three components: the

circuits themselves, the equipment for the backhaul links (i.e., routers, switches, etc.), and

operational costs associated with running the network. Ultimately, our model incorporates

these costs into a single quantity that corresponds to the physical distance the traffic must

108

be carried over its own network. We describe these costs in detail below.

In practice, circuit costs may fall into two distinct categories: (1) Metro-range costs,

which are often negligible for large networks. A network may lease local network connec-

tivity from other networks, however, in which case, the metro-range costs may be signifi-

cant; and (2) Regional costs, which depend on the geographic location and the distance of

the regional circuit. Although carrying traffic across backhaul links roughly correlates with

the distance of the circuits, some regions are more expensive than others. For example, car-

rying traffic in the northeast corridor is more expensive than carrying it across other parts

of the United States, and carrying traffic across transoceanic links is more expensive than

carrying traffic across land. Our model can incorporate these differences with a distance

function that depends on the location of the PoPs.

Capital costs, such as routers and switches, as well as the cost associated with their

maintenance and upgrades, also contributes to the backhaul costs. Depending on the net-

work, the model might reflect these costs as fixed; alternatively, it could amortize these

costs over several years.

Operational costs, such as salaries for network engineers who keep the network running

to paying for cooling and power consumption can also be amortized. In our model, we

incorporate these costs as fixed costs and include them as a component of the cost of the

collection of all backhaul links in the network.

5.2.3 Cost Model

Our cost model is based on the interconnect and backhaul costs that we described in the

previous sections. Our model does not tell a network operator how to adjust the routing

configuration itself to actually move a particular traffic flow from one path to another but

can help identify which traffic flows should be moved and could provide input to “what if”

configuration analysis tools (e.g., [30]), or even a network designed around central routing

control (e.g., [29, 39]).

109

interconnect

costs

backhaul

cost

a
i(f)

flow f

i
p (f)

p
e
(f)

c
b
(f)

c
i
(f)

a
e(f)

c
e
(f)

Figure 5.1: Classification of traffic costs for a flow f .

We now describe a formal traffic cost model. We can write the total cost of running a

network as a sum of the fixed network costs and the usage-based costs.

Fixed Costs A network’s fixed costs (CF) are defined by the network topology and re-

lationships with the neighboring ASes. Although the backbone and interconnect network

topology depend on the traffic the network is designed to carry, in the short term we assume

the fixed costs are independent of traffic.

The fixed-cost component incorporates the fixed costs associated with the backbone

and interconnect topology of a network. We abstract the backbone costs as the cost for the

path between every pair of PoPs that exchange traffic. The cost component cF,b(p1, p2) is

the fixed-cost component of the backbone path between PoPs p1 and p2. An alternate for-

mulation could replace the fixed backbone cost with the cost of each backbone link in the

network. The fixed interconnect cost component cF,i(a, p) is the fixed cost for the intercon-

nect between neighbor AS a at PoP p. Because the fixed interconnect cost is summed over

all pairs (a, p), it would be set to 0 where the neighbor AS a is not present at a particular

PoP p.

110

CF = ∑
p1,p2

cF,b(p1, p2)+∑
a,p

cF,i(a, p)

Usage-based Costs The usage-based component of the cost (CU) depends on the volume

or rate of flow f , and the route that f takes in the network. The usage-based component has

three sub-components, as shown in Figure 5.1. A flow f enters a network at an interconnect

and the cost associated with that is the cost at the ingress interconnect (cu,i(f)). The flow

is then routed on the backbone with cost cu,b(f) and finally the flow egresses the network

at an interconnect with egress interconnect cost of cu,e(f).

CU = ∑
f

(cu,i(f)+ cu,b(f)+ cu,e(f))

We will now describe how to calculate each of these cost components. For the usage-

based cost components, each function and term refers to a flow f ; thus, we drop f from the

notation, and the usage-based cost of a flow is simply:

cu = cu,i + cu,b + cu,e (5.1)

Usage-based Interconnect Cost The equations are symmetric for the ingress and egress

points, and hence both of those interconnect costs have the same form. For a particular

interconnect, the usage-based interconnect cost is: ui ·R+si ·Rα , where R is the volume (or

rate) of the total interconnect traffic that is charged, ui is the charge per volume (or rate).

We use a concave function of the form si ·Rα to approximate certain types of costs like

port costs, which are a step function of the traffic rate. Previous work focusing on peering

contracts has estimated the value of α to be between 0.4 to 0.75 [20] using market price

data. The unit usage-based cost parameter ui, depends on the neighbor a and PoP p of the

interconnect. The concave function parameter si is also unit per rate of traffic and depends

on the PoP p and in some cases can also depend on the neighbor AS a through which f is

111

routed. For simplicity here we assume that si depends only on the PoP p. Thus, we have

ui = Ui(a, p) and si = Si(p), where a is either the ingress or egress AS and p is either

ingress or egress PoP. Ui(a, p) is the price per unit of exchanging traffic with AS a at PoP

p. Si(p) is also in units of price per unit of traffic volume (or rate) and depends on the

PoP (or exchange) p the network is present. This price reflects the port costs, which are

dependent on the PoP. The total interconnect cost is thus:

Ui(a, p) ·R+Si(p) ·Rα

Next, we need to find the contribution of flow f to the total interconnect cost where

f is routed on (ingress or egress). Most transit pricing on the Internet is based on the

95th percentile of traffic, where the transit provider charges for the traffic by removing the

top 5% of the traffic. Because the customer pays for the 95th percentile of the aggregate

traffic at the interconnect, we need some method of calculating the per-flow contribution to

that price. We use two techniques to approximate incorporating 95th percentile pricing of

interconnect links. Let r be the volume (or rate) of the flow f .

• Linear function - We assume that the 95th percentile is a linear function of the av-

erage or the peak traffic rate at the interconnect, as has been empirically observed for

different types of networks [27]. In this case, we calculate the per flow contribution

by replacing R with some constant times the volume (or rate) of the flow. Thus,

cu,i = Ui(a, p) · r+Si(p) · rα

• Shapley Values - The drawback of the linear function approach is that it ignores the

distribution of the flow across different time intervals which can influence the 95th

percentile price at the interconnect. Stanojevic et al. [84] propose the use of Shapley

value [81] for computing the contribution of each flow to the 95th percentile price of

interconnect links. Because computing Shapley value is computationally infeasible

for even a small number of flows, the paper proposes an approximation technique to

estimate the Shapley values of the flows.

112

Usage-based Backhaul Cost The backhaul cost cu,b is: cu,b = r ·ub and has two factors:

the geographic location of the ingress PoP, pi, and egress PoP, pe, and the distance between

them. The unit usage-based cost ub depends on properties of the ingress and egress PoPs,

and the distance between the ingress and egress. We model this as ub = Ub(pi, pe) =

R(pi, pe) ·D(pi, pe), where Ub(pi, pe) is the unit cost per traffic rate unit, D(pi, pe) is

the distance between pi and pe, and R(pi, pe) accounts for the dependence of the usage-

based backhaul cost on the ingress and egress PoP. For a flow f with rate r the usage-based

backhaul cost is:

cu,b = r ·R(pi, pe) ·D(pi, pe)

5.3 Applications of the Traffic Cost Model

In this section, we present examples to motivate and demonstrate the utility of understand-

ing the traffic cost of flows in a network. These examples are empirical and have been

developed after talking with network managers at different ISPs around the world. A num-

ber of decisions about how to route traffic in the network to reduce cost, and also long term

planning decisions like which networks to select for peering, the location of peering can

be rationalized and made with much more ease if cost can be attributed to traffic flows in

a network. We classify these applications into two categories, based on whether the deci-

sion can be implemented with changes to existing routing configurations, or whether the

changes require more fundamental modifications to existing peering relations. We present

these from the perspective of a network referred to as “network X”.

5.3.1 Routing Decisions - Cost Optimization

As shown in Figure 5.2, network X can route a flow arriving at PoP S via either PoP A or

B. This situation could arise if network X peers with a particular neighbor at two locations,

A and B for instance, and can choose to route traffic via either PoP. Further, as shown in

Figure 5.3, network X may be able to route traffic to a particular destination via multiple

neighbor ASes. The operator of network X thus has various choices for the egress AS

113

Figure 5.2: Which PoP to egress traffic to a prefix from?

Figure 5.3: Which peer to send traffic on?

and egress PoP over which to route a given flow, from which X would prefer to use the

cheapest (egress AS, egress PoP) pair for routing a particular flow. Network X can use the

traffic costs, current routing, and topology information to to select the cheapest (egress AS,

egress PoP) pair for each flow, thus minimizing the total cost. For each flow, the operator

must account for the total cost (interconnect and backhaul) for routing that flow via each

of the (egress AS, egress PoP) pairs. It is not enough to simply use the egress PoP that

incurs the lowest backhaul cost for a flow (if, for instance, that egress PoP is closest to the

ingress PoP), because the interconnect costs of exchanging traffic with ASes at that egress

PoP may be high. If appropriate, the operator can also introduce capacity and performance

constraints to avoid rerouting traffic in ways that might create congestion or introduce high

114

symbol meaning

Inputs

f Set of s,d traffic flows

V (a, p) Availability of AS a at PoP p

Ci(a, p) Capacity of interconnect link with AS a at PoP p

Fb(p1, p2, l) Fraction of traffic between PoP p1 and

PoP p2 sent over link l

Cb(l) Capacity of backhaul link l

route(p, f) Route for flow f from PoP p, returns a PoP, AS pair

Outputs

ai Ingress AS to which flow f is mapped

ae Egress AS to which flow f is mapped

pi Ingress PoP to which flow f is mapped

pe Egress PoP to which flow f is mapped

Table 5.2: Notation for optimization problem formulation.

performance penalty. We now describe this example and its formulation in more detail, and

evaluate simple greedy heuristics to solve the problem.

Formulation Our formulation uses the traffic cost model from Section 5.2 as an input,

along with additional routing information from the network. Given a network topology,

routing information, and the set of s,d flows, our goal is to reduce the total cost of routing

the flows while satisfying constraints on backhaul and interconnect links. Table 5.2 de-

fines the new notation we introduce in formalizing the problem. Note that the optimization

assumes that the network topology and neighbor AS relationships are fixed, hence the op-

timization only deals with optimizing the usage-based cost (CU) of carrying traffic flows in

the network.

Inputs The input to the optimization problem is the complete set of s,d flows routed on

the network, and the fully parameterized cost model that determines the usage-based inter-

connect and backhaul cost for routing each flow (as defined in Section 5.2). In addition, the

optimization requires information about the capacity of the interconnect links and backhaul

paths in the network. The optimization also takes as input information about availability

115

of a neighbor at the different PoPs in the network. We obtain the (egress PoP, egress AS)

pair for each flow f at PoP p based on the destination d of the flow from the routing table

dumps at each PoP.

Output The desired output is the routing configuration that minimizes the total cost of

routing every flow. This takes the form of a mapping, which defines the ingress AS, ingress

PoP, egress AS and egress PoP for every flow f . The output variables are listed in Table 5.2.

The output of the optimization configures routing in the network at the granularity of pre-

fixes. The realization of the routing decisions may be complicated, depending on how the

network is configured, but, fortunately we find that that most of the cost benefits can be

achieved by routing only a small fraction of the flows. We discuss a few possible ways of

making it easier to implement in Section 5.5.

Even though the formulation we have described can determine each of the ingress in-

terconnect and egress interconnect, there are important differences between the ingress and

egress mappings. Changing the ingress AS and/or PoP for a flow depends on neighboring

and remote networks. For instance, attempting to change the ingress AS for a flow f using

AS path prepending requires remote ASes to prefer short AS paths. Changing the ingress

PoP for a flow involves negotiating hot/cold-potato routing with neighboring ASes. On the

other hand, given a destination prefix, the network has complete flexibility in choosing to

route traffic towards that prefix via any neighbor AS that advertises that prefix. Similarly,

the network can choose among multiple PoPs where a particular neighbor AS may be peer-

ing. Given that the network cannot deterministically control the ingress mapping for a flow,

we choose to retain the ingress mapping. We assume that the network can only control the

egress mapping for a flow f , i.e., the network can route the traffic internally, and choose

the appropriate egress AS/PoP to reduce overall cost of routing that traffic.

Objective Function The objective is to minimize the total cost of network traffic. From

the cost model developed in Section 5.2, there are two types of costs associated with each

116

flow: interconnect and backhaul costs. Thus, the objective is to minimize the total usage-

based cost over all the flows in the network.

Constraints The routing configuration that minimizes costs must also satisfy capacity

constraints in the network. We consider two categories of capacity constraints: intercon-

nect link capacities and backhaul link capacities. Operators can add other constraints;

for example they might restrict the set of available paths to achieve certain performance

guarantees. These can also be modelled as linear constraints but would require additional

information about performance of various paths. We give examples of how to model such

constraints:

• Interconnect link capacity constraints

If Ci(a, p) is the capacity of an interconnect link with AS a at PoP p, then the total

rate of flows that map to the AS a and PoP p should be less than the capacity Ci(a, p).

Because the optimization does not change the ingress mappings of the flows, the

constraint only applies to the egress interconnect links. Formally:

∑
f :ae,pe=a,p

r ≤ Ci(a, p) ∀a, p

To obtain Ci(a, p) for peering links that have strict requirements for traffic ratios,

we sum the total ingress traffic from the particular AS a and make Ci(a, p) satisfy

the traffic ratio guarantee that the egress traffic would not exceed x% more than the

ingress traffic from the neighbor. Thus, we can write:

Ci(a, p) = k · ∑
f :ai,pi=a,p

r

Because we do not modify the ingress mapping of traffic, the right side is a constant

for a given traffic matrix.

• Interconnect Traffic Ratio constraints

We show here an example of how to incorporate real-world agreements between a

117

network and its neighboring ASes as constraints for the cost optimization. There are

a number of agreements that require neighboring ASes to maintain a certain traffic

ratio to each other. Such constraints are of the form, that the egress traffic from a

network to its neighbor would not exceed x% more than the ingress traffic from the

neighbor. Such constraints can be mapped as:

∑
ae,pe=a,p

r ≤ const · ∑
ai,pi=a,p

r ∀a, p

Because we do not modify the ingress mapping of traffic, the right side of the above

constraint is a constant for a given traffic matrix.

• Backhaul link capacity constraints

If the complete internal network topology and routing configuration of the network

is known, then it is possible to infer the complete path taken by a flow f in the

network. The backhaul link constraints should capture the fact that the total rate of

all flows that are routed over a backhaul link should not exceed the capacity of that

link. Let Fb(p1, p2, l) be the fraction of traffic between PoP p1 and p2 sent over

backhaul link l. In case the network is using only single-path shortest path routing,

then Fb(p1, p2, l) will be zero or one. However, networks often deploy MPLS or

ECMP to split traffic between PoPs over a number of paths. If Cb(l) is the capacity

limit for the backhaul link l, then the capacity constraint is:

∑
p1,p2

∑
f :

pi,pe=p1,p2

r ·Fb(p1, p2, l) ≤ Cb(l) ∀l

• Performance constraints

The assignment of traffic flows in the network which only optimizes the cost of the

traffic in the network could in cases lead to traffic flowing on paths which are not

equivalent in performance. Depending on the type of network, performance can

be either be the most important metric for assigning flows or could be a desirable

118

objective to achieve. In networks where performance is absolutely critical, the per-

formance constraints can be introduced as hard constraints in the formulation which

must be met, for example, if lat(dst, pop,as) is the latency of sending traffic to pre-

fix dst via egress PoP pop and peer as, and max lat(dst) is the max latency for the

prefix, then the constraint can be modelled as:

∑
pop

∑
as

map(dst,as, pop)≤ max lat(dst) ∀dst

There could be other constraints which the operator may wish to incorporate in the cost

optimization which restricts the traffic to certain paths in the network.

Solving the Optimization Solving the optimization involves determining the egress map-

pings for every flow so as to minimize the total cost of all the flows, subject to the various

capacity (link and PoP) constraints. The capacity constraints restrict the amount of traffic

that can be routed on a particular interconnect link or backhaul path in the network. This

is similar to the bin packing problem where objects (flows in this case) are assigned to bins

(links in this case) and the bin has a fixed capacity and each object has a fixed size (rate

of the flow), which is NP-hard. Simple greedy approaches yield good approximate solu-

tions for the bin-packing problem (e.g.first-fit, best fit decreasing and first fit decreasing).

We develop a simple heuristic to find a good approximate solution. We present a simple

greedy assignment that respects the interconnect and backhaul capacity constraints. The

greedy assignment assigns a flow to the lowest cost path on which it can be routed while

respecting the interconnect and backhaul capacity constraints.

The traffic flow assignment is not a direct mapping to bin packing, so we use the follow-

ing variation of the first fit decreasing strategy. We consider flows in decreasing order of

their cost and assign each flow to a path that has enough backhaul and interconnect capac-

ity, and has the least cost among all such paths. This is different from bin-packing because

a flow can only be assigned to a limited set of paths, and there is a different cost associated

119

Figure 5.4: Peering Location Decision.

Figure 5.5: Existing Peering Contracts.

of being assigned to any particular path. We show the results from our greedy assignment,

using two different methods of attributing interconnect costs to flows, in Section 5.4.3.

5.3.2 Planning Decisions

Another useful application of mapping traffic flows to their associated costs is to to identify

potential opportunities for reducing cost or increasing revenue by re-evaluating existing

interconnections. A network operator or planner may wish to evaluate the locations where

the network is peering with a particular AS, or it may wish to evaluate the profitability of

peering with that AS at all. We present two examples here:

120

Determining Peering Locations Network X can use the available cost information and,

based on its current traffic demands, estimate how peering with a neighboring network at

additional locations might affect the overall cost of carrying traffic. Such a decision will

depend on the costs of transporting traffic over various backhaul links, as well as the costs

of various interconnection and peering points along the path. For example, as shown in

Figure 5.4, network X might have a significant amount of ingress traffic near a certain

location, A, that is also destined for locations near A in a neighboring network. Depending

on the cost of interconnecting at A relative to backhaul costs (i.e., if interconnection is less

expensive than carrying the traffic to B via backhaul links), it may make sense for network

X to also peer with this neighboring AS at location A. If, on the other hand, a second

peering location B offers more attractive pricing (e.g., port costs and exchange fees could

be lower at B), it may be more profitable to simply send all of the traffic to the neighbor

through a peering location at B.

Evaluating Existing Peering Contracts The peering relationships of network X are ben-

eficial to X when they are created. Over time, network X may connect to additional peers,

or the traffic flow and interconnection costs may change sufficiently for the peering link to

no longer be beneficial to network X . An operator or planner at network X may want to

periodically re-evaluate the value of peering with a certain AS. Figure 5.5 shows network

X and its peer P. When X created a peering relationship with P, it may have been less

expensive to route traffic destined to D via P, as opposed to using a transit provider, T .

Over time, however, transit provider T might offer a better price, or the backhaul cost of

routing traffic to T might decrease; X might add another peer Q that can route traffic to the

same destination D. The operator of network X must continually re-evaluate whether there

is value in continuing to peer with P. For example, the operator may wish to compute the

cost for routing traffic towards a customer AS, D, if it depeered P and instead routed this

traffic over either T and/or Q. In Section 5.4.4, we describe a method that X can use to

121

evaluate the value of an existing peering contract with peer P.

Evaluating potential peering contracts Networks periodically engage in peering trials

to gauge the effect of the new peering relation because they cannot evaluate both the per-

formance and cost effects of a potential contract. Lack of this knowledge makes evaluating

potential peering contracts cumbersome, thus making it difficult (if not impossible) to iden-

tify these new peering opportunities. Such data data is usually gathered by the engineering

team, which compiles reports and sends it to the sales and marketing teams, who intern

negotiate contracts with the particular networks. This ad hoc approach can result in many

missed opportunities for beneficial peering contracts and an inability to evaluate the real

value of certain peering contracts. In Section 5.4.4, we demonstrate how network X can

use the traffic cost model to discover new peering opportunities.

5.4 Evaluation

In this section, we evaluate the different applications of the traffic cost model as described

in Section 5.3. We evaluate the greedy algorithm to reduce cost of routing traffic in the

network and the two planning decision examples described in the previous section.

5.4.1 Setup

We use traffic flow statistics, routing data, and topology data from a large access provider

in the UK. The traffic statistics consist of packet sampled (1 in 1000) NetFlow data from a

weekday in July ’09. The routing data consists of full BGP routing table dumps from the

edge routers and the complete ISIS topology for the network.

We extract flow-level statistics from the NetFlow data that gives us the traffic (in bytes)

between every s,d pair, where s is the source prefix and d is the destination prefix. The s,d

pair defines a flow f ; we compute its rate r by dividing the total bytes transferred by the

duration of our measurement. Combining this flow-level data with available BGP and IGP

routing data, we obtain the path in the network for each flow f . We draw the unit traffic

122

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n

 o
f

S
a
v
in

g
s

Fraction of Flows

Backhaul >> Interconnect
Backhaul ≈ Interconnect

Backhaul << Interconnect

(a) Linear Function

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n

 o
f

S
a
v
in

g
s

Fraction of Flows

Backhaul >> Interconnect
Backhaul ≈ Interconnect

Backhaul << Interconnect

(b) Shapley Value

Figure 5.6: Fractional savings for greedy heuristic with capacity constraints. These plots

show the cumulative fraction of savings for the fraction of flows that are reassigned.

costs from the range [1,10] per Mbps of traffic; this range corresponds to publicly available

pricing data. We evaluate three different scenarios for different relative prices of backhaul

and interconnect cost:

• Backhaul ≈ Interconnect: We scale the unit backhaul cost Ub(pi, pe), to be in the

same range as the unit interconnect cost, i.e.[1,10] per Mbps of traffic.

• Backhaul ≫ Interconnect: This simulates the scenario where transit prices and

peering costs are very low, due, possibly, to competition in the transit market or the

presence of Internet Exchange Points (IXPs). We model this scenario by keeping the

123

Table 5.3: Most flows have two available points of egress that allows for potential cost

savings by moving traffic from one egress to another.

of egress points % of flows

1 25.74

2 73.43

3 0.36

4 0.03

5 0.03

6 0.36

7 0.03

8 0.027

backhaul costs in the range [1,10], but draw the unit interconnect cost from the range

[0.1,1] per Mbps of traffic.

• Backhaul ≪ Interconnect: Represents the case where transit prices and peering

costs are much higher than backhaul costs. This could be the case in regions where

certain ISPs have monopolies in the transit market, and peering opportunities are

limited. We model this scenario by keeping the backhaul costs in the range [1,10],

but draw the unit interconnect cost from the range [10,100] per Mbps of traffic.

These three scenarios can represent the cost structure for links in different types of net-

works. For example, transit providers may have high backhaul but lower interconnect

costs; on the other hand, large content providers might have relatively higher interconnect

costs.

5.4.2 Shapley Value Computation

We estimate the Shapley values for a subset of flows at every interconnect link in the

network. The computation of Shapley values quickly becomes computationally infeasi-

ble even for a small number of flows. Hence, we use the approximation technique de-

scribed in [84]. The complexity of estimating Shapley values for a given interconnect is

O(| f lows|2 ∗K), where K is the number of permutations used. Thus, for a fixed number

124

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80 90 100

S
h
a
p
le

y
 V

a
lu

e
 (

co
v
)

Flows

K = 10
K = 100

K = 1000

Figure 5.7: Co-efficient of variation for estimated shapley values for flows at a particular

interconnect link. The values are computed over 100 runs.

of flows the smaller the value of K, the faster the computation but it also implies higher

variation from the true Shapley values. We computed the coefficient of variation (CV) for

the Shapley values for a fixed set of flows at a particular interconnect for K = 10,100,1000.

We found that the CV is > 100% for most flows for K = 10, between 50% and 100% for

most flows for K = 100 and < 30% for all flows for K = 1000, with a median of 11%.

Even though, it is computationally infeasible to calculate the ground truth, the above re-

sults show that for K = 1000, the exact permutation used has little effect on the estimated

Shapley values. We use this value of K in our evaluation.

Figure 5.7 shows the co-efficient of variation for the shapley values computed for a

fixed set of flows at a particular interconnect for three different values of K. We find that

the for K = 1000 for all flows, the estimated shapley values deviate by < 30% from the

mean. We use this value of K for computing the shapley values of flows in our evaluation.

125

5.4.3 Greedy Cost Reduction

We evaluate the greedy cost optimization described in Section 5.3.1. We aim to demonstrate

the benefits that can be obtained by using a simple greedy strategy. Table 5.3 shows that

for around 73% of flows, an alternate path is available, but a very small fraction of flows

have more than two alternate paths. Here, we assume that the network operator has a target

utilization of 30%, i.e., the capacity for interconnect and backbone links.

We evaluate cost savings using two different techniques for calculating the flow contri-

bution to the interconnect costs as described in Section 5.2.3. The cost saving results for

the three different scenarios of backhaul and interconnect costs are shown in Figure 5.6.

When using linear function (Figure 6(a)), moving only the most expensive 10% of flows

that have alternate cheaper paths achieves 68% of the maximum possible saving (in the

case of Backhaul ≈ Interconnect). This result is significant, because the network operator

may not wish to reassign many flows, since doing so might require large changes in routing

configuration or entail disrupting a large fraction of traffic. When using Shapley values

(Figure 6(b)), moving the most expensive 30% of the flows achieves 65% of the maximum

possible saving (in the case of Backhaul ≈ Interconnect). Since the greedy strategy as-

signs flows in the order of their original cost and also obeys the capacity constraints, it can

lead to some flows flowing on routes which are more expensive than the original route, but

significant cost savings are possible regardless.

Next, we study the relative contribution of interconnect and backhaul cost savings to

the total cost savings, for each cost scenario. Figure 5.8 shows, for each reassigned flow,

the cost savings for that flow due to reduction in the interconnect cost (y-axis) as a function

of the total cost saving (x-axis). As expected, we find that when Backhaul ≪ Interconnect

(Figure 5.8(c)), almost all the savings are due to reduction in the interconnect cost for the

reassigned flows. On the other hand when Backhaul ≫ Interconnect (Figure 5.8(b)), there

are a number of reassigned flows for which the interconnect cost actually increases (neg-

ative interconnect cost saving). For these flows, however, the backhaul cost savings are

126

-400000

-200000

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 100 1000 10000 100000 1e+06 1e+07

In
te

rc
o
n
n
e
ct

 C
o
st

 R

e
d
u
ct

io
n

Cost Reduction

(a) Backhaul≈Interconnect

-40000

-20000

 0

 20000

 40000

 60000

 80000

 10 100 1000 10000 100000 1e+06

In
te

rc
o
n
n
e
ct

 C
o
st

 R
e
d
u
ct

io
n

Cost Reduction

(b) Backhaul≫Interconnect

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 100 1000 10000 100000 1e+06 1e+07 1e+08

In
te

rc
o
n
n
e
ct

 C
o
st

 R
e
d
u
ct

io
n

Cost Reduction

(c) Backhaul≪Interconnect

Figure 5.8: Contribution of interconnect cost savings to the total cost savings for the three

different cost scenarios of cost.

sufficient to give a positive total saving. This finding highlights the importance of optimiz-

ing both interconnect and backhaul costs for flows. If the operator considered interconnect

costs in isolation, he would miss certain cost saving opportunities.

Using path bits to select paths of similar cost As shown in Table 5.3, a large number of

flows have an alternate egress location available. In our dataset, each flow has on average

1.77 alternate paths. Using our cost model, we evaluate the cost of each of these alternate

paths for a flow. Our goal is to identify paths of similar cost, so that network operators can

use path bits to expose these paths to the end system (or customers). We fix a threshold for

how much the cost of an alternate path can exceed the cost of the cheapest path for a flow

and we measure the average number of alternate paths available for different values of the

allowed threshold. Our result is summarized in Table 5.4. The results vary based on the

particular cost scenario and also the allowed threshold. We see that if we allow the cost of

the flow to vary by upto 10% from the cheapest path, then for Backhaul ≈ Interconnect,

127

Table 5.4: Number of paths with similar cost, depending on the difference between the

path cost and that of the cheapest path for a particular flow.

Type Threshold Avg. # of similar paths

Backhaul ≫ Interconnect

5% 1.053

10% 1.126

20% 1.287

30% 1.335

50% 1.409

Backhaul ≪ Interconnect

5% 1.009

10% 1.051

20% 1.160

30% 1.296

50% 1.491

Backhaul ≈ Interconnect

5% 1.096

10% 1.240

20% 1.317

30% 1.473

50% 1.608

we get about 1.24 paths on average which is about 30% fewer than the best possible.

5.4.4 Peering Decisions

An important application of having a holistic traffic cost model is that it can enable net-

works to perform “what-if” scenario evaluations. Now, we describe the evaluation of two

“what-if” scenarios (described in Section 5.3.2) as a way of demonstrating the utility of

our traffic cost model. We skip the results of how the cost model might help operators

identify potential peers. We use the linear function for calculating interconnect costs for

these examples.

Peering Location Evaluation For an existing peer A, we consider each PoP where the

network does not currently peer with A, and try to route existing flows (which use A as the

egress AS) via the new PoP. We calculate the total cost of routing flows after adding the

new PoP and pick the additional PoP which gives the maximum cost savings for the peer

A. For our analysis, we ignore any capacity constraints while reassigning flows and assume

128

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

C
D

F
(N

u
m

b
e
r

o
f

P
e
e
rs

)

Percentage Savings

Backhaul ≈ Interconnect
Backhaul >> Interconnect
Backhaul << Interconnect

Figure 5.9: CDF of benefits (% savings) from selecting a new PoP for a neighbor done

for different scenarios of the cost function.

that A is available for peering at each additional location. It is easy to extend our method

to include capacity constraints and the availability of peer A at the new peering location.

Figure 5.9 shows the CDF of savings by selecting one additional peering location for

each existing peer. We find that when Backhaul ≫ Interconnect, the benefit of adding a

peering location with an existing peer depends on the peer. For about 35% of existing peers,

there is no benefit from adding an additional peering location, perhaps because the network

already connects to certain peers at the best possible PoP. On the other hand, for some

peers, adding an additional peering location saves > 80% of the current cost of routing

traffic via that peer. The following example explains how this could happen. Suppose that

most of the traffic that X routes via A enters X at a certain PoP pi. If there is an egress PoP

pe close to pi, then adding a peering location with A at pe will yield significant backhaul

cost savings.

129

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-200 -150 -100 -50 0 50 100

C
D

F
(N

u
m

b
e
r

o
f

P
e
e
rs

)

Percentage Savings

Depeering = Net Loss Depeering = Net Gain

Backhaul >> Interconnect
Backhaul ≈ Interconnect

Backhaul << Interconnect

Figure 5.10: CDF of benefits (% savings) from depeering for different scenarios of the

cost function.

Existing Peer Evaluation There are a number of reasons why networks peer with each

other, such as to save costs for traffic which would otherwise be routed via a transit provider.

As we described in Section 5.3.2, network X may wish to periodically re-evaluate the value

of the peering link with an existing peer A. We describe a method using which network

X can estimate the value of a peering link with a neighbor. For a neighbor AS A, we try

to reassign each flow that was routed via A to some other AS. If a flow cannot be routed

via any other AS, then we assume that that flow must be routed via a transit provider, and

charge it by the maximum rate. We then calculate the difference in total cost by reassigning

the flows which used A as egress. This is the net saving for network X by depeering network

A. If the net saving is negative, then it makes sense for network X to keep peering with A,

while if the net saving is positive, then network X would benefit from depeering A.

Figure 5.10 shows the CDF of the net saving from depeering each neighbor. The CDF

is skewed, showing that some networks are extremely beneficial. We find, however, some

peers for which the net saving is positive, i.e., X would benefit by depeering these peers.

130

 0

 0.2

 0.4

 0.6

 0.8

 1

-100 -50 0 50 100

C
D

F
(N

u
m

b
e
r

o
f

P
e
e
rs

)

Percentage Savings

=
>>
<<

Figure 5.11: CDF of benefits (% savings) from selecting a new network to peer with done

for different scenarios of the cost function.

When Backhaul ≫ Interconnect, a smaller fraction of peers gives a net saving. The intu-

ition is that moving traffic from an existing peer to another peer (which may offer cheaper

interconnect) may lead to a large increase in backhaul cost, and no net saving. But, when

Backhaul ≪ Interconnect, we see a larger number of peers which X can benefit by de-

peering. This is because moving flows from an existing peer to other peers offering less

expensive interconnect is beneficial, even if it involves carrying the traffic for longer dis-

tances on less expensive backhaul paths.

New peering opportunities As we described in Section 5.3.2, the operator of network

X may wish to look for new peering opportunities, based on the current traffic and cost

profile. The key question that the operator would like to answer is “What is the potential

benefit of peering with a network that is currently not a peer?”. We describe how the

operator of network X can use the cost model to determine the potential benefit of adding a

new peer. To find potential peers, we look at the routing announcements from the different

131

peers of network X and find the set of networks which are currently not peers, but are on

the path from X to remote destinations. Let R be such a remote network. We “simulate”

peering with R, by assigning the traffic flows traversing R (via current peers) directly to R,

and calculate the cost of those flows. The cost saving by peering with R is the total savings

for all such flows. For each remote network R, we can then calculate the cost saving of

adding a peering link to R.

Figure 5.11 shows a CDF of potential savings from new peerings. We find that peering

with only about 40% of remote networks yields cost savings. We conjecture that this is

due to the nature of network X (a large access provider) that we use in this evaluation.

Network X has an almost open peering policy, and consequently, not many potential cost

saving peering opportunities are available. However, we expect our technique to be much

more useful in cases of networks with restrictive or limited peering. We plan to apply our

technique to such networks in future work.

5.5 Cost-based Path Selection

The path selection architecture can be successfully deployed if networks (or network oper-

ators) have sufficient incentive for exposing more than one path to end systems. Indiscrim-

inately exposing paths in the network to end systems is not optimal for operators because

end systems might favor paths which are expensive. Hence, we develop a cost-based path

selection framework in this section. In this section, we focus on describing how a network

can implement a cost-based paths selection architecture using path splicing as an example

of a scheme used to create multiple paths in the network. However, the approach is gen-

eral enough to replace path splicing with a different multipath generation scheme with only

little changes.

We also show how to add feedback in the model, where traffic characteristics could

change, pricing by neighbors change, etc which can affect the cost of the traffic and hence,

would require operators to re-optimize the network.

132

path splicing

network topology

set of

paths
cost-based

paths

selector

traffic cost model

low cost

paths

Figure 5.12: Cost-based path selection framework

5.5.1 Centralized Controller

We leverage recently proposed centralized network control plane architectures like RCP [17],

4D [97, 39]. OpenFlow [64] also utilizes a centralized controller [18] for making changes

in the OpenFlow network devices deployed in the network. This shows that the use of

centralized control plane architectures or centralized decision making is becoming popular

among networks.

Figure 5.12 shows how the operator can use a centralized controller as a “low cost paths

selector”. The centralized controller can take as input the network topology information

and use a multipath scheme like path splicing (as described in Chapter 3) to compute mul-

tiple paths in the network. These multiple paths are then sent to another module, cost-based

path selector that takes as input the multiple paths computed by path splicing, traffic cost

model and the observed traffic matrix to compute a set of low cost paths. These paths can

then be configured by the controller in the network devices. For example, using OpenFlow

protocol, the controller can translate the computed paths into forwarding rules which can

then be installed in the network devices, similar to the solution for implementing splicing

in a centralized fashion in a network as shown in Figure 3.5. A number of proposals utilize

this feature of OpenFlow to control paths in the network for performance [51] or security

reasons [18].

133

5.5.2 Feedback mechanism

Routing protocols are dynamic in nature and respond to changing network conditions. For

example, in the event of a link or node failure, the routing protocols compute an alternate

path to avoid using the failed link or node if such a path exists. A practical cost-based path

selection framework must similarly be dynamic and respond not just to network failures but

also changing traffic patterns in the network. Thus, there is a need to incorporate feedback

in the path selection procedure. Failures can be dealt with using the multipath mechanism

or using an active failure recovery mechanism like fast reroute [79]. We focus here on

how to respond to changing traffic patterns in the network and provide a sketch of how a

centralized path selection controller can incorporate feedback.

As shown in our cost model, interconnect and backhaul costs are determined based

on the traffic flowing over the interconnect links and backhaul paths. Usage-based inter-

connect and backhaul costs are based on the amount of traffic flowing over the particular

interconnect and backhaul links. If a number of end systems start preferring paths going

through a particular interconnect link that can increase the cost of the traffic cost at that

link. In this case, the controller must compute new set of paths based on the changing traf-

fic patterns. There are a number of practical concerns like how often should the controller

recompute the low cost paths which we do not address in this dissertation.

5.6 Related Work

In this section, we describe the large body of related work in the area of improving routing

in a network to achieve goals like better performance, lower traffic costs or both. For

presentation convenience, we split the related work in three broad categories.

Optimizing cost for multihomed stub networks A number of recent studies has fo-

cussed on multihomed stub networks to formulate problems for optimizing the cost and

performance in such networks. Akella et al [4] showed the benefits of multihoming and

134

how to select ISP providers to maximize performance gains. Goldenberg et al [37] studied

the problem of optimizing cost and performance in a multihomed network and proposed

an optimization based approach for solving the problem. Wang et al [91] generalize the

previous work to include in the optimization formulation, the set of all available ISPs to

the multihomed network and propose a dynamic programming approach to solving the cost

optimization. These studies are applicable only for the set of multihomed stub networks

and the approach described do not generalize to the problem of a general network, which

has a large number of potential ASes, and the relation between the neighboring AS can be

of a customer-provider or that of settlement-free peering. Also, the previous works use a

very simple cost model which is just based on the unit rate pricing for purchasing band-

width from the providers. Finally, the formulations do not consider any backhaul costs

associated with carrying traffic within the network nor do they consider the possibility of

traffic ingressing (or egressing) from the network at different locations.

Reducing traffic costs in data center environments Although performance is the most

important metric for optimization in datacenter environments, cost considerations have be-

come significant due to the increase in the size and footprint of datacenters. Qureshi et

al. [73] propose an approach to routing in a data center environment to exploit the disparity

in energy prices at different geographic locations and demonstrate savings in energy costs.

Zhang et al. [101] perform an optimization based on performance and cost for datacenter

applications where performance is critical.

Optimizing path performance A number of overlay routing schemes [9, 41] suggest

building overlays to find better performing paths. A number of commercial products use

Intelligent Route Control to select among one of the egress providers for selecting paths

with good performance [46, 76]. Our work considers traffic costs for selecting paths in

the network. Also, our work is not restricted to only stub networks but is more generally

applicable for transit, access and content providers as well.

135

5.7 Discussion and Summary

In this chapter, we developed a holistic cost model for associating costs for individual traf-

fic flows in the network and showed how a network operator could use such a cost model

to reduce the cost of forwarding traffic both across backhaul links in a network and at inter-

connection points. Although network operators currently apply some heuristics to control

the cost of network traffic, they lack a holistic cost model that incorporates all contribu-

tors to the cost of forwarding individual traffic flows. This paper presents the first such

cost model for network traffic, which we believe could serve as the foundation for many

applications that could help network operators control network costs. For example, with

knowledge of future backhaul and interconnection costs, network operators could evalu-

ate the benefits of establishing peering connections versus provisioning more capacity on

backhaul links.

Operators could also use our cost model to jointly optimize cost and performance, as

previous work has done for stub networks [37]. The cost model could also be integrated

with a configuration tool that helps an operator determine a set of configuration changes

that could achieve the appropriate re-mapping of traffic flows; alternatively, a controller (as

in RCP [17] or 4D [39]-like networks) could directly map flows onto the appropriate paths.

There are a number of directions that require additional work. Instead of random in-

terconnect costs we used in our evaluation, it would be useful to work with real cost data.

We used Shapley values for distributing interconnect costs among flows; if the number of

flows is large, however, computing these values is expensive. Another important avenue

of exploration is to incorporate feedback in this model. When a network reroutes flows

to reduce cost, it can potentially affect incoming traffic patterns, making the resulting cost

sub-optimal. This would require further routing changes, which could again change the

traffic patterns. We plan to explore the conditions under which our cost-based routing op-

timization converges to a stable routing configuration. We are exploring the feasibility of

a tool that continuously monitors traffic patterns and cost information and re-optimizes the

136

routing to reduce traffic costs in the network.

We also showed how the traffic cost model can be used together with a scheme for

computing multiple paths in the network like path splicing to allow operators to expose

only low cost paths to end systems. Such a cost-based path selection architecture can

help resolve the tension between network operators goal of reducing the traffic costs in a

network and end systems requirement of being able to influence path selection decisions in

the network. With the advent of new routing architectures that aim to centralize the control-

plane in the network can aid the deployment of a cost-based path selection framework in

networks.

137

CHAPTER VI

CONCLUDING REMARKS

The Internet was an academic experiment and for a long time remained the domain of re-

searchers. As the Internet has become more mainstream there has been an explosion of rich

applications deployed at the edge, aided primarily by the end-to-end focus of the Internet ar-

chitecture. The adoption of real-time applications like VoIP, gaming, video streaming have

made the case for allowing applications some control over selecting their paths stronger.

This has led to a number of research proposals of providing multiple paths in the network

and allowing applications (or end systems) some control over path selection.

6.1 Towards a Path Selection Architecture

Traditional shortest-path routing protocols compute paths in the network based on a single

metric (e.g.link weights). Also, the notion of a path failure is a physical failure: link or

router failure. However, applications perceive failures in different manner. Even moderate

amounts of packet drops on a path could make it unusable for an application relying on

TCP and a high jitter path would render real-time communication applications ineffective.

Thus, as the diversity of applications at the edge has exploded, the application-specific

definition of path failures has become important. Hence, networks must compute multiple

paths and allow some control for applications to influence the path their traffic can take in

the network.

Multipath routing proposals vary in how much control do they provide end systems to

influence the path selection. They range from giving end-systems complete control over

path selection [69], to no control [54, 96, 52] and a wide spectrum of distributing control

between the end systems and the network [99, 60]. Each of this multipath schemes design

their unique interface for incorporating application choice in path selection. For example,

138

path splicing allows applications to include a list of forwarding trees at each intermediate

hop in a separate header in the packet (splicing bits), routing deflections uses the IP-ID and

TTL field of the IP header (that can be modified by the end system) to determine if the

packet is to be “deflected” to a non-default path and ECMP uses a hash of the source and

destination identifiers to select amoung two equal-cost paths in the network.

In this dissertation, we hypothesize that the lack of a standard interface separating the

end systems method of influencing path selection and the actual multipath routing scheme

implementation in the network is hampering real deployment of multipath protocols and

path selection frameworks on the Internet. Hence, we propose a “narrow-waist” interface

for path selection on the Internet. The interface is simply a bit-string called path bits,

that an end-system includes in packets. Network (or routers) use the path bits to select an

end-to-end path. The bits have no semantics for the end-system, except that when they

are modified, the end-system expects, with a high probability to get a different path to the

destination. We believe that the path-bits interface, which acts as a “narrow-waist” between

the applications running on end-systems and the multipath routing schemes deployed in the

network, will foster innovation. Both “above the waist” in the path selection and monitoring

schemes at the end-systems and “below the waist” in the multipath routing schemes to

compute alternate paths in the network. This is in similar spirit to the IP/TCP “narrow-

waist” of the Internet [5].

6.2 Summary of Contributions

The central contribution of this thesis is the design, implementation and evaluation of path

bits, a “narrow-waist” path selection architecture for the Internet. The thesis also addresses

the tussle between network operators and end-systems, and develops a framework for cost-

based path selection. The specific contributions of this dissertation are as follows:

• A Narrow-waist Interface for Path Selection We present the motivation and de-

sign of path bits, which is a “narrow-waist” interface for enabling path selection in

139

the Internet, in Chapter 2. We also showed how to map a large number of existing

multipath schemes to the path-bits interface.

• Creating Network Paths using Path Splicing We present, path splicing, a multipath

routing primitive that creates alternate paths in the network by peturbing the default

shortest path. We show how to construct paths by splicing together segments of the

different perturbed paths. We present both intradomain and interdomain versions of

path splicing.

• Addressing the tussle between End-systems and Network Operators with Cost-

based Paths Selection We present a holistic traffic cost model that can help attribute

costs to traffic flows in a network. We show how the cost model can be used by

network operators to present a choice of low cost paths to the end-system, thus,

mitigating the tussle between end-systems goal of being able to make path selection

decisions and network operator’s objective of reducing traffic costs. We also show

other applications of the cost model in modifying routing to reduce traffic carrying

costs and rationalize planning decisions like selection of new peers, peering locations

and evaluating existing peering relationships.

• Prototype Implementations publicly available We present prototype implementa-

tions of three multipath routing schemes, on hardware and software platforms, to

demonstrate the path-bits interface permits simple and efficient implemetations of

multipath forwarding schemes. We also implement a number of path selection and

monitoring mechanisms that exploit the path-bits interface to gain access to alter-

nate paths in the network. We make these implementations available for the research

community.

140

6.3 Future Directions

This dissertation has explored building an architecture for network path selection on the

Internet. This is definitely not the final word for this highly dense research topic. We

present three future directions in which this work can be extended in the future.

6.3.1 Narrow Waist in Datacenter Networks

A datacenter networking environment is very different from a traditional network and

presents its own set of challenges. In a datacenter, the end-systems (or servers) and the

network devices (switches, routers and firewalls) are under the same administrative con-

trol. Hence, there is an opportunity for co-operation between the end-systems and the

network to achieve common goals. This has in fact led to a number of interesting research

proposals where the co-operation between the edge and the network helps solve a number

of problems [93, 6] in the datacenter environment. It would be interesting to explore how a

path selection framework fits in such an environment. Because a “narrow-waist” interface

like path-bits decouples the underlying implementation of multiple paths in the network

from the particular mechanism used by the end-systems to discover, monitor and select

alternate paths; it can be of utility in a datacenter network.

A datacenter environment is also rapidly evolving with newer protocols finding quicker

adoption. This implies that a decoupling would be of even higher utility as it can lead to

rapid deployment of new network protocols. End-system protocol stacks can also be inde-

pendently modified to add new and better features if the path selection interface is fixed.

Because all the end-systems in a datacenter are under a common administrative control,

protocol stack updates can be pushed by the datacenter operator. In a shared cloud environ-

ment, where each physical end host is shared among multiple cloud tenants, each running

inside their own virtual machines [68]. The cloud provider controls the hypervisor that

implements policies to ensure fair sharing of network resources among the cloud tenants.

141

These environments already use multipath routing schemes in the network instead of rely-

ing on layer-2 shortest path algorithms to utilize the network resources. Path-bits interface

can help in evolving both the hypervisor-controlled end-system path selection implemen-

tations and the network-based multipath schemes independently.

6.3.2 Alternate slice generation schemes in path splicing

Path splicing uses random perturbations of the link weights in the network graph to generate

alternate paths in the network. Perturbing the paths randomly has several nice properties

like low path stretch and high path novelty. Unfortunately, the slices created with such

method cannot guarantee to cover the complete underlying network graph. In other words,

there is no hard guarantee that if the underlying graph does not get disconnected then there

would exist a spliced path. It would be interesting to explore more deterministic slice

generation techniques that can guarantee failure recovery. Discovering such schemes could

also help compare paths computed using path splicing versus such deterministic techniques.

Commercial networks offer different quality of service to traffic based on the amount

charged to the customer. This is typically handled by using MPLS and creating label

switched paths (LSPs) in the network with different priorities so that the highest prior-

ity traffic gets better quality of service as compared to traffic with lower priority. A slice

generation scheme that is aware of such preconfigured priorities in the network could cre-

ate a different slice based on the type of traffic and a particular traffic can be routed on the

corresponding slice or set of slices.

Alternately, slices could be created such that each slice is optimized for a particular

network metric. For example, the network could create a slice that has paths which are

low latency, another slice which has paths that have high bandwidth. The network can

then route traffic corresponding to the metric which is more suitable for that traffic on the

appropriate slice. End-systems could use path bits to signal to the network the particular

slice their traffic needs to be routed on.

142

6.3.3 Comparison of multipath routing algorithms

There are a number of multipath, fast rerouting schemes proposed in the literature. Each

multipath scheme evaluates a specific failure scenario. However, there is no well defined

methodology when evaluating a multipath routing scheme. There is no well-defined metric

in the research community that can be used to evaluate the multipath routing schemes. For

example, path splicing uses a metric called reliability curve to show the effectiveness of

path splicing from recovering from failures in a network. While, failure carrying pack-

ets [54] uses a failure model in which links fail and recover continously in the simulated

network, and use that to evaluate how well the routing scheme can recover from transient

network failures. It is not clear which is a better metric when comparing two different

multipath schemes. Defining such metric would be a valuable addition to the research

community in being able to compare different multipath schemes.

A “narrow-waist” can also help in evaluating different multipath schemes. The evalua-

tion criteria could be how fast can applications find good paths using the particular multi-

path scheme. With the release of our prototype implementations of the end-system support

for path bits, we hope researchers will use it to evaluate new and existing multipath routing

proposals.

143

REFERENCES

[1] “IETF transparent interconnection of lots of links (TRILL) working group.” http:

//datatracker.ietf.org/wg/trill/charter/.

[2] “NetFPGA.” http://www.netfpga.org.

[3] “Path Splicing.” http://www.gtnoise.net/splicing/, Sept. 2009.

[4] AKELLA, A., MAGGS, B., SESHAN, S., SHAIKH, A., and SITARAMAN, R., “A

measurement-based analysis of multihoming,” in Proc. ACM SIGCOMM, (Karl-

sruhe, Germany), Aug. 2003.

[5] AKSHABI, S. and DOVROLIS, C., “The Evolution of Layered Protocol Stacks leads

to an Hourglass-shaped architecture,” in Proc. ACM SIGCOMM, (Toronto, Canada),

Aug. 2011.

[6] ALIZADEH, M., GREENBERG, A., MALTZ, D. A., PADHYE, J., PATEL, P., PRAB-

HAKAR, B., SENGUPTA, S., and SRIDHARAN, M., “Data Center TCP (DCTCP),”

in Proc. ACM SIGCOMM, (New Delhi, India), Aug. 2010.

[7] ALLMAN, M., EDDY, W., and OSTERMANN, S., “Estimating loss rates with TCP,”

ACM SIGMETRICS Performance Evaluation Review, vol. 31, no. 3, pp. 12–24,

2003.

[8] ALLMAN, M. and PAXSON, V., “On Estimating End-to-End Network Path Proper-

ties,” ACM Computer Communications Review, vol. 31, no. 2 supplement, 2001.

[9] ANDERSEN, D. G., BALAKRISHNAN, H., KAASHOEK, M. F., and MORRIS, R.,

“Resilient Overlay Networks,” in Proc. 18th ACM Symposium on Operating Systems

Principles (SOSP), (Banff, Canada), pp. 131–145, Oct. 2001.

[10] ANDERSEN, D. G., BALAKRISHNAN, H., KAASHOEK, M. F., and RAO, R., “Im-

proving Web availability for clients with MONET,” in Proc. 2nd USENIX NSDI,

(Boston, MA), May 2005.

[11] ANDERSEN, D. G., SNOEREN, A. C., and BALAKRISHNAN, H., “Best-path vs.

multi-path overlay routing,” in Proc. ACM SIGCOMM Internet Measurement Con-

ference, (Miami, FL), Oct. 2003.

[12] ANWER, B., MOTIWALA, M., BIN TARIQ, M., and FEAMSTER, N., “SwitchBlade:

A Platform for Rapid Deployment of Network Protocols on Programmable Hard-

ware,” in Proc. ACM SIGCOMM, (New Delhi, India), Aug. 2010.

144

[13] APOSTOLOPOULOS, G., “Using multiple topologies for ip-only protection against

network failures: A routing performance perspective,” Tech. Rep. 377, ICS-FORTH,

Apr. 2006.

[14] ATLAS, A. and ZININ, A., “Basic Specification for IP Fast-

Reroute: Loop-free Alternates.” http://tools.ietf.org/html/

draft-ietf-rtgwg-ipfrr-spec-base-10, Nov. 2007.

[15] BROIDO, A. and KC CLAFFY, “Topological Resilience in IP and AS Graphs.” http:

//www.caida.org/analysis/topology/resilience/, 2006.

[16] BUSH, R., MAENNEL, O., ROUGHAN, M., and UHLIG, S., “Internet optometry:

Assessing the broken glasses in internet reachability,” in Proc. Internet Measurement

Conference, (Chicago, Illinois), Oct. 2009.

[17] CAESAR, M., FEAMSTER, N., REXFORD, J., SHAIKH, A., and VAN DER MERWE,

J., “Design and implementation of a routing control platform,” in Proc. 2nd USENIX

NSDI, (Boston, MA), May 2005.

[18] CASADO, M., FREEDMAN, M. J., PETTIT, J., LUO, J., MCKEOWN, N., and

SHENKER, S., “Ethane : Taking control of the enterprise,” in Proc. ACM SIG-

COMM, (Kyoto, Japan), Aug. 2007.

[19] CHA, M., MOON, S., PARK, C.-D., , and SHAIKH, A., “Placing Relay Nodes for

Intra-Domain Path Diversity,” in Proc. IEEE INFOCOM, (Barcelona, Spain), Mar.

2006.

[20] CHANG, H., JAMIN, S., and WILLINGER, W., “To peer or not to peer: Model-

ing the evolution of the Internet’s AS-level topology,” in Proc. IEEE INFOCOM,

(Barcelona, Spain), Mar. 2006.

[21] “MPLS Traffic Engineering Fast Reroute – Link Protection.” http:

//www.cisco.com/univercd/cc/td/doc/product/software/ios120/

120newft/120limit/120st/120st16/frr.htm.

[22] “Cisco Multi-Topology Routing.” http://www.cisco.com/en/US/products/

ps6922/products_feature_guide09186a00807c64b8.html.

[23] “Cisco Optimized Edge Routing (OER).” http://www.cisco.com/en/US/

products/ps6628/products_ios_protocol_option_home.html, 2010.

[24] CLARK, D., WROCLAWSKI, J., SOLLINS, K., and BRADEN, B., “Tussle in cy-

berspace: Defining tomorrow’s Internet,” in Proc. ACM SIGCOMM, (Pittsburgh,

PA), pp. 347–256, Aug. 2002.

[25] DIMITROPOULOS, X. A., KRIOUKOV, D. V., VAHDAT, A., and RILEY,

G. F., “Graph Annotations in Modeling Complex Network Topologies,” CoRR,

vol. abs/0708.3879, 2007.

145

[26] “Why care about Transit Pricing?.” http://drpeering.net/a/Peering_vs_

Transit___The_Business_Case_for_Peering.html, 2009.

[27] “Internet Video Traffic.” http://tinyurl.com/2777mhl.

[28] ERMOLINSKIY, A. and SHENKER, S., “Reducing Transient Disconnectivity Using

Anomaly-Cognizant Forwarding,” in Proc. 7th ACM Workshop on Hot Topics in

Networks (Hotnets-VII), (Calgary, Alberta. Canada.), Oct. 2008.

[29] FEAMSTER, N., BALAKRISHNAN, H., REXFORD, J., SHAIKH, A., and VAN DER

MERWE, K., “The case for separating routing from routers,” in ACM SIGCOMM

Workshop on Future Directions in Network Architecture, (Portland, OR), Sept. 2004.

[30] FEAMSTER, N. and REXFORD, J., “Network-Wide Prediction of BGP Routes,”

IEEE/ACM Transactions on Networking, pp. 253–266, Apr. 2007.

[31] FELDMANN, A., MAENNEL, O., MAO, Z. M., BERGER, A., and MAGGS, B.,

“Locating Internet routing instabilities,” in Proc. ACM SIGCOMM, (Portland, OR),

pp. 205–218, Aug. 2004.

[32] FORTZ, B. and THORUP, M., “Internet traffic engineering by optimizing OSPF

weights,” in Proc. IEEE INFOCOM, (Tel-Aviv, Israel), Mar. 2000.

[33] FORTZ, B. and THORUP, M., “Optimizing OSPF/IS-IS weights in a changing

world,” IEEE Journal on Selected Areas in Communications (J-SAC), vol. 20,

pp. 756–767, May 2002.

[34] GAO, L. and REXFORD, J., “Stable Internet routing without global coordination,”

IEEE/ACM Transactions on Networking, pp. 681–692, Dec. 2001.

[35] GJESSING, S., “Implementation of two Resilience Mechanisms using Multi Topol-

ogy Routing and Stub Routers,” in International Conference on Internet and Web

Applications and Services/Advanced, Feb. 2006.

[36] GODFREY, B., GANICHEV, I., SHENKER, S., and STOICA, I., “Pathlet routing,” in

Proc. ACM SIGCOMM, (Barcelona, Spain), Aug. 2009.

[37] GOLDENBERG, D. K., QIU, L., XIE, H., YANG, Y. R., and ZHANG, Y., “Optimiz-

ing cost and performance for multihoming,” in Proc. ACM SIGCOMM, (Portland,

OR), pp. 79–92, Aug. 2004.

[38] GREENBERG, A., JAIN, N., KANDULA, S., KIM, C., LAHIRI, P., MALTZ, D.,

PATEL, P., and SENGUPTA, S., “VL2: A scalable and flexible data center network,”

in Proc. ACM SIGCOMM, (Barcelona, Spain), Aug. 2009.

[39] GREENBERG, A., HJALMTYSSON, G., MALTZ, D. A., MYERS, A., REXFORD, J.,

XIE, G., YAN, H., ZHAN, J., and ZHANG, H., “A clean slate 4D approach to net-

work control and management,” ACM Computer Communications Review, vol. 35,

no. 5, pp. 41–54, 2005.

146

[40] GUDE, N., KOPONEN, T., PETTIT, J., PFAFF, B., CASADO, M., MCKEOWN, N.,

and SHENKER, S., “NOX: towards an operating system for networks,” ACM SIG-

COMM Computer Communication Review, vol. 38, pp. 105–110, July 2008.

[41] GUMMADI, K. P., MADHYASTHA, H. V., GRIBBLE, S. D., LEVY, H. M., and

WETHERALL, D., “Improving the reliability of Internet paths with one-hop source

routing,” in Proc. 18th ACM Symposium on Operating Systems Principles (SOSP),

(Banff, Canada), Oct. 2001.

[42] GUO, C., LU, G., LI, D., WU, H., ZHANG, X., SHI, Y., TIAN, C., ZHANG, Y.,

and LU, S., “BCube: A high performance, server-centric network architecture for

modular data centers,” in Proc. ACM SIGCOMM, (Barcelona, Spain), Aug. 2009.

[43] “Wholesale Internet Bandwidth Prices.” http://www.circleid.com/posts/

wholesale_internet_bandwidth_prices/, 2008.

[44] HOPPS, C., Analysis of an Equal-cost Multi-Path algorithm. IETF, Nov. 2000. RFC

2992.

[45] HSIEH, H.-Y. and SIVAKUMAR, R., “pTCP: An end-to-end transport layer protocol

for striped connections,” in IEEE International Conference on Network Protocols

(ICNP), (Paris, France), Nov. 2002.

[46] “Internap.” http://www.internap.com/, 2009.

[47] “Global internet phenomena report.” http://www.sandvine.com/downloads/

documents/2010GlobalInternetPhenomenaReport.pdf.

[48] JIANG, H. and DOVROLIS, C., “Passive Estimation of TCP round-trip times,” ACM

SIGCOMM Computer Communication Review, vol. 32, no. 3, pp. 75–88, 2002.

[49] KAUR, H. T., KALYANARAMAN, S., WEISS, A., KANWAR, S., and GANDHI, A.,

“BANANAS: an evolutionary framework for explicit and multipath routing in the

internet,” in FDNA ’03: Proceedings of the ACM SIGCOMM workshop on Future

directions in network architecture, 2003.

[50] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., and KAASHOEK, M. F., “The

Click modular router,” ACM Transactions on Computer Systems, vol. 18, pp. 263–

297, Aug. 2000.

[51] KOPONEN, T., CASADO, M., GUDE, N., STRIBLING, J., POUTIEVSKI, L., ZHU,

M., RAMANATHAN, R., IWATA, Y., INOUE, H., HAMA, T., and OTHERS, “Onix:

A distributed control platform for large-scale production networks,” in Proc. 9th

USENIX OSDI, (Vancouver, Canada), Oct. 2010.

[52] KUSHMAN, N., KANDULA, S., KATABI, D., and MAGGS, B. M., “R-BGP: Staying

connected in a connected world,” in Proc. 4th USENIX NSDI, (Cambridge, MA),

Apr. 2007.

147

[53] KVALBEIN, A., HANSEN, A. F., CICIC, T., GJESSING, S., and LYSNE, O., “Fast

IP Network Recovery using Multiple Routing Configurations,” in Proc. IEEE INFO-

COM, (Barcelona, Spain), pp. 23–26, Mar. 2006.

[54] LAKSHMINARAYANAN, K., CAESAR, M., RANGAN, M., ANDERSON, T.,

SHENKER, S., and STOICA, I., “Achieving Convergence-Free Routing with Failure-

Carrying packets,” in Proc. ACM SIGCOMM, (Kyoto, Japan), Aug. 2007.

[55] LESKOVEC, J., KLEINBERG, J., and FALOUTSOS, C., “Graphs over time: Densi-

fication laws, shrinking diameters and possible explanations,” in Proc. 11th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

(Chicago, IL), Aug. 2005.

[56] “Juniper Networks: Intelligent Logical Router Service.” http://www.juniper.net/

solutions/literature/white_papers/200097.pdf.

[57] MOTIWALA, M., ANWER, B., FEAMSTER, N., and ANDERSEN, D., “A Narrow

Waist for Multipath Routing,” in Technical Report, Oct. 2011.

[58] MOTIWALA, M., BAVIER, A., and FEAMSTER, N., “Inband Network Path Diagno-

sis,” Tech. Rep. GT-CS-07-07, Georgia Institute of Technology, 2007.

[59] MOTIWALA, M., DHAMDHERE, A., FEAMSTER, N., and LAKHINA, A., “Towards

a cost model for network traffic,” in To Appear in ACM SIGCOMM Computer Com-

munications Review, Jan. 2012.

[60] MOTIWALA, M., ELMORE, M., FEAMSTER, N., and VEMPALA, S., “Path Splic-

ing,” in Proc. ACM SIGCOMM, (Seattle, WA), Aug. 2008.

[61] MOTIWALA, M., FEAMSTER, N., and VEMPALA, S., “Improving Interdomain

Routing Security with BGP Path Splicing,” in Workshop on Programmable Routers

for Extensible Services of Tomorrow (PRESTO), (Princeton, NJ), May 2007.

[62] MOTIWALA, M., FEAMSTER, N., and VEMPALA, S., “Path Splicing: Reliable Con-

nectivity with Rapid Recovery,” in Proc. 6th ACM Workshop on Hot Topics in Net-

works (Hotnets-VI), (Atlanta, GA), Nov. 2007.

[63] MOY, J., OSPF Version 2, Mar. 1994. RFC 1583.

[64] “OpenFlow Switch Consortium.” http://www.openflowswitch.org/, 2008.

[65] ORAN, D., OSI IS-IS intra-domain routing protocol. IETF, Feb. 1990. RFC 1142.

[66] PAXSON, V., “End-to-End Routing Behavior in the Internet,” IEEE/ACM Transac-

tions on Networking, vol. 5, no. 5, pp. 601–615, 1997.

[67] PERLMAN, R., Network Layer Protocols with Byzantine Robustness. PhD the-

sis, Oct. 1988. MIT-LCS-TR-429. http://www.lcs.mit.edu/publications/

specpub.php?id=997.

148

[68] POPA, L. AND KRISHNAMURTHY, A. AND RATNASAMY, S. AND STOICA, I.,

“FairCloud: Sharing The Network In Cloud Computing,” in Proc. ACM HotNets,

2011.

[69] POSTEL, J., Internet Control Message Protocol. IETF, Sept. 1981. RFC 792.

[70] PSENAK, P., MIRTORABI, S., ROY, A., NGUYEN, L., and PILLAY-ESNAULT, P.,

Multi-Topology Routing in OSPF. IETF, June 2007. RFC 4915.

[71] QIU, L., YANG, Y. R., ZHANG, Y., and SHENKER, S., “On selfish routing in

Internet-like environments,” in Proc. ACM SIGCOMM, (Karlsruhe, Germany), Aug.

2003.

[72] QUOITIN, B. and UHLIG, S., “Modeling the routing of an autonomous system with

C-BGP,” Network, IEEE, vol. 19, no. 6, pp. 12–19, 2005.

[73] QURESHI, A., WEBER, R., BALAKRISHNAN, H., GUTTAG, J., and MAGGS, B.,

“Cutting the electric bill for internet-scale systems,” in Proc. ACM SIGCOMM,

(Barcelona, Spain), Aug. 2009.

[74] REC, I., “G. 107-The E Model, a computational model for use in transmission plan-

ning,” International Telecommunication Union, 2003.

[75] REKHTER, Y., LI, T., and HARES, S., A Border Gateway Protocol 4 (BGP-4).

IETF, Jan. 2006. RFC 4271.

[76] “RouteScience.” Whitepaper available from http://www.routescience.com/

technology/tec_whitepaper.html.

[77] “Routing Area Working Group (rtgwg).” http://www.ietf.org/html.

charters/rtgwg-charter.html.

[78] SESHAN, S., STEMM, M., and KATZ, R. H., “SPAND: Shared Passive Network

Performance Discovery,” in Proc. 1st USENIX Symposium on Internet Technologies

and Systems (USITS), (Monterey, CA), Dec. 1997.

[79] SHAND, M. and BRYANT, S., “IP Fast Re-route framework.” http://www3.

tools.ietf.org/html/draft-ietf-rtgwg-ipfrr-framework-07, June 2007.

[80] SHAND, M. and BRYANT, S., “IP Fast Reroute Us-

ing Not-via Addresses.” http://www3.tools.ietf.org/html/

draft-ietf-rtgwg-ipfrr-notvia-addresses-01, July 2007.

[81] SHAPLEY, L., “A Value for n-Person Games,” Classics in Game Theory, p. 69, 1997.

[82] SINHA, S., KANDULA, S., and KATABI, D., “Harnessing TCP’s burstiness with

flowlet switching,” in Proc. 3nd ACM Workshop on Hot Topics in Networks (Hotnets-

III), (San Diego, CA), Nov. 2004.

149

[83] SPRING, N., MAHAJAN, R., and WETHERALL, D., “Measuring ISP topologies

with Rocketfuel,” in Proc. ACM SIGCOMM, (Pittsburgh, PA), Aug. 2002.

[84] STANOJEVIC, R., LAOTARIS, N., and RODRIGUEZ, P., “On economic heavy hit-

ters: Shapley value analysis of the 95th-percentile pricing,” in Proc. ACM SIG-

COMM Internet Measurement Conference, (Melbourne, Australia), Nov. 2010.

[85] TAO, S., XU, K., ESTEPA, A., GAO, T., GUERIN, R., KUROSE, J., TOWSLEY, D.,

and ZHANG, Z., “Improving VoIP Quality Through Path Switching,” in Proc. IEEE

INFOCOM, (Miami, FL), Mar. 2005.

[86] TOLIA, N., KAMINSKY, M., ANDERSEN, D. G., and PATIL, S., “An architecture

for Internet data transfer,” in Proc. 3rd Symposium on Networked Systems Design

and Implementation (NSDI), (San Jose, CA), May 2006.

[87] TURNER, J., CROWLEY, P., DEHART, J., FREESTONE, A., HELLER, B., KUHNS,

F., KUMAR, S., LOCKWOOD, J., LU, J., WILSON, M., and OTHERS, “Supercharg-

ing planetlab: a high performance, multi-application, overlay network platform,” in

Proc. ACM SIGCOMM, (Kyoto, Japan), Aug. 2007.

[88] VALANCIUS, V., FEAMSTER, N., REXFORD, J., and NAKAO, A., “Wide-Area

Route Control for Distributed Services,” in Proc. USENIX Annual Technical Con-

ference, (Boston, MA), June 2010.

[89] “Using network intelligence to provide carrier-grade voip.” http://www.

sandvine.com/general/getfile.asp?FILEID=31.

[90] WALFISH, M., STRIBLING, J., KROHN, M., BALAKRISHNAN, H., MORRIS, R.,

and SHENKER, S., “Middleboxes no longer considered harmful,” in Proc. 6th

USENIX OSDI, (San Francisco, CA), Dec. 2004.

[91] WANG, H., XIE, H., QIU, L., SILBERSCHATZ, A., and YANG, Y., “Optimal isp

subscription for internet multihoming: Algorithm design and implication analysis,”

in Proc. IEEE INFOCOM, (Miami, FL), Mar. 2005.

[92] WHITE, R. and AKYOL, B., “Considerations in Validating the Path in BGP.” IETF

Draft, 2007.

[93] WILSON, C., BALLANI, H., KARAGIANNIS, T., and ROWSTRON, A., “Better

Never than Late: Meeting Deadlines in Datacenters,” in Proc. ACM SIGCOMM,

(Toronto, Canada), Aug. 2011.

[94] WISCHIK, D., RAICIU, C., GREENHALGH, A., and HANDLEY, M., “Design, im-

plementation and evaluation of congestion control for multipath tcp,” in Proc. 8th

USENIX NSDI, (Boston, MA), Apr. 2011.

[95] WISEMAN, C. and OTHERS, “A Remotely Accessible Network Processor-Based

Router for Network Experimentation,” in ANCS, 2008.

150

[96] XU, W. and REXFORD, J., “MIRO: Multi-path Interdomain ROuting,” in Proc.

ACM SIGCOMM, (Pisa, Italy), Aug. 2006.

[97] YAN, H., MALTZ, D. A., NG, T. S. E., GOGINENI, H., ZHANG, H., and CAI, Z.,

“Tesseract: A 4D Network Control Plane,” in Proc. 4th USENIX NSDI, (Cambridge,

MA), Apr. 2007.

[98] YANG, X., “NIRA: A New Internet Routing Architecture,” in ACM SIGCOMM

Workshop on Future Directions in Network Architecture, (Karlsruhe, Germany),

Aug. 2003.

[99] YANG, X., WETHERALL, D., and ANDERSON, T., “Source selectable path diversity

via routing deflections,” in Proc. ACM SIGCOMM, (Pisa, Italy), Aug. 2006.

[100] ZHANG, M., LAI, J., KRISHNAMURTHY, A., PETERSON, L., and WANG, R., “A

transport layer approach for improving end-to-end performance and robustness using

redundant paths,” in Proc. USENIX Annual Technical Conference, (Boston, MA),

pp. 99–112, June 2004.

[101] ZHANG, Z., ZHANG, M., GREENBERG, A., HU, Y. C., MAHAJAN, R., and CHRIS-

TIAN, B., “Optimizing Cost and Performance in Online Service Provider Networks,”

in Proc. 7th USENIX NSDI, (San Jose, CA), Apr. 2010.

151

