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Abstract
This paper proposes an approach to the design of configurable and open
middleware platforms based on the concept of reflection. More specifically, the
paper introduces a language-independent reflective architecture featuring a per-
object meta-space, the use of meta-models to structure meta-space, and a
consistent use of object graphs for composite components. This is complemented
by a component framework supporting the construction of meta-spaces. The paper
also reports on experiences of implementing the architecture (with emphasis on
experiments with open bindings).
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1 INTRODUCTION

Middleware has emerged as an important architectural component in supporting
distributed applications. The role of middleware is to present a unified
programming model to application writers and to mask out problems of
heterogeneity and distribution. The importance of the topic is reflected in the
increasing visibility of standardisation activities such as the ISO/ITU-T Reference
Model for Open Distributed Processing (RM-ODP), OMG’s CORBA, the Java
RMI, Microsoft’s DCOM and the Open Group’s DCE.

Although middleware is now well established, it is crucial that the standards
remain responsive to new challenges such as groupware, multimedia, real-time,
and increasingly mobility. In our opinion, such challenges require new approaches
to the engineering of middleware platforms in terms of being able to configure the
underlying support offered by the middleware platform. For example, multimedia
applications require very specific support in terms of specialised communications
protocols and resource management. Similarly, real-time applications may require
lightweight, small footprint Object Request Brokers (ORBs). Although essential,
configurability is not enough. It is also important to adopt an open engineering
approach allowing inspection and adaptation of underlying components at run-
time. For example, mobile systems need to detect and adapt to drastic changes in
connectivity; this may involve changes at a number of different levels in the
system (e.g. introducing header compression, altering the protocol stack, inserting
filtering components, etc).

Support for configurability and open engineering is not available in the current
generation of middleware platforms, which typically adopt a black box philosophy
to their design (thereby hiding implementation details from the applications).
Although there are good reasons for this approach, there are already signs that the
black box philosophy is becoming untenable. For example, the OMG have recently
added internal interfaces to CORBA to support services such as transactions and
security. The recently defined Portable Object Adapter is another attempt to
introduce more openness in their design. Nevertheless, their overall approach can
be criticised for being rather ad hoc. Similarly, a number of ORB vendors have felt
obliged to expose selected aspects of the underlying system (e.g. filters in Orbix or
interceptors in COOL). These are however non-standard and hence compromise
the portability of CORBA applications and services. The RM-ODP architecture
does address this issue by distinguishing between computational and engineering
concerns. However, we believe this approach is still not sufficient to meet the
demands of the next generation of distributed applications (see section 3.3 below).

This paper proposes an approach to the design of configurable and open
middleware platforms based on the concept of reflection. More specifically, the
paper presents a reflective architecture for next generation middleware platforms,
supplemented by an open and extensible component framework. We view
reflection as a principled (as opposed to ad hoc) means of achieving our desired
characteristics.



2. BACKGROUND ON REFLECTION

The concept of reflection was first introduced by Smith (1982). In this work, he
introduced the reflection hypothesis which states:

"In as much as a computational process can be constructed to reason about an
external world in virtue of comprising an ingredient process (interpreter)
formally manipulating representations of that world, so too a computational
process could be made to reason about itself in virtue of comprising an
ingredient process (interpreter) formally manipulating representations of its
own operations and structures".

The importance of this statement is that a program can access, reason about and
alter its own interpretation. Access to the interpreter is provided through a meta-
object protocol (MOP) which defines the services available at the meta-level.
Examples of operations available at the meta-level include altering the semantics
of message passing and inserting before or after actions around method
invocations. Access to the meta-level is provided through a process of reification.
Reification effectively makes some aspect of the internal representation explicit
and hence accessible from the program. The opposite process is then absorption
where some aspect of meta-system is altered or overridden.

Smith’s insight has catalysed a large body of research in the application of
reflection. Initially, this work was restricted to the field of programming language
design (Kiczaleset al, 1991) (Watanabe and Yonezawa, 1988) (Agha, 1991). More
recently, the work has diversified with reflection being applied in operating
systems (Yokote, 1992) and, more recently, distributed systems (see section 5).

The primary motivation of a reflective language or system is to provide a
principled (as opposed to ad hoc) means of achieving open engineering. For
example, reflection can be used to inspect the internal behaviour of a language or
system. By exposing the underlying implementation, it becomes straightforward to
insert additional behaviour to monitor the implementation, e.g. performance
monitors, quality of service monitors, or accounting systems. Reflection can also
be used to adapt the internal behaviour of a language or system. Examples include
replacing the implementation of message passing to operate more optimally over a
wireless link, introducing an additional level of distribution transparency in a
running computation (such as migration transparency), or inserting a filter object
to reduce the bandwidth requirements of a communications stream.

Although reflection is a promising technique, there are a number of potential
drawbacks of this approach, in particular issues of performance and integrity must
be carefully addressed (we return to these issues in section 3.3).



3. AN ARCHITECTURE FOR REFLECTIVE MIDDLEWARE

3.1. General principles

In common with most of the research on reflective languages and systems, we
adopt an object-oriented model of computation. As pointed out by Kiczales et al
(Kiczales et al, 1991), there is an important synergy between reflection and object-
oriented computing:

"Reflective techniques make it possible to open up a language's
implementation without revealing unnecessary implementation details or
compromising portability; and object-oriented techniques allow the resulting
model of the language’s implementation and behaviour to be locally and
incrementally adjusted".

The choice of object-orientation is also important given the predominance of
such models in open distributed processing (Blair and Stefani, 1997a). Crucially,
we propose the use of the RM-ODP Computational Model, using CORBA IDL to
describe computational interfaces. The main features of this object model are: i)
objects can have multiple interfaces, ii) operational, stream and signal interfaces
are supported, and iii) explicit bindings can be created between compatible
interfaces (the result being the creation of a binding object). The object model also
has a sophisticated model of quality of service including QoS annotation on
interfaces. Further details of this object model can be found in (Blair and Stefani,
1997a). In contrast, with RM-ODP, however, we adopt a consistent object model
throughout the design (see section 3.3).

The second principle behind our design is to have per object  (or per interface)
meta-spaces. This is necessary in a heterogeneous environment, where objects will
have varying capacities for reflection. Such a solution also provides a fine level of
control over the support provided by the middleware platform; a corollary of this is
that problems of maintaining integrity are minimised due to the limited scope of
change (see discussion in section 3.3). We do recognise however that there are
situations where it is useful to be able to access the meta-spaces of sets of objects
in one single action; to support this, we also allow the use of (meta-object) groups.
This aspect of the design is discussed in more depth in section 3.2.2.

As our third principle, we adopt a procedural approach to reflection, i.e. the
meta-level (selectively) exposes the actual program that implements the system
(Maes, 1987). This approach has a number of inherent advantages over a more
declarative approach. For example, a procedural approach is more primitive (in
particular, it is possible to support declarative interfaces on top of procedural
reflection but not vice versa). In addition, the required property of causal
connection is automatically maintained (as the implementation itself is directly
manipulated) (Maes, 1987). Procedural reflection also opens the possibility of an



infinite tower of reflection (i.e. the base level has a meta-level, the meta-level is
implemented using objects and hence has a meta-meta-level, and so on). This is
important in our design and is revisited in section 3.2.1 below.

The final principle is to structure meta-space as a number of closely related but
distinct meta-space models. This approach was first advocated by the designers of
AL-1/D, a reflective programming language for distributed applications (Okamura
et al, 1992). The benefit of this approach is to simplify the interface offered by
meta-space by maintaining a separation of concerns between different system
aspects. The three aspects currently employed are: composition, encapsulation and
environment. This is however not a closed list and the range of models may be
expanded later. Further details of each of the models can be found below.

3.2. Design

3.2.1. The structure of meta-space
The overall design of meta-space is illustrated in figure 1. The meta-space is
structured as three distinct meta-space models, covering encapsulation,
composition and environment. To support this, reflective objects must support a
set of operations to reify each of the meta-space models. These operations are
encapsulation(), composition() and environment() respectively.
Crucially, these operations provide language independent access to the meta-space,
although the level of access to each model may be language dependent (we return
to this issue below when we look at the details of each individual model).

It is important to realise that, in our approach, objects can have multiple
interfaces. Given this, meta-spaces are actually associated with each interface (as
opposed to with each object). More precisely, each interface has an associated
encapsulation and environment meta-model. The compositional model is however
treated differently. In this case, the meta-model is associated with the object itself
and is thus common to all interfaces. The compositional meta-model is accessed by
calling the composition() operation on any of the interfaces associated with
the object. This distinction should become clearer when the precise details of the
different meta-models are considered below.
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Figure 1 Overall structure of meta-space.

The compositional meta-model provides access to the object in terms of its
constituent objects. The composition of an object is represented as an object
graph, in which the constituent objects are connected together by local bindings.
Local bindings are crucial in our design; they provide a language-independent
means of implementing the interaction point between interfaces. Importantly, some
objects in this graph can be (distributed) binding objects, allowing distributed
configurations to be created (we return to this aspect in section 4.1 below). In
practice, the composition() operation returns a graph object with operations
to inspect and adapt the composite object, i.e. to view the structure of the graph, to
access individual objects in the graph, and to adapt the graph structure and content.
For objects that are not composite, the composition() operation returns null.

The encapsulation meta-model provides access to the representation of a
particular interface in terms of its set of methods and associated attributes, together
with key properties of the interface including its inheritance structure. The level of
access provided by the encapsulation model is clearly language dependent. For
example, with compiled languages such as C access may be limited to inspection
of the associated IDL interface. With more open (interpreted) languages, such as
Java or Python (see section 4.2), more complete access is possible, such as being
able to add or delete methods and attributes. This level of heterogeneity is
supported by having a type hierarchy of meta-interfaces ranging from minimal
access to full reflective access to interfaces. Note however that it is important that
this type hierarchy is open and extensible to accommodate unanticipated levels of
access.

Finally, the environment meta-model represents the execution environment for
each interface as traditionally provided by the middleware platform. In a
distributed environment, this corresponds to functions such as message arrival,
enqueing, selection, dispatching, unmarshalling, thread creation and scheduling
(plus the equivalent on the sending side) (Watanabe and Yonezawa, 1988)



(McAffer, 1996). Again, different levels of access are supported. For example, a
simple meta-model may only deal with the arrival and dispatching of messages at
the particular interface. More complex meta-models will allow the insertion of
additional levels of transparency or control over thread creation and scheduling.
As with the encapsulation meta-model, this level of heterogeneity is
accommodated within an open and extensible type hierarchy. Crucially, the
environment meta-model is represented as a composite object. Hence, this aspect
of the meta-space is inspected and adapted at the meta-meta-level using the graph
m a n i p u l a t i o n  o b j e c t s ,  i . e .  b y  c a l l i n g  o p e r a t i o n s  o n
composition(environment(object)). Such operations, can be used, for
example, to insert a QoS monitor at the required point in the graph.

Note that there is a high level of recursion in the above definition. In particular,
the meta-level is realised using object-oriented techniques. Hence,
objects/interfaces at the meta-level are also open to reflection and have an
associated meta-meta-space. As above, this meta-meta-space is represented by
three (meta-meta-) models. Similarly, objects/interfaces at the meta-meta-level
have an associated meta-meta-meta-space. This process continues providing an
infinite tower of reflection. This is realised in our design by allowing such an
infinite structure to exist in theory but only to instantiate a given level on demand,
i.e. when it is reified. This provides a finite representation of an infinite structure
(a similar approach is taken in ABCL/R (Watanabe and Yonezawa, 1988)). Access
to different meta-levels is important in our design although most access will be
restricted to the meta- and meta-meta-levels.

3.2.2. Reflective groups
As stated earlier, there are situations where it is useful to be able to access the
meta-spaces of sets of interfaces in one action. Indeed, a number of reflective
languages provide such a facility as core functionality (e.g. ABCL/R2 (Matsuoka
et al, 1991)). We propose to accommodate this requirement through the general
mechanism of group bindings (or simply groups). Groups provide a uniform
mechanism for invoking a set of interfaces whether they are at the base-level,
meta-level, meta-meta-level, etc. For example, groups can be used, at the base
level, to multicast new share price information to a set of interested parties or, at
the meta-level, to insert a new QoS monitoring method in a group of objects.

Importantly, groups are themselves reflective, in that it is possible to access each
of the meta-models associated with the group. More specifically, groups are
composite objects, where the compositional meta-model provides access to the
individual interfaces comprising the group. Through access to the object graph, it
is possible to tailor and adapt the semantics of group message distribution, e.g. by
introducing a new ordering protocol. It is also possible to manipulate management
aspects of the group, e.g. membership policies or collation policies.



3.2.3. Component framework
To complement our open architecture, we provide an open and extensible library
of components which can be configured to build middleware platforms (i.e. meta-
spaces) for a range of applications. The component framework is essential to
populate the abstract architecture described above. Note that components can be
used at all levels of the reflective architecture.

The component framework consists of both primitive components and
composite components, each supported by associated factory objects (extending
the component framework simply involves introducing a new factory object).
Primitive components include:

•  a range of low-level (indivisible) communications protocols, such as IP and
IP-multicast, and, where appropriate, micro-protocol components to support
the construction of protocol stacks, e.g. header compression, flow control, rate
control, etc;

•  a range of end-system components, such as filters, buffers, dispatchers,
demultiplexers, threads, etc;

•  a range of management components such as scheduling policies, dispatching
policies, buffer allocation policies, and QoS management components;

•  one or more implementations of the local binding operation, e.g. same address
space or cross address space, same language or cross language, etc.

Composite components then represent off-the-shelf configurations of components
(which may in turn include other composite components). The associated factories
therefore embody a policy with respect to the selection and configuration of
components. Examples of composite components include:

•  a range of transport bindings supporting stream and operational interaction;
•  end-to-end stream bindings featuring different filtering components (e.g.

MPEG compression and decompression);
•  pre-configured environment meta-spaces offering access to buffering,

dispatching and scheduling components.

Crucially, groups are simply (composite) components in the component
framework. A range of group bindings, with different group semantics, can be
provided. This implies that groups can be exploited without the need for explicit
architectural extension.

An initial set of primitive and compound components is currently being created
in the GOPI project (Coulson, 1998).



3.3. Discussion

In our opinion, the reflective architecture described above provides a strong basis
for the design of future middleware platforms and overcomes the inherent
limitations of technologies such as CORBA (as discussed in section 1). In
particular, the architecture offers principled and comprehensive access to the
engineering of a middleware platform. This compares favourably with CORBA
which, as stated above, generally follows a black box philosophy with minimal, ad
hoc access to internal details.

More generally, we are proposing a concept of middleware as a customisable set
of components which can be tailored to the needs of an application. Furthermore,
the configuration can be adapted at run-time, should the initial environmental
assumptions change. This approach is complemented by an open and extensible
component framework, containing a range of re-usable services such as
dispatching policies, filters and communication protocol or micro-protocols. The
fine-grained nature of the component framework further enhances the flexibility of
the approach.

We also believe that the reflective approach generalises the viewpoints approach
to structuring advocated by RM-ODP. As stated above, RM-ODP distinguishes
between the Computational Viewpoint (focusing on application-level objects and
their interaction) and the Engineering Viewpoint (which considers their
implementation in a distributed environment). Crucially, each viewpoint also has
its own set of object modelling concepts (for example, the Computational
Viewpoint features objects, interfaces and bindings, whereas the Engineering
Viewpoint has basic engineering objects, capsules and protocol objects).
Consequently, as the models are different, the mapping between the two
viewpoints is not always clear. In addition, this approach enforces a two-level
structure, i.e. it is not possible to analyse engineering objects in terms of their
internal structure or behaviour. Our approach overcomes these limitations by
offering a consistent object model throughout, supporting arbitrary levels of
openness.

Another benefit of our approach is that it minimises problems of maintaining
integrity. This is due to our approach to scoping whereby every object/interface
has its own meta-space. Thus changes to a meta-space can only affect a single
object. Furthermore, the meta-space is highly structured, again minimising the
scope of changes. An additional level of safety is provided by the strongly typed
object model.

In contrast, the issue of performance remains a matter for further research.
Nevertheless, our initial experiences with open bindings (see section 4.1 below)
has convinced us that there is not necessarily an unfavourable trade-off between
flexibility and performance.



4. EXPERIMENTS IN REFLECTIVE MIDDLEWARE

4.1. Open bindings

4.1.1. Introducing open bindings
As an initial experiment, we focused our attention on the open engineering of
binding objects (open bindings). This work was carried out as part of the Adapt
Project, a collaboration between Lancaster University and BT Labs, with the aim
of exploiting open bindings to support mobile multimedia applications. In terms of
our architecture, an open binding is an object which provides access to its
compositional meta-model. As explained above, this meta-model is represented by
a graph of objects, connected together by local bindings. For open bindings,
objects in the graph may themselves be binding objects. The use of binding objects
in graphs allows open bindings to span multiple address spaces or multiple nodes,
i.e. bindings are distributed objects.

Note that binding objects in the graph can themselves be open bindings and
hence also be composed in terms of object graphs. The nesting bottoms out by
offering a set of primitive bindings whose implementation is closed. For example,
a particular platform might offer RTP or IP services as primitive bindings
(depending on the level of openness in the platform). This nested structure
provides access to lower levels of the implementation (if required). At a finer
granularity, each object in the graph can offer a meta-interface to control its
individual behaviour.

The concept of (nested) open binding is illustrated in figure 2 below.

local 
binding

component object

 
nested binding

binding interface

 

Figure 2 A nested open binding.

4.1.2. Implementation of open bindings
We have implemented an experimental middleware platform featuring the concept
of explicit open bindings. This platform is based on a CORBA implementation
from Chorus Systems (now Sun Microsystems), called COOL-ORB (Habertet al,
1990). This runs over a variety of computers and operating systems; our
experimental testbed consists of laptop PCs running Window-NT. These are
interconnected by a variety of networks, including Switched Ethernet, WaveLAN
and GSM.



In order to support open bindings, the COOL platform has been extended as
shown in figure 3.

Adaptive Applications

Extended CORBA API

Comms Infrastructure
(Ensemble)

Open Bindings
Standard CORBA Platform

(COOL-ORB)

Underlying Operating System
(Windows-NT)

Figure 3 The extended CORBA platform.

Currently CHORUS/COOL-ORB support two communications infrastructures:
TCP/IP and CHORUS IPC. In order to support higher degree of configurability,
we have extended COOL with a third communications infrastructure based on
Ensemble (Hayden, 1997) (the successor to Horus (van Renesse et al, 1996)).
Ensemble enables the programmer to select a particular protocol profile at bind
time by providing a list of the component modules. In addition, the software
supports run-time adaptation, in terms of both modification of modules and
dynamic reconfiguration. For example, the parameters for flow control can be
modified at run-time. Similarly, Ensemble allows the programmer to switch to an
alternative protocol stack at any point during an interaction. We are currently
extending this capability to allow new modules to be introduced dynamically (via
the compositional meta-model); such modules could either be an additional layer
in the protocol stack or could implement a management function.

For operational bindings, the standard CORBA bind() call has been extended
i) to enable the specification of the initial protocol graph, and ii) to return an
interface providing access to the meta-space (i.e. the object graph representing the
configuration of Ensemble modules). Crucially, Ensemble-based operational
bindings provide a direct realisation of our concept of reflective groups (as
discussed in section 3.2.2). In particular, they support the multicasting of messages
to groups of objects (whether at the base-level, the meta-level, etc) and also allow
the user to inspect or adapt the underlying protocol stack at run-time (thus altering
the semantics of group message passing).

For stream bindings, we provide a set of binding factories offering pre-
configured Ensemble stacks for continuous media interaction. Note that it is
relatively straightforward to extend the range of bindings by constructing new
binding factories from existing components. Prominent among the components are
a range of filter objects for common media formats.



Further details of the Adapt Project can be found in the literature (Blair et al,
1997b) ( Fitzpatrick et al, 1998).
4.2. Other aspects

In Adapt, the scope of the work is limited to open bindings and to the
compositional meta-model. Nevertheless, the project has provided some invaluable
experience in constructing open middleware platforms and has also demonstrated
the potential of reflection in achieving much greater degrees of openness and
adaptivity in such systems. We are now expanding the scope of our work to
consider all aspects of middleware design and to develop a complete
implementation of our reflective architecture. This work is being carried out using
some reflective facilities developed in Python (Watters et al, 1996).

In a related development, we are investigating the potential of formal languages
for the expression of scripts for management objects. More specifically, we are
considering the role of timed automata in providing a direct representation of
scripts for key QoS management functions such as QoS monitoring and
adaptation. This work is part of the V-QoS project (a collaboration between
Lancaster University and the University of Kent at Canterbury). Finally, we are
also investigating the potential of object graphs to support the construction of open
and extensible operating systems (Clarke and Coulson, 1998).

The longer term objective of this research is to develop a complete
implementation of a reflective middleware platform, based on CORBA. The
expected outcome from this research is the definition of a meta-object protocol for
CORBA (i.e. a CORBA MOP).

5. RELATED WORK

There is growing interest in the use of reflection in distributed systems. Pioneering
work in this area was carried out by McAffer (McAffer, 1996). With respect to
middleware, researchers at Illinois have carried out initial experiments on
reflection in Object Request Brokers (ORBs) (Singhai et al, 1997). The level of
reflection however is coarse-grained and restricted to invocation, marshalling and
dispatching. In addition, the work does not consider key areas such as support for
groups or, more generally, bindings. Researchers at APM have developed an
experimental middleware platform called FlexiNet (Hayton, 1997). This platform
allows the programmer to tailor the underlying communications infrastructure by
inserting/ removing layers. Their solution is, however, language-specific, i.e.
applications must be written in Java. Manola has carried out work in the design of
a “RISC” object model for distributed computing (Manola, 1993), i.e. a minimal
object model which can be specialised through reflection. Researchers at the Ecole
des Mines de Nante are also investigating the use of reflection in proxy
mechanisms for ORBs (Ledoux, 1997).

Our design has been influenced by a number of specific reflective languages. As
stated above, the concept of multi-models was derived from AL/1-D. The



underlying models of AL/1-D are however quite different; the language supports
six models, namely operation, resource, statistics, migration, distributed
environment and system (Okamura et al, 1992). Our ongoing research on the
environment and encapsulation meta-models is also heavily influenced by the
designs of ABCL/R (Watanabe and Yonezawa, 1988) and CodA (McAffer, 1996).
Both these systems feature decompositions of meta-space in terms of the
acceptance of messages, placing the message in a queue, their selection, and the
subsequent dispatching. Finally, the design of ABCL/R2 includes the concept of
groups (Matsuoka et al, 1991). However, groups in ABCL/R2 are more
prescriptive in that they enforce a particular construction and interpretation on an
object. The groups themselves are also primitive, and are not susceptible to
reflective access.

Our use of object graphs is inspired by researchers at JAIST in Japan (Hokimoto
and Nakajima, 1996). In their system, adaptation is handled through the use of
control scripts written in TCL. Although similar to our proposals, the JAIST work
does not provide access to the internal details of communication objects.
Furthermore, the work is not integrated into a middleware platform. Similar
approaches are advocated by the designers of the VuSystem (Lindblad and
Tennenhouse, 1996) and Mash (McCanne et al, 1997). The same criticisms
however also apply to these designs. Microsoft’s ActiveX software also uses
object graphs. This software, however, does not address distribution of object
graphs. In addition, the graph is not re-configurable during the presentation of a
media stream.

6. CONCLUDING REMARKS

This paper has presented our design for a next generation middleware platform.
This design exploits the concept of reflection to provide the desired level of
configurability and openness. We believe that this approach addresses the needs of
emerging application areas such as multimedia, real-time systems and mobile
computing. Equally importantly, by adopting a principled approach, we believe
that the design is sufficiently extensible to meet future demands.

The most important features of our design are i) the ability to associate a meta-
space with every object/interface, ii) the sub-division of meta-spaces into three
orthogonal models, and iii) the consistent use of object graphs to represent
composite components in the architecture. Crucially, the architecture also provides
a language-independent model of reflection (as required by the field of open
distributed processing). The architecture is complemented by a component
framework featuring an open and extensible set of primitive and composite
components. Such components support the construction of meta-spaces.

We already have considerable experience from the Adapt Project in constructing
configurable and open middleware platforms based on our architecture (focusing
on open bindings). We are now extending this work to look at other aspects of our
design (including groups and management). As stated above, the longer term aim



of this research is to define a meta-object protocol for future middleware platforms
such as CORBA.
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