
An Architecture for Outdoor Wearable Computers
to Support Augmented Reality and Multimedia Applications

Wayne Piekarski, Bruce Thomas, David Hepworth, Bernard Gunther, Victor Demczuk
School of Computer and Information Science – Wearable Computer Lab

University of South Australia, The Levels, SA, Australia
wayne.piekarski@cs.unisa.edu.au

Keywords: Augmented Reality, Wearable Computers, Outdoor Navigation

Abstract
This paper describes an architecture to support a

hardware and software platform for research into the
use of wearable computers and augmented reality in
an outdoor environment. The architecture supports
such devices as a GPS, compass, and head-mounted
display. A prototype system was built to support
novel applications by drawing graphics (such as
maps, building plans, and compass bearings) on the
head-mounted display, projecting information over
that normally seen by the user and hence augmenting
a user’s perception of reality. This paper presents a
set of novel augmented reality and multimedia
applications operated in an outdoor environment.

1 Introduction
In recent times, the availability of small and

power efficient PC components has opened up new
application possibilities for computers. Substantial
computing power is no longer confined to the
desktop; a new computing paradigm where
computers are placed on the user’s body, known as
wearable computing, is now possible. [MANN96,
BASS97]

Couple this with recent advances in GPS, head
mounted display (HMD), and digital compass
technology, it is possible to develop an augmented
reality [AZUM97] system suitable to be operated in
an outdoor environment. [FEIN97]

Augmented reality is the process of a user
viewing the physical world and virtual information
simultaneously, where the virtual information is
overlaid and aligned to the physical world.

Currently, at the Wearable Computer Laboratory
at the University of South Australia, we are
conducting research into the hardware and software
needed for such a system. [PIEK98b, THOM97,
THOM98]

In 1998, we designed and constructed a complete
research system, Tinmith-1 [PIEK98a]. This paper
defines the overall system architecture we developed
to support multimedia and augmented reality
applications on a wearable computer platform. The
first application domain was a navigation system for
a user to wear outdoors, which would provide a head
up display, similar to that found in an aircraft cockpit,
directing the user to known fixed locations. Figure 1
pictures the current hardware platform.

This paper begins with a description of our
hardware platform, followed by the user interface
displays, and then has a description of the system
architecture, along with some of its innovative
features. These allow us to build a multimedia system
that combines video, sound, and the real world for the
user.

2 Hardware Components
The main- component of our wearable computer

system is a Toshiba 320CDS notebook running the
freely available LinuxOS. The laptop is about the size
of an A4 book and fits comfortably on the wearer’s
back. The key to wearable computers is its hands free
nature, and as a result, we have added various
components to allow the user to interact with the
system.

Instead of a monitor, we have attached a colour
Sony PLM-100 transparent display, which allows the
video output of the laptop to superimpose images
over the real world. The user wears this display on
the head, as shown in Figure 1. Also attached to the
computer is a miniature keyboard that attaches to the
forearm, which allows the user to interact with the
system and enter commands.

By itself, a wearable computer with display and
keyboard is useful, but we wanted to use the
hardware for something that truly took advantage of
the mobile equipment, rather than using it for
conventional desktop tasks. Consequently, the first
application developed is a navigation system that
would present cues onto the display, and guide the
user on journeys through places without physical

Author

Figure 1 – UniSA Wearable Computer

Head
Mounted
Display

DGPS

Laptop

Video

Batteries
2nd PC

GPS

Tinmith 
In KES1998 - 3rd International Conference on Knowledge-Based Intelligent Information Engineering SystemsAugust 31 - September 1, 1999 - Adelaide, SA, Australia - Copyright (C) 1999 IEEEPlease visit http://www.tinmith.net for more information



landmarks or perhaps in darkness. Working with the
Defence Science Technology Organisation (DSTO)
in South Australia, this is an application for soldiers
patrolling in the outdoors. To support the navigation
system, a GPS module (with differential receiver) is
attached to the laptop, providing position fixes at
many places in the world to within 5 metres
accuracy. A 3-axis digital compass, also attached to
the display, allows the computer to determine exactly
how the wearer’s head is oriented relative to the
surface of the Earth. This information is used to draw
the display to match the physical world the user is
viewing.

The equipment was attached to a rigid backpack,
along with batteries and antennae. The prototype
hardware and software system is fully functional in
an outdoor environment, and has been taken outside
for field trials around the campus, and its environs.

3 Head-Up Displays and Interfaces
The system contains a number of different

interfaces to present to the user, and these are
covered in the following subsections.

3.1 2D Displays
The 2D interface incorporates a first person

perspective, gods-eye view, and traditional non-
spatially aware information on one display, shown as
Figure 2.

Figure 2 – 2D Head Up Display Example

At the top of the display is the compass heading,
which is represented as notches and a value every 45
degrees. As the user rotates their head, the compass
updates itself and scrolls left or right to indicate the
new heading. The various pieces of text information
placed around the display are used to show position,
GPS accuracy, and steering instructions to the
nominated waypoint.

Underneath the text is the map and navigation
gadget display. At the centre of the display is an X,
indicating the current position of the system and user.
Shown in the figure is the outline of a building, and
the circular object in the centre of the screen gives
steering instructions to the user as to which direction
they must turn to reach the target. The entire display
is presented as a gods-eye 2D top down view, where
the direction the wearer is facing is up. Every visual

cue is rotated in real time as the user moves around.
This display was used for several experiments

outdoors. In one case, we entered the dimensions of
buildings and walked around them with a hood over
our head to test how accurate the system was. In most
trials, we maintained better than about 2 metre
accuracy assuming we had a good fix with 6 or more
GPS satellites.

The display shown in Figure 2 is only one
example of the views possible with the system. The
software that renders the display is actually broken
down into a number of components, which can be
readily plugged in and out according to what the user
wants. For example, the circular steering cue in the
middle can be replaced with an arrow pointing left
and right, a bar, or a moving diamond.

3.2 3D Display
We are currently experimenting with a 3D

immersive display, where the text and lines drawn on
the display actually outline and overlay what the user
sees in front of them.

Figure 3 – 3D Immersive Display Example

Figure 3 shows the same 2D display as before,
except a 3D immersive display of our office and
whiteboard is now superimposed as well. When
looking through this display, from a fixed sitting
location, (without GPS) we were able to reasonably
register the display with the outline of the office. In
an outdoors use, we managed to make a box lock
around a table as we walked around it.

The 3D display is still under development, as
there are a lot of issues to do with accurately
registering the image with the real world, and is the
focus of a lot of our future research.

4 System Architecture
To support the navigation task, along with a wide

range of AR and multimedia applications, we
developed a highly modular to support this. The
software system is broken up into various modules
that communicate with each other using a
connection-oriented protocol – in this
implementation, TCP/IP.

4.1 Modular Approach
An example of an application specific module is

Compass
Heading

2D Map
Display

Steering Info

Location

GPS Fix Info

2D Map
Display

3D Cue
Waypoint3D View

Immersive

Current
Position

Compass
Heading

Steering Info

Location



the navigation module, which reads waypoints from a
database, along with position and heading
information, to produce steering instructions for other
modules to present to the user. The display module
presents data from other modules in a graphical
format to the user via the head up display.

The modular architecture supports many concepts
such as data abstraction and hiding, collaboration
with others, and the flexibility to plug new
components in without modifications.

4.2 Communications
To interconnect modules, we used a client-server

style architecture. The server is a data source for
other modules, and it listens on a TCP/IP socket
waiting for incoming requests from clients. A client
that wishes to receive data will contact the server,
and send a listen message to subscribe to it.
Whenever the server updates the value of this data, it
will send the new value out to all clients that have
registered an interest in the message. A client
receiving new data may use it to update the screen, or
calculate new navigation parameters for example.
Note that many servers in the system are actually
clients for other servers as well.

The entire system operates asynchronously, and is
data driven; if there is no new data in the system, no
action will be taken by any of the software modules.
To illustrate this, consider the case of a new
incoming position from the GPS. The harvester will
process the new data, and then distribute it to all
clients. The navigation module will receive this
update, and recalculate navigation information. The
display module will eventually receive an update
from the harvester, and the new steering instructions
from the navigation module, and use these to redraw
the screen to reflect the user’s new location.

4.3 Software Modules
Apart from the standard display and hardware

modules that form the core of the system, other kinds
of modules have been written to extend the system’s
capability for various tasks.

Sound/watchdog modules – A process
continuously monitors the various variables in the
system, and will sound audible (beeps or wave sound
files) and/or spoken (synthesized voice) alarms when
it is detected that these values have exceeded some
parameter.

Web module – This process interfaces to CGI
programs run by the Apache web server, allowing
users to find out information about the wearable
computer from a web browser. The module provides
information about the wearable location and
orientation, and refreshes continuously on the screen.
This is a good example of how the system can be
interfaced to systems that are of different design.

DIS and LSAP module – The wearable computer
contains an in-built object tracking module, which
allows it to know the location of objects in the world,
and follow their movements. An interface has been

written to allow this tracker to share information
(both ways) with the DIS (Distributed Interactive
Simulation) and LSAP (Land Situational Awareness
Picture System) based software used at DSTO. Using
a pair of radio modems, the wearable is able to
communicate from the field back to headquarters,
and with this, it is possible for DSTO to produce
simulated vehicles moving around a landscape, and
to see these vehicles on the wearable head up display,
presented as icons. Simultaneously, the user shows
up on the simulation rendering software, so that
others can see where the wearable is located. The
ability of the wearable computer to share information
and collaborate with other users (both mobile and
stationary) improves the usefulness and applicability
of the system.

5 Software Library
To implement the modular architecture, a

software library to support this was designed, with
goals being to be flexible, extendible, and layered.
Layering was employed to provide increasing levels
of abstraction for allowing modules to interact with
the system at the appropriate level they require, while
at the same time minimising code replication across
the system, and localising possible errors. Rather than
modules focusing on communicating with each other,
the code only does the tasks it needs to do, and then
makes calls to library functions that actually make
connections, subscribe, and process new incoming
data. As a result, writing software modules to fit into
the system is simple, and with many of the low level
and repetitive details hidden away, also quite small.

The libraries provide functionality for distributive
processing, asynchronous I/O, dynamic
configuration, and automatic code generation:

5.1 Running modules in parallel over TCP/IP
Each of the modules are implemented as separate

Unix processes. This allows modules to be
distributed over multiple processors on one machine,
or multiple machines due to the network support. The
ability for the system to support this at a fundamental
level improves the scalability for larger, resource
intensive applications. For example, the outdoor
navigation system was distributed over both the
laptop and a second 486 wearable, which was
included to increase the limited I/O capabilities of the
laptop.

5.2 Asynchronous I/O event handling
The core of the library revolves around an event

handler which monitors open file descriptors and
waits for them to become available for reading or
writing. When data arrives on the socket, the data is
read, processed, and then handed to the calling code.
As the complexities of doing I/O are abstracted away
from the calling code, (to the point where even the
type of transport is not specified) it is straightforward
for the TCP implementation to be replaced by UDP
by simply rewriting the library code. Slow modem
links requiring writes to be buffered, and support for



handling devices such as X servers, tty devices, and
serial ports are integrated in already.

One interesting feature of the I/O library is the
ability to plug in simulated devices. During testing, it
was possible to not use the GPS or compass and still
verify the other modules are working correctly.

5.3 Dynamic configuration from the DBMS
Most software tends to use statically compiled

controls, or possibly a configuration text file. Our
system takes configuration to the next level by
loading all system parameters such as the location of
modules, port numbers, device names, and screen
colours into a series of relational database tables.
When the software initialises, it queries the database
and loads the values required. By sending messages
throughout the system when changes are made, it is
possible for clients to reconfigure themselves by
querying the database. The software does not have to
be restarted as would be required if the controls were
static. The database proved to be very powerful
because it can be changed remotely via the radio
modems. A second feature is the strong type
checking by the database engine (in our case
PostgreSQL v6.4 [POST98]) rather than relying on
parsing a text file.

This feature proved useful when performing
testing outdoors, for example, tuning the various
display options such as colours and font sizes.

5.4 Automatic message code generation
Due to the complexity of the software,

(approaching 35,000 lines) maintenance is a major
issue. For example, the protocol handlers, around
5000 lines, is responsible for reading in binary
messages from the network, and converting them into
C structures for compilation. At the same time, it will
reorder fields and perform checking to allow different
revisions of the system (with modified message
formats) to talk with each other assuming they are
reasonably similar. To do this, rather than writing
source code, we wrote around 400 lines of definition
files, which contain information about how the
messages are formatted and the corresponding field
names and types. A program known as STC
(structure compiler) then writes source code for these
files, so that when the definitions change, the
compiler effects the changes, saving large amounts of
time in rewriting.

7 Conclusion
This architecture designed at the University of

South Australia Wearable Computer Lab has been
designed from the outset to be an innovative and
powerful way of implementing wearable computer
systems. The architecture is data driven, and can
benefit from distributing components as separate
processes. A layered implementation eases
application development, increases the overall
reliability of the software, and gives a degree of
device independence.

Our architecture has supported concept

demonstrator applications such as terrestrial
navigation, web-based visualisation, and integration
with virtual reality systems.

These applications have been tested extensively
outdoors, and show that the software architecture
works, with good performance. During testing, frame
rates of 20 – 30 fps (sufficient for smooth animation)
have been achieved, with the main bottleneck being
in processing and drawing the 2D and 3D data for the
display. We are now investigating how this
architecture will support geographical information
system applications among others.

8 Acknowledgements
The authors would like to acknowledge the

assistance of DSTO (Land Space Operations
Division, Salisbury) for kindly providing the use of
hardware for our research.

9 References
[AZUM97] R. Azuma, Survey of augmented reality.
Presence: Teleoperators and Virtual Environments,
6(4). 1997.

[BASS97] L. Bass, C. Kasabach, R. Martin, D.
Siewiorek, A. Smailagic, J. Stivoric. The design of a
wearable computer. In CHI 97 Looking to the Future,
pp 139-146. ACM SIGCHI, ACM. 1997.

[MANN96] S. Mann, Smart Clothing: The Shift to
Wearable Computing. In Communications of the
ACM, Vol 39, No. 8, pp 23-24, Aug 1996.

[FEIN97] S. Feiner, B. MacIntyre, T. Hollerer, A.
Webster. A touring machine: Prototyping 3D mobile
augmented reality systems for exploring the urban
environment. In 1st Intl. Symposium on Wearable
Computers, Cambridge, Ma, Oct, 1997. pp 74-81.

[PIEK98a] W. Piekarski, D. Hepworth, Outdoor
Augmented Reality Navigation System – Project
Documentation. University of South Australia, 1998.

[PIEK98b] W. Piekarski, D. Hepworth, V. Demczuk,
B. Thomas, B. Gunther. A Mobile Augmented
Reality User Interface for Terrestrial Navigation. In
Proc. of the 22nd Australasian Computer Science
Conference, Auckland, NZ, Jan 1999. pp 122-133

[POST98] PostgreSQL v6.4.2 Database Engine -
http://www.postgresql.org, 1998.

[THOM97] B. Thomas, S. Tyerman, K. Grimmer,
Evaluation of Three Input Mechanisms for Wearable
Computers. In 1st Intl. Symposium on Wearable
Computers, Cambridge, Ma, Oct, 1997. pp 2-9.

[THOM98] B. Thomas, V. Demczuk, W. Piekarski,
D. Hepworth, B. Gunther, A Wearable Computer
System With Augmented Reality to Support
Terrestrial Navigation. In 2nd Intl. Symposium on
Wearable Computers, Pittsburg, Pa, Oct 1998. pp
168-171.


