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ABSTRACT
Automatically recycling (intermediate) results is a grand
challenge for state-of-the-art databases to improve both query
response time and throughput. Tuples are loaded and strea-
med through a tuple-at-a-time processing pipeline avoiding
materialization of intermediates as much as possible. This
limits the opportunities for reuse of overlapping computa-
tions to DBA-defined materialized views and function/result
cache tuning.
In contrast, the operator-at-a-time execution paradigm pro-
duces fully materialized results in each step of the query
plan. To avoid resource contention, these intermediates are
evicted as soon as possible.
In this paper we study an architecture that harvests the by-
products of the operator-at-a-time paradigm in a column
store system using a lightweight mechanism, the recycler.
The key challenge then becomes selection of the policies to
admit intermediates to the resource pool, their retention
period, and the eviction strategy when facing resource lim-
itations.
The proposed recycling architecture has been implemented
in an open-source system. An experimental analysis against
the TPC-H ad-hoc decision support benchmark and a com-
plex, real-world application (SkyServer) demonstrates its ef-
fectiveness in terms of self-organizing behavior and its signif-
icant performance gains. The results indicate the potentials
of recycling intermediates and charters a route for further
development of database kernels.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—query process-
ing
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Design, Performance, Management
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1. INTRODUCTION

Query optimization and processing in off-the-shelf database
systems is often still focused on individual queries. Queries
are optimized in isolation using statistics gathered, analyt-
ical models, and heuristic rewrite rules, and ran against a
kernel regardless opportunities offered by concurrent or pre-
vious invocations.

This approach is far from optimal and two directions to
improve upon this situation are being actively explored: ma-
terialized views and reuse of (partial) results. Both depend
and interact heavily with the underlying architecture, its ex-
ecution paradigm and opportunities for optimizers to exploit
transient information.

The state-of-the-art commercial systems use a tuple-at-a-
time pipelined execution model which avoids the overhead of
materializing intermediates [9]. However, this paradigm also
limits the opportunities for shared and/or reused computa-
tions. It requires detection of overlapping query expression
trees and temporal alignment of their data flows. One way
to deal with this architectural limitation is to use material-
ized views or function/query result set caches [Oracle, DB2,
SQLServer]. Materialized views are derived from query logs
and they have been researched extensively in recent years
[16, 8, 25, 24]. They represent common sub-queries, whose
materialization improves subsequent processing times. The
view management component of an optimizer takes them
into account while exploring the space of alternative execu-
tion plans. Typically, a database administrator supported
by workload analysers determines which portions to mate-
rialize [1, 4]. Reuse of partial results is also useful in appli-
cations with parametrised queries [25, 14, 18].

The operator-at-a-time execution paradigm, where com-
plete intermediates are a byproduct of every step in the
query execution plan, calls for an in-depth analysis of its
reuse potentials. We believe that this (off-beat) approach,
in terms of resource requirements during query execution,
can be exploited to speed up query streams significantly in
a self-organizing way. In other words, it pays off to recycle
intermediate results of relational algebra operations instead
of blindly garbage collecting them or avoiding them alto-
gether.

Recycling intermediate results improves response time and
throughput when their creation cost and management cost
can be kept under control. In the operator-at-a-time setting,
only the second cost factor is relevant, because the creation
cost is always taken by the execution paradigm.



Recycling is a refinement of operator caching, a technique
known for a long time. However, the inter-dependencies be-
tween the relational operators in a query plan allow for a
variety of policies to capitalize on the algebra semantics.
In contrast to materialized views, a resource pool of recy-
cled intermediate results adapts continuously to the work-
load without DBA intervention and incurs minimal start-up
and maintenance costs.

This hypothesis is tested in the context of the operator-
at-a-time database system MonetDB [17]. Its architecture
differs in a fundamental way from state-of-the-art (commer-
cial) systems. In addition to a different execution paradigm,
it is based on a canonical implementation of a column store.
This means that recycling can be focused on horizontal frag-
ments of base columns or their derivations. This greatly sim-
plifies fragmentation management and predicate subsump-
tion analysis to find matching operations.

The MonetDB system has been shown to be highly effi-
cient in memory resident settings [2]. Of course, in a pure
main-memory setting, the resource management has to dis-
card intermediates as soon as possible, which is handled by
a specific optimizer module that injects garbage collection
commands into the execution plans to drop temporary ta-
bles as soon as they are not needed for the remainder.

The realization of our idea requires a modification in the
MonetDB query execution engine. Therefore, its abstract
machine interpreter is hooked up with a recycler optimizer
and runtime module. The optimizer marks operations of in-
terest for harvesting. The runtime support uses this advice
to manage a pool of partial results. It avoids re-computation
of common sub-queries by extracting readily available re-
sults from the pool.

The key issue in the design of the recycler is to identify
efficient and effective policies to use and maintain the re-
source pool. It encompasses decisions in three dimensions:
instruction matching, investment cost versus savings, and
pool administration maintenance. For each instruction to
be executed the recycler performs a matching process, i.e., it
searches for a possible reusable relational algebra operation
in the recycle pool. For each operation executed the recy-
cler decides if it is beneficial to keep the result. Finally, to
prevent the pool of intermediates becoming a resource bot-
tleneck itself, operations with low potential for reuse should
be cleaned from the pool to reduce the memory usage and
the search time.

Cleaning of low beneficial intermediates to accommodate
new instructions gradually adapts the content of the recycle
pool to workload changes. We propose and evaluate several
cache policies selecting instructions for eviction. These in-
clude traditional approaches, such as LRU, and cost-based
policies based on plan semantics. A distinguishing charac-
teristic of all policies is that they respect and exploit the
semantic relationships amongst the operations executed.

We consider the recycler architecture especially suitable
for applications with prevailing read-only workload and rela-
tively expensive processing, such as data analytics and deci-
sion support. Low data volatility means that invalidation of
intermediates is not needed too often. Expensive processing
due to computational complexity and/or large data volumes
creates weighty intermediates, that are worth keeping and
beneficial for reuse.

The recycler is evaluated extensively in two experimen-
tal settings. First, we conducted experiments with the Sky-

Server application[20]; a sizable and complex scientific data-
base application, whose 200 page sized SQL schema includes
views, procedure abstractions, and a well chosen set of in-
dices. The experiments with a 100 GB database and samples
of the workload observed show that a tenfold improvement
is achieved by our approach by keeping only partial repli-
cas over persistent tables. This is remarkable, because the
database design of the SkyServer already underwent a sig-
nificant DBA design exercise[21].

Next, to gain more insight in the benefits, we focused
on the TPC-H decision support benchmark [23]. Despite
the fact that this benchmark consists of rather orthogonal
queries, it illustrates the internal mechanisms of the recycler
and its performance efficiency in a more controlled manner.
The benchmark is used to analyze the baseline performance
and the impact of different design choices.

The results obtained in the context of MonetDB are, in
principle, applicable in a tuple-at-a-time execution paradigm
[9]. It calls for selection of operators in the execution plan
that mirror the results to the resource pool as well as the
next operator in the plan. Judicious use of the technique
may complement the prevalent technique based on workload
analysers and (partially) materialized views. However, ex-
perimental proofs of this hypothesis should come from their
code owners.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a short overview to the MonetDB architec-
ture and its abstract relational algebra engine. Section 3
describes the recycler architecture and discusses the policies
for management of the resource pool. The experimental
evaluations are presented in section 4 and section 5. Sec-
tion 6 describes the related work and Section 7 summarises
our findings.

2. BACKGROUND
In this section we give a summary of the MonetDB archi-

tecture1 focusing on the processing model and illustrated by
an SQL:2003 example.

2.1 Architecture
MonetDB is a modern fully functional column-store database

system, designed in the late 90’s with a proven track record
in various fields [2, 26, 7]. To make this paper self-contained
we re-iterate the system’s basic building blocks, its architec-
ture, and its execution model.

MonetDB stores data column-wise in binary structures
called Binary Association Tables, or BATs, which represent
a mapping from an oid to a base type value. The storage
structure is equivalent to large, memory-mapped dense ar-
rays. It is complemented with hash-structures for fast key
look-up. Additional properties are used to steer selection of
more efficient implementation, e.g., sorted columns lead to
sort-merge join operations.

The software stack of MonetDB consists of three layers.
The bottom layer is formed by a library that implements a
binary-column storage engine, including a rich set of highly
optimized relational operators. This engine is programmed
using the MonetDB Assembly Language(MAL), which pro-
vides a convenient abstraction over the kernel libraries, and
a concise programming model for plan generation and ex-

1The system can be downloaded from
http://monetdb.cwi.nl



function user.s1 2(A0:date,A1:date,A2:int,A3:str):void;
X5 := sql.bind(”sys”,”lineitem”,”l returnflag”,0);
X11 := algebra.uselect(X5,A3);
X14 := algebra.markT(X11,0@0);
X15 := bat.reverse(X14);
X16 := sql.bindIdxbat(”sys”,”lineitem”,”l orderkey fkey”);
X18 := algebra.join(X15,X16);
X19 := sql.bind(”sys”,”orders”,”o orderdate”,0);
X25 := mtime.addmonths(A1,A2);
X26 := algebra.select(X19,A0,X25,true,false);
X30 := algebra.markT(X26,0@0);
X31 := bat.reverse(X30);
X32 := sql.bind(”sys”,”orders”,”o orderkey”,0);
X34 := bat.mirror(X32);
X35 := algebra.join(X31,X34);
X36 := bat.reverse(X35);
X37 := algebra.join(X18,X36);
X38 := bat.reverse(X37);
X40 := algebra.markT(X38,0@0);
X41 := bat.reverse(X40);
X45 := algebra.join(X31,X32);
X46 := algebra.join(X41,X45);
X49 := algebra.selectNotNil(X46);
X50 := bat.reverse(X49);
X51 := algebra.kunique(X50);
X52 := bat.reverse(X51);
X53 := aggr.count(X52);
sql.exportValue(1,”sys.orders”,”L1”,”wrd”,32,0,6,X53);

end s1 2;

Table 1: MAL plan of example query

ecution. Powerful debugging tools create an environment
where debugging database optimizers has become feasible.

The next layer is formed by a series of targeted query opti-
mizers. They perform a program transformation, i.e., take a
MAL program and transform it into an improved one. Two
dozen optimizer modules are included in the distribution,
ranging from a simple constant expression evaluator to a
complex dynamic plan choice generator, such as a runtime
driven memo-plan query optimizer.

The top layer consists of front-end compilers (SQL, XQuery),
that translate high-level queries into MAL plans. The com-
pilers also include optimizers to exploit language semantics
and heuristic rewrite rules that do not depend on physical
properties or algorithmic cost. MonetDB is an easy, accessi-
ble toolkit for embarking upon database kernel innovations
as studied in this paper.

2.2 Query Processing
In this work we use the SQL front-end. All SQL queries

are translated into a parametrized representation, called a
query template, by factoring out all literal constants. This
means that a query execution plan in MonetDB is not op-
timal in terms of a cost model, because range selectivities
do not have a strong influence on the plan structure. Plans
do, however, exploit both well-known heuristic rewrite rules,
e.g., selection push-down, and foreign key properties, i.e.,
join indices. The query templates are kept in a query cache.
Table 1 illustrates the MAL query template produced for an
example query over the TPC-H database2:

2Details on the MAL plans and optimizers can be found on
http://monetdb.cwi.nl

select count(distinct o_orderkey)
from orders, lineitem
where l_orderkey = o_orderkey

and o_orderdate >= date ’1996-07-01’
and o_orderdate < date ’1996-07-01’

+ interval ’3’ month
and l_returnflag = ’R’;

This query has been translated by the SQL compiler into
a MAL function under the assumption that the table is ac-
cessed in read only mode. For the general case, where con-
current transactions may register updates to the underlying
tables, the MAL plan grows to several hundreds of instruc-
tions. The function body is a linear representation of the
query plan. It may appear complex at first sight, but this is
a consequence of the canonical representation of the binary
relational algebra being supported.

Using the bind operation the query plan localizes in the
SQL catalogue the persistent BATs for orders and lineitem
tables. The major part of the plan consists of binary re-
lational algebra instructions. We can distinguish several
threads of execution, each starting with binding a persis-
tent column, reducing it using a filter expression or joining
it with another column, until the tuples are transformed into
result attributes. The last instruction constructs the query
result table.

The query template is processed by a chain of optimizers
before taking it into execution. The default optimizers range
from simple constant expression evaluation, preparation for
multi-core parallel processing, and garbage collection to re-
duce the memory footprint. The design of MAL simplifies
instruction pattern analysis and exploitation of data flow
relations.

The MAL program is interpreted in a linear fashion. The
overhead of the interpreter is kept low, well below the one
usec per instruction. The default interpreter is fully equipped
with runtime debugging and performance monitoring. How-
ever, if performance measurements are not needed, a fast-
path interpreter is called.

2.3 Materialization
A discriminating factor of MonetDB is its reliance on full

materialization of all intermediate results. That is, every
relational operator takes one or more columns and produces
a new set of columns. All but a few of the kernel libraries
exhibit this functional behavior. For instance, in the exam-
ple in Table 1 the result of the selection operation over the
l returnflag attribute is materialized in a bat assigned
to the variable X11.

Don’t be misled to overestimate the resource cost related
to materialization, because the MonetDB kernel extensively
uses structure sharing to minimize the need of making com-
plete copies. Many instructions are primarily aimed at ad-
ministration of the properties or viewpoints. For example,
the mirror() operator switches the two columns in a bat
and is a zero cost operation without data copying. Like-
wise, markT() and reverse() are zero cost operations that
only materialize a new viewpoint over the underlying data
structures. Even a range select operations may become a
cheap operation when the underlying bat happens to be or-
dered. Then a view is returned, which only keeps a reference
to the underlying bat and the range of qualifying tuples.

The materialization of intermediates is usually consid-
ered an overhead that is avoided in the pipelined execu-
tion paradigm. However, full materialization benefits from



fast, cache-conscious algorithms and the price of RAM. It
also makes the intermediates readily available for reuse by
queries with overlapping expressions, as we will show in the
remainder of this paper.

3. RECYCLER ARCHITECTURE
In this section we describe in detail the recycler optimizer

and runtime module for the MonetDB system. The recycler
is designed with several boundary conditions in mind. First,
and foremost, it is targeted to SQL queries over a predom-
inantly read-only database. The query plans are produced
in isolation, i.e., without knowledge of the workload itself,
using common relational query optimizer techniques. In-
termediate results from individual MAL operations laying
around from previous queries are not taken into account at
optimization time. Instead, matching of instructions, even-
tually followed by a decision to reuse an intermediate, is
performed at run time. This just-in-time approach appears
to be more flexible. The optimized query templates are in
this way independent of the intermediates currently avail-
able and are readily reusable.

3.1 Designating Instructions for Recycling
The first design issue is to identify instructions of interest

to the recycler. This is performed during query optimiza-
tion by the recycler optimizer. It inspects the MAL plan and
marks instructions and variables eligible for control by the
recycler. An instruction becomes subject to recycler moni-
toring if all arguments are either constants or variables that
are already designated as recycling candidates.

Many MAL instructions are of no interest to the recycler.
For example, cheap operations, such as simple arithmetic
expressions, should not be recycled. The overhead of their
administration outweighs the expected gain. In addition,
a symbolic expression evaluator already removes side-effect
free expressions involving constant scalar arguments.

All instructions with side effects are to be handled with
caution. Updates are not candidates for recycling, but they
affect the content of the recycle pool. Every time a bat is
updated, any copy, or derivation of it retained in the pool,
should be invalidated. Therefore, the update volatility puts
a boundary on the effectiveness of recycling.

Since processing of an SQL query starts with binding vari-
ables to persistent columns using catalogue names, the net
effect is that the recycler optimizer marks operator threads
starting with access to these columns and propagates the
property through the query plan as far as possible. Typi-
cally, the threads involve selections, joins and other primary
relational operations.

Figure 1 shows the execution plan of the example query
with instruction dependencies. The majority of these in-
structions are marked by the optimizer for monitoring, de-
picted as shaded nodes in the graph. The dark colored nodes
are independent from the query template parameters and
reused upon next invocation of the same template with dif-
ferent parameters. The light colored part depends on the
parameters and is not reused unless the parameter values
match or allow for subsumption.

In MonetDB optimizers are independent modules that
transform the MAL programs. The SQL compiler comes
with a default chain of optimizers. Therefore, the position
of the recycler optimizer in this chain requires some care.
Evidently, recycling should be performed before we inject
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Figure 1: Execution plan marked by the recycler
optimizer

garbage collection statements to free up resources. How-
ever, it should not be applied too early in the chain either.
Optimizers for inlining of SQL (scalar) functions, evalua-
tion of constant expressions, symbolic evaluation to remove
empty partial results, and dead code elimination should be
called first.

3.2 The Recycle Pool
We refer to the system buffer for storing intermediates

as recycle pool(RP). It is internally represented as a MAL
program block, which simplifies its management, inspection
and debugging. The recycle pool is filled with the instruc-
tions captured, and their arguments and results are stored as
constants in the block’s symbol table. The instructions are
accompanied by execution and reuse statistics such as the
cpu time to compute, the sizes of the operands and result,
and the number and the type of reuses. In the example RP
shown in Table 2 we use the following name conventions for
the entries in the symbol table: the parameters of the query
template have names starting with A, the variable names
start with X, and the constants names begin with TMP.

The content of the recycle pool is managed through a com-
bination of policies. The admission policy determines which
of the monitored instructions should be kept in the pool.
The cache policy decides which entries to evict in order to
make room for new instructions. It is used to meet the re-
source limitations, such as the total memory used, and to
adapt the content of the pool to the recent workload. Entries
are also evicted from the pool when update statements in-
validate intermediates derived from the modified persistent
columns. The details of the admission and cache policies are
given in the subsequent sections.



Symbol Table

Name Value Data type #Tuples

... ... ...
X19 642 :bat[:oid,:date]
TMP1 ”sys” :str
TMP2 ”orders” :str
TMP3 ”o orderdate” :str
TMP4 0 :int
X26 1222 :bat[:oid,:date] 57768
A0 1996-07-01 :date
X25 1996-10-01 :date
TMP5 1 :bit
... ... ...
X142 1527 :bat[:oid,:date] 228626
A5 1996-01-01 :date
X134 1997-01-01 :date
... ... ...

...
X19 := sql.bind("sys","orders","o_orderdate",0)
X26 := algebra.select(X19,A0,X25,true,false)
...
X142 := algebra.select(X19,A5,X134,true,false)
...

Table 2: Recycle Pool

3.3 The Recycler Run-time Support
The runtime support of the recycler extends the inter-

preter of MAL query plans. If an instruction is marked
for recycling, it is wrapped with two recycler operations:
entry() and exit(). The purpose of the entry() operation
is to search the recycle pool for a matching instruction and
reuse it, if possible, instead of computing the instruction.
The exit() operation arranges for storing the result of the
computed instruction into the recycle pool.

The entry() operation performs matching between an in-
struction to be interpreted and candidates in the recycle
pool. Since all arguments are known at run time, match-
ing boils down to comparing instruction types and argu-
ment values. It consists of two phases: looking for an exact
match and looking for super-set instructions whose results
contain the result of the planned one. The mechanism of ex-
act matching is general, while subsumption of instructions
is specific for each instruction type.

The reuse of an exact match is straightforward. The result
is already available in the pool. It is brought to the execu-
tion stack and the wrapped instruction is skipped without
execution.

If no exact match exists, but several subsuming instruc-
tions are present, the recycler chooses the instruction with
the smallest result super-set. The smallest intermediate re-
sult replaces the original column operand of the instruction
for the time of its execution.

For example, let us assume that a new query comes with
a selection predicate on order date that is compiled into the
following MAL instruction:

X369 := algebra.select(X19,1996-08-01,

1996-09-01,true,false)

The instruction overlaps with two previously executed se-
lections on order date, whose intermediates are kept in the
RP as variables named X26 and X142, respectively. The new
instruction is matched to the two super-set instructions, and

the intermediate with the smallest number of tuples, X26, is
chosen. The recycler runtime support modifies the original
instruction for the time of interpretation into the following:

X369 := algebra.select(X26,1996-08-01,

1996-09-01,true,false)

After execution the instruction is restored and its result
is eventually added to the RP.

3.4 Recycle Pool: a Cache with Lineage
Instruction matching calls for comparison of all arguments

for validity. Since some arguments are results of earlier in-
structions, matching depends on instruction dependencies
and the way the admission and cache policies treat them.
Let us consider a sequence of two instructions, (A; B), where
the intermediate result of A is an argument of B. If only the
result of B is kept in the pool, while the result of A is dis-
carded, we would miss an opportunity for reuse. For, if the
sequence (A; B) is computed again, the occurrence of in-
struction A will be recomputed producing an intermediate
object, possibly different from the one used as an argument
of the kept copy of instruction B. A comparison of the new
object against all objects kept in the pool would be pro-
hibitively expensive. It thus leads to unsuccessfully match-
ing instruction B and the inability to use the result that was
kept in the pool. Instruction B would also be re-evaluated
and, thereby, pollute the recycler pool even further.

Therefore, dependency analysis is crucial for successful
matching and effective recycling and requires instruction
dependencies to be respected. This means that both the
admission and cache policies have to keep whole threads of
execution intact.

3.5 Admission Policies
The exit() operation of the recycler is called only if the

instruction marked for recycling has indeed been executed.
It uses the admission policy to decide about storing the re-
sult in the pool. In order to keep the result, a copy of the
instruction together with its arguments, results and execu-
tion statistics are stored in the recycle pool and thus made
available for reuse by subsequent queries. In the presence of
limited resources, a recycler routine is called to make room
for new instructions.

The recycler supports the following admission policies:

• the KEEPALL is a baseline policy that keeps all in-
struction instances advised for recycling by the op-
timizer. It allows for entire execution threads to be
stored in the pool and reused later on without dis-
turbing the matching process.

• the CREDIT policy applies an economical principle to
resource utilization. Initially every instruction marked
for recycling is supplied with a number of credits. Ev-
ery time an instruction invocation is stored in the recy-
cle pool, the source instruction ’pays’ with one credit.
The instruction may receive its credits back only upon
a reuse of some of its invocations in the pool.

In particular, return of credits distinguishes two types of
reuse: In the case of local reuse during the same query invo-
cation, the credit is returned immediately. If a global reuse
occurs, i.e. outside the source query invocation, only the
reuse statistics are updated. If such a globally reused in-
stance is evicted by the cache policy, the source instruction



in the query template receives its credit back. In this way
an instruction that has already shown to be useful, has the
opportunity to be admitted again to the pool in the future.

If instruction instances are not reused, for example, due
to different parameter values, the credits are exhausted after
a few invocations. In this case new instruction instances are
not admitted to the pool anymore and, thus, cannot claim
more resources.

The credit policy respects the instruction dependencies.
In contrast to the keepall policy, a thread of execution
might be cut off earlier at an instruction that is not reused
and has spent its credits. Hence, the credit admission pro-
vides almost full recycling opportunities, but with more eco-
nomic resource use.

Our preliminary experiments with admission policies based
on filtering individual instructions irrespective of the depen-
dencies did not prove to be useful. If, for example, the
policy filters instructions purely based on their individual
CPU cost, it would discard some cheap instructions, such
as reverse, but would also cut the opportunity to recycle
some expensive dependent instructions, such as joins (see
for example (X36; X37) in Fig. 1). The scope of such neg-
ative effects is hard to estimate at run time when complete
statistics about dependent instructions is not available be-
fore their actual execution. Future work will explore other
ideas for admission policies.

3.6 Recycle Pool Maintenance
Keeping around a large number of intermediates and check-

ing for their usefulness at query run time at some point be-
comes a performance issue. The main sources of overhead
are the time taken for instruction matching and the storage
to keep the intermediates. To keep this overhead under con-
trol the recycler routine cleanCache is called when needed
to release resources. It uses the cache policy to determine
which intermediates to evict to make space for the ones more
useful for the current load. This process is supported by the
execution and reuse statistics of the instructions.

As explained earlier, the recycler cache policy has to re-
spect instruction dependencies. Therefore, the cache poli-
cies first select the instructions at the end of the execution
threads, i.e., focus on instructions without dependents. The
last instruction from the current thread of execution is an
exception. It is a probable predecessor of the current in-
struction and should therefore be protected from eviction.
From this set of ’leaf’ instructions the cache policy picks one,
or several, with the smallest expected utility for the system.

We propose two policies to capture the strongest evidence
for utility from recycling: freshness and contribution to per-
formance. The first factor is the time when an instruction
has been computed or reused. The second is the benefit
that the system has already gained from recycling the in-
struction.

• Least Recently Used (LRU). The traditional LRU
policy takes into account the time when an instruction
has been computed or most recently reused. It picks
the oldest entries for eviction.

• Benefit Policy (BP). The benefit policy takes into
account the intermediate’s contribution to performance
so far and picks entries with the smallest one. The
contribution is computed from the cost of the inter-
mediate and a weight factor, B = Cost ∗Weight. The

cost presents the resources the system has spent to
compute the intermediate, Cost = f(CPU, IO). The
reuse weight reflects the number and type of the reuses,
Weight = f(cnt, type)3.

Since reuses are an evidence for a return of resource in-
vestment, reused intermediates have a bigger weight than
non-reused ones. We also observe that if an instruction has
been reused only locally, there is no incentive to keep it in
the pool after the scope of the query. Hence, the inter-query
reused intermediates are weighted more than ones with only
internal query reuse. In this way an intermediate with rel-
atively small cost but a large number of reuses might be
kept, and one with a high potential benefit(cost) that never
’materializes’ in a reuse might be evicted.

The cleanCache routine is triggered when a resource limit
is reached. Resource limits can be put on the size of the
recycle pool memory, the number of entries in the recycle
pool, or both. Since the resource pool is located in memory
the recycler always watches the hard limit of the physical
memory size.

We provide two versions of the benefit policy correspond-
ing to the resource limitation that triggers the eviction. If
a single entry needs to be freed, the BPent policy picks the
entry with the smallest benefit B = minI∈LB(I), where L
is the set of all leaf instructions.

To address a memory limitation, the BPmem policy has
to solve an optimization problem to find a set of the least
beneficial instructions that would also release enough mem-
ory. Let M(I) be the memory taken to store the result of an
instruction I, and Mreq is the memory required for a new
intermediate. The algorithm needs to find the set of instruc-
tions E to evict, such that E ⊆ L,

P
I∈E M(I) > Mreq, and

that minimizes the total benefit
P

I∈E B(I). In practice,
we solve the complementary problem, which is a version of
the knapsack problem. We find the instruction subset L−E
that fits in the knapsack volume

P
I∈L M(I)−Mreq and has

maximum total benefit. To achieve run time performance
we use an approximate solution with an upper bound of two
times the optimal solution.

In the case of memory limitation, it is possible that the
leaf instructions do not release enough memory. Then the
cache policies evict all leaf instructions and start another
iteration of the algorithm.

4. SKYSERVER EVALUATION
In this section we demonstrate the potential of the recycler

in the context of the SkyServer project [20]. SkyServer is a
sizable 4 TB scientific database with 91 tables, 51 views, and
203 persistent module functions. The test database deployed
in the experiments is a 100 GB subset of SkyServer Data
Release 4 (DR4).

All experiments were run on a computer with 4 Dual Core
AMD Opteron 2GHz processors with 8 GB RAM and 1 TB
of disk space. All reported times were measured with a hot
cache. A subset of the query batch was executed first so
that the queried columns were read from disk into memory.

4.1 Workload Characteristics
We prepared two query batches of 100 and 500 queries

against DR4 randomly picked from the real life query log

3Details are available in the code base of MonetDB.



Instruction # Cache Memory Avg. time # Reused # Reuses Avg. time

type lines (MB) (ms) Cache lines saved (ms)

Select 29 148 126 22 317 166

Join 78 1221 118 37 1585 249

Bind 44 0 1 34 1836 1

Mark 33 0 1 24 439 1

... ... ... ... ... ... ...

Total 258 1500 170 5711

Table 3: Characteristics of recycle pool after DR4 query batch
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Figure 2: Recycler effect on SkyServer query batch

from January 2008. A manual inspection of the random set
confirmed our previous observations [11] of a high percent-
age of (partially) overlapping queries. The batches contain a
small number of patterns over a limited part of the database
schema. This is typical for web-based applications where a
few tens of query patterns are used with different parame-
ters.

To make the discussion concrete, we illustrate with the
most common query pattern in this batch:

SELECT p.objID, p.run, p.rerun, p.camcol,

p.field, p.obj, p.type, ...

FROM fGetNearbyObjEq(195,2.5,0.5) n,

PhotoPrimary p

WHERE n.objID = p.objID

LIMIT 10;

The query accesses the catalogue table with photometric
properties of sky objects through the view PhotoPrimary.
The object selection is based on their sky location. They are
extracted through the table-valued spatial function fGet-
NearbyObjEq with parameters the location equatorial co-
ordinates and size. A set of 19 popular properties of the
objects are projected.

The execution plan computes the spatial function and the
view, joins them and performs projection joins to extract
the properties. When executed with recycler the majority
of the intermediates of those operators is reused.

When the 100-query batch ran with the keepall admis-
sion and unlimited storage, the recycler monitored the exe-
cution of 5969 instructions, constituting approximately 15%
of total instructions executed. 5711, or 95.6% of the moni-
tored instructions, were successfully reused. Table 3 breaks

down the content of the recycle pool at the end of the batch
execution.

The total storage overhead is 1.5 GB which is approxi-
mately 50% of the 2.9 GB taken by the columns queried, or
less than 2% of the total database size. Except several in-
termediates of size smaller than 1 KB each, all the memory
taken by intermediates is reused. The join intermediates are
the major consumers of memory, but also contribute most
substantially to the time savings. They have both a high
number of reuses and significant saved time per reuse. We
also observe a larger percentage of reused selections than
reused joins, since selections are typically predecessors of
joins in the execution threads.

4.2 Workload Performance
Figure 2 illustrates the total time for the 100 query batch

with and without recycler intervention. The naive strategy
denotes regular execution without recycling. We ran two
recycler versions: one with keepall admission and unlim-
ited storage and one in a resource limited mode, i.e., with
crd/lru policies and memory limited to 1 GB, constituting
65% of the memory taken by the unlimited version.

To simulate the effect of updates invalidating the inter-
mediates cache we split the 100 query batch into shorter
sequences of 25 and 50 queries and ran them with cleaning
the RP in between.

The effect of the recycler keepall/unlimited on the re-
sponse time is significant: it dropped from 785 sec to 14 sec
for the 1x100 batch. Since the percentage of reused memory
is very high for this workload, any shortage substantially af-
fects the performance. Still, the total time of crd/lru/1gb
is 296 sec, or approximately 38% of the naive strategy time.

The batches of 4x25 and 2x50 queries show similar perfor-
mance with a small overhead due to the loss of intermediates
from the previous batch that have to be computed again. To
verify the results we scaled the experiment to 500 randomly
selected queries. The times measured confirmed the obser-
vations from the shorter batches: the naive strategy ran
for 4057sec, the keepall/unlimited achieved 17sec, and
the crd/lru/1gb strategy took 1433sec, i.e., approximately
35% of the naive strategy time.

Analysis of the recycled instructions showed that the re-
cycler had detected and effectively materialized the queried
projection over the PhotoPrimary view without human
intervention. The original database schema on the SQL
Server implementation might have benefited from materi-
alizing this view or using some index structure. Whether
a workload analyser would have detected it remains to be
seen.



Instructions Time (s)
Query # Intra Inter Total Savings

% % Pot. Local Glob.

Q1 36 2.8 0 5.72 3.54 0.30 0
Q2 106 0.9 2.8 0.22 0.22 0 0.07
Q3 39 0 5.1 2.61 2.40 0 0
Q4 36 0 41.7 1.72 1.65 0 1.44
Q5 74 0 2.7 1.16 1.15 0 0
Q6 11 0 0 0.53 0.52 0 0
Q7 106 3.8 3.8 1.61 1.11 0.36 0.56
Q8 61 0 6.6 0.60 0.56 0 0.16
Q9 59 0 3.4 1.38 1.25 0 0
Q10 54 0 3.7 1.37 1.34 0 0.20
Q11 36 33.3 2.8 0.16 0.16 0.03 0
Q12 6 0 33.3 1.17 0.55 0 0
Q13 17 0 11.8 2.88 1.27 0 0
Q14 13 0 0 0.27 0.27 0 0
Q15 12 0 0 0.23 0.19 0 0
Q16 14 0 42.9 0.88 0.27 0 0.01
Q17 29 0 3.4 0.96 0.95 0 0
Q18 12 0 75.0 1.83 1.70 0 1.68
Q19 39 15.4 7.7 3.72 1.69 0.99 0.49
Q20 25 0 12.0 0.95 0.82 0 0.01
Q21 154 9.1 12.3 5.80 5.38 0.72 2.94
Q22 4 0 75.0 0.65 0.15 0 0.15

Table 4: Characteristics of TCP-H queries

5. TPC-H EVALUATION
To gain an understanding of the recycler mechanisms and

its effect on the query performance we conducted experi-
ments with the TPC-H Decision Support benchmark [23].
The experiments ran against a database of scale factor 1
(SF1), i.e., of size approximately 1 GB. The times reported
were again measured in a hot cache.

First, we analysed the queries with respect to commonal-
ities that can potentially bring benefits from reuse of inter-
mediates. We distinguish two types of commonalities: intra-
and inter-query. The intra-query (or local) type describes
the cases when common sub-expressions exist within a sin-
gle query plan, typically among sub-queries or between a
sub-query and the main query. The inter-query (or global)
type refers to different query invocations sharing common
sub-queries in the TPC-H workload. These can be different
queries or different instances of the same query pattern.

Table 4 shows the commonality characteristics of the TPC-
H queries. The Instructions/# column contains the total
number of instructions marked by the recycler optimizer for
monitoring. We will call those the potential hits of the re-
cycler. The number does not include instructions that bind
columns to variables. Although those instructions are mon-
itored and reused, they do not constitute common compu-
tations. The Intra and Inter columns show the percentage
of marked instructions that are locally, respectively glob-
ally, reused. To estimate the inter-query commonalities we
assume that the same query is executed with different pa-
rameters, where the parameter generation follows the TPC-
H specification. In this analysis we do not include inter-
query commonalities among different queries. These depend
strongly on the application and are hard to estimate in gen-
eral.
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Figure 4: Recycler effect on performance

Given the algebraic framework, this table highlights the
opportunities for reuse independent of the technique de-
ployed. Equally, it indicates the limited opportunities for
reuse when a pipelined architecture is considered.

The right side of table 4 shows the total execution times
of the queries against MonetDB together with time sav-
ings from the recycler. We summarize the potential sav-
ings, i.e. the total time spent in monitored instructions, the
realized intra-query savings and those from a single inter-
query reuse. A manual inspection of the execution traces of
queries demonstrating high time savings, such as Q4, Q18,
and Q21, confirmed that the reused instructions have high
cost. For other queries, such as Q16, time savings are mini-
mal despite the high percentage of instructions reused. The
recycled instructions are too cheap in this case.

5.1 Micro- Benchmarks
Next, we examined the recycler effect on the performance

and resource utilization over four groups of queries: with
prevailing local, prevailing global, or mix commonalities, as
well as queries that do not exploit overlaps. We chose queries
that are typical representatives of each of the above groups.
In this micro-benchmark we executed 10 instances of each
query generated with the TPC-H query generator. To il-
lustrate the recycler mechanics better, the admission policy
is keepall and there are no resource limitations, thus no
cache policy interferes with the results.

Query Q11 contains substantial intra-query commonality
where a large part of the sub-query is shared with the main
query. The common part includes a selection, a 2-way join,
and an arithmetic computation over projected attributes.
The profile of the query is shown in Fig. 3a. The top di-
agram shows the hit ratio of individual queries. It is the
ratio of the hits in the recycle pool (successfully recycled
instructions) and the potential hits. Due to the intra-query
commonalities, we observe recycle pool hits and time im-
provements (in the middle diagram) from the very first query
instance. Since the inter-query overlap is negligible, the time
improvement and the hit ratio are stable for all instances.
The bottom diagram shows the RP memory, i.e., the cu-
mulative memory consumption for intermediates, after each
query instance. It grows with a stable rate: each query adds
its own intermediates different from the previous ones.

Query Q18 illustrates the inter-query type of common-
alities among different instances. Its sub-query groups the
rows of the lineitem table on the foreign key and selects
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Figure 3: Recycler effect with different type of query commonalities

the groups with an aggregate function value above a cer-
tain level. Grouping of rows and computing the aggregate
function is the overlapping computation between instances
of Q18 that differ only in the value of the selected quantity
level. Thus, when the intermediates of grouping and aggre-
gate functions are kept in the recycle pool after the first ex-
ecution, every subsequent instance of Q18 reuses them and
computes only the remainder of the plan that depends on
the query parameter. In the case of Q18 the grouping and
aggregation are also the main ingredient of the processing
time. The query profile shown in Fig. 3b reveals how the
inter-query commonalities are used by the recycler. The first
query instance has a very low hit ratio and time improve-
ment, but high memory consumption for the intermediates
kept in the pool. The subsequent queries achieve very high
hit ratio and time savings. The time goes from 1.8s for the
first execution (SF1) to 24ms for all subsequent executions
with 75% hit ratio, and to 1ms for executions with 100% hit
ratio. The memory diagram shows that all intermediates
are reused and no sizable new intermediates are added to
the pool.

Traditionally, such a query can be sped up by a materi-
alized view storing the groups of the lineitem table rows
together with the computed aggregates. We experimented
with a version of query Q18 using a materialized view and
observed performance comparable with the recycler, namely
2ms per query instance using the same experimental set-
tings. What the recycler brings in addition to performance
is flexibility. If grouping attributes or the aggregate func-
tions change slightly, the recycler will keep the modified in-
termediates and automatically adapt to the workload change
without human guidance.

Query Q19 has a mixture of intra- and inter-query over-
laps. It contains three sub-queries with a number of pred-
icates overlapping both inside a query and among different
instances. In the query profile in Fig. 3c we observe some
hits in recycle pool and time improvement in the first in-
stance due to the intra-query commonalities, followed by
larger improvements and a higher hit ratio for subsequent
instances due to the combined effect of intra- and inter-query

commonalities. The average performance improvements for
the 10-instance benchmarks of the above queries are illus-
trated in Fig. 4.

As a counter example of a query for which the recycler
is not efficient we consider Q14. Although a number of in-
structions are monitored by the recycler, all the invocations
have different parameters and are in practice not reusable.
Hence, the query demonstrates rather the potential over-
head of the recycler for storing and matching instructions.
Each invocation adds 13 instructions to the recycle pool
and allocates 5.5 MB for the intermediates without amor-
tizing this resource investment in the form of performance
improvements. The memory profile of Q11 and Q19 shows
that queries with overlaps may also accumulate non reused
intermediates. Having observed this danger, we turn our at-
tention to the admission policies that can prevent waste of
resources by early filtering of intermediates at the admission
to the RP.

5.2 Evaluation of Admission Policies
In this section we evaluate the credit admission policy

in terms of resource utilization and the number of RP hits
achieved. The base line for comparison is the keepall pol-
icy that stores all the instructions designated for recycling.
Figure 5 shows the hit ratio to the base line(a), the percent-
age of reused memory(b), and reused RP entries(c), as the
number of credits increases. The experiments were run in
unlimited resource settings.

The number of credits affects the hit ratio for inter-query
commonalities (Q18 and Q19). Having a small number of
credits prevents keeping and reusing some of the overlap-
ping intermediates, but also improves the resource utiliza-
tion (Q19). As the number of credits increases, the hit ra-
tio improves, simultaneously with degradation in resource
utilization in terms of larger sizes and lower percentage of
reuses. In the case of Q18 both admission policies use 100%
of memory and RP entries and the resource utilization is
independent of the credit parameter.

Credits do not affect the hit ratio for intra-query com-
monalities (Q11), since local reuses return the credit imme-
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Figure 5: Effect of credit parameter to resource utilization and RP hits
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Figure 6: Cache policies in limited recycle pool

diately to the source instruction. However, having a small
number of credits successfully limits the admission of non-
reused instructions and substantially improves memory and
recycle pool entry utilization. To balance the resource use
vs. hit ratio we set the number of credits to four when we
use credit admission in the rest of the experiments.

5.3 Evaluation of Cache Policies
The cache policy has a different influence over different

types of query overlaps. The intra-query commonalities are,
with a few exceptions, not affected. The instructions are
always put in the pool and reused in the course of the current
query execution, since they are protected from eviction. The
LRU policy does not touch them as they are most recent
in the pool. The benefit policy is designed to exclude them
from the list of eviction candidates. The exceptions arise for
complex queries that cannot fit in the pool, thus incurring
eviction of instructions earlier in the plan.

The reuse of inter-query commonalities is strongly influ-
enced by the cache policy. If the policy cannot distinguish
instructions with potential reuse and throws them out, this
directly leads to a higher number of RP misses and reduced
improvement of performance.

To evaluate the cache policies we selected 10 TPC-H queries
(4,7,8,11,12,16,18,19,21, and 22) with relatively large over-
laps to create a bigger contention between reused instruc-
tions, a situation where the punishment for a bad choice

of the evicted instruction is more noticeable. We created a
batch of 200 queries by mixing 20 instances of each. First,
the batch was run with the keepall/unlimited strategy
to measure the total resources needed (4 GB memory and
5219 RP entries), as well as the percentage of the reused
resources (42.7% reused memory and 28% reused entries).
Then we ran the batch using each of the cache policies with
resources limited to a percentage of the total resources. We
consider two major resources: memory taken by the inter-
mediates, and number of RP entries which affects the in-
struction matching time.

Figure 6 shows the effect of the cache policies when lim-
iting the number of recycle pool entries(also called cache
lines, CL). The cumulative hits from the batch execution
are shown with respect to the cumulative potential hits. For
limits that fit the reused entries(>40%) the hit ratio is al-
most not affected. For the 20% limit the hit ratio drops to
0.3 of the potential hits. Still, both policies run for less than
45% of the time of the naive strategy (Fig. 6c). Although
the benefit(bp) policy shows lower hit ratio than lru in
some cases, it succeeds better in distinguishing and keeping
in the pool weighty intermediates. For all limits bp achieves
the best performance running for 40% of the total time of
the naive strategy.

The effect of crd admission policy is two-fold. When com-
bined with bp it leads to a small loss of performance due to
some hit misses. The combination of crd and lru improves
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Figure 7: Cache policies in limited memory

the lru, especially when a large limitation is imposed. The
early filtering of non reused instructions achieved by the crd
admission manages to keep old reused instructions longer in
the RP in situations of high resource contention.

Figure 7 shows the policies behaviour in limited memory.
This limitation affects both the hit ratio and the processing
time more substantially than the RP entries limit. The rea-
son is that some of the beneficial intermediates occupy a lot
of memory and need to be evicted to fit the resource limi-
tation. In this case the simpler lru policy or its version in
combination with crd admission show to be more efficient.

6. RELATED WORK
Recycling exploits the generic idea of storing and reusing

expensive computations. Unlike low level instruction caches,
we use an optimizer to pre-select instructions to look after.
Likewise, the eviction policies respect the semantic depen-
dencies amongst operators in the query plan, thus maintain-
ing an operator cache with lineage.

Recycling (partial) results is also the driver behind mate-
rialized views and query caching [1, 5, 8, 16, 22, 25]. Our
approach differs from this large body of work in some or
all of the following three aspects: self-organizing behavior
without human intervention, integration with the DBMS
software stack, and granularity of operation. The materi-
alized views are often defined by the DBA with the help of
workload analysers to improve system performance [1, 16].
The dynamic materialized views proposed in [25] material-
ize hot subsets that adapt to the current workload by means
of additional control tables. The content of the control ta-
bles is updated manually by the DBA or automatically by a
cache controller. The definition of the views and associated
control tables is again a responsibility of the DBA.

Traditionally, view or intermediate matching is integrated
with the query optimization [5, 8, 22]. Often this involves
applying advanced algorithms over graph representations of
query plans. Recycling does not modify query plans based
on the intermediates available. Instead, it matches instruc-
tions one-at-a-time at run time. Hence, matching intermedi-
ates is interleaved with query execution. This is possible due
to the abstract representation of query plans and MonetDB’s
execution paradigm. In the Cache-on-Demand framework
[22] recycling of intermediates is ensured by considering only

the present. An overlap in an incoming query with the cur-
rently running queries triggers materializing common inter-
mediates. This approach is beneficial in a multi-user sce-
nario setting, but imposes temporal locality limitations over
the overlapping queries.

Finally, recycling is a general technique that works at a
finer level of granularity than materialized views and query
caches. It keeps individual instruction results independently
from the source of commonalities and the type of the en-
tire query. DynaMat [12] proposes dynamic management
of a pool of materialized views in data warehouses. Sim-
ilarly to the recycling policies, so called goodness metrics
are employed to automatically decide which views to keep
and which to evict from the pool. In this way the system
adapts the pool content for maximal benefit of the current
workload. Working in the context of data warehouse and
decision support applications, DynaMat considers specific
types of data cube queries, called multidimensional range
queries, whose final results are put in the pool. A similar
line of research is pursued in [6, 15]. In contrast, recycling
considers intermediate results at the instruction level and is
a general technique that does not impose limitations on the
query types.

Database caching [3, 13] is typically used in distributed
settings to augment the mid-tier application servers and to
off-load the back-end database servers. The cache content
is a DBA-defined collection of materialized views and thus
is static with respect to the covered database sub-schema.

The adaptive replication technique presented in [10] ex-
ploits the materialization of selection intermediates to reor-
ganize a persistent table column into a partial replica tree.
Recycling is a general technique that manages the interme-
diates of different classes of relational operators which does
not change the underlying column structures.

Our approach to share computations between queries also
relates to multi-query optimization [19] and exploitation of
similar sub-expressions [24]. Both techniques are applicable
to queries that are known in advance and executed concur-
rently, such as query batches, sub-queries, and maintenance
of materialized views. In contrast, the recycler alters the
execution of individual queries to maximally benefit from
intermediates currently available in the pool and, hence,
is applicable to individual ad-hoc queries without a-priori
knowledge about the workload.



7. SUMMARY AND CONCLUSIONS
In this paper we have described a database architecture

augmented with recycling intermediates, i.e., caching partial
results, in a relational algebra program. The architecture is
implemented as an extension to the MonetDB system. Our
approach addresses the overhead incurred by its operator-at-
a-time execution paradigm and transforms it into a benefit
without manual intervention.

The recycling policies respect the inter-operator depen-
dencies, which leads to effective reuse of large threads in
template based query sessions, e.g., web applications. The
recycling policies studied cover both an LRU scheme and one
driven by an economic principle. The extensive experimen-
tation based on a full-fledged implementation shows that the
MonetDB software architecture is well suited to be extended
with a targeted optimization goal.

The experiments using the SkyServer real-life query set
illustrate that even in a single system, recycling of partial
results can lead to significant benefits. Primarily because
the cost of the expensive body part of a query is reduced.

The results obtained indicate several areas for further ex-
ploration. Within the context of MonetDB, it seems worth
exploring subsumption relationships through join paths and
the opportunities offered by recognition of query classes.
Another direction of work is refining and developing ad-
mission and cache policies that respect the semantic depen-
dencies of instructions, as well as automatic accommoda-
tion of policies most appropriate for the current workload.
But first, and foremost, the technique seems amendable to
pipelined architectures by tapping the stream at selected
points in the query operator tree. To our knowledge, pub-
licly available experimental proof of this is still lacking.
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