
An Architecture for Requirements-driven
Self-reconfiguration

Fabiano Dalpiaz, Paolo Giorgini, and John Mylopoulos

University of Trento - DISI, 38100, Povo, Trento, Italy.
{fabiano.dalpiaz, paolo.giorgini, jm}@disi.unitn.it

Abstract. Self-reconfiguration is the capability of a system to autonomously
switch from one configuration to a better one in response to failure or context
change. There is growing demand for software systems able to self-reconfigure,
and specifically systems that can fulfill their requirements in dynamic environ-
ments. We propose a conceptual architecture that provides systems with self-
reconfiguration capabilities, enacting a model-based adaptation process based on
requirements models. We describe the logical view on our architecture for self-
reconfiguration, then we detail the main mechanisms to monitor for and diag-
nose failures. We present a case study where a self-reconfiguring system assists
a patient perform daily tasks, such as getting breakfast, within her home. The
challenge for the system is to fulfill its mission regardless of the context, also
to compensate for failures caused by patient inaction or other omissions in the
environment of the system.

1 Introduction

There is growing demand for software systems that can fulfill their requirements in very
different operational environments and are able to cope with change and evolution. This
calls for a novel paradigm for software design where monitoring, diagnosis and com-
pensation functions are integral components of system architecture. These functions
can be exploited at runtime to monitor for and diagnose failure or under-performance,
also to compensate through re-configuration to an alternative behavior that can better
cope with the situation on-hand. Self-reconfiguration then is an essential functionality
for software systems of the future in that it enables them to evolve and adapt to open,
dynamic environments so that they can continue to fulfill their intended purpose.

Traditionally, self-reconfiguration mechanisms are embedded in applications and
their analysis and reuse are hard. An alternative approach is externalized adaptation [1],
where system models are used at runtime by an external component to detect and ad-
dress problems in the system. This approach – also known as model-based adaptation
– consists of monitoring the running software, analyzing the gathered data against the
system models, selecting and applying repair strategies in response to violations.

We analyze here the usage of a special type of system models: requirements models.
Deviations of system behavior from requirements specifications have been discussed
in [2], where the authors suggest an architecture (and a development process) to recon-
cile requirements with system behavior. Reconciliation is enacted by anticipating devia-
tions at specification time and solving unpredicted circumstances at runtime. The under-
lying model is based on the goal-driven requirements engineering approach KAOS [3].

In this paper, we propose a conceptual architecture that, on the basis of requirements
models, adds self-reconfiguration capabilities to a system. The architecture is structured
as a set of interacting components connected through a Monitor-Diagnose-Compensate
(MDC) cycle. Its main application area is systems composed of several interacting sys-
tems, such as Socio-Technical Systems [4] (STSs) and Ambient Intelligence (AmI)
scenarios. We have chosen to use Tropos [5] goal models as a basis for expressing re-
quirements, for they suit well for modeling social dependencies between stakeholders.
We enrich Tropos models adding activation events to trigger goals, context-dependent
goal decompositions, fine-grained modeling of tasks by means of timed activity di-
agrams, time limits within which the system should commit to carry out goals, and
domain assumptions that need to be monitored regardless of current goals.

We adopt the BDI paradigm [6] to define how the system is expected to reason and
act. The system is running correctly if its behavior is compliant with the BDI model:
when a goal is activated, the system commits to it by selecting a plan to achieve it. The
architecture we propose monitors system execution and looks for alternatives when
detects no progress or inconsistent behaviour.

The closest approach to our work is Wang et al. [7], which proposes a goal-oriented
approach for self-reconfiguration. Our architecture differs from hers in the details of the
model we use to monitor for failures and violations. These details allow us to support a
wider class of failures and changes, also to compensate for them.

This paper is structured as follows: Section 2 presents the baseline of our approach,
Section 3 describes our proposed architecture for self-reconfiguration, whereas Sec-
tion 4 explains how to use it. Section 5 details the main monitoring and diagnosis
mechanisms the architecture components use. Section 6 shows how the architecture
can be applied to a case study concerning smart-homes. Section 7 presents related work
and compares our approach to it. Finally, Section 8 discusses the approach and draws
conclusions.

2 Baseline: Requirements Models

A requirements-driven architecture for model-based self-reconfiguration needs a set of
models to support full modeling of requirements. A well established framework in Re-
quirements Engineering (RE) is goal-oriented modeling [3], where software require-
ments are modelled as goals the system should achieve (with assistance from external
agents). Among existing frameworks for requirements models, we have chosen Tro-
pos [5], for it allows to describe systems made up of several socially interacting actors
depending on each other for the fulfillment of their own goals. Recently, Jureta et al. [8]
have revisited the so-called “requirements problem” – what it means to successfully
complete RE – showing the need for requirements modeling frameworks richer than
existing ones. The core ontology they propose is based on the concepts of goal, soft-
goal, quality constraint, plan, and domain assumption. Direct consequence of this result
is that goal models alone are insufficient to completely express system requirements,
and in our framework we support some of the suggested ingredients to express require-
ments.

We adopt an enriched version of Tropos, which contains additional information to
make it suitable for runtime usage: (i) activation events define when goals are triggered;
(ii) commitment conditions express a time limit within which an agent should commit
to its goal; (iii) contexts express when certain alternatives are applicable (like in Ali et
al. [9]); (iv) preconditions define tasks applicability. In Fig. 1, two agents (Patient and
Supermarket) interact by means of a dependency for goal Provide Grocery. The top-
level goal of patient – Have lunch – is activated when it’s 12AM, and the patient should
commit to its achievement within one hour since activation. Two alternatives are avail-
able to achieve the goal, that is Prepare lunch and Get lunch prepared. In this scenario,
the former option is applicable only in context c1, that is when patient is autonomous,
whereas the latter option is applicable when the patient is not autonomous (c2). Goal
Prepare lunch is and-decomposed to sub-goals Get needed ingredients and Cook lunch.
The former goal is a leaf-level one, and there are two tasks that are alternative means to
achieve it (means-end): Take ingredients from cupboard and Order food by phone. The
latter task requires a dependency for goal Provide grocery on agent supermarket.

Fig. 1. Enriched Tropos goal model used by our architecture.

A shared language to express information about domain is clearly needed. This lan-
guage is used to formally express contexts, preconditions, domain assumptions, and
any relation between domain and requirements. We exploit an object diagram (as in [9]),
where context entities are objects, their properties are attributes, and relations between
entities are association links. For instance, the precondition for task Order food by
phone (Patient.house.hasPhone = true) can be expressed in an object model with classes
Patient and House, where Patient is linked to House by an aggregation called house,
and House has a boolean attribute hasPhone. Domain assumptions are rules that should
hold regardless of current goals. For example, a domain assumption for our small exam-
ple is that each patient has exactly one house. Finally, we use a fine grained definition
of tasks, in which each task is a workflow of monitorable activities to be carried out
within time constraints. The completion of each activity is associated to the detection
of an associated event, which is expressed over the context model. We provide further
details about this formalism (timed activity diagram) in Section 5.

3 System Architecture

In this section we propose our conceptual architecture for structuring systems able to
self-reconfigure. We present the architecture logical view in Fig. 2, exploiting an UML
2.0 component diagram to show the components and the connections among them.
Component diagrams depict not only the structure of a system, but also the data flow
between components (through provided and required interfaces).

Fig. 2. Logical view on the proposed architecture for self-reconfiguration.

3.1 External components

Our architecture supports systems characterized by decentralized and non-monolithic
structure, such as Socio-Technical Systems (STSs) and Ambient Intelligence (AmI) sce-
narios, which require quick and effective reconfiguration in response to context change
or failure. A set of external components interacts with the self-reconfiguration compo-
nent, providing inputs and enacting reconfigurations.

The component Context sensor represents any system providing up-to-date informa-
tion about the context where the system is running. In AmI settings, sensors are spread
throughout the environment and collect data such as temperature, light level, noise,
presence. Also desktop applications have several context sensors that provide useful
values such as free memory, CPU utilization, mainboard temperature, and list of active
processes. The component context sensor provides changes in the context through the
interface Events. Possible events are changes in the light level, detection of humans in
front of the door, identification of loud noise in the bathroom.

Monitored system is the system the self-reconfiguration component assists, that is
the stakeholder whose requirements are monitored to diagnose and compensate failures.
This system need not necessarily be software or hardware, but can be – and often is –
a human or an organization. Examples of monitored systems are anti-virus software,
patients living in smart-homes, firemen in crisis management settings. This component
provides all available information concerning the current status of the system through
the interface Log, and requires from the interface System pushes advice on what should
be done (which goals) and how it should act (which tasks). A patient can be reminded
to take her medicine by sending an SMS to her mobile phone (system pushes interface).

Support system represents any system connected to the monitored system by re-
quirements level links by goal, task, or resource dependencies from the monitored sys-
tem. For example, anti-virus software may depend on update sites for the resource
“updated virus definition file”, while patients may depend on social workers for the
goal “prepare breakfast”. The provided interface Interaction log contains information
about the status of dependencies with the monitored system; the required interface Task
assignments provides the tasks or goals for which the monitored system depends on
support systems. If the patient should prepare breakfast but did not commit to it, the
self-reconfiguration component can order breakfast from a catering service (the sup-
port system), enacting a dependency from the patient to the catering service for goal
“prepare breakfast”.

Context actuator identifies any actuator in the environment which can receive com-
mands to act on the context. Examples of actuators in AmI scenarios are sirens, door
openers, automated windows, and remote light switches. The component gets from the
required interface Actuations the commands to enact.

3.2 Self-reconfiguration component

The self-reconfiguration capabilities of our architecture are provided by the component
self-reconfiguration. We identified three major sub-components in the reconfiguration
process, each enacting a phase in a Monitor-Diagnose-Compensate cycle. Monitor is
in charge of collecting, filtering, and normalizing events and logs; Diagnoser identifies
failures and discovers root causes; Reconfigurator selects, plans and deploys compen-
sation actions in response to failures.

The monitoring phase starts with the Event normalizer gathering the current status
of the monitored system, of the context, and of the interaction with support systems.
These events are normalized according to a shared context model, e.g. defining trans-
formation schemes using XSLT [10]. The event normalizer provides the translated data
through the interface Normalized events. This interface is required by three different

components, each handling a specific type of events. Dependency monitor computes
the status of existing dependencies and exposes it through the provided Dependencies
status interface. Context sensor is in charge of updating the interface Current context,
processing the normalized events related to changes in the context. For instance, if the
house door is closed (door.status = closed) and we just received an event such as
open(door, timei), the status of the door will change to open (door.status = open).
The component Task execution monitor handles events concerning the execution of
tasks and provides the interface Task execution status. For example, if the patient is ex-
ecuting the task “Open door” and event pressed(patient, button, timej) is received,
the status of task “Open door” will turn to success.

The diagnosis phase – responsibility of the component Diagnoser – is essentially
a verification of the current status against requirements models. Models specify what
should happen and hold: which goals should / can / cannot be achieved, which tasks can
/ cannot be executed, the domain assumptions that should not be violated. The richer
the requirements models are, the more accurate the diagnosis will be. In contrast, the
granularity of detected events is bounded by technological and feasibility concerns,
and also increases the overhead introduced by the architecture. Detecting if a patient is
sitting on a sofa is reasonably realizable (e.g., using pressure sensors), while detecting
if she is handling a knife the wrong way is far more complex.

Contextual goal model manager analyzes the goal model to identify goals and tasks
that should / can / cannot be achieved, and provides this output through the interface
Goals / Tasks applicability. The component Domain assumption verifier checks a list
of domain assumptions against the current context, and exposes identified violations
through the provided interface Violated domain assumptions.

Dependency diagnoser computes problems in established dependencies. Dependen-
cies fail not only if the dependee cannot achieve the goal or perform the task (e.g.,
the nurse cannot support the patient because she’s busy with another patient), but also
when changes in the context modify goal applicability and the dependency is not pos-
sible anymore (e.g., the patient exits her house and thus cannot depend on a catering
service anymore). Task execution diagnoser is needed to verify whether the current
execution status of tasks is compliant with task applicability. For example, if the pa-
tient is preparing breakfast but already had breakfast, something is going wrong and
this failure should be diagnosed. This component provides the interface Failed tasks
/ goals. Goal commitment diagnoser is in charge of detecting those goals that should
be achieved but for whose fulfillment no action has been taken. In our framework, each
top-level goal has a commitment time, a timeout within which a commitment to achieve
the goal should be taken (i.e., an adequate task should begin). For instance, the patient
should have breakfast within two hours since waking up. This component provides the
interface Uncommitted goals.

The component Failure diagnoser requires the interfaces containing the identified
failures and Tolerance policies provided by component Policy manager. The policy
manager – handling policies set by system administrators – specifies when failures
do not lead to reconfiguration actions. For example, lack of commitment for washing
dishes can be tolerated if the patient’s vital signs are good (she may wash dishes after
next meal). Diagnoses to be compensated are exposed through Failure diagnosis.

The reconfiguration phase – carried out by component Reconfigurator – should de-
fine compensation / reconfiguration strategies in response to any kind of failure. Its
effectiveness depends on several factors: number of tasks that can be automated, avail-
able compensation strategies, extent to which the monitor system accepts suggestions
and reminders. In our architecture we propose general mechanisms, but the actual suc-
cess of compensation strategies is scenario-dependent and difficult to assess in a general
way. Suppose a patient suddenly feels bad: if she lives in a smart-home provided with
a door opener, the door can be automatically opened to the rescue team; otherwise, the
rescue team should wait for somebody to bring the door keys.

The component Prioritize diagnosis selects a subset of failures according to their
priority level and provides them through the interface Selected Diagnosis. Common
criteria to define priority are failure severity, urgency of taking a countermeasure, time
passed since failure diagnosis. Selected diagnoses are then taken as input by the compo-
nent Reaction strategy selector, which is in charge of choosing a reaction to compensate
the failure. This component acts as a planner: given a failure, it looks for appropriate
reconfigurations, and selects one of them. Three different types of reconfigurations are
supported by our architecture, each manifested in a specific interface. Task reassign-
ment reconfigurations contains reconfigurations that involve the automated enactment
dependencies on support systems. For example, if the patient didn’t have breakfast and
the commitment time for the goal is expired, the system could automatically call the
catering service. Push system reconfigurations includes strategies that push the moni-
tored system to achieve its goals (reminding goals or suggesting tasks). A push strategy
for the patient that forgot to have breakfast is sending an SMS to her mobile phone.
Actuate reconfigurations consists of compensations that will be enacted by context ac-
tuators. For instance, if the patient feels bad, the door can be automatically opened by
activating the door opener. Three components use the interfaces provided by reaction
strategy selector: Task assigner, System pushing, and Actuator manager. Their role is
to enact the reconfigurations that have been selected, and each component provides a
specific interface.

4 Creating the architecture for an existing system

We describe how the architecture can be used in practice to add self-reconfiguration
capabilities to an existing distributed socio-technical system. The required input is a set
of interacting sub-systems – sensors and effectors – that compose the distributed sys-
tem. The following steps should be carried out: (i) define context model (ii) define re-
quirements models; (iii) establish traceability links for monitoring; (iv) select tolerance
policies for diagnosis; and (v) choose reconfiguration and compensation mechanisms.

Steps (i) and (ii) output the models we presented in Section 2, that is the context
model, Tropos goal models, timed activity diagrams for tasks, and domain assumptions.
Step (iii) defines what to monitor for at runtime, by connecting requirements to code.
Traceability is ensured by associating events – produced by sensors – to activities that
are part of a task, to task preconditions, to contexts, and to activation conditions for top-
level goals. Events should also be normalized according to the context model defined
in step (i).

Step (iv) is carried out to specify tolerance policies for failures. Indeed, some fail-
ures have to be addressed through reconfiguration, whereas some others can be toler-
ated. In step (v) the reaction mechanisms enacting self-reconfiguration are defined. Two
sub-steps should be carried out: (i) definition of a compensation plan to revert the ef-
fects of the failed strategies, and (ii) identification of a reconfiguration strategy to retry
goal achievement. Both steps exploit the actuation capabilities of the distributed sys-
tem, i.e. reconfigurations consist of giving commands to effectors (execute a task, enact
a dependency, issue a reminder).

5 Monitoring and diagnosis mechanisms

We detail now monitoring and diagnosis mechanisms included in our architecture. Ef-
ficient and sound algorithms need to be defined for successfully diagnosing problems
in the running system. Failures are identified by comparing monitored behavior of the
system to expected and allowed behaviors. Failures occur when (a) monitored behavior
is not allowed or (b) expected behavior has not occurred.

goal(G) ∧ goal parameters(G, P) ∧ ¬done(G, P) ∧ activation evt(G, P, T)
∧ T ≤ current time ∧ @ Gp s.t.

goal(Gp) ∧ decomposed(Gp, G)
(i)

should do(G,P)

should do(G, P)
(ii)

can do(G,P)

goal(G) ∧ goal parameters(G, P) ∧ ¬done(G, P)
∧ ∃ Gp s.t.

goal(Gp) ∧ goal parameters(Gp, Pp) ∧ decomposed(Gp, G, Dec)
∧ can do(Gp, Pp) ∧ context cond(Dec)
∧ ∀ p ∈ P s.t. (∃ pp ∈ Pp s.t. name(p, n) ∧ name(pp, n)),

value(p, v) ∧ value(pp, v)
(iii)

can do(G,P)

task(T) ∧ task parameters(T, P) ∧ pre cond(T, P) ∧ ¬done(T, P)
∧ ∃ G s.t.

goal(G) ∧ goal parameters(Gp, Pp) ∧ means end(G, T, Dec)
∧ context cond(Dec) ∧ can do(G, Pp)
∧ ∀ p ∈ P s.t. (∃ pp ∈ Pp s.t. name(p, n) ∧ name(pp, n)),

value(p, v) ∧ value(pp, v)
(iv)

can do(T,P)

Table 1. First-order logic rules to define expected and allowed goals and tasks.

Table 1 defines expected and allowed goals and tasks. We use first-order logic rules
for clarity, but our prototype implementation is based on disjunctive Datalog [11]. We
suppose that each goal instance differs from other instances of the same goal class for

actual parameters; for example, a patient’s goal Have breakfast can be repeated every
day, but with different values for the parameter day.

Rule (i) defines when a top-level goal should be achieved. This happens if G is a
goal with parameters set P , the goal instance has not been achieved so far, the activation
event has occurred before the current time, and G is a top-level goal (there is no other
goal Gp and/or-decomposed to G). Rule (ii) is a general axiom saying that whenever a
goal instance should be achieved, it is also allowed. Rules (iii) and (iv) define when tasks
and decomposed goals are allowed, respectively. A goal instance G with parameters set
P can be achieved if it has not been done so far and exists an achievable goal Gp with
parameters Pp that is decomposed to G, the context condition on the decomposition is
true, and the actual parameters of G are compatible with the actual parameters of Gp. A
similar condition holds for means-end tasks, with two main differences: tasks are also
characterized by a precondition – which should hold to make the task executable – and
are connected to goals through means-end (rather than by and/or decomposition).

Expected and allowed goals and tasks identified by rules (i-iv) are used by Al-
gorithm 1 to diagnose goals and tasks failures, comparing the monitored behavior to
expected and allowed behaviors. The parameters of COMPUTEFAILURES are the mon-
itored system, the examined goal instance, and the set of failures (initially empty). The
algorithm is invoked for each top-level goal of the monitored system and explores the
goal tree recursively; all parameters are passed by reference.

Algorithm 1 starts by setting the status of goal g to uncommitted, and the variable
means end to false. Lines 3-10 define the recursive structure of the algorithm. If the goal
is and/or decomposed (line 3), the set G contains all the sub-goals of g (line 4), and the
function COMPUTEFAILURES is recursively called for each sub-goal (lines 5-6). If the
status of all the sub-goals is success, also the status of g is set to success (lines 7-8).
If the goal is means-end decomposed (lines 9-10), G contains the set of tasks that are
means to achieve the end g, and means end is set to true.

If g is still uncommitted (line 11) each sub-goal (or means-end decomposed task)
is examined (lines 12-39). If g is and-decomposed (lines 13-23), two sub-cases are
possible: (a) if the sub-goal gi is not allowed but its status is different from uncommitted,
and the status of g is still uncommitted, the status of g is set to fail and the cycle is broken,
for the worst case – failure – has been detected (lines 14-17); (b) if the status of gi is fail
(lines 18-23), the status of g is set to fail in turn, and the cycle is broken (lines 19-21);
if gi is in progress, the status of g is set to in progress.

If g is or-decomposed or means-end (lines 24-39), it succeeds if at least one sub-
goal (or task) succeeds. If g is means-end decomposed, the algorithm calls the function
MONITORSTATUS, which diagnoses the execution status of a task (lines 24-25). If gi is
not allowed and its status is different from uncommitted, gi is added to the set of failures
(line 27), and if g is not committed its status is set to fail (lines 28-29). If gi is allowed
or its status is uncommitted (line 30), three sub-cases are possible: (a) if the status of gi

is success, the status of g is set to success and the cycle is terminated (lines 31-33); (b)
if gi is in progress, the status of g is set to in progress and the loop is continued (lines
34-35); (c) if the status of gi is fail, gi is added to the set of failures, and if g is still
uncommitted its status is set to fail. If g is a top-level goal that should be achieved, its
status is uncommitted, and the commitment condition is true, then the status of g is set

to fail because no commitment has been taken (lines 40-41). If the status of g is fail, it is
added to the list of failures (lines 42-43).

Algorithm 1 Identification of goal and task failures.
COMPUTEFAILURES(s : System, g : Goal, F : Failure [])

1 g.status← uncommitted
2 means end← false
3 if ∃g1 ∈ s.goals s.t. decomposed(g, g1, dec)
4 then G← {gi ∈ s.goals s.t. decomposed(g, gi, dec)}
5 for each gi in G
6 do COMPUTEFAILURES (s,gi,F)
7 if ∀gi in G, gi.status = success
8 then g.status← success
9 else G← {t ∈ s.tasks s.t. means end(g, t, dec)}

10 means end← true
11 if g.status = uncommitted
12 then for each gi in G
13 do if and decomposed(g, gi, dec)
14 then if gi.can do = false and gi.status 6= uncommitted
15 and g.status = uncommitted
16 then g.status← fail
17 break
18 else switch
19 case gi.status = fail :
20 g.status← fail
21 break
22 case gi.status = in progress :
23 g.status← in progress
24 else if means end = true
25 then gi.status← MONITORSTATUS (gi,g)
26 if gi.can do = false and gi.status 6= uncommitted
27 then F ← F ∪ gi

28 if g.status = uncommitted
29 then g.status← fail
30 else switch
31 case gi.status = success :
32 g.status← success
33 break
34 case gi.status = in progress :
35 g.status← in progress
36 case gi.status = fail :
37 F ← F ∪ gi

38 if g.status = uncommitted
39 then g.status← fail
40 if g.should do = true and g.status = uncommitted and g.comm cond = true
41 then g.status← fail
42 if g.status = fail
43 then F ← F ∪ g

Due to space limitations, the algorithms for diagnosing task failures are only sketch-
ed here, but they are fully described and discussed in [12]. We define tasks as workflows
of activities each occurring within well-defined time limits (we refer to this formalism
using the term “timed activity diagram”). Successful completion of an activity a is
associated to the happening of an event e (happens(e)→ success(a)). Activities can be
connected sequentially, in parallel (by fork and join nodes), and conditionally (through
branch and merge nodes). A graphical example of this formalism is given in Fig. 4. The
allowed branch of a decision point is defined by a branch condition. At any instant, a
well-formed model has exactly one allowed branch. MONITORSTATUS is invoked by
Algorithm 1 to check the status of a particular task; its parameters are a task t and a
goal g linked through means-end. This algorithm returns task failure if the first activity
of the task has happened but beyond the commitment time for goal g, whereas returns
uncommitted if the first activity hasn’t happened so far but the commitment time for
g has not expired. If no failure or uncommittment has been identified, the algorithm
retrieves the next node in the timed activity digram that defines the task, calling the
recursive function CHECKNODE.

The behavior of Algorithm CHECKNODE depends on node type. If the node is an
activity, we check if the associated event happened within the time limit. If it happened
beyond time limit we return failure, if it happened before time limit we recursively
check the next node. If the event hasn’t happened so far: (a) if time limit has expired
we return failure; (b) if the activity is still within its time limit we return in progress. If
a fork is found, CHECKNODE is recursively called for all the forks. If any fork failed a
fail value is returned. If all the forks joined a recursive check is performed on the node
that follows the join, with time limit starting from the last joined fork. Otherwise, the
algorithm returns in progress. If a branch is met, all the branches should be checked. We
return failure if any branch that was disallowed happened or an activity in an allowed
branch failed. We return in progress if allowed activities occurred within time limits
and no disallowed activity happened. If none of these conditions hold, we check the
node following the merge construct and return its status.

6 Case study: smart homes

We show now a promising application for our architecture, emphasizing how require-
ments models are used to define and check allowed and expected behaviors, and how
the architecture performs the MDC cycle. Our case study concerns smart homes: a pa-
tient lives in a smart home, a socio-technical system supporting the patient in everyday
activities (such as eating, sleeping, taking medicine, being entertained, visiting doctor).
Both smart home and patient are equipped with AmI devices that gather data (e.g., pa-
tient’s health status, temperature in the house) and enact compensations (e.g., open the
door). The partial goal model in Fig. 3 represents the requirements of the patient; due
to space limitations, we present here only the top-level goal “Have breakfast”.

Goal g1 is activated when the patient wakes up (activation event); a commitment to
achieve g1 should be taken (either by the patient or by other agents) within two hours
since goal activation. Four different contexts characterize the scenario: in c1 the patient
is autonomous, in c2 the patient is not autonomous, in c3 the patient is at home, in c4

the patient is not at home. If the patient is autonomous (c1 holds) g1 is decomposed
into the subtree of goal “Eat alone” (g2); if c2 holds g1 is decomposed into the subtree
of goal “Get eating assistance” (g22). In the former case, c3 enables the subtree of goal
“Eat at home” (g3), whereas c4 enables the subtree of goal “Eat outside” (g7). When
eating at home, the patient has to prepare food (g4), eat breakfast (g5), and clean up
(g6). Goal g4 is means-end to two alternative tasks: “Prepare autonomously” (p1) and
“Order catering food” (p2). The latter task requires interaction with actor “Catering
service”, which should fulfill goal “Provide food” to execute p2. The other subtrees of
Fig. 3 are structured in a similar way, thus we don’t detail them here.

Fig. 3. Contextual goal model describing the patient health care scenario.

Our requirements models characterize each task with a precondition that, if false,
inhibits the execution of the task. If a task is executed but its precondition is false,
a failure occurs (see rule (iv) in Table 1). A possible precondition for task “Prepare
autonomously” is that there are both bread and milk in the house; a precondition for
task “Order catering food” is that the house is provided with a landline phone.

Fig. 4 is a timed activity diagram for task p1. The task starts as goal “Prepare food”
is activated. When the patient enters the kitchen (a1), there is evidence that she is going
to prepare food. If this doesn’t happen within 45 minutes from goal activation the task
fails. After a1, a fork node creates two parallel execution processes. In the first fork, the
patient should open the fridge (a2) and put the milk on stove (a4); in the second fork,
the bread cupboard should be opened (a3) and bread has to be put on the table (a5). The
forks are then merged, and the next activity is to turn on the stove (a6) within a minute
since the last completed activity. Sequentially, the task requires the stove to be turned
off within 5 minutes (a7) and the milk to be poured into the cup (a8).

Fig. 4. Timed activity diagram for monitoring the task “Prepare autonomously”.

We conclude this section with a description of a possible reconfiguration process.
Let’s suppose that patient Mike wakes up at 8.00 am. Mike is autonomous (c1) and at
home (c3); goal g1 is expected, and the subtree of g3 is the only allowed one (see rules
(i) and (ii) in Table 1). At 8.20 am Mike enters the kitchen: checking the activity diagram
for p1 against this event changes the status of the goal g4 to in progress. In turn, this
status is propagated bottom-up till g1 (see Algorithm 1). At 8.25 Mike hasn’t neither
opened the fridge nor opened the bread cupboard. This violates the specification of p1
(Fig. 4). The reconfiguration strategy selector component selects to push the system,
and the system pushing component sends an SMS message to remind Mike to have
breakfast. The strategy succeeds, for Mike opens both the fridge (a2) and the bread
cupboard (a3), then he puts bread on table (a5). These events are compliant with the
task specification of Fig. 4, thus the task is evaluated as in progress. Anyhow, Mike
does not put milk on stove (a4) within one minute since a2, therefore a new failure
is diagnosed. The compensation to address this failure is to automate p2, and the task
assigner component selects a catering service. In an alternative scenario Mike exits
house (the context c4 is true, c3 is false). This would change the tasks that can happen:
the subtree of g7 becomes the only possible one, and this influences all its sub-goals
(rule (iii) in Table 1) and the tasks linked to leaf-level goals (rule (iv) in Table 1).

7 Related work

Self-adaptive software has been introduced by Oreizy et al. [13] as an architectural ap-
proach to support systems that modify their behaviour in response to changes in the
operating environment. This class of systems performs self-reconfiguration according
to the criteria specified at development time, such as under what conditions reconfig-
uring, open/closed adaptation, degree of autonomy. The building units for self-adaptive
software should be components and connectors. Compared to our work, the solution

proposed in [13] is generic and flexible to many reconfiguration criteria, whereas ours
is focused on particular types of models, that is requirements models.

Rainbow [1] is an architecture-based framework that enables self-adaptation on the
basis of (i) an externalized approach and (ii) software architecture models. The authors
of Rainbow consider architecture models as the most suitable level to abstract away
unnecessary details of the system, and their usage both design- and at run-time promotes
the reuse of adaptation mechanisms. Our proposal shares many features with Rainbow;
the main difference is that we use higher level models to support the ultimate goal of
any software system, that is to meet its requirements. A drawback of our choice is that
establishing traceability links between requirements and code is more complex.

Sykes et al. [14] propose a three-layer architecture for self-managed software [15]
that combines the notion of goal with software components. This approach is based on a
sense-plan-act architecture made up of three layers: goal management layer defines sys-
tem goals, change management layer executes plans and assembles a configuration of
software components, component layer handles reactive control concerns of the com-
ponents. Our proposal exploits a more elaborate goal representation framework, and
differs in planning (predefined plans instead of plan composition) and reconfiguration.

Wang’s architecture for self-repairing software [7] uses one goal model as a soft-
ware requirements model, and exploits SAT solvers to check the current execution log
against the model to diagnose task failures. We propose more expressive goal models,
accurate specification of tasks based on timed activity diagrams, allow for specifying
multiple contexts, and support dependencies on other actors / systems.

Feather et al. [2] address system behaviour deviations from requirements specifi-
cations; they introduce an architecture (and a development process) to reconcile re-
quirements with behaviour. This process is enacted by jointly anticipating deviations at
specification time and solving unpredicted situations at runtime, and examine the lat-
ter option using the requirements monitoring framework FLEA [16]. FLEA is used in
conjunction with the goal-driven specification methodology KAOS [3]. Our architec-
ture differs in the usage of different requirements models (Tropos rather than KAOS),
support to a wider set of failures ([2] is focused on obstacle analysis), and applicability
to scenarios composed of multiple interacting actors (such as AmI ones).

Robinson’s ReqMon [17] is a requirements monitoring framework for specific us-
age in enterprise systems. ReqMon integrates techniques from requirements analysis
(KAOS) and software execution monitoring. Although ReqMon’s architecture covers
all the reconfiguration process, accurate exploration is provided only for the monitor-
ing and analysis phases. Our approach has broader applicability, can diagnose a larger
set of failure types, and supports more reconfigurations mechanisms; on the contrary,
ReqMon is particularly suitable for enterprise systems.

8 Discussion and conclusion

We have proposed a novel architecture for self-configuring systems founded on princi-
ples adopted from Goal-Oriented Requirements Engineering, externalized adaptation,
and BDI paradigm. Our approach adds self-reconfiguration capabilities to a wide variety
of systems, among which Ambient Intelligence scenarios and Socio-Technical Systems.

The architecture is a model-based one, with requirements models used to specify what
can, should, and should not happen. We have detailed the main mechanisms for mon-
itoring and diagnosis, which describe how requirements models are checked against
monitored information. We also introduced a case study – smart homes – to show how
a realization of the architecture works in practice.

Several aspects will be addressed in future work. Firstly, we need a complete im-
plementation of our architecture, as well as further experimentation on the smart-home
case study. We also want to extend our framework so that it deals with a broader class of
monitored phenomena, including attacks and failures caused by false domain assump-
tions. Finally, we propose to introduce mechanisms through which a system can extend
its variability space through collaboration with external agents.

Acknowledgements
This work has been partially funded by EU Commission, through the SERENITY
project, and by MIUR, through the MEnSA project (PRIN 2006).

References
1. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow: architecture-

based self-adaptation with reusable infrastructure. Computer 37(10) (Oct. 2004) 46–54
2. Feather, M., Fickas, S., Van Lamsweerde, A., Ponsard, C.: Reconciling system requirements

and runtime behavior. In: IWSSD ’98. (1998) 50–59
3. Dardenne, A., Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. Science

of computer Programming (1993) 3–50
4. Emery, F.: Characteristics of socio-technical systems. London: Tavistock (1959)
5. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An agent-

oriented software development methodology. JAAMAS 8(3) (2004) 203–236
6. Rao, A., Georgeff, M.: An abstract architecture for rational agents. In: KR&R-92. (1992)

439–449
7. Wang, Y., McIlraith, S., Yu, Y., Mylopoulos, J.: An automated approach to monitoring and

diagnosing requirements. In: ASE ’07. (2007) 293–302
8. Jureta, I.J., Mylopoulos, J., Faulkner, S.: Revisiting the core ontology and problem in re-

quirements engineering. In: RE 08. (2008)
9. Ali, R., Dalpiaz, F., Giorgini, P.: Location-based software modeling and analysis: Tropos-

based approach. In: ER 2008. (2008) 169–182
10. Clark, J., et al.: Xsl transformations (xslt) version 1.0. W3C Recommendation 16(11) (1999)
11. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM Transactions on Database

Systems 22(3) (1997) 364–418
12. Dalpiaz, F., Giorgini, P., Mylopoulos, J.: An architecture for requirements-driven self-

reconfiguration. Technical Report DISI-09-010, DISI, University of Trento (2009)
13. Oreizy, P., Medvidovic, N., Taylor, R.: Architecture-based runtime software evolution. In:

ICSE 1998. (1998) 177–186
14. Sykes, D., Heaven, W., Magee, J., Kramer, J.: From goals to components: a combined ap-

proach to self-management. In: SEAMS 2008, ACM New York, NY, USA (2008) 1–8
15. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: ICSE 2007,

IEEE Computer Society Washington, DC, USA (2007) 259–268
16. Fickas, S., Feather, M.: Requirements monitoring in dynamic environments. In: RE ’95,

IEEE Computer Society Washington, DC, USA (1995) 140–147
17. Robinson, W.: A requirements monitoring framework for enterprise systems. Requirements

Engineering 11(1) (2006) 17–41

