
An Architecture for Runtime Evaluation of SoC Reliability ∗

Andreas Bernauer1, Oliver Bringmann2, Wolfgang Rosenstiel1,2

Abdelmajid Bouajila3, Walter Stechele3, Andreas Herkersdorf3

1WSI, Computer Engineering
University of Tübingen

D-72076 Tübingen
bernauer@informatik.

uni-tuebingen.de

2FZI
D-76131 Karlsruhe

{bringmann,
rosenstiel}@fzi.de

3Institute for Integrated Systems
University of Munich
D-80333 München

{A.Bouajila,Walter.Stechele,
A.Herkersdorf}@tum.de

Abstract: This paper presents an architecture to evaluate the reliability of a system-
on-chip (SoC) during its runtime that also accounts for the system’s redundancy. We
propose to integrate an autonomic layer into the SoC to detect the chip’s current condi-
tion and instruct appropriate countermeasures. In the autonomic layer, error counters
are used to count the number of errors within a fixed time interval. The counters’
values accumulate into a global register representing the system’s reliability. The ac-
cumulation takes into account the series and parallel composition of the system.

1 Introduction
The impending physical limits of CMOS technology lead to increasing process variability,
thermal problems, degradation effects, and sensitivity for stochastic events. Recently, Intel
[Bor05] presented a forecast about the development of critical device parameters. Random
dopant fluctuations and sub-wavelength lithography will lead to large variances of device
parameters, while dynamic effects like activity-based heat flux across the die and aging
lead to changing circuit performance and leakage power. Furthermore, the devices will be
increasingly sensitive for soft errors. These problems have been identified as the major
challenge to be solved within the next decade. Intel claims that “we need to evolve from
today’s deterministic design to probabilistic design for the future. The new design methods
have to guarantee reliable systems composed of less reliable components.”
Thus, we believe that future systems-on-chip (SoCs) have to adapt dynamically to chang-
ing internal and external requirements. The probabilistic design principle claimed in
[Bor05] is a step in the right direction. However, the static fault and reliability models
apply for average-case analysis and not for determining the actual condition of a particular
chip, especially not during runtime.
This paper presents an architecture that allows the chip to evaluate its current reliabil-
ity during runtime which is used as a measure of the dynamically changing chip condi-
tion. The chip becomes able to react to de- or increasing reliabilities and to signal an
approaching total failure, thus allowing pro-active actions. Current reliability evaluations
either are carried out during runtime but don’t take the system’s redundancy into account

∗This work is partially funded by Deutsche Forschungsgemeinschaft, Priority Program Organic Computing
(SPP 1183) under the grants HE 4584/3-1 and RO 1030/14-1.

177

(e. g. [MFQX02]) or are carried out only during design time [SMM05]. Unlike other error
detection mechanisms which focus mainly on identifying faulty parts, e. g. IBM’s Power5
processor-based servers, our approach focuses on the degeneration of the chip over time, as
part replacement is not an option for SoCs. Our proposed architecture calculates the error
probability of a particular SoC and accounts for the system’s redundancy. If the system’s
structure changes due to failed components or deliberate reconfigurations, the evaluation
is still applicable.
The runtime reliability evaluation allows us to integrate autonomic system properties like
self-organization, -optimization and -healing to tackle the following challenges:

• Designing SoCs that can live with/work around faults to prevent system failure
• Dynamic balancing of the power, performance, reliability and security trade-off
• Adapting to changing environment
• Adapting to unpredictable faults (e. g. soft errors)

In order to spend only little overhead to integrate autonomic concepts on the die, our
approach is based on the Autonomic SoC architecture presented in [LHR+05]. Our paper
focuses on the dynamic evaluation of the chip reliability and not on autonomic concepts to
manage critical reliability values. Section 2 explains the Autonomic SoC architecture in
more detail. Section 3 shows how the reliability of the chip is calculated. Section 4 shows
the proposed architecture in detail. Section 5 presents the augmentation of a SoC with an
autonomic layer. The architecture is discussed in the concluding Section 6.

2 General concept

Figure 1. SoC layers

In [LHR+05] the authors present an architecture
that augments a conventional system-on-chip with
a layer of autonomic elements to increase the sys-
tem’s dependability (Figure 1). The autonomic el-
ements (AEs) in the autonomic layer monitor the
function of the SoC layer, evaluate its current status
and act on it according to a given goal, e. g. keep-
ing a certain level of dependability. The actions of
the AEs lead to a local error correction, a change
of the system’s parameters, a reconfiguration of the
system, or—as a fall-back if the countermeasures
show no effect—a signal for the application indicat-
ing undesired circumstances like a component that
is likely going to fail permanently. The acceptable
component reliabilities depend on the particular ap-
plication. It can enforce the thresholds either by
periodically monitoring the system’s reliability register (see below) or by using dedicated
hardware that provides an appropriate interface for setting the threshold and signaling.
This paper focuses on the evaluation of the monitors. One class of monitors are error de-
tectors. References [BBH+06, INKM05] give a review of error detectors which may serve
as AE monitors, summarized in Table 1. The main property of error detectors applicable

178

Table 1. Monitors that are usable in AEs and can be evaluated in hardwarea

Technique Architecture Redundancyb

Sequential logic
Built-in SERc [MSZ+05] Reuse scan flip-flop from test circuit as redundant storage H
Shadow latch [Nic99] Shadow latch rereads protected latch’s input after a delay T
Combinatorial logic
Duplication / self-checker Duplicate combinational logic or generate codes (residual

codes, Hamming codes, parity)
H, I

Razor [EKD+03] Shadow latch rereads protected latch’s input after a delay to
allow for dynamic voltage scaling

H

Architecture
DIVA [WA01] Additional pipeline stage checks and skips over processor

results by recomputing with a simpler checker processor
H, T

modified DIVA
[BBH+06]

Like DIVA, but without skipping over and eliminated struc-
tural hazards

H, T

AR-SMTd [Rot99],
SRTRe [VPC02]

Execute program twice in a parallel thread T

Dual use of superscalar
paths [RHF01]

Execute program twice by duplicating instructions when dis-
patching

H

aadapted from [INKM05, BBH+06] bH: Hardware, T: Time, I: Information cSER: Soft error resilience d AR-SMT:
Active-stream/Redundant-stream Simultaneous Multi-threading eSRTR: Simultaneously and Redundantly Threaded
processors with Recovery

Int2

Int1

LS

FP
EXE

IF MEMID WB
Int2

Int1

LS

FP
EXE

IF MEMID WB

CPU1 CPU2

Bus
FPGA

Memory

Network I/O

Figure 2. SoC with simplified depiction of the pipeline stages of the RISC processors. IF,ID:
instruction fetch, decode; EXE: execution stage; Int1, Int2: integer unit 1,2; LS: load/store unit;
FP: floating point unit; MEM: memory access; WB: write back stage

for an AE is—besides actually detecting errors—that the detection can be carried out as a
signal and thus can be logged and evaluated.
As an example for a system with error detectors, consider Figure 2 which depicts a SoC
with two CPUs, memory, network I/O, an FPGA and a bus connecting these components.
Some more logic is not depicted. The EXE stage of the CPUs consists of two integer units,
a floating point unit and a load/store unit. Clearly, if one of the two integer units in one
CPU fail irrecoverably, this CPU can still operate (though with reduced performance) if
its dispatcher is adjusted accordingly.

3 Reliability
The overall reliability of the SoC results from the dependence structure of the SoC’s com-
ponents and the reliability of the particular components. The dependence structure can

179

OR

N

M

B

Total failure
of Soc

AND

C1 C2AND

F C2AND

FC1

OR

Total failure
of CPU i

IF ID EXE stage
fails

WB MEM

OR

LSFPAND

Int1 Int2

Figure 3. Fault tree of SoC from Figure 2. Left: Fault tree on component level. Right: Fault tree
on subcomponent level in each CPU. N: Network; M: Memory; B: Bus; C1,C2: CPU1, CPU2; F:
FPGA; IF, ID, Int1, Int2, WB, MEM: pipeline stages, see Figure 2. ‘OR’ collects components in
series composition, ‘AND’ components in parallel composition

be deduced from the fault tree of the system (e. g. in Figure 3) determined during design
time. The reliability of a particular component is usually derived from analysis of the
failure data of several copies of that component. This is not feasible on a SoC, as there
are no several copies on a particular chip. Instead, we repeatedly test a single component
several times. This will result in the same reliability value as testing several copies of the
component if (a) the tests are independent (they don’t change the component) and (b) the
single component represents an average component.
Assumption (a) is violated in general, as we assume the components to degenerate over
time. However, we may neglect the effect of degeneration during test time, as the time
scale of degeneration is much larger than the time scale for testing. Assumption (b) is
valid, as we are interested in the failure data of only this particular component, which of
course is its own average.
Our proposed architecture records the errors of a component during a fixed time period
T = nΔt with Δt being the length of a clock cycle. If the component C shows r errors
during T , Pf (C) = r

n is an estimate for the probability that the component shows an error
in a clock cycle. Note that a component can show at most n errors in T as an error can be
detected only every clock cycle.
The reliability RS(t) of a system S is the probability that the system will work successfully
at least until time t:

RS(t) = P(t > t)

where t is the random variable of the failure time. The two basic compositions describing
the reliability structure of a system in terms of the reliability of its components are series
and parallel composition. Equation (1) shows the error probability of a system in series
composition S = AB, (2) shows the error probability of a system in parallel composition
S = A + B in which A and B work redundantly, and (3) shows the error probability of a
system in parallel composition S = i=1...k Ai, in which at each Δt only one of the Ai is

180

used with probability wAi .

Pf (AB) = Pf (A)+Pf (B)−Pf (A,B) (1)
≈ Pf (A)+Pf (B) (1b)

Pf (A+B) = Pf (A)Pf (B) (2)

Pf
i=1...k

Ai =
1
k ∑

i=1...k
wAiPf (Ai) (3)

Pf (A,B) in (1) is the probability that A and B fail at the same time. As errors happen
rarely, we may assume Pf (A,B) ≈ 0 (thus ignoring common mode failures). This avoids
extra hardware that counts for Pf (A,B) and allows all error signals of a series composition
to be OR-ed together. Note that in (2), A and B are assumed to fail independently, but may
still fail at the same time.
Recursive application of the equations (1)–(3) allows for compositions of any size and
structure and gives an estimate for the error probability Pf (S) of a system in a clock cycle.
Thus, the probability RS(T) = P(t > T) that the system will work successfully at least
until T = nΔt is (with mn(x) = (1− x)n)

Rs(T) = P(t > T) = (1−Pf (S))n = mn(Pf (S))

As mn is a monotonic function, Pf (S) alone suffices as a measure of the system reliability:
the higher Pf (S) the lower the overall system reliability.

4 Architecture
We add error counters to each monitor (or in the case of a series composition, a set of
monitors), e. g. in Figure 4. After T elapses, the error counter values are read into a buffer,
which now give the error probability of the monitored component in multiples of 1

n during
Δt. While the error counters continue to count, a simple accumulator based reliability
calculator calculates the system error probability. What follows is a detailed description
of the architecture.
Time measurement is done preferably by counting clock cycles, e. g. as done in the PPC440x5.
The following constraints exist:

• The number of cycles n must be a power of two, n = 2m,m ∈ {1,2, . . .}: to stay
comparable to other probabilities, the error probability of parallel components has
to be divided by n (as Pf (A + B) = ab

n2 = ab/n
n), which is easily done by shifting if

n = 2m.

• The time interval must be both large enough to allow for some errors to be counted
and small enough to allow for timely reactions to increasing error counts. This
depends on the actual component failure rates and the application.

• The time interval must be chosen so that it can be most closely approximated by the
clock counters in the different clock domains and still meet the other constraints.
If there are d clock domains with frequencies f1, f2, . . . , fd , the timers will measure
the same absolute time period if they count to ci = fi

gcd(f1, f2,..., fd)
.

181

>1

R R R R

Register

err

& Counter

resetCen

n

Figure 4. Error counter attached to error detec-
tors (here: Razor elements, denoted by ‘R’)

Ci

Micro−

code

Temp

ALU

Buffer

AccOp

Figure 5. Accumulator to calculate
Pf (S)

The error probabilities of the different clock domains have to be put on a common ba-
sis by multiplication and/or shifting before they are subsumed, e.g. Pf ,180 MHz(S1) = 3 ·
Pf ,60 MHz(S2) as 3 ·Δt180 MHz = Δt60 MHz. In this case, the reliability calculator needs an
extra temporary register (see below).
The following sequence leads to the calculation of Pf (S) (see also Figure 4 and 5):

1. T elapses.
2. Set en of all error counters to low. No errors are counted from now on.
3. Wait until any (ripple) error counter is stable.
4. Read the counters into a (common) buffer.
5. Reset the counters.
6. Set en of all error counters to high. Errors are counted again from now on.
7. Calculate Pf (S), a measure of the SoC reliability.

As errors are usually rare, missing to count the errors between en = low and en = high
won’t introduce a large error. As T is large, the reliability calculation can easily finish in
time. Note that the reliability calculation and error counting take place at the same time.
The proposed reliability calculator is depicted in Figure 5. The microcode controls which
error counter is loaded and which operation the ALU executes. From equations (1b)–(3)
follows that the operations addition, multiplication and shifting suffice to calculate Pf (S)
if k is a power of two.
The microcode to calculate Pf (S) can be deduced from the annotated fault tree. The an-
notation identifies parallel components that do the same at the same time (as in (2)) or
at different times (as in (3)). Using the associative law, the fault tree is minimized such
that no two OR or AND operations follow each other. The longest path between any
two operations is the amount of Temp registers the accumulator needs. Finally, using the
commutativity law, the subtrees of every node are reordered by their depth in descending
order, every OR is replaced with addition and every AND with multiplication or weighted
averaging depending on the annotation. Assuming Acc = 0 at the beginning, traversing
the tree in a depth-first way gives the microcode: every leaf (terminal) is loaded into the
left operand and the last seen operation is performed. For averaging, a final averaging
operation is added. A completed subtree is treated as a leave whose value is stored in a
previously chosen and fixed Temp register. In the end, Acc holds Pf (S), a measure for the
system’s reliability. We call Acc the reliability register.
If a component C shows a permanent, unrecoverable error, the error counter of C or the
series C is a part of is permanently set to n (i. e. Pf (C) = 1), respectively. The following
measures avoid over- and underflow: saturating error counters, addition as well as multi-

182

Int2

Int1

LS

FP
EXE

OR

n
en

Counter C1

Reliability
Calculator

n
en

Counter C3

n
en

Counter C2
IF MEMID WB

reset

err

Figure 6. Pipeline stages (gray) with attached error counters (black) and reliability calculator
(see Figure 5)

plication, and a special right shift operation whose result is at least one, if the shifted value
is non-zero (overestimating the error probability by at most 1

n for each component in series
composition).

5 Implementation
We show how our proposed architecture can be added to the SoC presented in Figure 2.
It uses the following error detectors from Table 1: parity protection for memory, error
correcting codes for the bus and Razor for the pipeline registers in the CPU. All error
signals of a CPU except for the integer units are OR-ed together in a single error counter,
as they are in a series composition. The error signals of the integer units are counted
separately. The resulting architecture for the five pipeline stages of the CPU is presented
in Figure 6. Only the CPUs need reliability calculators, as the other modules have only a
single error counter. However, every module has its own error counter buffer. After the
time intervals in each clock domains elapse, the sequence given in Section 4 is run.
The calculation of Pf (CPU) is calculated as follows. The deepest subtree for a CPU is the
parallel composition of its integer units (see Figure 3). Thus, after zeroing its registers, the
reliability calculator in a CPU first reads the error counter C1 from the buffer and adds it to
Acc. It then reads C2, adds it to Acc and shifts the result by m and 2. Finally, the calculator
adds C3 to Acc, which now contains the probability that the CPU will fail in the next time
interval.
After calculating Pf (CPU), Pf (S) will be calculated. This particular system depends on
at least one working CPU and a working bus, thus we can use the bus to transfer the
error counter values to a working CPU. Alternatively, we could use a dedicated bus and
reliability calculator. The error counter values are read into the buffer and calculation
follows the expression derived from the fault tree given left in Figure 3. Finally, Pf (S) is
stored in Acc. This register can either be sent to the actuators of the autonomic elements
or read by the application.

6 Discussion
We showed how a SoC can be augmented by a layer of autonomic elements which monitor
the functional part of the SoC and evaluate the SoC’s current status. The status evaluation
is based on the calculation of the SoC’s error probability for a clock cycle and is performed
purely in hardware. The necessary assumptions to allow for simple calculations are that

183

no two components in series composition fail at the same time, components in parallel
composition fail independently and an appropriate time interval can be chosen to meet the
constraints mentioned in Section 4.
The assumption on the occurrence of errors ignores common mode failures, as current
reliability evaluation tools do, too. Another problem results from compositions where r out
of n components must work successfully for the system to work successfully. While this
composition can be modeled with the proposed architecture (see Figure 3), the number of
necessary calculations increase rapidly (namely like n!). It may be possible to approximate
such compositions by an appropriate function.

References
[BBH+06] Abdelmajid Bouajila, Andreas Bernauer, Andreas Herkersdorf, Wolfgang Rosenstiel,

Oliver Bringmann, and Walter Stechele. Error Detection Techniques Applicable in
an Architecture Framework and Design Methodology for Autonomic SoCs. In Proc.
Biologically Inspired Cooperative Computing, 2006.

[Bor05] Shekhar Borkar. Designing Reliable Systems From Unreliable Components: The Chal-
lenges of Transistor Variability and Degradation. IEEE Micro, 25(6):10–16, Novem-
ber/December 2005.

[EKD+03] Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Toan Pham, Rajeev Rao,
Conrad Ziesler, David Blaauw, Todd Austin, Trevor Mudge, and Krisztián Flautner.
Razor: A Low-Power Pipeline Based on Circuit-Level Timing Speculation. In Proc.
36th Intl. Symp. Microarch., pages 7–18, December 2003.

[INKM05] Ravishankar K. Iyer, Nithin M. Nakka, Zbigniew T. Kalbarczyk, and Subhasish Mi-
tra. Recent Advances and New Avenues in Hardware-Level Reliability Support. IEEE
Micro, 25(6):18–29, November/December 2005.

[LHR+05] Gabriel Lipsa, Andreas Herkersdorf, Wolfgang Rosenstiel, Oliver Bringmann, and Wal-
ter Stechele. Towards a Framework and a Design Methodology for Autonomic SoC. In
2nd ICAC, June 13-16 2005.

[MFQX02] Indrajit Manna, Lo Ken Foo, Guo Qiang, and Zeng Xu. Test Structures for On-Chip
Real-Time Reliability Testing. U.S. Patent no. US 6724214 B2, April 2002.

[MSZ+05] Subhasish Mitra, Norbert Seifert, Ming Zhang, Quan Shi, and Kee Sup Kim. Ro-
bust System Design with Built-In Soft-Error Resilience. IEEE Computer, 38(2):43–52,
February 2005.

[Nic99] Michael Nicolaidis. Time Redundancy Based Soft-Error Tolerance to Rescue Nanome-
ter Technologies. In Proc. 17th IEEE VLSI Test Symposium, pages 86–94, 1999.

[RHF01] Joydeep Ray, James C. Hoe, and Babak Falsafi. Dual Use of Superscalar Datapath for
Transient-Fault Detection and Recovery. In Proc. 34th Ann. Int. Symp. Microarchitec-
ture (Micro-34), pages 214–224. IEEE Press, 2001.

[Rot99] Eric Rotenberg. AR-SMT: A Microarchitectural Approach to Fault Tolerance in Mi-
croprocessors. In Digest of Papers of the 29th Annual International Symposium on
Fault-Tolerant Computing, June 1999.

[SMM05] Tajana Simunic, Kresimir Mihic, and Giovanni De Micheli. Optimization of Reliability
and Power Consumption in Systems on a Chip. Integrated Circuit and System Design,
pages 237–246, 2005.

[VPC02] T. N. Vijaykumar, Irith Pomeranz, and Karl Cheng. Transient-Fault Recovery Using Si-
multaneous Multithreading. In Proc. 29th Annual Int. Symp. on Computer Architecture,
May 2002.

[WA01] Chris Weaver and Todd Austin. A Fault Tolerant Approach to Microprocessor Design.
In Proc. Intl. Conf. Dependable Systems and Networks, pages 411–420, July 2001.

184

