
An Architecture zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor Sensor Fusion
in a Mobiie Robot zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Steven A. Shafer, Anthony Stentz,
and Charles E. Thorpe

CMU-RI-TR-86-9

The Robotics Institute
Carnegie-Melicn University

Pittsburgh, Pennsylvania 1 521 3

April 1986

Copyright @ 1986 Carnegie-ltiellon University

This research was supported zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAby the Defense Advanced Research Project Agency, DoD, through
ARPA Order 5351, and monitored by the U.S. Army Engineer Topographic Laboratories under
contract DACA76-85-C-0003. Views and conclusions contained in this document are those of the
authors and should not be interpreted as representing official policies, either expressed or implied, of
the Defense Advanced Research Projects Agency or the United States Government.

Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
This paper describes sensor fusion in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe context of an autonomous mobile robot, the NAVLAB

system, based on a cornmercial truck with computer controls and studded with cameras and other

sensors. This paper describes the software architecture of the NAVLAB, consisting of two parts: a

"whiteboard" system called CODGER that is similar to a blackboard but supports parallelism in the

knowledge source modules, and an organized collection of perceptual and navigational modules tied

together by the CODGER system.

i

Table of Contents

1. Introduction

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. l The NAVLAB Vehicle

2. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACODGER Whiteboard System zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.1 Blackboards and Whiteboards

2.2 Data Storage and Retrieval

2.3 Synchronization Primitives

2.4 Summary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the CODGER Whiteboard System

3. Module Architecture of the NAVLAB System
3.1 The CAPTAIN and Mission Descriptions

3.2 The LOOKOUT
3.3 The MAP NAVIGATOR and Route Planning

3.4 The PILOT and Driving Control

3.5 The PERCEPTION Subsystem

4. Methods zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor Sensor Fusion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5. Conclusions

6. Bibliography

5.1 Acknowledgements

1

2
4

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7

9

9

10

11

12

14

1 8

21

21

22

a

ii

Figure 1 - 1 :

Figure 1-2:

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2- 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA:
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3- 1 :
Figure 3-2:

Figure 3-3:

Figure 3-4:

Figure 3-5:

Figure 3-6:

Figure 3-7:

kist of Figures

Sketch zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the NAVLAB Vehicle
On-board Computing Facilities
Process Structure of the System
NAVLAB Software Block Diagram
Mission Description
The MAP NAVIGATOR Subsystem
The PILOT Subsystem
The Driving Pipeline in Action
The PERCEPTION Subsystem Plan
Future PERCEPTION Subsystem Plan

2
3
4
9

10
11

12
14
15
16

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIntroduction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Robot perception in real-world domains requires systein architecture support not found in simpler

robot systems. In the most typical mobile robots of the past, for example, the system contains one

visual sensor and a simple motion encoding mechanism; planning and perceptual proceqsing are

performed off-line by a single mainframe CPU with telecomniunications to the vehicle; and the control

program resembles a simple aim-and-steer loop performing some sophisticated variation of visual

servoing [14, 19, 201. These architectural features cannot support perception and control in complex

outdoor environments with very general task specifications.

In such more complex systems, there is a need for multiple sensors. No single system, such as a

camera, a laser rangefinder, or sonar array, can provide a map of the environment with sufficient

resolution and reliability to control a vehicle on a complex mission. For example, a mission might

require avoiding obstacles on the roadway, which is best performed with a 3-D sensor such as a

rangefinder; the same mission might require steering towards some distant landmark such as a

telephone pole on the horizon, which is probably beyond the the effective range of a rangefinder yet

is easily detected by a TV camera. This type of trade-off occurs at all scales of perception, and the

only solution currently available is to incorporate multiple sensors on a single vehicle.

As soon as multiple sensors are employed, the system architecture requirements become very

demanding. I f a single processor is used, perceptual processing will swamp it and real-time control is

probably out of the question. However, if multiple processors are used, the processing times may

vary from one sensor to the next and so some loose, asynchronous coupling mechanism must be

employed. Geometric reasoning and transformations become fundamental because sensor data from

different times and vantage points must be integrated into a single coherent interpretation.

Furthermore, since perception, planning, and control are all problems currently being studied, the

system design may change rapidly and a very modular design methodology is needed.

At the CMU Vision Lab robot perception and control is studied in the context of a mobile robot

vehicle, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANAVLAB [l 11. The NAVLAB has a number of sensors, with several processors on board.

A distributed modular software system is being built, based on a central database called CODGER.

This paper describes the CODGER database/communication system, the NAVLAB vehicle and

system block diagram, and some issues inherent in sensor fusion - - the integration of multiple sensors

in a single system.

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.I The NAVLAB Vehicle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

AT/-

Figure 1 - 1 : Sketch of the NAVLAB Vehicle

The NAVLAB vehicle (Figure 1-1) is a commercial truck modified by adding sensors, electronic

controls, and on-board computers and power generators. It will be completely self-contained,

requiring neither a cable tethering it to an off-board mainframe computer, nor an electronic

telecommunications tether. Telecommunications gear is present for data recording and tele-

operation, but is not required for computer control of the vehicle.

The control systems of the vehicle include computer control of a hydraulic drivelbraking system,

computer control of the steering wheel, and processors to monitor and control engine functions. A

global system clock and a processor maintain a primitive vehicle position estimate based on dead

reckoning. An inertial navigation system is also on-board.

3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The sensors on the vehicle include a pan/tilt head with a pair of stereo color cameras on a 6-foot

baseline, an ERlM laser rangefinder on a pan/tilt mount, and sonar sensors for a "soft bumper.'' For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
special purposes, additional cameras may be mounted in various places, such as fixed cameras for

identifying objects at the roadside. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E t h e r n e t

l o c a l Map D a t a b a s e
and
P1 ann i ng 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASUN

K e y b o a r d / D i s p l a y D i s k

Sonar
and
N a v i g a t i o n 1

1

Sonar D i s k

V i s i o n

Cameras P a n / T i l t WARP

Range A n a l y s i s

R a n g e f i n d e r P a n I T i l t

Figure 1-2: On-board Computing Facilities

The vehicle contains on-board general-purpose computing facilities as well. There are four

workstations connected by an Ethernet (Figure 1-2). Each workstation has a function dictated by the

sensors to which it is connected, and sensor-independent planning tasks can be performed on any of

them. There is a plan to put at least one WARP array (high-speed parallel machine) on board for

vision [12]. Programming for all the workstations takes place in C or LISP with the UNlX operating

system. Access to sensor data and vehicle control processors, which reside on the Ethernet, takes

place through a set of subroutines called the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvirtual zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvehicle that are accessible to the perceptual and

planning programs on the workstations.

As can be seen, the NAVLAB system provides a battery of sensors and control functions, a suite of

general-purpose and special-purpose processors, and a complex processing task to be carried out in

real-time, albeit slowly. The remainder of this paper describes the software architecture being used to

implement this system. Since perception is by far the most demanding aspect of the system, special

attention will be given to existing and planned mechanisms for supporting highly competent

perception.

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2. The CODGER Whiteboard System

The system will consist zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof several relatively large zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmodules, which are independently running

programs performing large pieces of the computation in the system. For example, "map navigation"

and "road-edge finding by stereo vision" will be modules in the system. Relatively few, large-yrain

modules are used because of the overhead costs of communication and because real parallelisrn is

limited by the number of workstations on board. Tying these modules together is a communications

system aiid database called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACODGER (COrnmunications Database with GEometric Reasoning) [18j.

We call CODGER a whiteboard because, as described below, it resembles a traditional "blackboard"

but with some significant new features-parallel execution of modules and geometric reasoning.

2.1 Blackboards and Whiteboards zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Loca l M a p D a t a b a s e -
Loca l Map B u i l d e r (LME)

I.MB I n t e r f a c e L.MR I n t e r f a c e

S e n s o r M o d u l e 1

-
Nav iga t i on M o d u l e 2

Nav iga t i on M o d u l e 1 S e n s o r M o d u l e 2

LME I n t e r f a c e

I P l a n n i n g M o d u l e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 2- 1 : Process Structure of the System

The program organization of the NAVLAB software is shown in Figure 2-1. Each of the major boxes

represents a separately running program. The central database, called the Local Map, is managed by

a program known as the Local Map Builder (LMB). Each module stores and retrieves information in

the database through a set of subroutines called the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALM5 Interface which handle all communication

and synchronization with the LMB. If a module resides on a different processor than the LMB, the

LMB and LMB Interface will transparently handle the network communication. The Local Map, LME,

and LMB Interface together comprise the CODGER system.

The overall system structure-a central database, a pool of knowledge-intensive modules, and a

database manager that synchronizes the modules--is characteristic of a traditional blackboard system

[3]. Such a system is called "heterarchical" because the knowledge is scattered among a set of

5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
modules that have access to data at all levels of the database (i.e., low-level zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAperceptual processing

ranging zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAup to high-level mission plans) and may post their findings on any level of the database; in

general, tieterarctiical systems impose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAde facto structuring of the information flow among the

modules of the system. In a traditional blackboard, there is a single flow of control managed by the

database (or blackboard) manager. The modules are subroutines, each with a predetermined

precondition (pattern of data) that must be satisfied before that module can be executed. The

manager keeps a list of which modules are ready to execute, and in its central loop it selects one

module, executes it, and adds to its ready-list any new modules whose preconditions become

satisfied by the currently executing module. The system is thus synchronous and the manager's

function is to focus the attention of the system by selecting the "best" module from the ready-list on

each cycle.

We call CODGER a whiteboard because it also implements a heterarchical system structure, but

differs from a blackboard in several key respects. In CODGER, each module is a separate,

continuously running program; the modules communicate by storing and retrieving data in the central

database. Synchronization is achieved by primitives in the data retrieval facilities that allow, for

example, for a module to request data and suspend execution until the specified data appears. When

some other module stores the desired data, the first module will be re-activated and the data will be

sent to it. With CODGER a module programmer thus has control over the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAflow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof execution within his

module and may implement real-time loops, daemons, data flows among cooperating modules, etc.

CODGER also has no pre-compiled list of data retrieval specifications; each time a module requests

data, it provides a pattern for the data desired at that time. We call such a system a whiteboard--it is

heterarchical like a blackboard, but each module runs in parallel with the module programmer

controlling the synchronization and data retrieval requests as best suited for each module. Like other

recent distributed AI architectures, whiteboards are suited to execution on multiple processors

[I , 4,61.

2.2 Data Storage and Retrieval

Data in the CODGER database (Local Map) is represented in tokens consisting of classical

aftribute-value pairs. The types of tokens are described in a template file that tells the name and type

of each attribute in tokens of each type. The attributes themselves may be the usual scalars (integers,

floating-point values, strings, enumerated types), arrays (or sets) of these types (including arrays of

arrays), or geometric locations as described below. CODGER automatically maintains certain

attributes for each token: the token type and id number, the "generation number" as the token is

modified, the time at which the token was created and inserted into the database, and the time at

6

which the sensor data was acquired that led to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt he creation of this token. The LMB Interface provides

facilities for building and dissecting tokens and attributes within a module. Rapid execution is

supported zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAby niapping the module programmer's names for tokens and attributes onto globr?lly used

index values at system startup time. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A module can store a token by calling a subroutine to send it to the LMB. Tokens can be retrieved

by constructing a pattern called a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAspecification and calling a routine to request that the LMB send

back tokens matching that specification. The specification is simply a boolean expression in which

the attributes of each token may be substituted; if a token's attributes satisfy the boolean expression,

then the token is sent to the module that made the request. For example, a module may specify:
tokens with type equal to "intersection" and traffic-cont rot equal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto "stop-sign"

This would retrieve all tokens whose type and traffic-control attributes satisfy the above conditions.

The specification may include computations such as mathematical expressions, finding the minimum

value within an array attribute, comparisons among attributes, etc. CODGER thus implements a

general database. The module programmer constructs a specification with a set of subroutines in the

CODGER system.

One of the key features of CODGER is the ability to manipulate geometric information. One of the

attribute types provided by CODGER is the location, which is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 2-0- or 3-0 polygon and a reference to

3 coordinate frame in which that polygon is described. Every token has a specific attribute that tells

the location of that object in the Local Map, if applicable, and a specification can include geometric

calculations and expressions. For example, a specification might be:

tokens with location within 5 units zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof (45,32) [in world coordinates]

or

where X is a description of a rectangle on the ground in front of the vehicle. The geometric primitives

currently provided by CODGER include calculation of centroid, area, diameter, convex hull,

orientation, and minimum bounding rectangle of a location, and distance and intersection

calculations between a pair of locations. We believe that this kind of geometric data retrieval

capability is essential for supporting spatial reasoning in mobile robots with multiple sensors. We

expect geometric specifications to be the most common type of data retrieval request used in the

NAVLAB.

fokens with location overlapping X

CODGER also provides for automatic coordinate system maintenance and transformation for these

geometric operations. In the Local Map, all coordinates of location attributes are defined relative to

WORLD or VEHICLE coordinates; VEHICLE coordinates are parameterized by time, and the LMB

7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
maintains a time-varying transformation between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWORLD and VEHICLE coordinates. Whenever new

information (i.e., a new VEHICLE-to-WORLD transform) becomes available, it is added to the

"history" maintained in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALMB; the LMB will interpolate to provide intermediate transformations as

needed. In addition to these basic coordinate systems, the LMB Interface allows a module

programmer to define zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlocal coordinates relative to the basic coordinates or relative to some other

local coordinates. Location attributes defined in a local coordinate system are autbmatically

converted to the appropriate basic coordinate system when a token is stored in the database.

CODGER provides the module programmer with a conversion routine to convert any location to any

specified coordinate system.

All of the above facilities need to work together to support asynchronous sensor fusion. For

example, suppose we have a vision module A and a rangefinder module B whose results are to be

merged by some module C. The following sequence of actions might occur:

1. A receives an image at time 10 and posts results on the database at time 15. Although the
calculations were carried out in the camera coordinate system for time 10, the results are
automatically converted to the VEHICLE system at time 10 when the token is stored in the
database.

2. Meanwhile, 8 receives data at time 12 and posts results at time 17 in a similar way.

3. At time 18, C receives A's and 6 s results. As described above, each such token will be
tagged with the time at which the sensor data was gathered. C decides zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto use the vehicle
coordinate system at time 12 (B's time) for merging the data.

4. C requests that A's result, which was stored in VEHICLE time 10 coordinates, be
transformed into VEHICLE time 12 coordinates. If necessary, the LMB will automatically
interpolate coordinate transformation data to accomplish this. C can now merge A's and
6's results since they are in the same coordinate system. At time 23, C stores results in
the database, with an indication that they are stored in the coordinate system of time 12. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2.3 Synchronization Primitives

CODGER provides module synchronization through options specified for each data retrieval

request. Every time a module sends a specification to the LMB to retrieve tokens, it also specifies

options that tell how the LMB should respond with the matching tokens:

0 Immediate Request. The module requests all tokens currently in the database that match
this specification. The module will block (Le., the "request" subroutine in the LMB
Interface will not return control) until the LMB has responded. If there are no tokens that
match the specification, the action taken is determined by an option in the module's
request:

o Non-Blocking. The LMB will answer that there are no matching tokens, and the

8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
module can then proceed. This would be used for time-critical modules such as
vehicle control. Example: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"Is there a stop sign?"

o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABlocking. The LMB will record this specification and compare it against all
incoming tokens. When a new token matches the specification, it will be sent to the
module and the request will be satisfied. Meanwhile, the module will remain
blocked until the LMB has responded with a token. This is the type of request used
for setting up synchronized sets of communicating modules: each one waits for the
resul:s from the previous module to be posted to the database. Example: "Wake
me up when you see a stop sign."

0 Standing Request. The module gives a specification along with the name of a subroutine.
The module then continues running; the LMB will record the specification and. compare it
with all iiicoming tokens. Whenever a token matches, it will be sent to the module. The
LMB Interface will intercept the token and execute the specified subroutine, passing the
token as an argument. This has the effect of invoking the given subroutine whenever a
token appears in the database that matches the given specification. It can be used at
system startup time for a module programmer to set up "daemon" routines within the
module. Example: "Execute that routine whenever you see a stop sign." zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2.4 Summary of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACODGER Whiteboard System

CODGER implements a "whiteboard" with these properties:
heterarchical system like a traditional blackboard

0 parallel asynchronous execution of large-grain modules
0 communication and synchronization via a central database
0 transparent networking between processors
e no pre-compilation of data retrieval specifications
0 module programmer controls flow of execution through each module

In addition, CODGER provides geometric retrieval via:
0 geometric objects and search specifications
0 time-dependent coordinate transformations

Such a communications/database system does not, of course, solve any sensor fusion problems.

What CODGER does is to give the module programmer a simple, powerful system interface to allow

more attention to be devoted to the perceptual and planning research problems.

9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPr’lodkrle Architecture zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the N A V L A B System

The NAVLAB software consists of a number of modules performing planning and perception, and

communicating with each other via the CODGER whiteboard system. The modules are shown in

Figure 3-1 as a system block diagram. In this diagram, each box represents one cr more cooperating

programs; all the lines between boxes represent information flows via the CODGER database.

Human a s s i g n i n g m i s s i o n

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACAPTAIN

V i r t u a l v e h i c l e (S e n s o r s a n d M o t o r s)

Figure 3- 1 : NAVLAB Software Block Diagram

It is important to bear in mind that the computational load of the NAVLAB occurs almost entirely

within the PERCEPTION subsystem. All the other modules from CAPTAIN to PILOT and LOOKOUT

are planning modules whose computational requirements are really negligible when compared to that

of PERCEPTION. The planning portions of the system are described here because they form a rich

context that constrains the perceptual task in important ways that will be discussed. The planning

system itself is still quite simple; in the future we will devote effort to replacing it with a more powerful

reasoning system.

To speed up PERCEPTION, we use special hardware such as the WARP; the planning system

executes on general-purpose machines.

3.1 The CAPTAIN and Mission Descriptions

At the upper level of the system is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACAPTAlN module that receives mission instructions from the

controlling person and oversees the mission. The mission description itself is a sort of program; the

entire NAVLAB can be thought of as a computing engine that will evaluate and carry out the program

specified in the mission.

10

step zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1:

go to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdestination via constraint
at end do action
i f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtrigger zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdo aciion
. . .

step 2:
. .

Figure 3-2: Mission Description

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3-2 illustrates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhow a mission might be described. The mission consists of a number of steps,

and t h e CAPTAIN seqilences through the steps. For each step, there is a destination that tells where

to go and/or a constraint that tells how to go. For example, the instruction "go to St. John's church"

gives a destination; "go via Road C" gives a constraint; "go to St. John's church via Road C" gives

both. Each step of the mission also has an action to be performed when the destination is reached;

this may be to report success of the mission, report failure, or go to another step of the mission.

In addition to the destination, which tells where to drive, each mission step may have one or more

trigger conditions that tell what to be looking for along the way. For each trigger, there zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis an action

(success, failure, or new step) to take i f the condition is satisfied. The trigger may be a perceptual cue

such as "if you see a church," or a positional condition such as "if you travel 5 miles."

For each mission step, the CAPTAIN passes the destination and constraint to the MAP NAVIGATOR,

whose role it is to drive the vehicle accordingly, and the CAPTAlN passes the trigger conditions to the

LOOKOUT, which will issue appropriate perceptual requests and monitor the database. These form

the mission-level control and perception functions of the NAVLAB system.

3.2 The LOOKOUT

The LOOKOUT is a simple module that receives trigger condition specifications from the CAPTAIN

and landmark descriptions from the MAP NAVIGATOR (described below); the LOOKOUT issues

appropriate requests to PERCEPTION and monitors the database for the proper conditions.

Whenever a trigger condition is satisfied or a landmark is Seen, the LOOKOUT will notify the CAPTAIN

or MAP NAVIGATOR, respectively.

11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.3 The MAP NAVIGATOR and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARoute Planning zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMAP NAVIGATOR receives a destination and/or constraint from t h e CAPTAIN for each mission

step. Its job is to conduct the vehicle accordingly and report success to the'CAPTAIN, or to report

failure i f the mission step is impossible.

CAPTAIN

MAP NAVIGATOR
SUBSYSTEM

ROUTE SELECTOR

ILANDMARK MONITOR

P I LOT LOOKOUT

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3-3: The MAP NAVIGATOR Subsystem

The MAP NAVIGATOR contains two components (Figure 3-3): a ROUTE SELECTOR and a

LANDMARK MONITOR. The ROUTE SELECTOR consults the global map knowledge of the NAVLAB,

and determines the best route from the vehicle's position to the destination according to the given

constraints. After planning the route, the ROUTE SELECTOR breaks it up into route segmerits of a

uniform driving mode (roadway, intersection, or cross-country stretch). The ROUTE SELECTOR will

then monitor the progress of the vehicle along each route segment in turn, passing the route segment

descriptions down to the PILOT as the vehicle travels.

Before entering each route segment, the ROUTE SELECTOR determines which landmark objects in

the global map ought to be visible as the vehicle travels along that route segment. This list zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis passed

to the LANDMARK MONITOR. As each landmark in the list should become visible, the LANDMARK

MONITOR will pass its description to the LOOKOUT. When the LOOKOUT reports a sighting of a

landmark, the LANDMARK MONITOR will use it to verify the vehicle's position estimate. Landmark

sightings will be far less frequent than vehicle position estimates from dead reckoning or intertial

navigation, but landmarks do not (generally!) move in space and can thus be used to correct for drift

in the vehicle position estimate (the VEHICLE-to- WORLD transformation maintained by the LMB).

When a landmark is seen, the accumulated drift error may have to be spread backwards in time

across the history of VEHICLE-to- WORLD transformations maintained by the LMB; this will keep the

history of transformations smooth rather than choppy.

12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.4 The PILOT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand Driving Control

MAP NAVIGATOR

P I L O T SURSYSTFM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
DRIVING M O N I T O R

ROAD U N I T FINDER

CROSS-COUNTRY . . .
INTERSECTIONS . . .

ROAD U N I T NAVIGATOR

I
OBSTACLE FINDER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I
PERCEPTION LOCAL PATH PLANNER

HELM

V i r t u a l V e h i c l e

Figure 3-4: The PILOT Subsystem

The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPlLOT operates continuously to plan the vehicle's path and issue perception and control

instructions. The PILOT contains several programs that form a pipeline (Figure 3-4) to process each

area to be traversed. The DRIVING MONITOR, the top level of the PILOT, receives route segment

descriptions from the MAP NAVIGATOR. The DRIVING MONITOR will keep track of the vehicle's

progress on the current route segment and provide predictions for the next stage, the ROAD UNIT

FINDER.

The ROAD UNIT FINDER breaks the route segment into perceivable pieces called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAroad units. In

each cycle, the ROAD UNIT FINDER asks for and receives a prediction about the upcoming roadway

from the DRIVING MONITOR. This prediction includes where the road edges ought to be found, what

type of edge each will be, how the road is curving or changing just ahead, etc. The ROAD UNIT

FINDER issues instructions to the PERCEPTION subsystem to find the road edges that are described.

When PERCEPTION has found them and reported them, the ROAD UNIT FINDER will cut the

perceived road stretch into a convenient sized unit (say, 20 feet long). This will be called a road unit,

and will be processed by the lower stages of the PILOT. The ROAD UNIT FINDER reports back to the

13 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
DRIVING MONITOR the size and characteristics of the road unit i t found, and another prediction will

be produced to begin the ROAD UNIT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFINDER cycle again.

The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAROAD UNIT NAVIGATOR is a srrtall and simple module that watches for the road units to be

posted into the Local Map database. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs each one appears, the ROAD UNIT NAVIGATOR wiil plot zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
local path constraints that define the possible driving area on that road unit. For example, a road unit

may be a stretch of roadway; the local path constraints may be to stay on the right-hand side of the

roadway.

The OBSTACLE FlNDER takes each new road unit and looks for obstacles within the legal driving

area defined by the local path constraints. It issues a call to the PERCEPTION subsystem to sweep

the appropriate area for obstacles sticking up from the ground (or dug into it). At present we are only

considering stationary obstacles. The list of obstacles will be posted to the database.

The LOCAL PATH PLANNER marks the end of the driving pipeline. This module looks for local path

constraints and obstacle lists, and plots a local path from the vehicle's current position, through all

intervening road units, and reaching to the far edge of the newly scanned road unit. The path is

passed on to the HELM.

In a separate, tight real-time loop, the HELM module controls the vehicle and monitors its

movement, updating the vehicle position estimate from dead reckoning and inertial navigation. As the

vehicle exits each road unit, the HELM reports this to the DRIVING MONITOR. The HELM receives

new local path information from the LOCAL PATH PLANNER whenever a new local path is computed.

The action of the driving pipeline is illustrated in Figure 3-5. In addition to the ROAD UNIT FINDER

and ROAD UNIT NAVIGATOR, there are an /NT€RS€CT/ON zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFINDER and NAVIGATOR and a

CROSS-COUNTRY FlNDER and NA VlGATOR that will be invoked for the corresponding types of route

segments. They will, of course, find the appropriate kinds of driving units.

In practice, the ROAD (etc.) UNIT FINDER and OBSTACLE FINDER, which call upon PERCEPTION,

will be by far the most time-consuming steps; the effective pipeline length is thus two driving units

long. Taking into account the driving unit on which the vehicle is currently located, our estimates are

that road edge finding will be looking about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA40 to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60 feet ahead of the vehicle and obstacle scanning

will take place about 20 to 40 feet ahead. If the vehicle overdrives the sensor processing, the HELM

will ensure that it stops before passing the end of the current local path.

Although this PILOT subsystem is concerned with vehicle control and path planning, it embodies a

14 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- - -

[- - -
P r e d i c t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAion

Road Un i t Found

Local Pa th Cons t ra in t s

Obs tac les Found

Local Path zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP l o t t e d

Figure 3-5: The Driving Pipeline in Action

very important aspect of sensor fusion. It would be possible, for example, to simultaneously scan the

road ahead for (2-D) road edges and (3-D) obstacles. However, this would involve a rather exhaustive

search over zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe 3-D data for obstacle detection. By finding road edges first and plotting locsl path

constraints, the required obstacle scanning area can be cut down to a small fraction of what would

otherwise be necessary. An order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof magnitude speedup in obstacle detection is obtained by

ordering the use of the sensors and world knowledge.

3.5 The PERCEPTION Subsystem

The PERCEPTlON Subsystem receives perceptual requests from the planning portions of the system

(the LOOKOUT and PILOT), and analyzes sensor data to compute responses. PERCEPTION will

probably account for well over 90% of the total computational load zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof tlie NAVLAB system.

Every possible way to speed up perceptual processing must be utilized. One mechanism used to do

this is to provide as much top-down guidance from the planning modules as possible. Our system

structure facilitates this, and we (along with other cooperating sites) have adopted a small repertoire

of requests that planning modules can make of the perceptual subsystem:

0 Find a driving unit of a particular type (road unit, intersection, or cross-country terrain
patch). In general, a predicted location and characterization of the expected driving unit
will be available.

0 Find obstacles above the ground within a specific volume of space.

15 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 Find landmarks. Initially, we will only detect specific objects at a specific location;

eventually, V J ~ will zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdeal with general object types zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand unknown or loosely constrained
lo ca zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt i o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAns.

In this list, the only "open-ended" requests are to find landmarks whose identity or location are not

predictable. In all other cases, the perceptual processing is being used to answer very specific

queries. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
PI1.OT LOOKOUl

Figure 3-6: The PERCEPTION Subsystem Plan

Figure 3-6 illustrates the modules we plan for the PERCEPTION subsystem. This is not our initial

system, which will be much simpler; it represents our plan for a relatively modest but general

perceptual system. It includes four levels of modules.

The PERCEPTION MONITOR will receive the perceptual requests and call upon 2-D and 3-D feature

finders to satisfy each request. Initially, our PERCEPTION MONITOR will use pre-stored strategies for

perception; eventually, we would like to develop a more general language for describing such

strategies so a wider variety of objects can be perceived.

The primary sensor fusion level presents two virtual zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsensors: a virtual 2-D (image) sensor and a

virtual 3-D sensor. At the level of these 2-0 and 3-0 FEATURE FUSION modules, the objects being

manipulated are road edges, 3-D surfaces, etc. Thus, sensor fusion will take place on fairly

completely interpreted data rather than on raw or intermediate sensor data.

16 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The workhorse modules, consuming probably zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwell over 90% of the computational cycles of the

NAVLAB, are the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASENSOR DATA PROCESSlNG modules. There is one for each complete sensor

modality, such as "range analysis of rangefinder data" or "motion analysis of images". Each

SENSOR DATA PROCESSING module will receive raw sensor data (obtained directly from sensors

without shipping it to and from the database!), and is responsible for all levels of processing up to and

including 2-D and 3-D features for sensor fusion. For example, a "stereo image analysis" module will

include image preprocessing, edge finding, edge linking, stereo matching, 3-D grouping, and 3-D

surface fitting; only the finally produced 3-D surfaces will be passed along to the 3-D FEATIJRE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
FUSION module. In this way, vde can ininimize the bandwidth required of the CODGER database

system and we can plug in and out experimental perceptual modalities rather e2.sily.

P I L O T LOOKOUT

\ / PERCEPTION SUBSYSTFF

PERCEPTION MONITOR

2D FEATURE FUSION 3D FEATURE FUSION

e t c .

SURFACE F I T T I N G

I
DEPTH SEGMENTATTON

MOTION ESTIMATION

R A N G E

SPATIAL MATCHING

SMOOTH1 NG
TEMPORAL MATCHING

I
EDGE DETECTION

SONAR CONTROL ERIM CONTROL CAMERA CONTROL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Virtua l V e h i c l e

Figure 3-7: Future PERCEPTION Subsystem Plan

As we begin to better understand what specific methods of sensor data processing are desirable,

we will evolve towards a perceptual subsystem as shown in Figure 3-7. In this system, each step zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof

17 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
perceptual processing would be an independent module and each modality is simply a flow of data

from raw sensor input to 2-D or 3-D features. This is beyond our current reach For both scientific

reasons--such as the different spatial resolution of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3-D data from image motion and rangefinder

analysis and how that difference impacts 3-D segmentation--and technical reasons- -the speed and

bandwidth limitations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the whiteboard system. We will explore the scientific issues as we build the

NAVLAB system, and we have plans to overcome the technical limitations with new hhrdware,

software, and CODGER implementation strategies.

The lowest level of the perceptual system is the actual zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASENSOR CONTROL code that aims the

sensors, collects data, and provides appropriate coordinate system and time stamps for the data.

18 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. Methods for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASensor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFusion

In the course of laying out the NAVLAB system architecture, we have identified three primary

methods for sensor fusion, eilch zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis used within the NAVLAB system:

e Competitive. Each sensor generates hypotheses; these hypotheses may reillforce or
conflict with each other during fusion. Competitive fusion is typically used for sensors
producing the same type of data, such as two sonar sensors working together with
overlapping fields of view [15].

e Complementary. The different sensors are used in a strategy that applies each one
individually. The strategy uses the relative differences of the sensors to en!iance the
advantages and cover the disadvantages of each. For example, in our systern we use
color images to find road edges, which is relatively easy, and we later scan the road area
for obstacles with a 3-D sensor such as a rangefinder. We thus use the easy processing
first to limit the search area required for the more sophisticated sensor.

e Independent A kind of degenerate method in which one sensor or another is used

Each of these methods can be applied at any level of the system, and can be applied to actual sensors

or to sensor interpretation modalities. For example, a rangefinder and color camera can be fused at a

low level to produce a registered color + range image. This would be a low-level application of

complementary fusion of sensors. In our system, we will fuse 3-D surfaces etc. from range data and

from motion and stereo analysis of images. This is high-level fusion of sensor modalities; we can do

this either competitively with competing parallel hypotheses, or complementarily with strategies to

invoke each modality when its peculiar' characteristics (such as spatial resolution or processing

speed) make it most appropriate. Some systems have emphasized the reasoning aspect zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof sensor

data interpretation, using competitive or complementary fusion within a general inference framework

[5,13, 161.

independently for each particular task.

Another issue in sensor fusion is the strategy used to invoke sensors or sensor modalities. This can

be:

Fixed. A strategy embodied in special-purpose code that specifically invokes sensor
processing.

Language-Driven. A strategy defined in a general "perceptual language"; each object in
the object database will have a description of how to recognize that object. This
approach would be much more general than a fixed strategy, but developing an
appropriate language for perceptual planning is a major research task [8,9, 101.

Adaptive. A language-driven system with the ability to select alternative plans based on
the current status of sensor processing or the vehicle's environment. For example, an
orange traffic cone has both a distinctive color and shape. Ideally, if we have already

19

acquired a color image of an area, we might begin by looking for the orange color; but if
we already have acquired or processed 3-D data for that area we might be better off to
start by looking for the shape of the cone.

Both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof these issues--sensor fusion method and perception strategy--are possible with either

bottom-up, top-down, or a combined perception methodology. For example, in our zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsystem we

provide top-down guidance to the top level of the PERCEPTION system whenever possible. This will

almost certainly result in top-down queries being addressed to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3-D FEATURE FUSION and 2-0

FEATURE FUSION modules. However, we can implement those modules themselves to either pass

top-down sensor data processing instructions to the actual perception modules, or to accept data

from those modules in a bottom-up manner.

In the NAVLAB system there are many examples of sensor fusion: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVehicle Position Determination. The dead-reckoning system and inertial navigation will

provide a continual estimate of vehicle position, but this will drift over time. From time to
time, landmark sightings will be used to correct the absolute position estimate. We may
also include an intermediate position estimation method using visual motion analysis.
This system is an example of complementary sensor fusion with a fixed strategy.

0 The PlLOT Subsystem. As mentioned above, we will use 2-D road edge information to find
navigable areas, then scan those areas with 3-0 sensors (see below) to detect obstacles.
This is complementary, fixed-strategy sensor fusion at a very high level.

a The PERCEPTION Subsystem. There are several kinds of sensor fusion within our
PERCEPTION subsystem:

o In the preliminary system, perception is performed by modules such as "road edge
finding by color image analysis" or "obstacle finding by rangefinder analysis"
[2,7,21]. These special-purpose modules embody independent, fixed-strategy
fusion (i.e., the modules do not individually perform fusion, but the system as a
whole exercises more than one sensor).

o In the system we are developing (Figure 3-6), the recognition planning will initially
be complementary and fixed-strategy, with a separate strategy for each object or
roadway type; we are working on a language to allow language-directed object and
road way recognition.

o Our virtual sensors, as embodied in the 2-0 FEATURE FUSION and 3-D FEATURE
FUSION modules, will probably use fixed-strategy competitive processing.
However, there is some complementary processing even at this level. For example,
the 3-D FEATURE FUSION module will find obstacles when called upon to do so.
The rangefinder data is ideal for this purpose, since the raw data is a depth map.
However, our rangefinder has relatively poor spatial resolution, and at a distance of
40 feet or more will not be able to reliably detect (6-inch) obstacles. When an
uncertain obstacle hypothesis comes in from the rangefinder, we plan to have the
3-D FEATURE FUSION module invoke image motion analysis using a camera with a

20

telephoto lens to provide a verification or denial zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the hypothesis based on high-
resolutiori images. Thus, even subtle ditfererices between sensors (in this case,
two depth-niap-based modalities with different processing times and spatial
resolutions) can be exploited to produce total systems with improved performance.
In this case, cornplementary sensor fusion produces a system whose overall
performance wiil be better than the siiin of the individual parts [17]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

o In the perceptual system plan outlined in Figure 3-7, fusion of sensor modalittes
may take place at lower levels. The same issues of fusion method and strategy still
arise, and we may have virtiial sensors at several levels, e.g. a virtual edge sensor,
a virtual depth map sensor, and/or a virtual surface sensor (similar to our current
3-0 FEATURE FUSION module). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs stated earlier, there are substantial scientific
issues to be addressed before such a system can be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbuilt.

21

5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconcsusions

We have described in this paper the NAVLAB vehicle, the CODGER whiteboard system which

resembles a blackboard but with a parallel control flow, and the NAVLAB software structure which

contains a simple navigation and planning system, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 "driving pipeline," and top-down guidance of

perception. The perceptual system itself has a central top-level interface to the rest of the system,

sensor fusion of thoroughly processed 2-D and 3-D data, and several sensor modalities which are

each completely self-contained modules of the system. We expect perception to corisume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwell over

90% of the computational time in the complete system.

Sensor fusion takes place at a number of places in the NAVLAB system. We have identified these

and produced a simple classification of sensor fusion methods and strategies. In particular,

complementary use of different sensor modalities seems to produce systems and subsystems whose

performance can be better than that of any individual modality (see also [17]).

Our plans for the future development of the CODGER system include creating a CommonLISP

interface (the package is currently accessible from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC) and speeding up the system immensely by

geometric indexing, distributing the database itself, and using special new hzrdware and operating

system software ur?der development at CMU.

For the NAVLAB, our future plans call for dealing with moving objects, improving the hardware,

implementing a inore sophisticated reasoning and planning system, and most of all, improving the

perceptual subsystem. We will be increasing the performance of perception by using new hardware

and software, restructuring the system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas described in this paper, and reducing our reliance on

specific advance knowledge in the global map and object databases.

5.1 Acknowledgements

The NAVLAB project is a sizable effort at CMU, and contributions to the architecture have been

made by the entire group. Takeo Kanade and Yoshimasa Goto, in particular, have provided input to

this design effort.

We have also benefited from discussions with other sites involved in the DARPA Strategic

Computing Vision program, and plan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto receive some key pieces of the NAVLAB system from these

sites in the future. The target NAVLAB system will be a community effort.

22

6- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABibliography

Bisiani, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR.
AGORA: An Environment for Euildirig Problem-Solvers on Distributed Coniputer Systems.
In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProc. Distributed A/ Workslmp. AAAI, Searange CA, December, 1985.
Available from CMlJ Computer Science Dept.

Elfes, A. E.
Sonar Navigation.
In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWorkshop on Robotics. Oak Ridge Naticinal Lab, Oak Ridge TN, August, 1985.

Erman, L. D., Hayes-Roth, F., Lesser, V. R., and Reddy, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. R.

The Hearsay-Il Speech-Understanding System: Integrating Knowledge to Resolve

AClvl Computing Surveys 12(2):213-253, June, 1980.

Erman, L., Fehling, M., Forrest, S., and Lark, J. S.
ABE: Architectural Overview.
In Proc. Distrihuted Ai Workshop. AAAI, Searange CAI December, 1985.
Available from Tecknowledge Inc., Palo Alto CA.

Garvey, T. D., Lowrance, J. D., and Fischler, M. A.
An Inference Technique for Integrating Knowledge From Disparate Sources.
In Proc. IJCAI-87, pages 319-325. Vancouver, BC, August, 1981.

Harmon, S. Y., Gage, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. W., Aviles, W. A., and Bianchini, G. L.
Coordination of intelligent Subsystems in Complex Robots.
Technical Report, Naval Ocean Systems Center, Autonomous Systems Branch, San Diego,

Uncertainty.

September, 1984.

Hebert, M. and Kanade, T.
Outdoor Scene Analysis Using Range Data.
In Proc. 7986 /€E€ Conf. on Robotics and Automation. 1986.
Submitted.

Henderson, T., Shilcrat, E., and Hansen, C.
A Fault Tolerant Sensor Scheme.
UUCS 83-003, U. Utah Dept. of Computer Science, November, 1983.

Henderson, T. C., Fai, W. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS., and Hansen, C.
MKS: A Multisensor Kernel System.
I€€€ Trans. on Sysferns, Man, and Cybernetics SMC-14(5):784-791 , September, 1984.

Henderson, T., Hansen, C., Grupen, R., and Bhanu, B.
The Synthesis of Visual Recognition Strategies.
UUCS 85-102, U. Utah Dept. of Computer Science, October, 1985.

Kanade, T., Thorpe, C., and Whittaker, W.
Autonomous Land Vehicle Project at CMU.

In Proc. 7986 ACM Computer Conference. Cincinnatti, February, 1986.

23

Kung, H. T. and Webb, J. A.
Global Operations on a Systolic Array Machine.
In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE Proc. of Intcrnational Conf. on Computer Design: VLSl In Computers, pages 165-171.

IEEE, Port Chester NY, October, 1985.

Lowrance, J. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. and Garvey, T. D.
Evidential Reasoning: Am Implementation for Multisensor Integration.
TN 307, SRI, December, 1983.

Moravec, H. P.
The Stanford Cart and the CMU Rover.
Proc. IEEE 71(7), July, 1983.

Moravec, H. P. and Elfes, A. E.
High Resolution Maps from Wide Angle Sonar.
In Proc. 1985 /E€€ lnt’l. Conf. on Robotics and Automation, pages 116-121. St. Louis, March,

1985.

Nii, H. P., Feigenbaum, E. A., Anton, J. J., and Rockmore, A. T.
Signal-to-Symbol Transformation: HASP/SIAP Case Study.
AI Magazine , Spring, 1982.

Shneier, J., Nagalia, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS., Albus, J., and Haar, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR.
Visual Feedback for Robot Control.
In IEEE Workshop on Industrial Applications of Industrial Vision, pages 232-236. May, 1982.

Stentz, A. and Shafer, S. A.

Module Programmer’s Guide to Local zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMap Builder for NAVLAB.
Technical Report, CMU Robotics Institute, 1986.
In preparation.

Thorpe, C. E.
FIDO: Vision and Navigation for a Mobile Robot.
PhD thesis, CMU Computer Science Dept., December, 1984.

Wallace, R., Stentz, A., Thorpe, C., Moravec, H., Whittaker, W., and Kanade, T.

First Results in Robot Road-Following.
In Proc. IJCAI-85. Adgust, 1985.

Wallace, R., Matsuzaki, K., Goto, Y., Webb, J., Crisman, J., and Kanade, T.

Progress in Robot Road Following.
In Proc. 1986 IEEE Conf. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon Robotics and Automation. 1986.
Submitted.

