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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
This paper describes sensor fusion in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe context of an autonomous mobile robot, the NAVLAB 

system, based on a cornmercial truck with computer controls and studded with cameras and other 

sensors. This paper describes the software architecture of the NAVLAB, consisting of two parts: a 

"whiteboard" system called CODGER that is similar to a blackboard but supports parallelism in the 

knowledge source modules, and an organized collection of perceptual and navigational modules tied 

together by the CODGER system. 
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1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIntroduction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Robot perception in real-world domains requires systein architecture support not found in simpler 

robot systems. In the most typical mobile robots of the past, for example, the system contains one 

visual sensor and a simple motion encoding mechanism; planning and perceptual proceqsing are 

performed off-line by a single mainframe CPU with telecomniunications to the vehicle; and the control 

program resembles a simple aim-and-steer loop performing some sophisticated variation of visual 

servoing [14, 19, 201. These architectural features cannot support perception and control in complex 

outdoor environments with very general task specifications. 

In such more complex systems, there is a need for multiple sensors. No single system, such as a 

camera, a laser rangefinder, or sonar array, can provide a map of the environment with sufficient 

resolution and reliability to control a vehicle on a complex mission. For example, a mission might 

require avoiding obstacles on the roadway, which is best performed with a 3-D sensor such as a 

rangefinder; the same mission might require steering towards some distant landmark such as a 

telephone pole on the horizon, which is probably beyond the the effective range of a rangefinder yet 

is easily detected by a TV camera. This type of trade-off occurs at all scales of perception, and the 

only solution currently available is to incorporate multiple sensors on a single vehicle. 

As soon as multiple sensors are employed, the system architecture requirements become very 

demanding. I f  a single processor is used, perceptual processing will swamp it and real-time control is 

probably out of the question. However, if multiple processors are used, the processing times may 

vary from one sensor to the next and so some loose, asynchronous coupling mechanism must be 

employed. Geometric reasoning and transformations become fundamental because sensor data from 

different times and vantage points must be integrated into a single coherent interpretation. 

Furthermore, since perception, planning, and control are all problems currently being studied, the 

system design may change rapidly and a very modular design methodology is needed. 

At the CMU Vision Lab robot perception and control is studied in the context of a mobile robot 

vehicle, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANAVLAB [l 11. The NAVLAB has a number of sensors, with several processors on board. 

A distributed modular software system is being built, based on a central database called CODGER. 

This paper describes the CODGER database/communication system, the NAVLAB vehicle and 

system block diagram, and some issues inherent in sensor fusion - -  the integration of multiple sensors 

in a single system. 
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1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.I The NAVLAB Vehicle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

AT/- 

Figure 1 - 1 : Sketch of the NAVLAB Vehicle 

The NAVLAB vehicle (Figure 1-1) is a commercial truck modified by adding sensors, electronic 

controls, and on-board computers and power generators. It will be completely self-contained, 

requiring neither a cable tethering it to an off-board mainframe computer, nor an electronic 

telecommunications tether. Telecommunications gear is present for data recording and tele- 

operation, but is not required for computer control of the vehicle. 

The control systems of the vehicle include computer control of a hydraulic drivelbraking system, 

computer control of the steering wheel, and processors to monitor and control engine functions. A 

global system clock and a processor maintain a primitive vehicle position estimate based on dead 

reckoning. An inertial navigation system is also on-board. 
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The sensors on the vehicle include a pan/tilt head with a pair of stereo color cameras on a 6-foot 

baseline, an ERlM laser rangefinder on a pan/tilt mount, and sonar sensors for a "soft bumper.'' For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
special purposes, additional cameras may be mounted in various places, such as fixed cameras for 

identifying objects at the roadside. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E t h e r n e t  
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Figure 1-2: On-board Computing Facilities 

The vehicle contains on-board general-purpose computing facilities as well. There are four 

workstations connected by an Ethernet (Figure 1-2). Each workstation has a function dictated by the 

sensors to which it is connected, and sensor-independent planning tasks can be performed on any of 

them. There is a plan to put at least one WARP array (high-speed parallel machine) on board for 

vision [12]. Programming for all the workstations takes place in C or LISP with the UNlX operating 

system. Access to sensor data and vehicle control processors, which reside on the Ethernet, takes 

place through a set of subroutines called the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvirtual zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvehicle that are accessible to the perceptual and 

planning programs on the workstations. 

As can be seen, the NAVLAB system provides a battery of sensors and control functions, a suite of 

general-purpose and special-purpose processors, and a complex processing task to be carried out in 

real-time, albeit slowly. The remainder of this paper describes the software architecture being used to 

implement this system. Since perception is by far the most demanding aspect of the system, special 

attention will be given to existing and planned mechanisms for supporting highly competent 

perception. 
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2. The CODGER Whiteboard System 

The system will consist zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof several relatively large zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmodules, which are independently running 

programs performing large pieces of the computation in the system. For example, "map navigation" 

and "road-edge finding by stereo vision" will be modules in the system. Relatively few, large-yrain 

modules are used because of the overhead costs of communication and because real parallelisrn is 

limited by the number of workstations on board. Tying these modules together is a communications 

system aiid database called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACODGER (COrnmunications Database with GEometric Reasoning) [18j. 

We call CODGER a whiteboard because, as described below, it resembles a traditional "blackboard" 

but with some significant new features-parallel execution of modules and geometric reasoning. 

2.1 Blackboards and Whiteboards zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Loca l  M a p  D a t a b a s e  - 
Loca l  Map B u i l d e r  (LME)  

I.MB I n t e r f a c e  L.MR I n t e r f a c e  

S e n s o r  M o d u l e  1 

- 
Nav iga t i on  M o d u l e  2 

Nav iga t i on  M o d u l e  1 S e n s o r  M o d u l e  2 

LME I n t e r f a c e  

I P l a n n i n g  M o d u l e  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 2- 1 : Process Structure of the System 

The program organization of the NAVLAB software is shown in Figure 2-1. Each of the major boxes 

represents a separately running program. The central database, called the Local Map, is managed by 

a program known as the Local Map Builder (LMB). Each module stores and retrieves information in 

the database through a set of subroutines called the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALM5 Interface which handle all communication 

and synchronization with the LMB. If a module resides on a different processor than the LMB, the 

LMB and LMB Interface will transparently handle the network communication. The Local Map, LME, 

and LMB Interface together comprise the CODGER system. 

The overall system structure-a central database, a pool of knowledge-intensive modules, and a 

database manager that synchronizes the modules--is characteristic of a traditional blackboard system 

[3]. Such a system is called "heterarchical" because the knowledge is scattered among a set of 
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modules that have access to data at all levels of the database (i.e., low-level zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAperceptual processing 

ranging zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAup to high-level mission plans) and may post their findings on any level of the database; in 

general, tieterarctiical systems impose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAde facto structuring of the information flow among the 

modules of the system. In a traditional blackboard, there is a single flow of control managed by the 

database (or blackboard) manager. The modules are subroutines, each with a predetermined 

precondition (pattern of data) that must be satisfied before that module can be executed. The 

manager keeps a list of which modules are ready to execute, and in its central loop it selects one 

module, executes it, and adds to its ready-list any new modules whose preconditions become 

satisfied by the currently executing module. The system is thus synchronous and the manager's 

function is to focus the attention of the system by selecting the "best" module from the ready-list on 

each cycle. 

We call CODGER a whiteboard because it also implements a heterarchical system structure, but 

differs from a blackboard in several key respects. In CODGER, each module is a separate, 

continuously running program; the modules communicate by storing and retrieving data in the central 

database. Synchronization is achieved by primitives in the data retrieval facilities that allow, for 

example, for a module to request data and suspend execution until the specified data appears. When 

some other module stores the desired data, the first module will be re-activated and the data will be 

sent to it. With CODGER a module programmer thus has control over the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAflow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof execution within his 

module and may implement real-time loops, daemons, data flows among cooperating modules, etc. 

CODGER also has no pre-compiled list of data retrieval specifications; each time a module requests 

data, it provides a pattern for the data desired at that time. We call such a system a whiteboard--it is 

heterarchical like a blackboard, but each module runs in parallel with the module programmer 

controlling the synchronization and data retrieval requests as best suited for each module. Like other 

recent distributed AI architectures, whiteboards are suited to execution on multiple processors 

[ I ,  4,61. 

2.2 Data Storage and Retrieval 

Data in the CODGER database (Local Map) is represented in tokens consisting of classical 

aftribute-value pairs. The types of tokens are described in a template file that tells the name and type 

of each attribute in tokens of each type. The attributes themselves may be the usual scalars (integers, 

floating-point values, strings, enumerated types), arrays (or sets) of these types (including arrays of 

arrays), or geometric locations as described below. CODGER automatically maintains certain 

attributes for each token: the token type and id number, the "generation number" as the token is 

modified, the time at which the token was created and inserted into the database, and the time at 
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which the sensor data was acquired that led to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt he  creation of this token. The LMB Interface provides 

facilities for building and dissecting tokens and attributes within a module. Rapid execution is 

supported zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAby niapping the module programmer's names for tokens and attributes onto globr?lly used 

index values at system startup time. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A module can store a token by calling a subroutine to send it to the LMB. Tokens can be retrieved 

by constructing a pattern called a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAspecification and calling a routine to request that the LMB send 

back tokens matching that specification. The specification is simply a boolean expression in which 

the attributes of each token may be substituted; if a token's attributes satisfy the boolean expression, 

then the token is sent to the module that made the request. For example, a module may specify: 
tokens with type equal to "intersection" and traffic-cont rot equal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto "stop-sign" 

This would retrieve all tokens whose type and traffic-control attributes satisfy the above conditions. 

The specification may include computations such as mathematical expressions, finding the minimum 

value within an array attribute, comparisons among attributes, etc. CODGER thus implements a 

general database. The module programmer constructs a specification with a set of subroutines in the 

CODGER system. 

One of the key features of CODGER is the ability to manipulate geometric information. One of the 

attribute types provided by CODGER is the location, which is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 2-0- or 3-0 polygon and a reference to 

3 coordinate frame in which that polygon is described. Every token has a specific attribute that tells 

the location of that object in the Local Map, if applicable, and a specification can include geometric 

calculations and expressions. For example, a specification might be: 

tokens with location within 5 units zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof (45,32) [in world coordinates] 

or 

where X is a description of a rectangle on the ground in front of the vehicle. The geometric primitives 

currently provided by CODGER include calculation of centroid, area, diameter, convex hull, 

orientation, and minimum bounding rectangle of a location, and distance and intersection 

calculations between a pair of locations. We believe that this kind of geometric data retrieval 

capability is essential for supporting spatial reasoning in mobile robots with multiple sensors. We 

expect geometric specifications to be the most common type of data retrieval request used in the 

NAVLAB. 

fokens with location overlapping X 

CODGER also provides for automatic coordinate system maintenance and transformation for these 

geometric operations. In the Local Map, all coordinates of location attributes are defined relative to 

WORLD or VEHICLE coordinates; VEHICLE coordinates are parameterized by time, and the LMB 
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maintains a time-varying transformation between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWORLD and VEHICLE coordinates. Whenever new 

information (i.e., a new VEHICLE-to-WORLD transform) becomes available, it is added to the 

"history" maintained in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALMB; the LMB will interpolate to provide intermediate transformations as 

needed. In addition to these basic coordinate systems, the LMB Interface allows a module 

programmer to define zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlocal coordinates relative to the basic coordinates or relative to some other 

local coordinates. Location attributes defined in a local coordinate system are autbmatically 

converted to the appropriate basic coordinate system when a token is stored in the database. 

CODGER provides the module programmer with a conversion routine to convert any location to any 

specified coordinate system. 

All of the above facilities need to work together to support asynchronous sensor fusion. For 

example, suppose we have a vision module A and a rangefinder module B whose results are to be 

merged by some module C. The following sequence of actions might occur: 

1. A receives an image at time 10 and posts results on the database at time 15. Although the 
calculations were carried out in the camera coordinate system for time 10, the results are 
automatically converted to the VEHICLE system at time 10 when the token is stored in the 
database. 

2. Meanwhile, 8 receives data at time 12 and posts results at time 17 in a similar way. 

3. At time 18, C receives A's and 6 s  results. As described above, each such token will be 
tagged with the time at which the sensor data was gathered. C decides zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto use the vehicle 
coordinate system at time 12 (B's time) for merging the data. 

4. C requests that A's result, which was stored in VEHICLE time 10 coordinates, be 
transformed into VEHICLE time 12 coordinates. If necessary, the LMB will automatically 
interpolate coordinate transformation data to accomplish this. C can now merge A's and 
6's results since they are in the same coordinate system. At time 23, C stores results in 
the database, with an indication that they are stored in the coordinate system of time 12. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2.3 Synchronization Primitives 

CODGER provides module synchronization through options specified for each data retrieval 

request. Every time a module sends a specification to the LMB to retrieve tokens, it also specifies 

options that tell how the LMB should respond with the matching tokens: 

0 Immediate Request. The module requests all tokens currently in the database that match 
this specification. The module will block (Le., the "request" subroutine in the LMB 
Interface will not return control) until the LMB has responded. If there are no tokens that 
match the specification, the action taken is determined by an option in the module's 
request: 

o Non-Blocking. The LMB will answer that there are no matching tokens, and the 
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module can then proceed. This would be used for time-critical modules such as 
vehicle control. Example: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"Is there a stop sign?" 

o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABlocking. The LMB will record this specification and compare it against all 
incoming tokens. When a new token matches the specification, it will be sent to the 
module and the request will be satisfied. Meanwhile, the module will remain 
blocked until the LMB has responded with a token. This is the type of request used 
for setting up synchronized sets of communicating modules: each one waits for the 
resul:s from the previous module to be posted to the database. Example: "Wake 
me up when you see a stop sign." 

0 Standing Request. The module gives a specification along with the name of a subroutine. 
The module then continues running; the LMB will record the specification and. compare it 
with all iiicoming tokens. Whenever a token matches, it will be sent to the module. The 
LMB Interface will intercept the token and execute the specified subroutine, passing the 
token as an argument. This has the effect of invoking the given subroutine whenever a 
token appears in the database that matches the given specification. It can be used at 
system startup time for a module programmer to set up "daemon" routines within the 
module. Example: "Execute that routine whenever you see a stop sign." zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2.4 Summary of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACODGER Whiteboard System 

CODGER implements a "whiteboard" with these properties: 
heterarchical system like a traditional blackboard 

0 parallel asynchronous execution of large-grain modules 
0 communication and synchronization via a central database 
0 transparent networking between processors 
e no pre-compilation of data retrieval specifications 
0 module programmer controls flow of execution through each module 

In addition, CODGER provides geometric retrieval via: 
0 geometric objects and search specifications 
0 time-dependent coordinate transformations 

Such a communications/database system does not, of course, solve any sensor fusion problems. 

What CODGER does is to give the module programmer a simple, powerful system interface to allow 

more attention to be devoted to the perceptual and planning research problems. 
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3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPr’lodkrle Architecture zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the N A V L A B  System 

The NAVLAB software consists of a number of modules performing planning and perception, and 

communicating with each other via the CODGER whiteboard system. The modules are shown in 

Figure 3-1 as a system block diagram. In this diagram, each box represents one cr more cooperating 

programs; all the lines between boxes represent information flows via the CODGER database. 

Human a s s i g n i n g  m i s s i o n  

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACAPTAIN 

V i r t u a l  v e h i c l e  ( S e n s o r s  a n d  M o t o r s )  

Figure 3- 1 : NAVLAB Software Block Diagram 

It is important to bear in mind that the computational load of the NAVLAB occurs almost entirely 

within the PERCEPTION subsystem. All the other modules from CAPTAIN to PILOT and LOOKOUT 

are planning modules whose computational requirements are really negligible when compared to that 

of PERCEPTION. The planning portions of the system are described here because they form a rich 

context that constrains the perceptual task in important ways that will be discussed. The planning 

system itself is still quite simple; in the future we will devote effort to replacing it with a more powerful 

reasoning system. 

To speed up PERCEPTION, we use special hardware such as the WARP; the planning system 

executes on general-purpose machines. 

3.1 The CAPTAIN and Mission Descriptions 

At the upper level of the system is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACAPTAlN module that receives mission instructions from the 

controlling person and oversees the mission. The mission description itself is a sort of program; the 

entire NAVLAB can be thought of as a computing engine that will evaluate and carry out the program 

specified in the mission. 
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step zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1: 

go to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdestination via constraint 
at end do action 
i f  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtrigger zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdo aciion 
. . .  

step 2: 
. .  

Figure 3-2: Mission Description 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3-2 illustrates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhow a mission might be described. The mission consists of a number of steps, 

and t h e  CAPTAIN seqilences through the steps. For each step, there is a destination that tells where 

to go and/or a constraint that tells how to go. For example, the instruction "go to St. John's church" 

gives a destination; "go via Road C" gives a constraint; "go to St. John's church via Road C" gives 

both. Each step of the mission also has an action to be performed when the destination is reached; 

this may be to report success of the mission, report failure, or go to another step of the mission. 

In addition to the destination, which tells where to drive, each mission step may have one or more 

trigger conditions that tell what to be looking for along the way. For each trigger, there zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis an action 

(success, failure, or new step) to take i f  the condition is satisfied. The trigger may be a perceptual cue 

such as "if  you see a church," or a positional condition such as "if you travel 5 miles." 

For each mission step, the CAPTAIN passes the destination and constraint to the MAP NAVIGATOR, 

whose role it is to drive the vehicle accordingly, and the CAPTAlN passes the trigger conditions to the 

LOOKOUT, which will issue appropriate perceptual requests and monitor the database. These form 

the mission-level control and perception functions of the NAVLAB system. 

3.2 The LOOKOUT 

The LOOKOUT is a simple module that receives trigger condition specifications from the CAPTAIN 

and landmark descriptions from the MAP NAVIGATOR (described below); the LOOKOUT issues 

appropriate requests to PERCEPTION and monitors the database for the proper conditions. 

Whenever a trigger condition is satisfied or a landmark is Seen, the LOOKOUT will notify the CAPTAIN 

or MAP NAVIGATOR, respectively. 
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3.3 The MAP NAVIGATOR and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARoute Planning zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMAP NAVIGATOR receives a destination and/or constraint from t h e  CAPTAIN for each mission 

step. Its job is to conduct the vehicle accordingly and report success to the'CAPTAIN, or to report 

failure i f  the mission step is impossible. 

CAPTAIN 

MAP NAVIGATOR 
SUBSYSTEM 

ROUTE SELECTOR 

ILANDMARK MONITOR 

P I  LOT LOOKOUT 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3-3: The MAP NAVIGATOR Subsystem 

The MAP NAVIGATOR contains two components (Figure 3-3): a ROUTE SELECTOR and a 

LANDMARK MONITOR. The ROUTE SELECTOR consults the global map knowledge of the NAVLAB, 

and determines the best route from the vehicle's position to the destination according to the given 

constraints. After planning the route, the ROUTE SELECTOR breaks it up into route segmerits of a 

uniform driving mode (roadway, intersection, or cross-country stretch). The ROUTE SELECTOR will 

then monitor the progress of the vehicle along each route segment in turn, passing the route segment 

descriptions down to the PILOT as the vehicle travels. 

Before entering each route segment, the ROUTE SELECTOR determines which landmark objects in 

the global map ought to be visible as the vehicle travels along that route segment. This list zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis passed 

to the LANDMARK MONITOR. As each landmark in the list should become visible, the LANDMARK 

MONITOR will pass its description to the LOOKOUT. When the LOOKOUT reports a sighting of a 

landmark, the LANDMARK MONITOR will use it to verify the vehicle's position estimate. Landmark 

sightings will be far less frequent than vehicle position estimates from dead reckoning or intertial 

navigation, but landmarks do not (generally!) move in space and can thus be used to correct for drift 

in the vehicle position estimate (the VEHICLE-to- WORLD transformation maintained by the LMB). 

When a landmark is seen, the accumulated drift error may have to be spread backwards in time 

across the history of VEHICLE-to- WORLD transformations maintained by the LMB; this will keep the 

history of transformations smooth rather than choppy. 
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3.4 The PILOT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand Driving Control 

MAP NAVIGATOR 

P I L O T  SURSYSTFM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
DRIVING M O N I T O R  

ROAD U N I T  FINDER 

CROSS-COUNTRY . . .  
INTERSECTIONS . . .  

ROAD U N I T  NAVIGATOR 

I 
OBSTACLE FINDER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 
PERCEPTION LOCAL PATH PLANNER 

HELM 

V i r t u a l  V e h i c l e  

Figure 3-4: The PILOT Subsystem 

The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPlLOT operates continuously to plan the vehicle's path and issue perception and control 

instructions. The PILOT contains several programs that form a pipeline (Figure 3-4) to process each 

area to be traversed. The DRIVING MONITOR, the top level of the PILOT, receives route segment 

descriptions from the MAP NAVIGATOR. The DRIVING MONITOR will keep track of the vehicle's 

progress on the current route segment and provide predictions for the next stage, the ROAD UNIT 

FINDER. 

The ROAD UNIT FINDER breaks the route segment into perceivable pieces called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAroad units. In 

each cycle, the ROAD UNIT FINDER asks for and receives a prediction about the upcoming roadway 

from the DRIVING MONITOR. This prediction includes where the road edges ought to be found, what 

type of edge each will be, how the road is curving or changing just ahead, etc. The ROAD UNIT 

FINDER issues instructions to the PERCEPTION subsystem to find the road edges that are described. 

When PERCEPTION has found them and reported them, the ROAD UNIT FINDER will cut the 

perceived road stretch into a convenient sized unit (say, 20 feet long). This will be called a road unit, 

and will be processed by the lower stages of the PILOT. The ROAD UNIT FINDER reports back to the 
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DRIVING MONITOR the size and characteristics of the road unit i t  found, and another prediction will 

be produced to begin the ROAD UNIT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFINDER cycle again. 

The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAROAD UNIT NAVIGATOR is a srrtall and simple module that watches for the road units to be 

posted into the Local Map database. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs each one appears, the ROAD UNIT NAVIGATOR wiil plot zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
local path constraints that define the possible driving area on that road unit. For example, a road unit 

may be a stretch of roadway; the local path constraints may be to stay on the right-hand side of the 

roadway. 

The OBSTACLE FlNDER takes each new road unit and looks for obstacles within the legal driving 

area defined by the local path constraints. It issues a call to the PERCEPTION subsystem to sweep 

the appropriate area for obstacles sticking up from the ground (or dug into it). At present we are only 

considering stationary obstacles. The list of obstacles will be posted to the database. 

The LOCAL PATH PLANNER marks the end of the driving pipeline. This module looks for local path 

constraints and obstacle lists, and plots a local path from the vehicle's current position, through all 

intervening road units, and reaching to the far edge of the newly scanned road unit. The path is 

passed on to the HELM. 

In a separate, tight real-time loop, the HELM module controls the vehicle and monitors its 

movement, updating the vehicle position estimate from dead reckoning and inertial navigation. As the 

vehicle exits each road unit, the HELM reports this to the DRIVING MONITOR. The HELM receives 

new local path information from the LOCAL PATH PLANNER whenever a new local path is computed. 

The action of the driving pipeline is illustrated in Figure 3-5. In addition to the ROAD UNIT FINDER 

and ROAD UNIT NAVIGATOR, there are an /NT€RS€CT/ON zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFINDER and NAVIGATOR and a 

CROSS-COUNTRY FlNDER and NA VlGATOR that will be invoked for the corresponding types of route 

segments. They will, of course, find the appropriate kinds of driving units. 

In practice, the ROAD (etc.) UNIT FINDER and OBSTACLE FINDER, which call upon PERCEPTION, 

will be by far the most time-consuming steps; the effective pipeline length is thus two driving units 

long. Taking into account the driving unit on which the vehicle is currently located, our estimates are 

that road edge finding will be looking about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA40 to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60 feet ahead of the vehicle and obstacle scanning 

will take place about 20 to 40 feet ahead. If the vehicle overdrives the sensor processing, the HELM 

will ensure that it stops before passing the end of the current local path. 

Although this PILOT subsystem is concerned with vehicle control and path planning, it embodies a 



14 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- - -  

[ - - -  
P r e d i c t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAion 
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Figure 3-5: The Driving Pipeline in Action 

very important aspect of sensor fusion. It would be possible, for example, to simultaneously scan the 

road ahead for (2-D) road edges and (3-D) obstacles. However, this would involve a rather exhaustive 

search over zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe 3-D data for obstacle detection. By finding road edges first and plotting locsl path 

constraints, the required obstacle scanning area can be cut down to a small fraction of what would 

otherwise be necessary. An order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof magnitude speedup in obstacle detection is obtained by 

ordering the use of the sensors and world knowledge. 

3.5 The PERCEPTION Subsystem 

The PERCEPTlON Subsystem receives perceptual requests from the planning portions of the system 

(the LOOKOUT and PILOT), and analyzes sensor data to compute responses. PERCEPTION will 

probably account for well over 90% of the total computational load zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof tlie NAVLAB system. 

Every possible way to speed up perceptual processing must be utilized. One mechanism used to do 

this is to provide as much top-down guidance from the planning modules as possible. Our system 

structure facilitates this, and we (along with other cooperating sites) have adopted a small repertoire 

of requests that planning modules can make of the perceptual subsystem: 

0 Find a driving unit of a particular type (road unit, intersection, or cross-country terrain 
patch). In general, a predicted location and characterization of the expected driving unit 
will be available. 

0 Find obstacles above the ground within a specific volume of space. 
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0 Find landmarks. Initially, we will only detect specific objects at a specific location; 

eventually, V J ~  will zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdeal with general object types zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand unknown or loosely constrained 
lo ca zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt i o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAns. 

In this list, the only "open-ended" requests are to find landmarks whose identity or location are not 

predictable. In all other cases, the perceptual processing is being used to answer very specific 

queries. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
PI1.OT LOOKOUl  

Figure 3-6: The PERCEPTION Subsystem Plan 

Figure 3-6 illustrates the modules we plan for the PERCEPTION subsystem. This is not our initial 

system, which will be much simpler; it represents our plan for a relatively modest but general 

perceptual system. It includes four levels of modules. 

The PERCEPTION MONITOR will receive the perceptual requests and call upon 2-D and 3-D feature 

finders to satisfy each request. Initially, our PERCEPTION MONITOR will use pre-stored strategies for 

perception; eventually, we would like to develop a more general language for describing such 

strategies so a wider variety of objects can be perceived. 

The primary sensor fusion level presents two virtual zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsensors: a virtual 2-D (image) sensor and a 

virtual 3-D sensor. At the level of these 2-0 and 3-0 FEATURE FUSION modules, the objects being 

manipulated are road edges, 3-D surfaces, etc. Thus, sensor fusion will take place on fairly 

completely interpreted data rather than on raw or intermediate sensor data. 
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The workhorse modules, consuming probably zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwell over 90% of the computational cycles of the 

NAVLAB, are the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASENSOR DATA PROCESSlNG modules. There is one for each complete sensor 

modality, such as "range analysis of rangefinder data" or "motion analysis of images". Each 

SENSOR DATA PROCESSING module will receive raw sensor data (obtained directly from sensors 

without shipping it to and from the database!), and is responsible for all levels of processing up to and 

including 2-D and 3-D features for sensor fusion. For example, a "stereo image analysis" module will 

include image preprocessing, edge finding, edge linking, stereo matching, 3-D grouping, and 3-D 

surface fitting; only the finally produced 3-D surfaces will be passed along to the 3-D FEATIJRE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
FUSION module. In this way, vde can ininimize the bandwidth required of the CODGER database 

system and we can plug in and out experimental perceptual modalities rather e2.sily. 

P I L O T  LOOKOUT 

\ / PERCEPTION SUBSYSTFF 

PERCEPTION MONITOR 

2D FEATURE FUSION 3D FEATURE FUSION 

e t c .  

SURFACE F I T T I N G  

I 
DEPTH SEGMENTATTON 

MOTION ESTIMATION 

R A N G E  

SPATIAL MATCHING 

SMOOTH1 NG 
TEMPORAL MATCHING 

I 
EDGE DETECTION 

SONAR CONTROL ERIM CONTROL CAMERA CONTROL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Virtua l  V e h i c l e  

Figure 3-7: Future PERCEPTION Subsystem Plan 

As we begin to better understand what specific methods of sensor data processing are desirable, 

we will evolve towards a perceptual subsystem as shown in Figure 3-7. In this system, each step zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 



17 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
perceptual processing would be an independent module and each modality is simply a flow of data 

from raw sensor input to 2-D or 3-D features. This is beyond our current reach For both scientific 

reasons--such as the different spatial resolution of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3-D data from image motion and rangefinder 

analysis and how that difference impacts 3-D segmentation--and technical reasons- -the speed and 

bandwidth limitations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the whiteboard system. We will explore the scientific issues as we build the 

NAVLAB system, and we have plans to overcome the technical limitations with new hhrdware, 

software, and CODGER implementation strategies. 

The lowest level of the perceptual system is the actual zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASENSOR CONTROL code that aims the 

sensors, collects data, and provides appropriate coordinate system and time stamps for the data. 



18 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. Methods for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASensor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFusion 

In the course of laying out the NAVLAB system architecture, we have identified three primary 

methods for sensor fusion, eilch zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis used within the NAVLAB system: 

e Competitive. Each sensor generates hypotheses; these hypotheses may reillforce or 
conflict with each other during fusion. Competitive fusion is typically used for sensors 
producing the same type of data, such as two sonar sensors working together with 
overlapping fields of view [15]. 

e Complementary. The different sensors are used in a strategy that applies each one 
individually. The strategy uses the relative differences of the sensors to en!iance the 
advantages and cover the disadvantages of each. For example, in our systern we use 
color images to find road edges, which is relatively easy, and we later scan the road area 
for obstacles with a 3-D sensor such as a rangefinder. We thus use the easy processing 
first to limit the search area required for the more sophisticated sensor. 

e Independent A kind of degenerate method in which one sensor or another is used 

Each of these methods can be applied at any level of the system, and can be applied to actual sensors 

or to sensor interpretation modalities. For example, a rangefinder and color camera can be fused at a 

low level to produce a registered color + range image. This would be a low-level application of 

complementary fusion of sensors. In our system, we will fuse 3-D surfaces etc. from range data and 

from motion and stereo analysis of images. This is high-level fusion of sensor modalities; we can do 

this either competitively with competing parallel hypotheses, or complementarily with strategies to 

invoke each modality when its peculiar' characteristics (such as spatial resolution or processing 

speed) make it most appropriate. Some systems have emphasized the reasoning aspect zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof sensor 

data interpretation, using competitive or complementary fusion within a general inference framework 

[5,13, 161. 

independently for each particular task. 

Another issue in sensor fusion is the strategy used to invoke sensors or sensor modalities. This can 

be: 

Fixed. A strategy embodied in special-purpose code that specifically invokes sensor 
processing. 

Language-Driven. A strategy defined in a general "perceptual language"; each object in 
the object database will have a description of how to recognize that object. This 
approach would be much more general than a fixed strategy, but developing an 
appropriate language for perceptual planning is a major research task [8,9, 101. 

Adaptive. A language-driven system with the ability to select alternative plans based on 
the current status of sensor processing or the vehicle's environment. For example, an 
orange traffic cone has both a distinctive color and shape. Ideally, if we have already 
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acquired a color image of an area, we might begin by looking for the orange color; but if 
we already have acquired or processed 3-D data for that area we might be better off to 
start by looking for the shape of the cone. 

Both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof these issues--sensor fusion method and perception strategy--are possible with either 

bottom-up, top-down, or a combined perception methodology. For example, in our zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsystem we 

provide top-down guidance to the top level of the PERCEPTION system whenever possible. This will 

almost certainly result in top-down queries being addressed to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3-D FEATURE FUSION and 2-0 

FEATURE FUSION modules. However, we can implement those modules themselves to either pass 

top-down sensor data processing instructions to the actual perception modules, or to accept data 

from those modules in a bottom-up manner. 

In the NAVLAB system there are many examples of sensor fusion: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVehicle Position Determination. The dead-reckoning system and inertial navigation will 

provide a continual estimate of vehicle position, but this will drift over time. From time to 
time, landmark sightings will be used to correct the absolute position estimate. We may 
also include an intermediate position estimation method using visual motion analysis. 
This system is an example of complementary sensor fusion with a fixed strategy. 

0 The PlLOT Subsystem. As mentioned above, we will use 2-D road edge information to find 
navigable areas, then scan those areas with 3-0 sensors (see below) to detect obstacles. 
This is complementary, fixed-strategy sensor fusion at a very high level. 

a The PERCEPTION Subsystem. There are several kinds of sensor fusion within our 
PERCEPTION subsystem: 

o In the preliminary system, perception is performed by modules such as "road edge 
finding by color image analysis" or "obstacle finding by rangefinder analysis" 
[2,7,21]. These special-purpose modules embody independent, fixed-strategy 
fusion (i.e., the modules do not individually perform fusion, but the system as a 
whole exercises more than one sensor). 

o In the system we are developing (Figure 3-6), the recognition planning will initially 
be complementary and fixed-strategy, with a separate strategy for each object or 
roadway type; we are working on a language to allow language-directed object and 
road way recognition. 

o Our virtual sensors, as embodied in the 2-0 FEATURE FUSION and 3-D FEATURE 
FUSION modules, will probably use fixed-strategy competitive processing. 
However, there is some complementary processing even at this level. For example, 
the 3-D FEATURE FUSION module will find obstacles when called upon to do so. 
The rangefinder data is ideal for this purpose, since the raw data is a depth map. 
However, our rangefinder has relatively poor spatial resolution, and at a distance of 
40 feet or more will not be able to reliably detect (6-inch) obstacles. When an 
uncertain obstacle hypothesis comes in from the rangefinder, we plan to have the 
3-D FEATURE FUSION module invoke image motion analysis using a camera with a 
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telephoto lens to provide a verification or denial zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the hypothesis based on high- 
resolutiori images. Thus, even subtle ditfererices between sensors (in this case, 
two depth-niap-based modalities with different processing times and spatial 
resolutions) can be exploited to produce total systems with improved performance. 
In this case, cornplementary sensor fusion produces a system whose overall 
performance wiil be better than the siiin of the individual parts [17]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

o In the perceptual system plan outlined in Figure 3-7, fusion of sensor modalittes 
may take place at lower levels. The same issues of fusion method and strategy still 
arise, and we may have virtiial sensors at several levels, e.g. a virtual edge sensor, 
a virtual depth map sensor, and/or a virtual surface sensor (similar to our current 
3-0  FEATURE FUSION module). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs stated earlier, there are substantial scientific 
issues to be addressed before such a system can be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbuilt. 
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5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconcsusions 

We have described in this paper the NAVLAB vehicle, the CODGER whiteboard system which 

resembles a blackboard but with a parallel control flow, and the NAVLAB software structure which 

contains a simple navigation and planning system, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 "driving pipeline," and top-down guidance of 

perception. The perceptual system itself has a central top-level interface to the rest of the system, 

sensor fusion of thoroughly processed 2-D and 3-D data, and several sensor modalities which are 

each completely self-contained modules of the system. We expect perception to corisume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwell over 

90% of the computational time in the complete system. 

Sensor fusion takes place at a number of places in the NAVLAB system. We have identified these 

and produced a simple classification of sensor fusion methods and strategies. In particular, 

complementary use of different sensor modalities seems to produce systems and subsystems whose 

performance can be better than that of any individual modality (see also [17]). 

Our plans for the future development of the CODGER system include creating a CommonLISP 

interface (the package is currently accessible from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC) and speeding up the system immensely by 

geometric indexing, distributing the database itself, and using special new hzrdware and operating 

system software ur?der development at CMU. 

For the NAVLAB, our future plans call for dealing with moving objects, improving the hardware, 

implementing a inore sophisticated reasoning and planning system, and most of all, improving the 

perceptual subsystem. We will be increasing the performance of perception by using new hardware 

and software, restructuring the system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas described in this paper, and reducing our reliance on 

specific advance knowledge in the global map and object databases. 
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