
Research Article

An Architecture of IoT Service Delegation
and Resource Allocation Based on Collaboration between
Fog and Cloud Computing

Aymen Abdullah Alsaffar,1 Hung Phuoc Pham,1 Choong-Seon Hong,1

Eui-Nam Huh,1 and Mohammad Aazam2

1Department of Computer Engineering, Kyung Hee University, Yongin-si, Seoul, Republic of Korea
2Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada

Correspondence should be addressed to Eui-Nam Huh; johnhuh@khu.ac.kr

Received 29 April 2016; Revised 25 July 2016; Accepted 25 August 2016

Academic Editor: Young-June Choi

Copyright © 2016 Aymen Abdullah Alsa�ar et al. 	is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Despite the wide utilization of cloud computing (e.g., services, applications, and resources), some of the services, applications, and
smart devices are not able to fully bene
t from this attractive cloud computing paradigm due to the following issues: (1) smart
devices might be lacking in their capacity (e.g., processing, memory, storage, battery, and resource allocation), (2) they might
be lacking in their network resources, and (3) the high network latency to centralized server in cloud might not be e�cient for
delay-sensitive application, services, and resource allocations requests. Fog computing is promising paradigm that can extend
cloud resources to edge of network, solving the abovementioned issue. As a result, in this work, we propose an architecture of IoT
service delegation and resource allocation based on collaboration between fog and cloud computing. We provide new algorithm
that is decision rules of linearized decision tree based on three conditions (services size, completion time, and VMs capacity) for
managing and delegating user request in order to balance workload. Moreover, we propose algorithm to allocate resources to meet
service level agreement (SLA) and quality of services (QoS) as well as optimizing big data distribution in fog and cloud computing.
Our simulation result shows that our proposed approach can e�ciently balance workload, improve resource allocation e�ciently,
optimize big data distribution, and show better performance than other existing methods.

1. Introduction

Cloud computing is not only a technology that continuously
advances for o�ering a variety of services and resources
to many cloud consumers smart devices (e.g., IoT, smart
wearable devices, smart phone, smart tablets, and smart
home appliances) but also an enabling developer to develop
more applications, tools, and services. Cloud computing
architecture can empower ubiquitous, advantageous, and on-
demand network access to a shared pool of con
gurable com-
puting resources, providing many other bene
ts (e.g., stor-
ages, services, applications, networks, virtualized resources,
large scale computation, schedulable virtual servers, high
expansibility, computing power, low price services, virtual
network, network bandwidth, and high reliability) [1–3]. One

of the technologies that is gaining popularity is known as
Internet of things (IoT). IoT is a technology that is still
developing and enables many objects (e.g., thin-client, smart
phone, smart tablets, smart home appliances, smart wearable
devices, and sensor) to connect to Internet to perform
variety of services (e.g., memory, storage space, processing,
virtualization, resource allocation, services delegation, surf-
ing, send/receive big data, and viewing social sites). 	us,
smart devices services are present in every aspect of our
daily life (e.g., health care, medicine treatment, education,
and remotely controlled smart devices). Cloud computing
technology is being widely used to support variety of cloud
consumer devices, services, and applications.

Despite the wide utilization of cloud computing (e.g.,
services, applications, and resources), some of the services,

Hindawi Publishing Corporation
Mobile Information Systems
Volume 2016, Article ID 6123234, 15 pages
http://dx.doi.org/10.1155/2016/6123234

2 Mobile Information Systems

applications, and smart devices are not able to fully bene
t
from this attractive cloud computing paradigm due to the
following issues: (1) smart devices are lacking in their capacity
(e.g., processing, memory, storage, battery, and resource
allocation), (2) they are lacking in their network resources,
and (3) the highnetwork latency to centralized server in cloud
is not e�cient for delay-sensitive application, services, and
resource allocations requests. According to [3], the number
of devices that connected to Internet will exceed 24 billion
by 2020. 	e rapid increase of number of Internet connected
devices combined with the long distance between user smart
devices and cloud computing, and the repeatedly requested
services, will pose heavy burden to network performance
and network bandwidth which in return will degrade cloud
computing QoS as well. Moreover, the high network latency
between user devices and cloud may not be ideal for delay-
sensitive applications, services, and resources.

To resolve the abovementioned issues, we utilize fog
computing which is a new paradigm that extends cloud
computing resources and service to the edge of network. It is
highly virtualized infrastructure that can provide networking
services, computation, storage,memory between IoT devices,
and traditional cloud computing environment [4]. Further-
more, fog computing is located in localized environment,
making it closer to user location and giving it the advantage
over cloud to provide variety of distributed applications
[4]. 	e impressive advantages that fog computing o�ers
over cloud computing will not only increase the number of
requests services (i.e., delay-sensitive services, applications,
and data) but also direct most of user requested services if
not all to fog computing only. 	is will lead to unbalanced
workload of services and degraded performance of fog
performance, user requests, and the abandonment of IoT
service from cloud computing.

	erefore, in this paper, we introduce new architecture
of IoT service delegation and resource allocation based on
collaboration between fog and cloud computing. We provide
new algorithm that is decision rules of linearized decision
tree based on three conditions (services size, completion
time, and VMs capacity) for managing and delegating user
request. Furthermore, we present our new strategy for data
distribution optimization such as big data. Moreover, we
present an algorithm to perform resource allocation in
order to satisfy service level agreement (SLA) and quality of
service (QoS). Our simulation shows that our approach can
improve the e�ciency of resource allocation and show better
performance comparing with other approaches.

	e rest of paper is organized as follows. In Section 2,
we introduce related work. In Section 3, we introduce our
system architecture and motivating scenario. In Section 4,
we present our proposed mechanism for service delegation,
resource allocation, and big data distribution processes. In
Section 5, we present our implementation and analysis result.
In Section 6, we present our conclusion and future work.

2. Related Work

	ere are many researches attempting to resolve the above-
mentioned issues. In [5], the author introduces e�cient

synchronization in cloud for number of hierarchy distributed

le systems. 	e author deploys the conception of master-
slave architecture to propagate data to reduce tra�c. In [6],
the author introduces method for resource scheduling which
can be e�cient inmitigating the impacts that in�uence appli-
cation respond time and utilization of the system. In [7, 8], the
authors introduce the impact of data transmission delay on
the performance. In [9], the author introduces onemethod to
make a parallel processing for big data which can increase the
performance in federated cloud computing. However, these
researches do not mention how much resources should be
utilized.

Also, there are many completed researches that deal with
resources allocation. In [10], the authors explain through their
work that shared allocation is superior to dedicated alloca-
tion. Nevertheless, the authors do not perform experiment
with arbitrary number of SLAs. Moreover, authors do not
show how fast the server needs to be in order to guarantee
quality of service (QoS). In [11, 12], the authors provide
services to large number of SLAs as it is quite di�cult to
obtain performance between shared and reserved allocation.
In [13], the author introduces a model which secure resource
allocation in cloud computing, where the author designed
fuzzy- logic based trust and reputation model.

Many researches have been done in order to provide e�-
cient method to integrate mobile devices and cloud comput-
ing environment. In [14], the author presents concept where
cloud computing is utilized in order to improve the capability
of mobile devices. In [15], the author did some modi
cation
to Hyrax which enables mobile devices to utilize cloud com-
puting platforms.	e concept of deploying mobile devices as
a provider of resources is presented even though the experi-
ment was not integrated. In [16], the authors only concentrate
on the use of partition policies to hold the e�ect of application
on mobile devices. However, they did not resolve any other
issues regarding mobile cloud computing or fog computing.

Fog computing technology is still in its early stage and
needsmore time to develop like cloud computing. To the best
of our knowledge, there are not many researches considering
collaboration of fog and cloud computing to provide e�cient
way of delegating IoT services between fog and cloud to
better balance workload/requested services/resources. Fur-
thermore, we introduce new methods to delegate services
to multiple fog and cloud computing based on linearized
decision tree which considers three conditions (service size,
completion time, andVMs capacity).Moreover, we introduce
new strategy for data distribution and introduce an algorithm
to preform resource allocation to guarantee SLA and QoS.

3. Proposed Architecture and Scenario

In this section, wewill introduce our new system architecture,
explain its component and scenario, and explain the advan-
tages and disadvantages of fog and cloud collaboration.

3.1. System Architecture. Figure 1 illustrates our proposed
systemarchitecturewhich consists of three layers; upper layer,
middle layer, and lower layer. Table 1 illustrates our system
components and explains their role.

Mobile Information Systems 3

Table 1: System component.

Component Description

IoT devices All smart devices that are capable of connecting to internet.

Cloud/fog broker
Responsible for receiving user request/services, providing services/search for VMs,
and delegating service to other fog/cloud environments.

Cloud/fog computing server
Responsible for providing requested services/resource, processing them, and
delivering them back to broker.

Services monitor server
Responsible for maintaining and storing record of current service and their
progress and providing/checking available space for new services.

3rd-party cloud server Responsible for providing services to fog broker and cloud broker.

VMs occupancy
Responsible for providing list of the current available VMs capacity and showing
the used available VMs capacity.

Services map table
Responsible for presenting map of services and their divided chunks in the same
and/in other fog computing environments as well as in cloud computing
environment.

3rd-party cloud server

Services
server

monitor

Fog broker

Cloud server 1Cloud server 2

Services
server

monitor

Fog broker

Upper layer: cloud
environment

Services monitor
server

Middle layer: fog

Lower layer: IoT
devices

Services monitor
server Fog computing

server

Fog broker

Cloud broker

Fog
server

computing

Cloud server 3

Fog computing

environment

server

Figure 1: Proposed system architecture.

Weprovide detailed assumption for our architecture. Our
assumption is as follows:

(1) We assume that there are 3 fog computing envi-
ronments which have closer distance between each
other and user smart devices as well as long distance

between fog and cloud. Each fog computing envi-
ronment will include fog broker to manage request
services, obtain information of VMs capacity in other
fog/cloud environments, and so forth. (Note: in case
of larger network area, it is possible to havemore than
3 fog computing environments.)

4 Mobile Information Systems

(2) We assume that all services will be requested from fog
computing environment. Based on three conditions
such as services size, completion time, and VMs
capacity, fog broker will decide to process the current
requested services in current fog or in other fog/cloud
computing environments.

(3) We assume that there are delay-sensitive and
nondelay-sensitive requested services, applications,
and data.

(4) We assume that all services monitoring server in
fog will sync their VM capacity status and current
services processing with services monitoring server
in cloud. When any fog needs more VM capacity,
fog broker will obtain that information from services
monitoring server in cloud which will reduce the
search time of VMs capacity in other fog or cloud
computing environments.

3.1.1. Upper Layer of System Architecture. 	e upper layer
represents cloud computing environment. 	is layer consists
of cloud broker, services monitor server, cloud servers, and
3rd-party cloud server. In case that there is no available
capacity in fog to process service and the requested services
that is needed later, then the fog can delegate these services to
cloud computing.

3.1.2. Middle Layer of System Architecture. 	e middle layer
represents fog computing environment and consists of three
fog computing environments. Each fog computing envi-
ronment consists of fog broker, fog computing server, and
services monitor server. Each layer can be aware of each
other through using unique communication address for each
environment con
gured by policies or by the cloud itself.
Note that it is possible to have more than 3 fog computing
environments when we cover larger area/state. All ubiquitous
and future services/resources can be requested from any fog
environment as well as cloud based on service size (e.g.,
large or small), requested time (e.g., now or later), and VMs
capacity (e.g., occupied or not occupied).

3.1.3. Lower Layer of System Architecture. 	e lower layer
represents user smart devices. User smart devices can consist
of smart phone, smart tablets, smart sensors, smart wearable
devices, thin-client, smart home appliances, and so forth.
Some of these smart devices have di�erent speci
cation and
capabilities (e.g., computation process, storage space, screen
resolution, and bandwidth). Fog computing can provide
e�cient way for them to perform these tasks over the Internet
in less respond time and e�cient performance.

3.1.4. �e Role of Services Monitor Server. 	e services moni-
tor server consists of two important components such asVMs
occupancy table and services map table.

	e VMs occupancy table is used to keep a list of VMs
capacity and occupancy (e.g., occupied and not occupied) in
each fog and cloud computing environment. 	e bene
t of
this table is to provide fast way for broker to decide on where
to process the current service based on service size and the

VMs
number

Service ID Fog/cloud Parts Progress Exp_Finish_
Time

VM1 1035 Fog 1 2 out of 4 00:00:00

VM6 1035 Fog 2 3 out of 4 00:00:00

VM3 1040 Fog 1 5 out of 6 00:00:00

VM4 1135 Cloud 1 1 out of 3 00:00:00

20%

40%

80%

95%

VM6
OC

VM1

OC

VM2

NOC

VM4
OC

VM3

OC

VM5
NOC

OC: occupied, NOC: not occupied

Figure 2: Illustrating sample of VMs occupancy table.

time needed to be completed. In case there is not enough
capacity in current VMs at current fog, then the broker can
send request to service monitor server in cloud which will
store/keep record of all VMs capacity in other fog and cloud
environments. Here, the broker can request to reserve these
VMs for their current service from other fog/cloud environ-
ments. Figure 2 illustrates a sample of VMs occupancy table.

Services map table is used to keep/store list of currently
processed services and their location. For example, some-
times, service is requested from current fog/cloud environ-
ment and to complete this service we need the collaboration
of 2 or 3VMs; however, we only have 1 VMat current fog. As a
result, the broker will search the cloud for not occupied VMs,
reserve them, and request processing the rest of the service
in cloud. Here, this table will list service ID, VMs number,
location, progress time, expected
nishing time, and the IP
address which was used to send the services.

3.2. Scenario. As fog computing is gaining more popularity
for being near the underlying network and extending cloud
computing services/resources near to user location, envision
some situation where IoT devices user can bene
t from
using fog computing environment to resolve any problem,
especially when they are in public or at home. We can use
the example of many IoT smart devices such as google glass,
smart oven, and smart refrigerator. In the
rst example, the
userwants to use their smart oven to cook some food. In order
to do so, the smart oven wants to search the Internet to obtain
the right temperature which is needed to cook the food.
However, the smart oven has limited capability for searching
the Internet. As a result, the smart oven can connect to local
fog computing environment which in return searches for
the right information, and
nally, stores that information in
the smart oven application. Furthermore, the user can input
name of many foods and ask fog to search for the right recipe.
Here, the smart oven receives the requested information in
convenient and short time.

Another example could be google glass. Let us assume
that google glass user is taking pictures which required
obtaining information such as sightseeing and cloths. Google
glass might have limited capabilities to do searching which

Mobile Information Systems 5

might consume more power and need more resources, big
storage, and higher bandwidth. Here, the user can take some
pictures of video and send them to fog broker in fog comput-
ing for information searching. In case there aremany services
requested/assigned to current fog, fog broker will collaborate
with other fog/cloud computing environments and delegate
the services to them. In fog/cloud environment, the service
will be divided into many chunks which will be assigned
to VMs for processing. A�er processing is completed, these
chunks will be sent to fog/cloud broker where they will be
combined and sent back to user devices.

Our proposed scenario illustrates the advantages of uti-
lizing collaboration of work between fog and cloud comput-
ing environment. 	is collaboration e�ciently increases the
chances of providing e�cient method for services delega-
tion, optimizing resources, and optimizing data distribution
between fog and cloud computing environment.

3.3. Fog and Cloud Collaboration. In this section, we will
introduce the advantages and disadvantages of fog and cloud
computing collaboration.

Advantages of fog and cloud computing collaboration are
as follows:

(1) Dividing the work load between fog and cloud leads
to fast completion of requested tasks when there are
many requests (e.g., video, movies, and clips) which
are requested at the same time/peak time (e.g., World
Cup show and Olympic games events).

(2) 	e collaboration between fog and cloud lead to
better managing of network performance by dividing
requested services to small parts and sending them
through the network to di�erent fog or cloud for
processing. 	is will reduce the network overload
which in return will reduce fog and cloud perfor-
mance overload.

(3) Fast resources allocation for requested services leads
toQoE and e�cientlymanaging resources to a variety
of fog and cloud consumers.

(4) Fog and cloud broker can communicate to manage
and organize requested services and VMs capacity.

	e disadvantages of fog and cloud computing collabora-
tion are as follows:

(1) It might take more time to search for free VMs
capacity from other fog or cloud computing envi-
ronments. To solve this issue, we include in both
fog and cloud environments services monitor server
which keeps record of current free VMs and VMs
status. When fog needs more VMs, fog broker will
request VMs capacity of other fog environments from
services monitoring server in cloud which will store
VMs capacity and currently process services of all fog
environments.

(2) Dividing many services to small parts and sending
them to other fog or cloud environmentsmight create
larger table with larger size when it comes to request
certain services that are larger in size.

Table 2: IoT services delegation constrain cases.

Service size Completion time VMs capacity

Case 1 Small Now Occupied/not occupied

Case 2 Small Later Occupied/not occupied

Case 3 Large Now Occupied/not occupied

Case 4 Large Later Occupied/not occupied

4. Proposed Mechanism

In this section, we will introduce our methods which we used
for IoT services delegation, optimizing resources allocation,
and optimizing data distribution. Furthermore, we will pro-
vide algorithms and mathematical equations as well.

4.1. Services Delegation Process. In this section, we will
explain our method which we used to delegate services to
other fog environments and cloud computing environments.
	e delegation of any services requested from any fog/cloud
environment is decision rules of linearized decision trees
based on three conditions (service size, completion time, and
VMs capacity). 	e requested services size can be small or
large, the requested completion time can be now or later, and
VMs capacity can be occupied or not occupied at current
fog/cloud environment. We consider 4 cases in Table 2 and
provide 2 algorithms that explain these cases process in detail.
	e cases are shown in Table 2.

Both of Algorithms 1 and 2 aim to
nd where to delegate
the services for processing based on service size (e.g., small
or large), services completion time (e.g., now or later), and
VMs capacity (e.g., enough or not enough) and in some cases
we include services that are in queue (e.g., services in queue,
yes or no). As for service size, we can, for example, determine
the size based on checking if the size is bigger than 500mb
or not. Moreover, we also aim to manage these services in
fog and cloud environment. Figure 4 illustrates sequence �ow
diagram of any service that is requested from fog environ-
ment where there is enoughVMs capacity. Figure 5 illustrates
sequence �ow diagram of services that is requested from fog
environment where there is not enough VMs capacity.

4.2. Resource Allocation and Data Distribution Process. Many
of formerly presented approaches utilize 1/m/1 model to pro-
vide solution to previouslymentioned problem.Nevertheless,
in our proposal, we utilize 1/m/m/1 for solving the same
problem, where (1) refers to cloud broker, (m) refers to many
paths, (m) refers to many fog brokers in fog environments,
and (1) refers to IoT devices users. In detail, IoT devices will
send service request to fog broker in fog environment. Fog
broker will divide data into multiple blocks where they will
be assigned to certain VMs. Each block will be divided into
multiple chunks which will be sent to multiple processor for
processing. A�er receiving the processed data, the processor
combines them again into one big data and returns the result
to user IoT devices.

By using this method, we reduce/eliminate the burden
to the system when we process big data size. 	erefore,
we guarantee the availability of server in fog or cloud

6 Mobile Information Systems

Input: �� // service size (small or large), �ct // service completion time (now or later), VM� // VM capacity
(occupied = not enough or not occupied = enough)

Output: service delegation/management location // fog or cloud
(1) If (Service Size = small) && (Service completion time = now) && (VMs capacity = enough)
(2) THEN
(3) Divide requested services to small chunk
(4) Calculate the required no. of VMs
(5) Assign these chunks to the assigned VMs for processing
(6) else if (Service Size = small) && (Service completion time = now) && (VMs capacity = not enough)
(7) THEN
(8) Divide requested services to small chunks
(9) Calculate the required no. of VMs
(10) Obtain list of available VMs capacity in other fog/cloud environment from Services Monitor Server in cloud.
(11) Reserved the VMs and assign the chunks to them.
(12) else if (Service Size = small) && (Service completion time = later) && (VMs capacity = enough) && (Services in Queue = no)
(13) THEN
(14) Process the requested service at current location (fog environment)
(15) Divide requested services to small chunks
(16) Calculate the required no. of VMs
(17) Assign these chunks to the assigned VMs for processing
(18) else if (Service Size = small) && (Service completion time = later) && (VMs capacity = enough) && (Services in Queue = yes)
(19) delegate the requested services to be processed in cloud
(20) Divide requested services to small chunks
(21) Calculate the required no. of VMs
(22) Assign these chunks to the assigned VMs for processing
(23) end if
(24) end if
(25) end if
(26) A�er completion the processing of all chunks,
(27) return the chunks to broker for combining them and send the result to users IoT devices.

Algorithm 1: Finding IoT services delegation/management in fog/cloud based on three conditions (service size, completion time, and VMs
capacity) for cases 1 and 2.

environment to process large number of requested services
at peak and nonpeak time, guarantee fast respond time, and
assure satisfying quality of services (QoS).

Next, we will explain the process of our work which
consists of two stages. In stage 1,
rstly, we determine the
minimum number of VMs needed to do the job and their
speed. Secondly, we divided and assigned data based on VMs
capacity. In stage 2,
rstly, we distribute data which has di�er-
ent capacity to processors. Secondly, a�er the completion of
processing the divided chunks, they will return to cloud/fog
broker to combine them and,
nally, they will be sent to IoT
devices user.

4.2.1. First Stage of ProposedMechanism. In the
rst stage, we
determine the minimum number of VMs needed to do the
job and their speed. Secondly, we divided and assigned data
based on VMs capacity.

(A) Determine the Number of VMs and Speed. We use Algo-
rithm 3 to determine the minimum number of VMs which is
required to do the job depending on service level agreement
(SLA). Furthermore, we use cumulative distribution function
(CDF) �(�) time respond which is available in [17]. 	e
minimum number of VMs � keep increasing until �(�)
arrive at the desired targeted probability. As a result, we can

receive the required � for SLA. Next, we present description
of function �(�) and it is as follows:

� (�) = Probability (time of response < �)

= {{{{{{{

1 − �−�� − ��−��� for � = �� − 1
1 − �−�� − ��−��(��−�) [1 − �−��(1−��+�)1 − �� + �] for � ̸= �� − 1,

(1)

where � = �/�.
 = � (0) ��� − ���! ∗ ��(�� − �) ,

� (0) = (�−1∑
	=0

�	�! + ����! (� − �))
−1

.
(2)

� is the arrival rate and � is the service rate.
Fog computing infrastructure can provide diversity of

services to satisfy a large number of SLAs through utilizing
unique scheduling methods such as FCFS which is shown in
Figure 6. 	us, we are recommending to allocate the VMs
into two groups where the
rst group will be utilized for
shared allocation (SA) �shared Allocation and the second group
will be utilized for reserved allocation (RA) �reserved Allocation.

Mobile Information Systems 7

Input: �� // service size (small or large), �ct // service completion time (now or later), VM� // VM capacity
(occupied = not enough or not occupied = enough)

Output: service delegation/management location // fog or cloud
(1) If (Service Size = Large) && (Service completion time = now) && (VMs capacity = enough)
(2) THEN
(3) Process the requested service at current location (fog environment)
(4) Divide requested services to small chunks
(5) Calculate the required no. of VMs
(6) Assign these chunks to the assigned VMs for processing
(7) else if (Service Size = Large) && (Service completion time = now) && (VMs capacity = not enough)
(8) THEN
(9) Divide requested services to small chunks
(10) Calculate the required no. of VMs
(11) Obtain list of available VMs capacity in other fog/cloud environment from Services Monitor Server in cloud.
(10) Reserved the VMs and assign the chunks to VMs for processing
(11) else if (Service size = Large) && (Service completion time = later) && (VMs capacity = not enough) &&

(Services in Queue = yes)
(12) THEN
(13) this services will be delegated to other fog/cloud environment
(14) Divide requested services to small chunks
(15) Calculate the required no. of VMs
(16) Assign these chunks to assigned VMs for processing.
(17) end if
(18) end if
(19) end if
(20) A�er completion the processing of all chunks,
(21) return the chunks to broker for combining them and send the result to users IoT devices.

Algorithm 2: Finding IoT services delegation/management in fog/Cloud based on three conditions (service size, completion time, and VMs
capacity) for cases 3 and 4.

Input:
(1) � // rate of arrival
(2) � // rate of service
(3) SLA(�, �) // �: time of response

// �: probability target
Output: � // required minimum no. of VMs
(4) Float � = �/�
(5) Function determineMinVM (�, �, �, �) {
(6) If (� == (int) �) � = (int) �;
(7) Else � = (int)Math.�oor(�) + 1;
(8) While �(�) ≤ �, �++;
(9) Return �; // required minimum no. of VMs }

Algorithm 3: Determining the number of VMs.

As for shared allocation, the arrival jobs of SLA are merged
in a single steamed and served by � VMs.

And, as for reserved allocation, we provide one VM for
each arriving job which is shown in Figure 7. Both fog and
cloud computing will utilize the model for shared allocation
and reserved allocation.

All of the SLAs in shared allocation will have the same
CDF of response time and arrival rate � = ∑
�=1 ��. 	us, the
minimum number of VMs �Shared Allocation to meet SLAs is
given by

�Shared Allocation = max (�1, . . . , ��, . . . , �
) . (3)

Table 3: An example of proposed cases.

Cases �1 �1, �1 �2 �1, �1 �Reserved �Shared

Case 1 3.9 3, 0.7 3 10 10 11

Case 2 3.9 3, 0.85 3.9 12 12 10

	e number of VMs which is required to satisfy SLA� of
user is referred to as ��. Let the smallest number of VMs
which is required to meet SLA in reserved allocation be�Shared Allocation. As a result, �Reserved Allocation is given by

�Reserved Allocation =
∑
�=1

��. (4)

In this case, when more than 1 user request services
with the same SLAs, the shared allocation can provide the
same or even enhanced performance than reserved allocation(�shared Allocation ≤ �Reserved Allocation). However, in case that
SLA1 and SLA2 are not the same for shared allocation, then it
will be quite di�cult to determine whether shared allocation
is better than reserved allocation or the opposite. Table 3
will provide example of two cases for shared and reserved
allocation.

Note that, in some cases, we have to consider the case
where there are services in queue or not yet decided to where
to process the requested services (e.g., in fog or in cloud).

8 Mobile Information Systems

Input:
(1) �1, �2 // rate of arrival
(2) � // rate of service
(3) SLA1, SLA2
(4) " // processing time expectation
Output:
(5) SA, RA //shared and reserved allocation strategy
(6) Function determineAllocStrategy (�1, �2, SLA1, SLA2, ", �) {
(7) Calculate SLA di�erence #
(8) Get the corresponding angle $ from the SLA di�erence table
(9) If (� ≥ (1/"[&] + �1) && � ≥ (1/"[&] + �2))
(10) If (Math.asin(�2/sqrt (�1 ∗ �1 + �2 ∗ �2)) ≤ $)
(11) Return RA // reserved allocation
(12) Else
(13) Return SA // shared allocation
(14) Else
(15) Return false {

Algorithm 4: Determining the allocation strategy.

Table 4: Service level agreement di�erence (SLA).

$
(0, 20) 0(20, 40) 20

(40, 66) 50(66, 88) 70

By examining both cases at Table 3, we notice that, in
the
rst case, �Reserved Allocation has shown better performance
than �shared Allocation and, in the second case, �shared Allocation

has shown better performance than �Reserved Allocation. We are
trying to determine the best suitable strategy for shared and
reserved allocation for the purpose of satisfying SLA1 and
SLA2. Moreover, the VMs are able to guarantee the quality
of services (QoS). Let the average number of VMs which is
needed to meet a given SLA over considered arrival time be"(SLA):

" (SLA) = 1

∑
0

∫ (, �, �) . (5)

Let # refer to the di�erence between SLA1 and SLA2. As
a result, # is given by

= ****" (SLA1) − " (SLA2)**** . (6)

Algorithm 4 illustrates our allocation strategy to satisfy
service level agreements (SLA) and quality of services (QoS).

	e relationship between # and angle $ is explained in
Table 4. As illustrated in Table 4, every # is
xed by the
changes in arrival time of �1, �2 in (0, 30) and the average
angle of SLA is di�erent for every range.

We state angle $ by the next formula:

sin$ = �2
sqrt (�1 ∗ �1 + �2 ∗ �2) . (7)

	e next step is to discover the speed of VMs in order to
guarantee the quality of services (QoS) for every requested

service. We also deploy the little law which is explained in

[18]:

" [-] = �
(1 − �) where � = �� . (8)

In (8), we refer to the number of jobs in the system by"[-]. Equation (9) presents the expectation of processing

time:

" [&] = " [-]� = �
� (1 − �) = 1� (1 − �) = 1� − � . (9)

To satisfy the quality of services (QoS), we set the below
formula:

� ≥ 1" [&] + �. (10)

By using this formula, we are able to discover theVMs rate
of service.Moreover, we introduce an example below tomake

it clear. For instance, let us assume that we want "[&] ≤ 10
second, � = 1 job/second, then the VMs rate which is needed

is as follows:

� ≥ 110 + 11110 . (11)

Mobile Information Systems 9

(B) Determine VMs Capacity. When the system receives any
service,
rst, we have to
nd out if we need to process it at
current location or delegate it to other fog/cloud computing
environments based on the algorithmwhichwementioned in
Section 4.1.	en, we can determineVMs capacity. In order to
determine the VMs capacity, we will sort, divide, and assign
data to VMs current Capacity. We also set data priority by
utilizing training data to sort out data. As a result, the data
with higher priority will be transferred
rst and the one with
lower priority will be transferred last.

We divide data to blocks of di�erent sizes (e.g., bl1, bl2,
and bl). In order to select the best VMs based on their
capacities, we utilize greedy algorithm. Finally, the VMs with
higher capacity will be assigned to the block with big size.

4.2.2. Second Stage of Proposed Mechanism

(A) Distribution of Data Block Process. We start distributing
data block which has di�erent capacities to processors.When
we receive data, it will be divided into blocks of data. 	ese
blocks will be divided into small size which is known as
chunks (e.g., chk1, chk2, . . . , chk). Every chunk might have
di�erent size based on the strength of bandwidth.

Let us denote the chunk in each block by chk�, the size
of chunk by 3(ch�), and the bandwidth between VMs and
processor by bw�. Let 3(ch�)/5� denote the time it takes to
send data (chunk) fromVMs to processor. Note that whenwe
consider method of parallelization, the time it takes to send
chunks of data to processors should be even:

3 (chk1)
bw1

= 3 (chk2)
bw2

= 3 (chk3)
bw3

= ⋅ ⋅ ⋅ = 3 (chk�)
bw�

= 9,
Set � = 3 (block) = 	∑

�=0
3 (chk) = 9 	∑

�=0
5�.

(12)

	us,

3 (chk�) = 9 ∗ 5� = �∑	�=0 5� ∗ 5�. (13)

As it is shown above, we can determine the size of every
chunk to adapt it with the bandwidth. 	e next process is
to sort out the processor based on processor capacities. For
example, if the chunk of data is bigger, then it will be sent to
processor with higher capacity for processing it.

(B) �e Merging of Data Block Process. In this section,
we explain the process of merging data block a�er being
processed. A�er the data block is being processed, it will
be send back to fog broker in fog environment for merging
process. In service monitor server, the services map table will
keep a record of these blocks and the locationwhere theywere
processed which is illustrated in Figure 3.

VMs
number

Service
ID

Fog/
cloud

Parts Progress Exp_Finish
_Time

IP address

VM1 1035 Fog 1 2 out of 4 00:00:00 169.19.16.10

VM2 1035 Fog 2 3 out of 4 00:00:00 169.18.15.11

VM3 1040 Fog 3 5 out of 6 00:00:00 187.96.53.21

VM6 1135 Cloud 1 1 out of 3 00:00:00 190.35.665.35

15%

45%

70%

95%

number

Figure 3: Illustrating sample of services map table.

IoT
devices

Fog
broker

Fog
server

(1) Send service request

(3) Send data (chunks) a�er
processing them

(2) Send data (chunks) to
assign VMs

(4) Combine data (chunks)
and send them to user

based on Algorithms 1
and 2

(i) Register/authenticate

(iii) Divide data into chunk

(ii) Check VMs capacity
user devices

Figure 4: Sequence �ow diagram of IoT service process in fog
computing environment.

Figures 4 and 5 illustrate the conceptwhere data is divided
into chunk and then assigned to VMs in fog or cloud or both
of them.	en, a�er processing these chunk, they are returned
to fog broker to merge them and send them to user devices.

Fog computing will act as master which will receive all
chunks of data to decrease the complexity that is due to
the existing of
rewall between processor in fog or cloud
environment.

5. Implementation and Analysis

In this section, the numerical experiments results are pre-
sented to examine the e�ciency of shared allocation (SA) and
reserved allocation (RA) as well as comparing our approach’s
performance with other approaches in terms of processing
time to transfer big multimedia data from fog/cloud broker
to user smart devices. 	e comparison method uses one
processor [19] to receive data from fog/cloud broker where
in our case we use multiple processor.

5.1. Experiment Settings. 	e characteristics of our target
system are illustrated in Table 5. In our PC, we used one Intel
Core TM i7 965 and 8GBRAM.	e algorithmwas simulated
on CloudSim [20]. CloudSim is a framework for modelling
and simulation of infrastructures and services in Java jdk-
7u7-i586 and Netbeans-7.2.

10 Mobile Information Systems

(1) Send service request

(3) Request VM capacity
list

(11) Combine data

(chunks) and send
them to user

IoT

devices

Cloud

broker

Services
monitor
server

Fog

broker 2

Fog

broker 1

Fog

broker 3

(2) Send request for VM
capacity

(4) Send VMs capacity
list

(5) Data (chunk 1)

(6) Data (chunk 2)

(7) Data (chunk 3)

(8) Processed data
(chunk 1)

(9) Processed data
(chunk 2)

(10) Processed data
(chunk 3)

Figure 5: Sequence �ow diagram of IoT service which is delegated to other fog/cloud computing environments.

Table 5: Characteristic of the target system.

Parameter Value

Network LAN

Topology Connected

Operating system Win7 Professional

Number of VMs 25

Number of fog 7

Number of smart devices 10

Bandwidth [10∼512]Mbps

Table 6: Setting for SLA.

Parameter Value

Response time [1∼10]
Target time [0.1∼0.99]

Table 7: Speeds of requests and response services.

Parameter Value

Arrival rate [0.2∼3.9]
Service rate [1∼4]

Every parameter in the simulation has di�erent arrival
rates �, response times �, and target probabilities �. Some big

les for the abovementioned algorithms are to estimate the
required minimum number of VMs for two types of resource
allocations and data distribution time. Table 6 illustrates
setting for SLA and Table 7 illustrates the speeds of requests
and response services.

	e experiment result proves that shared allocation and
reserved allocation almost have the same impact when SLA is
the same for both of themwith di�erent arrival rate, response
time, and target probability. We did our experiment in the
same cases. However, di�erent from other approaches, we
used multiple SLA instead of one single SLA.

Figure 8 illustrates di�erent response time of shared and
reserved allocation. Our experiment result shows that when
the smallest number of VMs decreases, the respond time for
shared and reserved allocation increases. In addition, it shows
that the probability is almost the same for shared and reserved
allocation when we set di�erent response time for shared and
reserved allocation.

Figure 9 illustrates SLA di�erent target probability for
shared and reserved allocation. Our experiment result shows
the minimum number of VMs which is required to meet the

satisfaction of SLA. For instance, when the target probability

to satisfy SLA is 0.4, we need minimum of 5 VMs for shared

and reserved allocation. As a result, it can meet SLA di�erent

target probability for shared and reserved allocation.

Figure 10 illustrates di�erent arrival rate of shared and
reserved allocation. Our experiment result shows the mini-

mum number of VMs that is required to satisfy SLA which
is equivalent to di�erent arrival rate. For instance, when the

arrival rate of service is 2, we need minimum number of 3

VMs.

In the case where we consider using multiple SLAs, it is
suggested that the strategy of shared and reserved allocation

is more resource e�cient compared to reserved allocation.

Figure 11 illustrates di�erent SLAs of shared and reserved
allocation. 	e result shows that reserved allocation uses
more VMs than shared allocation when number of SLAs

Mobile Information Systems 11

Fog computing server

IoT devices

Fog computing server

Cloud server 3 Cloud server 2 Cloud server

Fog environment

Cloud environment

1

3rd-party cloud server

SLAn SLA2
SLA3SLA4

SLA1
SLA5

Mshared

M

Both

reserved

Figure 6: Illustrating our consideration of service level agreement (SLA).

decreases. As a result, reserved allocation can provide guar-
antee rate due to the o�ering of resources. For instance, when
the number of SLAs is 1, then we need minimum number of
less than 5 VMs to do the job. However, when the number
of SLAs is 5, then the needed minimum number of VM
for shared allocation is 10 VMs and more than 11 VMs for
reserved allocation.

A comparison of processing time when sending big size
of data to destination for our proposed system with other
approaches [19] that utilize one single processor only is illus-
trated in Figure 12. For instance, by looking at Figure 12, we
notice that our proposed approaches generate less processing

time than other approaches when we try to send big size
of data such as 400mb. Moreover, our proposed approach
shows better performance than other approaches which only
use single processor [19]. Other approaches only use one
processor where our approach uses multiple processor.

	e result, concerning the number of fog/cloud comput-
ing environments with respect to IoT devices workload, is
presented in Figure 13. We calculate the minimum number
of fog/cloud computing environments which is able to satisfy
IoTdevicesworkload.	enumber of fog computing environ-
ments increases when the number of IoT devices workload
increases and the same thing applies to cloud computing

12 Mobile Information Systems

Cloud

environment

Fog environment

Fog computing server

IoT devices

Cloud server 2

Fog computing server

m VMs

Queue

Cloud server 1Cloud server 3

QueueQueueQueue

Shared allocation model

Reserved allocation model

m3 VMs
m2 VMs

m1 VMs

SLA6
SLA2

SLA3SLA4
SLA1SLA5

m3 VMs1

Figure 7: Illustrating our proposed strategy for resources allocation in shared allocation and reserved allocation.

when requested services are delegated to cloud computing.
For instance, when the workload of IoT devices is 30mb, then
the minimum number of fog computing environments to
satisfy IoT devices increase to 2 fog computing environments.

6. Conclusion

Smart IoT devices are growing rapidly and becoming smarter
to access the Internet anytime, anywhere. Nevertheless,
smart devices, services, and application are not able to
fully bene
t from this attractive cloud computing paradigm
due to the following issues: (1) smart devices might be
lacking in their capacity (e.g., processing, memory, storage,

battery, and resource allocation), (2) they may be lacking in
their network resources, and (3) the high network latency
to centralized server in cloud might not be e�cient for
delay-sensitive application, services, and resource allocations
requests. Moreover, sending or receiving big size of data from
centralized server in cloud over the network degraded cloud
performance and burden cloud network causing poor QoS,
long response delay, and insu�cient use of network resources.
A localized environment such fog computing can be e�cient
in resolving the abovementioned issue. In spite of that, the
rapid increasing number of services that will be requested
from fog computing will generate overhead of services and
less services requested from cloud which will result in poor
management for both environment and poor QoS.

Mobile Information Systems 13

Shared
Reserved

Response time (s)

N
u

m
b

er
 o

f
vi

rt
u

al
 m

ac
h

in
es

1086420

18

16

14

12

10

8

6

4

2

Figure 8: Showing di�erent response time of shared and reserved
allocation.

Shared
Reserved

Response time (s)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

P
ro

b
ab

il
it

y

1086420

Figure 9: Showing SLA di�erent target probability of shared and
reserved allocation.

As a result, in this paper, we proposed an architecture
of IoT service delegation and resource allocation based on
collaboration between fog and cloud computing. We provide
new algorithm that is decision rules of linearized decision tree
based on three conditions (services size, completion time,
and VMs capacity) formanaging and delegating user request.
Furthermore, we proposed new strategy for optimizing big
data distribution in fog and cloud environment. Moreover,
we propose algorithm to allocate resources to meet service
level agreement (SLA) and QoS. Our simulation result shows
that our proposed approach can improve services delegation,
management, big data distribution, and resource allocation

Arrival rate

N
u

m
b

er
 o

f
vi

rt
u

al
 m

ac
h

in
es

1086420

10

9

8

7

6

5

4

3

2

1

Shared

Reserved

Figure 10: Showing the di�erent arrival rate of shared and reserved
allocation.

Number of virtual machines

Reserved

Shared

N
u

m
b

er
 o

f
SL

A
s

454035302520151050

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Figure 11: Showing di�erent SLAs of shard and reserved allocation.

e�ciently and show better performance than other existing
methods.

Competing Interests

	e authors declare that they have no competing interests.

Acknowledgments

	is research is supported by the MSIP (Ministry of Sci-
ence, ICT and Future Planning), Korea, under the ITRC
(Information Technology Research Center) support Pro-
gram (IITP-2016-(H8501-16-1015)) supervised by the IITP

14 Mobile Information Systems

2000

1500

1000

500

0

F
il

e
si

ze
 (

M
b

)

Processing time (s)

One processor

Our approach
3
2
0

3
0
0

2
8
0

2
6
0

2
4
0

2
2
0

2
0
0

1
8
0

1
6
0

1
4
0

1
2
0

1
0
0

8
0

6
0

4
0

2
00

Figure 12: Showing comparison of other approaches (using one
processor) with our approach (using multiprocessor).

160140120100806040200

16

14

12

10

8

6

4

2

0

IoT devices workload (Mb)

IoT devices

Fog computing

N
u

m
b

er
 o

f
fo

g
co

m
p

u
ti

n
g

en
vi

ro
n

m
en

ts

Figure 13: Showing the result of IoT devices workload comparing
to the number of fog/cloud computing.

(Institute for Information and Communication Technology
Promotion).

References

[1] Y. Pan andN. Hu, “Research on dependability of cloud comput-
ing systems,” in Proceedings of the 10th International Conference
on Reliability, Maintainability and Safety (ICRMS ’14), pp. 435–
439, IEEE, Guangzhou, China, August 2014.

[2] W. Liu, “Research on cloud computing security problem and
strategy,” in Proceedings of the 2nd International Conference on
Consumer Electronics, Communications and Networks (CECNet
’12), pp. 1216–1219, Yichang, China, April 2012.

[3] M. Aazam and E.-N. Huh, “Framework of resource manage-
ment for intercloud computing,” Mathematical Problems in
Engineering, vol. 2014, Article ID 108286, 9 pages, 2014.

[4] M. Aazam and E. N. Huh, “Dynamic resource provisioning
through fog micro datacenter,” in Proceedings of the 12th IEEE
International Workshop on Managing Ubiquitous Communica-
tion and Services (MUCS ’15), pp. 105–110, March 2015.

[5] S. Uppoor, M. D. Flouris, and A. Bilas, “Cloud-based synchro-
nization of distributed
le system hierarchies,” in Proceedings
of the IEEE International Conference on Cluster Computing
Workshops and Posters, Cluster, pp. 1–4, September 2010.

[6] J. Delgado, S. M. Sadjadi, L. Fong, Y. Liu, N. Bobro�, and S.
Seelam, “E�ciency assessment of parallel workloads on virtu-
alized resources,” in Proceedings of the 4th IEEE International
Conference on Utility and Cloud Computing (UCC ’11), pp. 89–
96, IEEE, Melbourne, Australia, December 2011.

[7] P. Fan, J. Wang, Z. Zheng, and M. R. Lyu, “Toward optimal
deployment of communication-intensive cloud applications,” in
Proceedings of the IEEE 4th International Conference on Cloud
Computing (CLOUD ’11), pp. 460–467, July 2011.

[8] M. Kwok, Performance analysis of distributed virtual environ-
ments [Ph.D. thesis], University of Waterloo, Waterloo, Canada,
2006.

[9] G. Y. Jung, N. Gnanasambandam, and T. Mukherjee, “Syn-
chronous parallel processing of big-data analytics services to
optimize performance in federated clouds,” in Proceedings of
the IEEE 5th International Conference on Cloud Computing
(CLOUD ’12), pp. 811–818, IEEE, Honolulu, Hawaii, USA, June
2012.

[10] Y. Hu, J. Wong, G. Iszlai, and M. Litoiu, “Resource provisioning
for cloud computing,” in Proceedings of the Conference of the
Center for Advanced Studies on Collaborative Research (CAS-
CON ’09), pp. 101–111, November 2009.

[11] J. Li, J. Chinneck, M. Woodside, and M. Litoiu, “Fast scalable
optimization to con
gure service systems having cost and qual-
ity of service constraints,” in Proceedings of the 6th International
Conference on Autonomic Computing (ICAC ’09), pp. 159–168,
June 2009.

[12] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm, “What’s
inside the cloud? An architectural map of the cloud landscape,”
in Proceedings of the ICSE Workshop on So�ware Engineering
Challenges of Cloud Computing (CLOUD ’09), pp. 23–31, IEEE,
Vancouver, Canada, May 2009.

[13] C. Kamalanathan, S. Valarmathy, and S. Kirubakaran, “Design-
ing a fuzzy-logic based trust and reputation model for secure
resource allocation in cloud computing,”�e International Arab
Journal of Information Technology, vol. 13, no. 1, pp. 30–37, 2016.

[14] L. Xun, “From augmented reality to augmented computing:
a look at cloud-mobile convergence,” in Proceedings of the
International Symposium on Ubiquitous Virtual Reality (ISUVR
’09), pp. 29–32, Gwangju, South Korea, July 2009.

[15] E. E. Marinelli, Hyrax: cloud computing on mobile devices
using MapReduce [M.S. thesis], Computer Science Department,
CMU, Pittsburgh, Pa, USA, 2009.

[16] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso,
“Calling the cloud: enabling mobile phones as interfaces to
cloud applications,” in Middleware 2009, J. M. Bacon and B. F.
Cooper, Eds., vol. 5896 of Lecture Notes in Computer Science, pp.
83–102, Springer, New York, NY, USA, 2009.

[17] M. Andreolini, S. Casolari, and M. Colajanni, “Autonomic
request management algorithms for geographically distributed
internet-based systems,” in Proceedings of the 2nd IEEE Interna-
tional Conference on Self-Adaptive and Self-Organizing Systems
(SASO ’08), pp. 171–180, IEEE, Venice, Italy, October 2008.

Mobile Information Systems 15

[18] R. Sheldon, Introduction to Probability Models, Elsevier, 10th
edition, 2010.

[19] H. C. Gonzalo and D. M. Lee, “A virtual cloud computing
provider for mobile devices,” in Proceedings of the 1st ACM
Workshop on Mobile Cloud Computing & Services: Social Net-
works and Beyond, no. 6, pp. 1–5, San Francisco, Calif, USA, June
2010.

[20] Cloudsim, “A framework for modeling and simulation of cloud
computing infrastructures and services,” https://code.google
.com/p/cloudsim/downloads/list.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

