
 Open access Proceedings Article DOI:10.1109/SERVICES.2014.83

An Architecture to Support the Collection of Big Data in the Internet of Things
— Source link

Cyril Cecchinel, Matthieu Jimenez, Sébastien Mosser, Michel Riveill

Published on: 27 Jun 2014 - World Congress on Services

Topics: Data architecture, Applications architecture, Big data, Reference architecture and Software architecture

Related papers:

 The Internet of Things: A survey

 Internet of Things (IoT): A vision, architectural elements, and future directions

 Building a Big Data Platform for Smart Cities: Experience and Lessons from Santander

 Fog Computing: A Platform for Internet of Things and Analytics

 Data Mining for Internet of Things: A Survey

Share this paper:

View more about this paper here: https://typeset.io/papers/an-architecture-to-support-the-collection-of-big-data-in-the-
47wjvzlft2

https://typeset.io/
https://www.doi.org/10.1109/SERVICES.2014.83
https://typeset.io/papers/an-architecture-to-support-the-collection-of-big-data-in-the-47wjvzlft2
https://typeset.io/authors/cyril-cecchinel-5z8v35d34o
https://typeset.io/authors/matthieu-jimenez-tlgxvwyihk
https://typeset.io/authors/sebastien-mosser-1v99cl4msw
https://typeset.io/authors/michel-riveill-33el2n4ipa
https://typeset.io/conferences/world-congress-on-services-3lnvvg6k
https://typeset.io/topics/data-architecture-3q29cg42
https://typeset.io/topics/applications-architecture-1ur7ursm
https://typeset.io/topics/big-data-bi8jkkwe
https://typeset.io/topics/reference-architecture-1ej5re80
https://typeset.io/topics/software-architecture-3l1mcs2f
https://typeset.io/papers/the-internet-of-things-a-survey-2zjn2i3vmv
https://typeset.io/papers/internet-of-things-iot-a-vision-architectural-elements-and-13n5fm72b4
https://typeset.io/papers/building-a-big-data-platform-for-smart-cities-experience-and-sm6jvmfxra
https://typeset.io/papers/fog-computing-a-platform-for-internet-of-things-and-21gg6sbyo1
https://typeset.io/papers/data-mining-for-internet-of-things-a-survey-56u15y4xs9
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/an-architecture-to-support-the-collection-of-big-data-in-the-47wjvzlft2
https://twitter.com/intent/tweet?text=An%20Architecture%20to%20Support%20the%20Collection%20of%20Big%20Data%20in%20the%20Internet%20of%20Things&url=https://typeset.io/papers/an-architecture-to-support-the-collection-of-big-data-in-the-47wjvzlft2
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/an-architecture-to-support-the-collection-of-big-data-in-the-47wjvzlft2
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/an-architecture-to-support-the-collection-of-big-data-in-the-47wjvzlft2
https://typeset.io/papers/an-architecture-to-support-the-collection-of-big-data-in-the-47wjvzlft2

HAL Id: hal-01341103
https://hal.archives-ouvertes.fr/hal-01341103

Submitted on 4 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Architecture to Support the Collection of Big Data
in the Internet of Things

Cyril Cecchinel, Matthieu Jimenez, Sébastien Mosser, Michel Riveill

To cite this version:
Cyril Cecchinel, Matthieu Jimenez, Sébastien Mosser, Michel Riveill. An Architecture to Support the
Collection of Big Data in the Internet of Things. International Workshop on Ubiquitous Mobile cloud
(co-located with SERVICES), Jun 2014, Anchorage, United States. 10.1109/SERVICES.2014.83.
hal-01341103

https://hal.archives-ouvertes.fr/hal-01341103
https://hal.archives-ouvertes.fr

An Architecture to Support the Collection of Big Data in the Internet of Things

Cyril Cecchinel, Matthieu Jimenez, Sébastien Mosser, Michel Riveill

Univ. Nice Sophia Antipolis, I3S, UMR 7271, 06900 Sophia Antipolis, France

CNRS, I3S, UMR 7271, 06900 Sophia Antipolis, France

{cecchinel,jimenez,mosser,riveill}@i3s.unice.fr

Abstract—The Internet of Things (IoT) relies on physical
objects interconnected between each others, creating a mesh of
devices producing information. In this context, sensors are sur-
rounding our environment (e.g., cars, buildings, smartphones)
and continuously collect data about our living environment.
Thus, the IoT is a prototypical example of Big Data. The
contribution of this paper is to define a software architecture
supporting the collection of sensor-based data in the context
of the IoT. The architecture goes from the physical dimension
of sensors to the storage of data in a cloud-based system. It
supports Big Data research effort as its instantiation supports
a user while collecting data from the IoT for experimental
or production purposes. The results are instantiated and
validated on a project named SMARTCAMPUS, which aims to
equip the SophiaTech campus with sensors to build innovative
applications that supports end-users.

Keywords-Data collection; Software Engineering; Architec-
ture; Distributed Computing; Sensors;

I. INTRODUCTION

Big Data is one of the most important research challenges

for the 2020 horizon. This paradigm relies on the collection

of tremendous amount of data to support innovation in the

upcoming decades [1]. A dataset is considered as big when it

meet the “four Vs” requirements: Volume, Variety, Velocity

and Value. The keystone of Big Data exploitation is to

leverage the existing datasets to create new information,

enriching the business value chain. According to the IDC

group, the amount of world data will be 44 times greater

in this decade, from 0.8 zettabyte to 35 zettabytes. In this

context, the Internet of Things (IoT) paradigm relies on a

world of interconnected objects [2], able to communicate

between each others and collect data about their context.

Day after days cars, smartphones and buildings collect

various information about our living environment, generating

zettabytes of sensed data. The Gartner group predicts up

to 26 billions of things connected to the Internet by 2020.

Intechno Consulting estimates that this market will generate

up to 180 billions of Euros worldwide. This is a typical

example of Big Data collection and analysis as it addresses

the four Vs: large Volume of Various data, collected with an

high Velocity to define application with added-Value.

The coupling between the IoT and the Big Data com-

munities is strong [3]–[5]. Unfortunately, there is no com-

prehensive approach to support the collection of data from

sensors and their exploitation: research efforts are focused

on the collection of data from the data producer tiers [6],

the reception tiers [7] or the exploitation one [8]. The

objective of this paper is to complement state of the art

approaches by describing a comprehensive software archi-

tecture supporting the collection of sensor data produced by

the IoT. In such a situation, architects must handle sensors

as hardware devices, and route the produced data to data

warehouses able to store the large amount of data produced

by these devices. This class of architecture must tackle

several challenges, e.g., data storage, avoiding processing

bottlenecks, sensors heterogeneity, high throughput. We use

as a running example the SMARTCAMPUS project, which

aims to equip the SophiaTech campus (Sophia Antipolis,

France) with sensors collecting data about campus’ usage.

The remainder of this paper is organized as follow: first,

SEC. II identifies the requirements of the architecture based

on the SMARTCAMPUS example. Then, SEC. III depicts an

overview of the architecture, and SEC. IV focuses on the

sensor viewpoint of the contribution. Thus, SEC. V addresses

data processing concerns, and SEC. VI the data exploitation

ones. Finally, SEC. VII describes research efforts relevant

with this contribution, and SEC. VIII concludes this paper,

sketching upcoming perspectives based on these results.

II. MOTIVATING SCENARIOS

The McKinsey Global Institute has identified up to seven

Big Data levers in the manufacturing value chain [1]

(FIG. 1). With respect to the IoT paradigm, these levers

are related to (i) collection of very-large datasets to support

experiments, (ii) the publication of marketplaces to exploit

the collected data and (iii) the exploitation of such datasets

with relevant application, e.g., monitoring dashboards.

In this paper, we use as a running example the SMART-

CAMPUS project, a prototypical example of Big Data appli-

cation. The University of Nice-Sophia Antipolis is exploiting

a new campus named SophiaTech1, located in the Sophia

Antipolis technology park. The ultimate goal of this project

is to consider sensors deployed in buildings as an open

platform to let final users (i.e., students, professors, adminis-

trative staff) build their own innovative services on top of the

collected (open) data. The campus occupies 58, 000 squared

meters (∼ 14.5 acres), including 8 buildings representing

1http://campus.sophiatech.fr/en/index.php

We have identified the following big data levers across

the manufacturing value chain

Build consistent interoperable, cross-functional R&D
and product design databases along supply chain to
enable concurrent engineering, rapid experimentation
and simulation, and co-creation

1

Implement sensor data-driven operations analytics to
improve throughput and enable mass customization

6

Implement lean manufacturing and model production
virtually (digital factory) to create process transparency,
develop dashboards, and visualize bottlenecks

5

Aggregate customer data and make them widely
available to improve service level, capture cross- and
up-selling opportunities, and enable design-to-value

2

Source and share data through virtual collaboration sites
(idea marketplaces to enable crowd sourcing)

3

Collect after-sales data from sensors and feed back in
real time to trigger after-sales services and detect
manufacturing or design flaws

7

Implement advanced demand forecasting and supply
planning across suppliers and using external variables

4

SOURCE: McKinsey Global Institute analysis

R&D and

design

Supply-

chain

mgmt

Produc-

tion

Market-

ing and

sales

After-

sales

service

Figure 1. Big Data levers in the manufacturing value chain [1].

23, 000 squared meters (∼ 5.75 acres) of workspaces, labs

and amphitheatres. The SMARTCAMPUS project preliminary

study was started in September 2013 and involves a team

of 18 persons. Its objective is to develop a technological

stack acting as a mediation layer between sensors deployed

in buildings and developers who wants to develop innova-

tive services based on these data. The development effort

is focused on data collection, scalability issues and data

visualization. The functional analysis phase (ended in 2013)

relied on a questionnaire and several user’s interviews to

identify prototypical scenarios for living labs experiments

and smart building use cases to be used as relevant validation

test cases. In this paper, we focus on the following two

scenarios:

• Parking lot occupation. The campus contains five dif-

ferent parking lots (∼ 500 spaces). The occupation rate

of each lot can be aggregated based on sensors (e.g.,

sonar sensors located on arbour overhanging the cars).

Collected measurements must be exploited in real-time

to guide user looking for an available space, and the

global occupation log is exploited to compute average

usage of parking and classify car movements.

• Heating regulation. The campus is located in a warm

area. To save energy and avoid the intensive use of A/C,

the external doors include a mechanism to stay open,

helping to regulate the temperature during summer.

Unfortunately, during winters, doors kept opened lead

to loss of heat. To diagnose these losses and support the

logistic team, temperature sensors located in corridors

and rooms continuously collect data. These data are

correlated to presence detectors through monitoring

dashboards (FIG. 2), identifying empty spaces with heat

losses. These data can also be exploited to assess the

“green” dimension of the building.

Simplifying the reality, let a measurement be a triplet

Figure 2. Heating monitoring with temperature and presence correlation.

binding a sensor identifier to a given timestamp and the

associated value, without any additional meta-data. Con-

sidering each element of the triplet encoded as a 32 bits

value, an update rate of one measurement per minute in this

context generates up to 2Gb of data per year for the first

scenario, only considering a single sensor. This is related to

the classical 4Vs of Big Data: large Volume of data (i.e., 2Gb

per year for one sensor), high-Velocity of data production

(i.e., 1 measurement per second for each sensor), Various

sources of data (e.g., sonar, temperature sensors), and added-

Value applications built on top of the collected datasets.

III. ARCHITECTURE REQUIREMENTS & OVERVIEW

To support the scenarios described in the previous section,

we identified the following requirements to be supported by

the designed software architecture. These four requirements

are not specific to the SMARTCAMPUS project, and do apply

to any IoT-based platform.

R1 Sensor heterogeneity. The system must handle various

sensors platforms, data formats and protocols.

R2 Reconfiguration capabilities. The system will be de-

ployed in wide environments, thus one must be able to

reconfigure it remotely.

R3 Scalability. The system must scale according to two di-

mensions: vertical scalability for storage purpose (e.g.,

enlarging the databases size), and horizontal scalability

for processing purpose (e.g., load-balancing requests).

R4 Data As A Service. The system must provide a mecha-

nism to support users who want to retrieve the collected

data, at the right level of abstraction (i.e., hiding the

underlying database).

FIG. 3 depicts an overview of the contribution of this

paper, i.e., a comprehensive software architecture supporting

the collection of Big Data in the IoT, with respect to

the previsouly described requirements. The architecture is

Figure 3. High-level description of the software architecture.

comprehensive as it addresses the complete spectrum of

elements involved in such a context.

• Sensors: in this study, we consider sensors as black

boxes, transforming a physical quantity into a mea-

surement. Classically, an electronic device is used to

transform such a quantity (e.g., temperature) into an

electrical resistance value (e.g., with a thermistor).

• Sensor Board: a board aggregates several sensors physi-

cally connected to it. The board is usually implemented

by a micro-controller (e.g., Arduino2). The responsibil-

ity of a board is to collect the data and send it to its

associated bridge.

• Bridge: the bridge responsibility is to aggregate data

streams from several boards. The different boards can

be connected to the bridge using physical links (e.g.,

USB), or wireless protocols (e.g., Zigbee3). The bridge

is connected to the Internet and broadcast the received

streams to a reception Application Programming Inter-

face (API). Bridges can be controlled by the system to

configure the way measurements are sent.

• Middleware: the reception middleware defines three

distinct APIs: (i) a reception API used by the bridge to

send data, (ii) a configuration API to support the set up

of measurements retrieval and (iii) a data API used to

interact with the collected datasets. The responsibility

of the middleware is to support the data reception as

well as broadcasting the configuration made on the

sensors to the relevant bridges. The middleware con-

2http://arduino.cc/
3http://www.digi.com/xbee/

tains the global sensor configuration, and the measured

datasets.

This architecture fulfills the previously identified require-

ments. First of all, sensors are considered as black boxes

and decoupled from the collection middleware. Thus, it is

the responsibility of the bridge to handle sensor hetero-

geneity (R1). The reconfiguration part (R2) is supported by

the middleware that stores the expected configuration and

broadcast it to the different bridges. Using a cloud-based

platform to host the middleware, the scalability of the data

collection (R3) is intrinsically handled by the underlying

cloud. Finally, providing a measurement-driven API as a

support for users’ interactions addresses the Data as a

Service requirement (R4).

The presented architecture can be prototyped with rela-

tively cheap hardware and software. The initial prototype of

the SMARTCAMPUS project, involving 32 boards and 130

sensors costed less than $1, 200.

• Sensors: specialized hardware, pre-configured shields;

• Sensor Boards: Arduino Uno micro-controller;

• Bridge: Raspberry Pi nano-computer;

• Middleware: Amazon EC2 cloud service;

IV. INTERACTING WITH VARIOUS SENSORS

In this section, we particularly describe the mechanisms

provided in the architecture to support sensor heterogeneity

(R1) and measurement reconfiguration (R2).

A. Challenges

There is no standard among manufacturers for sensor

interaction, each of them uses its own choices either for

the format of data or for the configuration of a sensor board.

Thus, implementing a sensor network is error-prone and time

consuming when the ultimate objective is to collect datasets

for further exploitation. Moreover, boards can become ob-

solete and no more available to customers. That’s why, as

time goes by, a network might have different boards, bought

from several manufacturers. The heterogeneity of the sensor

boards combined with the lack of standard among triggers

three challenges that need to be tackled:

• Consistency. To support system consistency and data

exploitation, the different data formats must be unified

into something usable technologically-independent.

• Transparency. The underlying protocol used to config-

ure the measurement process must be transparent for

the final user, independently of manufacturers’ choices.

• Configuration. As the sensor network is aimed to be

deployed on a large scale, the architecture must allow

one to reconfigure it at runtime, e.g., plugging in new

sensors or boards, as well as changing the frequency of

data measurements.

B. Application to the SMARTCAMPUS use case

At the prototype level, the SMARTCAMPUS use case

needs to deal with three different kinds of sensor boards:

(i) Electronic Bricks4 (temperature and light sensors, now

discontinued), (ii) Grove Shields5 (parking spaces sonar,

temperature and light sensors) and finally (iii) Phidgets6

(presence detector). Obviously these platforms rely on differ-

ent tools to collect data. More critically, even if the two first

ones use an Arduino micro-controller as sensor board, the

needed software libraries used to decode the measure differ.

As the sensor can be deployed anywhere on the campus

even in the rooftop, it is mandatory to remotely configure

the sensors from a centralized interface, without knowing

which technology is used.

C. Tackling the Challenges

1) Unifying Data format: To tackle the Consistency chal-

lenge, a mechanism must be provided to unify the different

data formats used in the architecture. In the described

architecture, the bridge is dedicated to this role. It defines

and implements an intra-network protocol that standardize

messages between the boards and the bridge, sending to the

middleware the measurements in a standardized format.

Intra-network protocol. The bridge receives data on

its sensor network communication interface from the

sensor board. The specificities of each manufacturer

are implemented, as an off-the-shelf class inheriting a

SensorProvider interface. Thus, the bridge transpar-

ently translate the proprietary format into a common rep-

resentation encoded in JSON [9] (FIG. 4). It contains the

4http://www.seeedstudio.com/wiki/Electronic Brick Starter Kit
5http://www.seeedstudio.com/wiki/GROVE System
6http://www.phidgets.com/

{"n": "TEMP_SENSOR", "v":24, "t":4520}

Figure 4. Example of message forged by the sensor board.

following pieces of information: (i) identifier of the sensor,

(ii) measurement value and (iii) associated timestamp.

Bridge routing. Messages coming from the different sen-

sor boards are collected by the bridge in order to be sent

over the Internet. The application on the bridge maps each

sensor with an endpoint and sends the data collected to

this endpoint. When a message is received by the bridge,

the identifier field is read to determine the corresponding

endpoint. The message is then queued and will be sent in an

array along with others messages assigned to this endpoint.

2) Tranparency of configuration: To be able to work with

various platform without having to deal with specificity of

each platform, transparency is mandatory. The architecture

relies on a minimal configuration protocol defined as the

intersection of operations classically supported by sensor

providers. This protocol works on the following data for

each sensor:

• id: unique identifier for each sensor;

• type: type of sensor (e.g., temperature, sonar);

• period: time interval between two measurements;

• interface: communication interface used to send mea-

surements to the bridge;

• end point : where do measurements must be sent?

To handle manufacturers’ heterogeneity with respect to

sensor configuration, we used the same mechanism than

the one used to unify the data formats: a generic interface

(SensorConfiguration) implemented differently for

each sensor configuration protocol. This interface contains

the following operations:

• add. It adds a sensor on the platform, allowing the

sensor network to send measurements for this sensor;

• del. It deletes a previously added sensor;

• freq. It modifies the measurement frequency;

• route. It declares the endpoint associated to this

sensor.

For example, one can physically plug a temperature sensor

on a given board, and then send an add command to declare

it and start to collect data from it. One can change its

destination (endpoint) by using the route operation (e.g.,

for privacy reasons), as well as its frequency using the freq

one (e.g., suspending measurement at night).

3) Remote and dynamic configuration: To achieve the

Configuration challenge, specific functional elements are

defined in the middleware to support configuration manage-

ment (FIG. 5).

• Sensors parameters Database: A database that contains

configuration of every sensors in the sensor network,

lists all sensor boards and all bridges.

Collector

Authentication

Split message

packets into

single messages

Fast !

Collector

Authentication

Split message

packets into

single messages

Fast !

Messages
Queue

Message

processing

Message

processing

Database

Checker

Sensors emission

checking

Sensors
parameters

Sensors

API

Config

Configuration

broadcasting

Accessor

Virtual sensors

or

Raw data

Internet

Data

API

Figure 5. Architecture description of the middleware.

• Configuration: A routine called periodically to propa-

gates the configuration of sensors to their related bridge.

Therefore, to add or update a sensor in the architecture,

the user connects to an application and enters the configu-

ration of this sensor. This configuration is stored in Sensors

parameters Database. This configuration is then periodically

broadcasted by the configuration block to the related bridge,

the bridge will then translate the configuration in a way that

the related sensor board understand.

It is important to notice that a user does not have to

know on which bridge the sensor board is connected. The

configuration block first asks each bridge for the list of all

the sensor board connected to it. Then it sends to each bridge

the configuration of every sensors on those board. As boards

are often connected to the bridge using a wireless protocol,

the user can move a given board from one place to another as

long as it stays in the reception range of an existing bridge.

V. DATASETS VELOCITY AND VOLUME

Considering the data collection as realized thanks to the

previous section, the data reception must be handled, as

well as the storage of the received measurements. This part

addresses requirements related to horizontal and vertical

scalability (R3), implemented in the middleware (FIG. 5).

A. Challenges

The middleware should not be a bottleneck for the data

collection. It has to handle the reception of large amount

of data and be able to store it. Moreover, this middleware

should maintain quality of data by identifying if a data is

relevant or corresponds to a dysfunctional sensor.

• Horizontal scalability. The system must support high-

throughput data reception. It must not reject a mea-

Table I
COLLECTOR’S REST INTERFACE

Method Resource Parameter

POST /value Message array

surement because of an overload. While processing

the incoming measurements, the system must identifies

abnormal data.

• Vertical scalability. The system must store the received

data, and as new sensors can be added at runtime, the

database storage size must scale.

B. Application to the SMARTCAMPUS use case

Since many sensors are deployed in the SMARTCAMPUS

use case, data will be sent in parallel to the middleware. In

the worst case, all the sensors of the whole campus will send

a measurement at the very same time. As the initial prototype

was built using cheap sensors for experimental purpose only,

sensor stability was not the priority. As a consequence, the

temperature sensors used on the prototype often send deviant

data (e.g., a temperature suddenly greater than the previous

one by more than 70 celsius degrees for a couple of seconds).

The middleware has to identify such deviation and handle

it properly. Finally, as time goes by the datasets increased,

and the storage has to be adapted to support it.

C. Tackling the Challenges

1) High-throughput Data collection: First of all, the mid-

dleware has to collect data and pre-process it. Two specific

functional elements are designed to handle those tasks : (i)

the collector and (ii) the message processing blocks.

• Collector. The collector represents the front side of the

data collection system. It is exposed on the Internet

Figure 6. V olume.year−1 = ϕ(|sensors|, period)

thanks to a REST API (see TAB. I). When a message

array is received, the collector splits it into single

message packets and authenticates the sensor. If the

sensor is correctly identified, the packet is put into

a message queue in order to be processed by the

Message processing block. Based on these principles,

the collector is intrinsically stateless and can be load-

balanced with simple HTTP mechanisms.

• Message processing. Message processing blocks are

designed to pre-process data in the queue before storing

them in the database. It allows some specific handling

on data coming from a given class of sensors like

verifying the relevance of data. These handlers are

defined by the system administrator and executed on

the received messages. This process can also be load

balanced, as in concurrent programming terms the

message queue is a data producer and the processing

step a consumer. If too much messages are accumulated

in the queue, one can start additional consumers to

accelerate the processing throughput.

2) Data storage: According to the Velocity of the re-

ceived measurement, the Volume of the datasets become

quickly extremely large. Let the length of a sensor data

message be assumed as weighting 96b, using the assumption

made in SEC. II (it is an underestimation of classical mes-

sage weights). The volume produced by a set of sensors

pushing measurements with a given period is computed as

the following: volume = |sensors| × period× 96b.

As a consequence, considering a single sensor with a

period of one second, up to 3.03 Gb of data are generated

in a single year. We represent in FIG. 6 the evolution of

this function when both the number of sensors and the

period vary, representing the volume of data after one year

of measurements.

Figure 7. Virtual sensor implementation.

Table II
DATA RETRIEVAL INTERFACE

Method Resource Return

GET /sensors Properties of all sensors

GET /sensors/{id} Properties of a given sensor

GET /sensors/{id}/data Measurement for a given sensor

To exemplify this challenge, we take in consideration

scenarios presented in SEC. II:

• Parking lot occupation. Let’s consider a single park-

ing space equipped with a sonar located on arbour

overhanging the cars. This sonar sends data every 10

seconds. This sonar generates 300 Mb by year. Let’s

multiply this amount by the number of sonars on each

parking space (∼ 500) : 300× 500 = 150 Gb.

• Heating regulation. The SophiaTech campus is com-

posed by 8 building with 100 rooms each. Let’s con-

sider a single room equipped with a temperature sensor

sending data every 10 seconds. By the same computa-

tion done previously, we figure out a 300 Mb amount

of data produced each year. For a single building this

amount is 300× 100 = 30 Gb. For the whole Sophia-

Tech campus this amount of data is : 30× 8 = 240 Gb

The database should offer such storage with a fast data

recovery for users. To implement the database, all solutions

are possible, e.g., SQL, NoSQL, data warehousing. The

usage of a JSON standard format as described in the previous

section gave a document orientation to the architecture. As

a consequence, the MongoDB NoSQL database was used in

the prototype.

VI. ADDING VALUE TO BIG DATA

In this section, we describe the mechanisms available to

an user to exploit the data stored in the previous section.

These mechanisms address requirements related to the Data

As A Service paradigm (R4).

A. Challenges

Users accesses the database to retrieve data collected from

the different sensor networks. As we offer them a large

dataset, search and retrieval might not be as easy as it

could seem. Moreover, they might use and build user-defined

sensors which perform statistics, aggregation and translation

on data. We identify two challenges that need to be tackled:

• Lookup: A convenient way to retrieve specific measure-

ments must be offered to users.

• User-defined sensors: To add value on data, users might

group them to perform statistics and aggregation. More-

over, as some data could not be easily understandable

(e.g., values returned from sensors depends on the

sensor technology), a mechanism to translate these raw

data into exploitable data must be provided to users.

B. Application to the SMARTCAMPUS use case

Since the SMARTCAMPUS project provides access to the

collected datasets to many different users (e.g., students or

researchers), who do not have the same needs, different

use cases have to be considered. Indeed, a survey in the

campus showed that some people were interested in raw

data for statistic uses, others wanted pre-processed data to

create third party applications. For example, a developer can

build an application which counts how many free parking

spaces are available by retrieving from the database the

last occupation rate measurements thanks to the sensors

deployed on each parking space. This application answers

the motivating scenario of parking lot occupation presented

in SEC. II. A user-defined sensor freeSpaces can be defined

as the sum of the other occupation values to build a virtual

sensor providing the number of free parking spaces in the

campus.

C. Tackling the Challenges

1) Data retrieval: A large dataset is accessible to users.

To tackle the lookup challenge, a simple access

interface must be provided. The table II presents

methods that users can call to retrieve data or sen-

sors properties. The data access can also be re-

stricted depending of the data criticality. The resource

/sensors/{id}/data accepts as an input filtering

requests, e.g., the time range expected by the user, a

sampling method to be used to sample the dataset.

2) User-defined sensors: To tackle this challenges, we

introduce the notion of Virtual sensor. A virtual sensor

is defined by a user and is stored into the configuration

database like a physical one. It differs from physical

sensors by having a script properties executed when

its dependencies produce data. For example in FIG. 7,

a physical sonar sensor is located on top of a parking

space. An occupation sensor for this space is defined

as a script which transform the sonar measurement

into a boolean, determining if the space is occupied or

free based on the distance between the arbour and the

ground. Virtual sensors are used to add transparency

for the user. Indeed, they can perform data conversion

and aggregation on-the-fly. From the user’s point of

view, everything is transparent: she does not have to

know if the sensor is physical or virtual. She only

gets from the Data API a list of sensors. An accessor

(cf. FIG. 5) between the Data API and the database

addresses this issue. The accessor leads to two types

of behavior when accessing data:

• If the sensor’s type is physical: the accessor

queries the sensor’s data database where sensor’s

data are saved, and returns the measurements.

• If the sensor’s type is virtual: the accessor needs

to access both sensor’s configuration database

and sensor’s data databases. The sensor’s config-

uration database provide the accessor a way to

compute measures asked with physical sensor’s

measures.

VII. RELATED WORK

The pervasive dimension of Big Data is known, especially

when applied to the IoT and sensors. Research initiatives

focused on software architecture in this context address

(i) the storage dimension of the platform [10], (ii) the quality

of the collected data [4] and (iii) the availability of the

datasets as services [3]. The architecture presented in this

paper complement these efforts, as it strengthen the hard-

ware dimension of such an architecture. At the middleware

level, we rely on complementary technologies (e.g., NoSQL

databases, service orientation, REST interfaces) that can be

integrated with the one used in the previous approaches with

well known technologies, e.g., Enterprise Service Buses,

workflows. On of the strength of the service orientation is

to allow one to replace one service by another, creating its

own middleware through the composition of these works,

according to her very own needs.

Sensor storage marketplaces are essentially proprietary,

e.g., InfoChimp7, Xively8, TempoDB9. The architecture de-

scribed in this paper is an alternative to these platforms.

Moreover, the same architecture supports both data storage

and sensor reconfiguration, which is not supported by the

previously listed tools.

Sensor data format are critical to support their exploita-

tion. Our architecture relies on a simple data format for

presentation purpose, which can be replaced by standardized

data representation such as the SensorML initiative [11]

provided by the Open Geographical Consortium. This fam-

ily of languages defined the Sensor Observation Service10

facility to support sensor measurements (meta) data repre-

sentation [12].

From a service-oriented point of view, the literature con-

tains work about the requirements of a sensor collection

7http://www.infochimps.com/
8http://xively.com/
9https://tempo-db.com
10http://www.ogcnetwork.net/SOS

middleware [13], or the definition of sensor data exploita-

tion [14]. Our work is complementary, as it glues all these

approaches together.

VIII. CONCLUSIONS & PERSPECTIVES

In the context of the IoT, this paper describes a software

architecture that supports research efforts on Big Data

through the collection of large datasets obtained from phys-

ical sensors. This architecture addresses real-life require-

ments extracted from the SMARTCAMPUS project, which

aims to equip an academic campus with sensors and supports

the definition of innovating application exploiting these data.

This architecture goes from sensors to data management,

and supports a user who wants to set up a research or

production infrastructure to collect very large datasets in the

context of the IoT. The architecture is validated based on

SMARTCAMPUS scenarios, assessing its viability in practical

contexts.

The SMARTCAMPUS project is still at its beginning. As a

consequence, the work done in this architecture focused on

data collection and storage, i.e., the critical path of any Big

Data collection platform. The next step is to exploit these

large datasets: initial scenarios (e.g., temperature evolution,

parking lot occupation rate) were validated, and we are

conducting surveys and user interviews to capture extra re-

quirements from campus’ users. The key point is to develop

software application on top of these datasets to support the

base scenarios, and open the datasets to the users to let them

create their own services. It triggers interesting challenges

about scalability of a community-driven usage of such an

open data platform, the evolution capabilities of the Data as

a Service API, as well as privacy and security issues. We

plan to address these points in future works.

ACKNOWLEDGMENT

This project is partially funded by the Univ. Nice Sophia

Antipolis and the I3S laboratory. Authors want to thanks the

SMARTCAMPUS team: Romain Alexandre, Mireille Blay-

Fornarino, Cecile Camilieri, Adrien Casanova, Joel Colinet,

Philippe Collet, Thomas Di’Meco, Fabien Foerster, Ivan Lo-

gre, Laura Martellotto, Jean Oudot, Jérome Rancati, Marie-

Catherine Turchini and Guillaume Zanotti.

REFERENCES

[1] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs,
C. Roxburgh, and A. H. Byers, “Big data: The Next Frontier
for Innovation, Competition, and Productivity,” McKinsey
Global Institute, May 2011.

[2] L. Atzori, A. Iera, and G. Morabito, “The Internet of
Things: A Survey,” Comput. Netw., vol. 54, no. 15,
pp. 2787–2805, Oct. 2010. [Online]. Available: http:
//dx.doi.org/10.1016/j.comnet.2010.05.010

[3] J. Zhang, B. Iannucci, M. Hennessy, K. Gopal, S. Xiao,
S. Kumar, D. Pfeffer, B. Aljedia, Y. Ren, M. Griss et al.,
“Sensor Data as a Service–A Federated Platform for Mobile
Data-centric Service Development and Sharing,” in Services
Computing (SCC), 2013 IEEE International Conference on.
IEEE, 2013, pp. 446–453.

[4] L. Ramaswamy, V. Lawson, and S. Gogineni, “Towards a
Quality-centric Big Data Architecture for Federated Sensor
Services,” in Big Data (BigData Congress), 2013 IEEE
International Congress on, June 2013, pp. 86–93.

[5] A. Zaslavsky, C. Perera, and D. Georgakopoulos, “Sensing
as a Service and Big Data,” arXiv preprint arXiv:1301.0159,
2013.

[6] N. Haderer, R. Rouvoy, and L. Seinturier, “Dynamic De-
ployment of Sensing Experiments in the Wild Using Smart-
phones,” in DAIS, ser. Lecture Notes in Computer Science,
J. Dowling and F. Taı̈ani, Eds., vol. 7891. Springer, 2013,
pp. 43–56.

[7] S. Mosser, F. Fleurey, B. Morin, F. Chauvel, A. Solberg, and
I. Goutier, “SENSAPP as a Reference Platform to Support
Cloud Experiments: From the Internet of Things to the Inter-
net of Services,” in Management of resources and services in
Cloud and Sky computing (MICAS), workshop. Timisoara:
IEEE, Sep. 2012.

[8] S. Mosser, I. Logre, N. Ferry, and P. Collet, “From
Sensors to Visualization Dashboards: Need for Language
Composition,” in Globalization of Modelling Languages
workshop (GeMOC’13). Miami: IEEE, Sep. 2013, pp. 1–6.
[Online]. Available: http://www.i3s.unice.fr/∼mosser/ media/
research/gemoc13.pdf

[9] D. Crockford, “The application/json Media Type
for JavaScript Object Notation (JSON),” RFC 4627
(Informational), Internet Engineering Task Force, Jul. 2006.
[Online]. Available: http://www.ietf.org/rfc/rfc4627.txt

[10] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan,
“IrisNet: An Architecture for a Worldwide Sensor Web,”
IEEE Pervasive Computing, vol. 02, no. 4, pp. 22–33, 2003.

[11] M. Botts and A. Robin, “OpenGIS Sensor Model Language
(SensorML) Implementation Specification,” OGC, Tech. Rep.,
Jul. 2007.

[12] C. A. Henson, J. Pschorr, A. P. Sheth, and K. Thirunarayan,
“SemSOS: Semantic Sensor Observation Service.” in CTS,
W. K. McQuay and W. W. Smari, Eds. IEEE, 2009, pp.
44–53. [Online]. Available: http://dblp.uni-trier.de/db/conf/
cts/cts2009.html#HensonPST09

[13] N. Mohamed and J. Al-Jaroodi, “A Survey on Service-
oriented Middleware for Wireless Sensor Networks,” Serv.
Oriented Comput. Appl., vol. 5, no. 2, pp. 71–85,
Jun. 2001. [Online]. Available: http://dx.doi.org/10.1007/
s11761-011-0083-x

[14] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong, “TinyDB: An Acquisitional Query Processing
System for Sensor Networks,” ACM Trans. Database Syst.,
vol. 30, no. 1, pp. 122–173, Mar. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1061318.1061322

