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Understanding the structure and complexity of ground states of gapped local Hamiltonians is

the central problem in Condensed Matter Physics and Quantum Complexity Theory. A remarkably

general conjecture about the structure of ground states, The Area Law, bounds the entanglement that

such states can exhibit: specifically, for any subset S of particles, it bounds the entanglement entropy

of ρS , the reduced density matrix of the ground state restricted to S, by the surface area of S. i.e.

the number of local interactions between S and S [1].

Although the general area law is still open, a lot of progress has been made on proving it for

1D systems. The breakthrough came with Hastings’ result [2], which shows that the entanglement

entropy across a cut for a 1D system is a constant independent of n, the number of particles in the

system, and scales as exp( log d
ε ), where d is the dimension of each particle and ε is the spectral gap.

This result implies that the ground state of a gapped 1D Hamiltonian can be approximated in the

complexity class NP .

In this paper, we:

• give an exponential improvement to Õ( log3 d
ε ) in the bound of entanglement entropy for the

general (frustrated) 1D Hamiltonians. The dependence on the gap even improves the previous

best bound for frustration free 1D Hamiltonians and may possibly be tight to within log factors.

• prove the existence of sublinear bond dimension Matrix Product State approximations of ground

states for general 1D Hamiltonians. This implies a subexponential time algorithm for finding

such states thus providing evidence that this task is not NP-hard.

We also establish the following properties of local Hamiltonians which may be of independent interest:

• ”Random walk like” behavior of entanglement: for a 1D Hamiltonian H, the Schmidt Rank

(SR) of H` is bounded by dO(
√
`).

• Let H ′ be the Hamiltonian consisting only of terms acting on a subset S of particles. Then the

ground state of H has an exponentially small amount of norm in the ”high” energy spectrum

of H ′: the total norm with energy above t is 2−Ω(t−|∂S|) where |∂S| is the size of the boundary

between S and S.

The work here has its origins in the combinatorial approach of [3], which used the Detectability

lemma, introduced earlier in [4], to give an alternate proof of Hastings’ result for the special case of
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frustration-free Hamiltonians. The results there were greatly strengthened in [5] and [6], which intro-

duced Chebyshev polynomials in conjunction with the detectability lemma to construct very strong

AGSPs (approximate ground state projectors), leading to an exponential improvement of Hastings’

bound in the frustration-free case to O(( log d
ε )3).

1.1 Background

The overall strategy is to start with a product state |ψ〉 and repeatedly apply some operator K such

that 1
‖Kj |ψ〉‖K

j |ψ〉 approximates the ground state and the SR of Kj |ψ〉 is not too large. This property

of an operator K is captured in the following definition of an approximate grounds state projection

(AGSP):

Definition 1.1 An Approximate Ground-Space Projection (AGSP)

With respect to a ground state |Ω〉 of a 1D Hamiltonian, an operator K is a (D,∆)-Approximate

Ground Space Projection (with respect to a cut) if the following three properties hold:

-K|Ω〉 = |Ω〉.
-If |Ω⊥〉 is perpendicular to |Ω〉, then K|Ω⊥〉 is also perpendicular to |Ω〉 and ‖K|Ω⊥〉‖2 ≤ ∆.

-For any state |φ〉, the SR of K|φ〉 is at most D times that of |φ〉.

The parameters ∆ and D capture the tradeoff between the rate of movement towards the ground

state and the amount of entanglement that applying the operator K incurs. In [5, 6], it was shown

that a favorable tradeoff gives an area law:

Theorem 1.2 (Area Law) If there exists a (D,∆)-AGSP such that D · ∆ ≤ 1
2 , the ground state

entropy is bounded by:

S ≤ O(1) · logD . (1)

1.2 Our Results

For our construction, the first critical step is to exchange local structure far from the cut for a valuable

reduction in the norm of the Hamiltonian. To do this, we isolate a neighborhood of s+ 1 particles

around the cut in question, and then separately truncate the sum of the terms to the left and to the

right of these s+ 1 particles. Specifically, we define the truncation of an operator as follows:

Definition 1.3 (Truncation) For any self-adjoint operator A, form A≤t, the truncation of A, by

keeping the eigenvectors the same, keeping the eigenvalues below ≤ t the same, and replacing any

eigenvalue ≥ t with t.

We then define H(t) = (
∑
i<1Hi)

≤t +H1 + · · ·+Hs + (
∑
i>sHi)

≤t, where the s middle terms act on

the the isolated string of s + 1 particles around the cut. The result is a Hamiltonian H that is now
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norm bounded by u = s+ 2t acting on n particles with the following structure:

H = H(t) = HL +H1 +H2 + · · ·+Hs +HR, (2)

where each Hi are norm bounded by 1 and acts locally on particles m+ i and m+ i+ 1, HL acts on

particles 1, . . . ,m and HR acts on particles m + s + 1, . . . , n. In the frustration free case, it is clear

that the ground state of H(t) is the same as that of the original Hamiltonian and it can be shown that

the spectral gap is preserved for some constant value of t. For the frustrated case, the ground state of

H(t) is no longer that of the original Hamiltonian and a limiting argument (see below) will be needed

to complete the proof.

Having cut down the problem to a Hamiltonian with bounded norm u of the form (2), we turn to

the next critical step of constructing the AGSP, the use of Chebyshev polynomials to approximate

the projection onto the ground state. We begin with a suitably shifted Chebyshev polynomial C`(x)

of degree ` with the properties that C`(0) = 1 and |C`(x)| ≤ e
−
√
ε √̀

u for ε ≤ x ≤ u. The AGSP is

then K = C`(H) and it is clear that ∆ = e
−
√
ε √̀

u . Bounding the SR for K requires important new

ideas. By the entanglement flows approach of [5, 6] the SR of each term in the expansion of H` is

bounded by d`/s+s. The difficulty is that the number of such terms, (s + 2)`, is much too large. To

address this issue, we introduce formal commuting variables Zi and consider the expression

P (Z) = (HLZ0 +H1Z1 + · · ·+HRZs+1)` =
∑

a0+···+as+1=`

fa0,...,as+1
Za00 Za11 . . . Z

as+1

s+1 .

Now expand P (Z) = (A+HiZi +B)` where A and B commute, and restrict attention to only those

terms where Zi appears at most `/s times. The number of terms is bounded by
(`+2 `

s

2 `
s

)
, and the SR

increase by
(`+2 `

s

2 `
s

)
d`/sds for all values of Z. We then use a polynomial interpolation argument to

bound the SR of each fa0,...,as+1 and therefore of H` =
∑
a0+···+as+1=` fa0,...,as+1 (and hence for K as

well) by D = dÕ(`/s+s).

Applying Theorem 1.2 to the above AGSP with ` = O(s2), s = Õ(log2(d)/ε) yields our Area Law

for frustration free Hamiltonians providing an entanglement entropy bound of the form Õ(log3(d)/ε).

To address the frustrated case, a third critical result is needed: that the ground states of H(t) are

very good approximations of the ground state of the original Hamiltonian. Intuitively, the structure

of the small eigenvectors and eigenvalues of H(t) should approach those of H as t grows and we show

that to be the case, showing a robustness theorem: that the ground states of H(t) and H are

exponentially close in t and the spectral gaps are of the same order.

We would like to apply Theorem 1.2 to an AGSP for H(t), for t sufficiently large, however, if we

try to do this in one step, the SR cost becomes a large function of t. Instead we use a well chosen

arithmetic sequence t0, t1, . . . and the associated AGSP’s to H(ti) to guide the movement towards the

ground state. The robustness theorem allows for very rapid convergence, the result of which is the

area law in the general (frustrated) case.

3



References

[1] J. Eisert, M. Cramer, and M. B. Plenio, “Colloquium: Area laws for the entanglement entropy,”

Rev. Mod. Phys., vol. 82, pp. 277–306, Feb 2010.

[2] M. B. Hastings, “An area law for one-dimensional quantum systems,” Journal of Statistical Me-

chanics: Theory and Experiment, vol. 2007, no. 08, p. P08024, 2007.

[3] D. Aharonov, I. Arad, U. Vazirani, and Z. Landau, “The detectability lemma and its applications

to quantum hamiltonian complexity,” New Journal of Physics, vol. 13, no. 11, p. 113043, 2011.

[4] D. Aharonov, I. Arad, Z. Landau, and U. Vazirani, “The detectability lemma and quantum gap

amplification,” in STOC ’09: Proceedings of the 41st annual ACM symposium on Theory of com-

puting, arXiv:0811.3412, (New York, NY, USA), pp. 417–426, ACM, 2009.

[5] D. Aharonov, I. Arad, Z. Landau, and U. Vazirani, “The 1d area law and the complexity of quan-

tum states: A combinatorial approach,” in 2011 IEEE 52st Annual Symposium on Foundations of

Computer Science, pp. 324–333, IEEE, 2011.

[6] I. Arad, Z. Landau, and U. Vazirani, “Improved one-dimensional area law for frustration-free

systems,” Phys. Rev. B, vol. 85, p. 195145, May 2012.

4


