
98 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 26, NO. 2, FEBRUARY 1991

An Area Model for On-Chip Memories
and its Application

Johannes M. Mulder, Member, IEEE, Nhon T. Quach, Student Member, IEEE and
Michael J. Flynn, Fellow, IEEE

Absfrud --In the implementation of a processor, it is often necessary
to abstract cost constraints into architecture measures for making
trade-offs. An important cost measure for an on-chip memory is its
occupied silicon area. Since the performance of an on-chip memory is
characterized by size (storage capacity), a mapping from size to area is
needed. Simple models have been proposed in the past for such a
purpose. These models, however, are of unproven validity and only apply
when comparing relatively large buffers (> 128 words for caches, > 32
words for register sets) of the same structure (e.g., cache versus cache).

In this paper we present an area model for on-chip memories. The
area model considers the supplied bandwidth of a memory cell and
includes such buffer overhead as control logic, driver logic, and tag
storage, thereby permitting comparison of data buffers of different
structures and arbitrary sizes. The model gave less than 10% error when
verified against real caches and register files. We then show that
comparing cache performance as a function of area, rather than size,
leads to a significantly different set of organizational trade-offs.

I. INTRODUCTION
ERFORMANCE requirements and costs constraints P placed on an implementation directly influence processor

and memory architecture design decisions. In the design of
an architecture, it is necessary to abstract these cost con-
straints to architectural measures for making trade-offs. An
important cost measure for an on-chip buffer is its occupied
silicon area. Since the performance of a data buffer is
characterized by its size (storage capacity), a mapping from
size to area is needed.

Hill and Smith [l] and Alpert and Flynn [2] have used
simple area models for such a purpose. These simple models
account for tag and line-status bits in addition to the data
bits. The difference in area between the content addressable
memory (CAM) cells and the normal storage cells is also
included [2]. The validity of these simple models, however,
has thus far remained unproven. Moreover, the models only
apply when comparing large caches of the same structure.
When comparing small caches or comparing buffers of dif-
ferent structures (e.g., cache versus register), the simple area
models do not suffice. In small caches the area overhead
dominates, but is not included in the simple models. When
comparing buffers of different structures, it becomes impor-
tant to consider the supplied bandwidth of the buffers in the
area model. A register set, for example, often supplies two to

Manuscript received March 14, 1990; revised October 8, 1990. This
work was supported by the NSF under Contract MIP88-22961 using
facilities provided by NASA under Contract NAGW 419.

J. M. Mulder is with the Department of Electrical Engineering, Delft
University of Technology, 2600 AG Delft, The Netherlands.

N. T. Quach and M. J. Flynn are with the Department of Electrical
Engineering, Stanford University, Stanford, CA 94305.

IEEE Log Number 9041648.

* lullyassociativecadle - 3-ported register set
+ simple area model

2 '

8 32 128 512 2048 8192 32768
cache size in words

Fig. 1. Proposed area model relative to simple models.

four times the bandwidth of a cache. This bandwidth differ-
ence shows up in the additional area occupied by a register
bit as compared to a cache bit. The difference between the
simple models and the present model is shown in Fig. 1 for a
two-way set associative cache, a fully associative cache, and a
register set. For small cache, the differences in area pre-
dicted by the models are significant.

The area model presented in this paper corrects these
deficiencies by 1) including data bits, tag bits, and overhead
logic (i.e., drivers and comparators) in the model, 2) consid-
ering the effects of bandwidth on individual memory cells,
and 3) establishing the model validity by comparing the
model prediction with real caches and register files. The area
model is presented in Section I1 and verified in Section 111.
Section IV follows with an application of the area model to
assess cache organization trade-offs.' Concluding remarks
are given in Section V.

11. AREA MODEL
In the present area model, the total amount of area

occupied by a combination of buffers is simply the sum of the
individual areas, as shown in Fig. 2. We ignore wiring over-
head necessary to combine the buffers for modeling simplic-
ity.

A. Area Unit

Although the most obvious unit for area is square microm-
eters, the unit for the present area model is a technology-

'Although the area model presented in this paper allows us to com-
pare buffers of different structures (e.g., caches versus register files) as
mentioned previously, doing so requires the introduction of a timing
model for each type of buffer with different timing characteristics. Due
to space limitation, only cache design trade-offs are considered in this
paper. The reader is referred to [3] for a comparison of relative cycles of
caches and register files.

0018-9200/91/0200-0098$01 .OO 01991 IEEE

MULDER et al.: AREA MODEL FOR ON-CHIP MEMORIES 99

Fig. 2. Area of on-chip data memory as chip cost fun(
A r - s r a c k + A r - s e ~ + A d - c u < h c .

:tion. Arora i
- , -

(a)

ram cells
W i I S
amplifiers
comparators

Fig. 3. Data- and tag-area model.
independent notion of a register-bit equivalent or rbe. The
advantage of this is the relatively straightforward relation
between area and size, facilitating interpretation of area

cause not all storage cell designs occupy the same area-a
suitable cell has to be selected as the area unit. Static storage
cells occupy more area than dynamic ones, and the area of
both static and dynamic depends on the bandwidth

and control lines (more lines crossing a cell increase the

where registers, is the number of registers in words,

datawidth, is the width of the data path in bits, and Wd,,,,,
is the width of the drivers, all in units of rbe. (The subscripts
b and w are used in this paper to denote a quantity in bit
and in word, respectively. A word is equal to 4 bytes or 32 b.)

rbe. Equation (1) then becomes

figures. One rbe equals the area of a bit storage cell. Be- Lsense_amp is the length Of the bit-1ine

required. A higher bandwidth potentially implies more bit From Lsense--amP and wdrlLer are to

area). A higher bandwidth can also- imply an increased
transistor size to increase the speed of driving the bus lines. arearegisjPr~ser = (registers, +6)(datawidth, +6) rbe. (2)

The present area model uses three types of storage cells
with different bandwidths: a six-transistor static cell with
high bandwidth, a six-transistor static cell with medium
bandwidth, and a three-transistor dynamic ell with low band-
width [4] (henceforth referred to, respectively, as register
cell, static cell, and dynamic cell). The area unit, rbe, equals
the area of the register cell.’ We have empirically deter-
mined that the static cell area is 0.6 rbe and the dynamic cell
area is 0.3 rbe. Dynamic cells are sometimes used to reduce
the area of on-chip caches at the expense of bandwidth.

B. Register Set and Memory Areas

Register buffers are generally an integral part of the data
path. These buffers use high-bandwidth register cells, nor-
mally consisting of a read port and a port that can be used
for reading and writing. These register cells can support two
reads and a time-multiplexed write per access cycle.
Throughout the remainder of this paper, we refer to such
register cells as “three-ported cells,” though they actually
have less hardware overhead than ones with two read ports
and a separate write port.3 Besides storage cells, register
buffers have bit-line sense amplifiers and control line drivers,
which occupy additional area. The overhead for sense ampli-
fiers and drivers on all four sides of the bit array totals
approximately 6 rbe. Fig. 3(a) shows the area model of a
register buffer or on-chip memory. The total area in rbe for a

In this study, datawidth, is assumed to be 32 b for all
register buffers (or register files) unless otherwise stated.

Large on-chip buffers, other than register buffers, are
generally associated with cache or a similar structure [6]. The
bandwidth requirements of these buffers or memories are
significantly lower than that of a register set. These buffers
usually support only one read or write at a time, and have
more time to complete these operations than a register set.
The storage cells used for these buffers can be either static
or dynamic ones. Relaxed timing constraints allow use of
smaller drivers and amplifiers. As for static cell area,4 we
scale the equation for the register area model (i.e., equation
(2)) by 0.6 for the static-memory area model. For a static-
memory array of size, words each of line, bits long, for
example, the area is

areasjatic-memory = 0.6(size, +6) (lineb + 6) rbe.

The area equation for dynamic memory can be derived
similarly, scaling (2) by 0.3. The size of the drivers in a
dynamic memory, however, does not scale in the same man-
ner as the storage cells and is comparable to the static-mem-
ory one [4]. The area of dynamic memory is approximated as

single array is
areadynamlc-memory = 0.3(size, +6)(lineb + 12) rbe.

area = (registers, + + Wd,,,,,) (I)

2MIPS-X [51 is used as the basis for certain empirical parameteriza-
tions. This experimental microprocessor was implemented in CMOS

p m and its cache storage cell (static) was 3 0 x 4 0 pm.
3Register buffer designs often differ in the way the read and write

ports are used. For example, a three-ported register buffer may have
two read ports and a separate write port, requiring a total of four bit
lines, or two read ports and a timemultiplexed write port, requiring only
two bit lines. The write port may share the decoder or the bit lines with
the read port, or both.

‘‘ Cache

technology with 2-pm minimum geometry, Its register cell was 37 x 55 The area Occupied by caches is more Besides
data bits, which we have modeled previously, a cache consists
of area for address tags, dirty and valid bits, Comparators,

4Here, it can be confusing. Cell area refers to the area of one cell,
register or memory areas refer to the areas of the whole register buffers
and the whole memory array, respectively.

. .

100 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 26, NO. 2, FEBRUARY 1991

and control logic. The control logic is usually implemented in
a programmable logic array (PLA). Generally the cache
divides into two relatively independent sections, one for the
data bits and one for the tags, dirty, and valid bits. Both
require additional area for drivers and amplifiers and the tag
section also includes address comparators. The tags and the
address comparators have two fundamentally different im-
plementations. Set-associative caches generally store the tags
in static cells (and sometimes in dynamic cells) using one
bank of cells for each degree of associativity and one com-
parator per bank. Fully associative caches store tags in
content addressable memory (CAM) cells, each cell consist-
ing of storage and a comparison circuit. These two cache
organizations have different area models. Caches are able to
use static cells or dynamic cells because of their relaxed
bandwidth requirements as compared with registers.

1) Set-Associatiue Caches: The tag area for a set-associa-
tive cache (sac) is the tag-bit area plus the overhead for
status bits, amplifiers, drivers, and comparators. The area of
the comparators is largely determined by the routing of the
address lines to the tag comparators. If the address lines run
perpendicular to the bit lines of the tag cell, an area of at
least the address line pitch times the number of lines is
necessary. MIPS-X comparators are 300X 30 pm2, mainly to
allow 24 metal wires with 10-pm pitch to cross. Based on
these figures the area model assumes a comparator area of
6 ~ 0 . 6 rbe.

The number of tag bits per line equals the number of
address bits used to address the cache minus the bits used to
index the transfer units and lines. The present calculation
uses 30 address bits, which implies an address space of one
gigaword covered by the cache. The number of status bits
per line depends on the transfer-unit5 size and on the write
strategy. Every line has one line-validity bit and every trans-
fer unit has one validity bit and possibly one dirty bit. The
dirty bit is present if the write strategy is write-back. If the
write strategy is write-through, there is no need for a dirty
bit. Area data presented in this and the later sections use
one bit per line and two bits per transfer unit. Besides data
and tags, caches require PLA’s for control. Only for small
caches does this influence the overhead noticeably. The size
of the controller depends strongly on the write and prefetch
strategies. The assumed size of the PLA is 130 rbe [71, a
fairly low estimate.

Fig. 3(a) shows the layout of a cache array (data), and Fig.
3(b) shows the layout of a directory area. Fig. 3(c) shows the
floorplan of a four-way set-associative cache; the four data
areas are placed side by side and driven by one set of drivers.
The four directory areas are also placed side by side across
from the four data array areas.

Excluding the space taken by the address and data buses,
the total area of a set-associative cache is

areasac = pla + data + tags + status.

The area of the different items are a function of the storage
capacity size,, the degree of associativity assoc, the line size
line,, and the size of a transfer-unit transfer,. The number of
transfer units in a line tunits, the total number of address

’This is because of the assumption that subblock placement with
subblock size equals the size of the transfer unit between cache and
memory.

tags tags, the total number of tag and status bits tsb, are

line b
tunits = ____

transferb

size,
tags = -

line

where y equals 2 for a write-back cache and 1 for a write-
through cache. According to Fig. 3(c) the area of a set-
associative cache using static cells is

areasac = 130 + 0.6(line,. assoc + 6) (tags + 6)
assoc

+ 0.6(tsb,. assoc + 6) (- tags + 6 + 6) rbe
assoc

= 195 +0.6.0uhd,.sizeb +0.6.0uhd2.tsbitsb rbe
where

6 6 . assoc
ouhd1=1+ ~ +

tags line,. assoc
and

12. assoc 6
ouhd2 = 1 + ~ +

tags tsb,. assoc ’

The area of a set-associative cache using dynamic cells can
be derived similarly as

areasac = 195+0.3.0uhd,.sizeb +0.3.0uhd4.tsbitsb rbe

where
6 . assoc 12

ouhd,=l+--- +
tags line,. assoc

and
12. assoc 12

ouhd4 = 1 + ~ +
tags tsb,. assoc

Fig. 4(a) shows the effect of line sizes on a direct-mapped
cache area relative to the storage capacity (arearbe /size,).
The area reduction is rather small when moving from a
two-word line to a 16-word line since the tag-area reduction
is partially compensated by an increase in transfer-unit status
bits. Fig. 4(b) shows the effect of the associativity on the
cache area per data bit. As soon as the area becomes
dominated by data array bits the associativity has little effect
on the cache area per data bit. For small caches, however,
the tag comparators determine the differences among cache
organizations. Fig. 4(c) shows the area of a direct-mapped
cache and set-associative caches relative to the area of a
three-ported register set. For the same storage capacity,
caches generally occupy more area than registers for small
sizes (the exact crossover point depends strongly on line size)
because the cache overhead dominates the cache area at
these sizes. For larger sizes, the smaller storage cells in the
cache provide a total cache area smaller than the register set.
A four-way set-associative cache of 1024-word size with
two-word lines, for example, only takes 75% of the area of a
register file of 1024 words.

MULDER et al.: AREA MODEL FOR ON-CHIP MEMORIES 101

1 ! -+- E

0 I I i

4 16 64 256 1024 4096
size in 32-bit words

b

4 16 64 256 1024 4096
0 I i

size in 32-bit words

+ l-wwdldirectinapped

0 1 I I I

4 16 64 256 1024 4096
size in 32-bit words

Fig. 4. Relative area for associative caches as a function of line size,
associativity, and provided storage.

2) Fully Associative Caches: The tag area of a fully associa-
tive cache (fac) is only a function of the number of address
bits. The tag bits, however, are not stored in static or
dynamic cells but in CAM cells. Alpert [8] assumed CAM
cells to be twice the size of a static cell (1.2 rbe), basing his
assumption on data for the 280,000. Our tag-area model
assumes the same ratio. Fig. 5 shows the layout of a fully
associative cache. If the associative search through the tags
yields a hit, then the corresponding status bits are examined
and the data array indexed. Generally, the status bits are
combined with the tags to get the status early, which is useful
if the tags and data are not placed immediately next to each
other. The status bits, however, can be data-type cells. The
occupied area of a fully associative cache is

areafa, = pla + data + status + CAM

= 130+0.6(tags +6)(p.lineb-,,,, + 6)

Fig. 5. Fully associative cache layout.

-b l-wordline
+ 2-wordline
-m- 16-wordline

9 5 tuiiy associative

L 4 -

3 -

0 la 1 1

4 64 256 1024 4096
size in 32-bit words

16

3.0
L
I 2.5

2.0

1.5

1

(b) 1.0

0.5

0.0
4 16 64 ?58 1024 40%

sue in 32-M words

4 fully associative
* l-wordl4-way
* 2-wonV4-way

2.0 * 4-wordl4-way

1.5

0.0 IC I I 1

4 16 64 256 1024 4096
size in 32-bit words

Fig. 6 . Relative area of fully associative caches as a function of line
size and provided storage.

panding, and rearranging, we rewrite (3) as

areafa, = 175 +0.6.p. ouhd, . sizeb-dara

+ 1.2.0uhd6.sizeb C A M rbe

where

6 .p 12
tags P.line,

ouhd, = 1 + - + ___

+0.6 (f i . t ags + 6) (f i . h e b - c ~ ~ + 6) rbe (3)

where p = 1+ y/transferb and lineb-CAM = 30-log2(1ine,).
The derivation of the equation follows the static memory one
in the previous subsection. The CAM cells are assumed to
have an aspect ratio of 1, so that the width and length are
equal (fi rbe). Defining size,-cAM = tags. line, C A M , ex-

and
8.5 8.5
tags lineb ouhd, = 1+ - + -.

The effect of organization on the area of fully associative
caches is shown in Fig. 6(a). Increasing the line size has
significantly more effect for fully associative caches than for

102 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 26, NO. 2, FEBRUARY 1991

direct-mapped ones (Fig. 4(a)). Moving from one-word lines
to 16-word lines, for example, reduces the cache area by
60%; the same move for a direct-mapped cache results in
35% less cache area. Fig. 6(b) shows the area of various
cache and register configurations relative to the area occu-
pied by a fully associative cache of indicated sizes in 32-b
words. Generally, fully associative caches occupy the most
area per bit for sizes in excess of 64 words and registers
occupy the next most area per bit with direct-mapped and
set-associative caches occupying the least area over the same
range. Similarly from Fig. 6(c), fully associative caches oc-
cupy more area than four-way set-associative caches at large
sizes with the crossover point depending on the line size.

(a) we' 1, aspect ratio 7

(b) size: 1.15.aspectratii:~

D. Limitation of the Area Model

The area model is based on three assumptions. The first
and most important assumption is that the access time of a
buffer is independent of the storage capacity. Second, the
area only depends on the buffer organization and not on the
layout specifics. Finally, the aspect ratio is not significant for
modeling purposes. We consider each of these assumptions
in more detail below.

I) Access-Time Dependencies: To maintain the same access
time while increasing the buffer size generally means that
the storage cells, the drivers, and amplifiers also grow in size.
This implies that the model is accurate for buffer sizes about
which we have parametrized the model. These sizes are
approximately 32 X 32 b for register buffers and 2 kilobytes
for caches.

2) Influence of Layout on Area: In any implementation,
the amount of wasted area depends on the actual layout of
the buffer. Our model allows for some wasted area because
it abstracts both tag and data area to rectangles. Further, a
circuit can be laid out in several ways, requiring slightly
different amounts of area.

3) Aspect Ratio: Fig. 7 illustrates the relation between size
and aspect ratio (defined here as the width-to-height ratio of
a geometry). If small caches with high degrees of associativity
are laid out according to Fig. 3(c), the aspect ratios may
become large. Fig. 7(a) shows a four-way set-associative
cache laid out according to our model. Although the area is
optimal, the aspect ratio may be impractical for wiring pur-
poses. Folding the cache twice (Fig. 7(b)) and four times
(Fig. 7(c)) improves the aspect ratio from 7 to 2 and to 0.6
but increases the area by 15% and by 40%, respectively.
Ignoring aspect ratio then can introduce an error of +20%
(over the aspect ratios considered, with model centered on
an aspect ratio of about 2). The area increase is caused by
two factors. First, every fold requires its own drivers for both
tag and data arrays and, second, every fold increases the area
for both address and data buses supplying the cache. While
the aspect ratio in cache design can be important [9], we
chose to ignore it to simplify modeling. This necessarily
limits the achievable accuracy of our model.

111. VERIFICATION OF AREA MODEL
Clearly, the best way to establish the validity of the model

is to compare the model prediction with actual caches and
register buffers (or register files). For this purpose, we intro-
duce a technology factor (TF) for both caches and register
files. TF arises because our model was derived based on the

(C) size: 1.4, aspect ratio: 0.6

Fig. 7. Aspect ratio and area change as a function of layout.

MIPS-X data, which is built with a 2-pm technology. The use
of T F permits comparison of caches and register files across
generations of technologies (e.g., 1 versus 2 pm). Since T F is
an area scale factor, it can be obtained simply as

minimum geometry in pm

2 1 . T F = (
For register files, the situation is more complicated because
not all register files have the same number of read and write
ports as the MIPS-X does. Also, read and write methods
vary among processors. A read or a write port needs a
decoder (and a word line) and one to two bit lines depending
on the accessing methods. Single-ended ports require only
one bit line; differential ports require two. To account for
the different numbers of ports, we modify (1) as

area = (registers, + Lsense_amp)(datawidthb + W,,;N,,,,)

.PF rbe (4)

where W,,, is the width and Ndec is the total number of the
decoders,6 and PF is an empirical factor accounting for the
number of register ports in the register file. W,,, and PF are
modeled as

wd,, = a ' datawidthb (5)

(6)

and

PF = [1 + 0.25(Nbit-2ines - 2)] .

'In a register file, the word-line drivers are the decoders. We used
decoders in (4) but drivers in (1).

MULDER et al.: AREA MODEL FOR ON-CHIP MEMORIES 103

TABLE I
COMPARISON OF ACTUAL AND PREDICTED CACHE AREAS

TECH.
(p m)

M68020
M68030

HP RISC
NS32532

Matsushita2
DECl (pVAX)
DEC2

DEC3

Matsushital
i860

MIPS-X

i486

2.0
1.2
1.2
1.6
1.25
1.25
1.2
2.0
1.5
1 .5
1 .5
2.0
1 .o
1 .o
1 .o
1.0

SIZE AREA* MODEL
TYPEb (Bytes) (Kpm’) (Kpm2)

1,lw 246 4449 4048
1,lw 256 2445 2184
D,lw 256 2345 2184
1,lw 256 2775 3134
I,2w 512 3776 3246
D,lw 1K 7699 6153
1,lw 1K 9448 8596
I/D,2w 1K 8750 8705
1,s 1K 9448 9858
D,lw 2K 20125 16935
1,lw 2K 18463 15773
1,s 2K 27517 27545
I,2w 2K 11188 10448
I,2w 4K 13347 12805
D,2w 8K 26977 23904
I/D,4w 8K 26000 26500

ERROR
(%I+
- 9.0
- 10.7
- 6.9
12.9

- 14.0
- 20.1
- 9.0

0.5
4.3

- 15.9
- 14.6

0.1
- 6.6
-4.1
- 11.4

1.9

REF.

~~ ~

kegend:
I-I-cache; D-D-cache; I/D-Mixed cache or cache that can be used either as an I-cache

or as a D-cache; lw-Direct-mapped; 2w-two-way set-associative; 4w-four way set-associa-
tive; S-Sector cache.

‘Measured or reported areas.
‘Percent error is calculated as:

Model - Actual
Actual

%error = ,100

TABLE I1
COMPARISON OF ACTUAL AND PREDICTED REGISTER-FILE AREAS

PP (p m) R/W/(R/W) N#brl - , rnes TYPEb (bits) (Kpm’) (Kpm’) (%) REF.

DEC3 1.5 l / O / l 4 I 48x32 3534 3523
HP1 1.5 2/2/0 4 I 31x32 3450 3737 8.0 [24]

GE2 1.2 2/1/1 4 FP 21x32 3734 4396 17.7 [26]

TECH. PORTS SIZE AREA* MODEL ERROR+

MIPS-X 2.0 2/0/1* 2 I 32x32 3330 3217 -3.4 [201
-0.3 [19]

GE1 1.2 2/1/1 4 FP 8 x 6 4 4760 4558 -4.2 [25]

i860 1.0 3/2/0 5 FP 8x128 2581 2343 -9.2 [27]

Legend:
‘ N h l l - l r n P r is the total number of bit lines in the register file; it is equal to the number of ports if only single-ended

bFP-floating point registers,-I-integer registers.
‘Measured or reported areas.
’% Error is calculated as:

Ports are used. In general, Nhlr l L n e s = Ndecoders + Ndlfferenlrn/-porls (see text).

Model - Actual

Actual
% Error = .loo.

*MIPS-X’s register file has three sets of decoders but has only two bit lines (see text).

Incorporating (5) and (6) and rearranging, (4) becomes

. [1 + 0.25(Nbit-lines - 2)] rbe

where Nbrt-ines, is the number of bit lines in the register file.
For register files with only single-ended ports, Nbit-lines

In words, (5) states that the size of a decoder in a register
file is proportional to datawidth,, the number of bits it has
to drive. MIPS-X data indicate that this proportionality
constant a is 0.1. Equation (6) models the effect of each bit
line in excess of two as increasing the register file area by

-
Ndec. In general, Nbit_lines - Ndec + Ndi jferential-ports.

25% over a register file that has two bit lines (specifically,
over the MIPS-X register file).

Table I compares the actual cache sizes with the present
area model prediction. The cache areas in the “AREA”
column are in thousands of square micrometers, obtained
from the micrographs or the designers of the processors. The
“MODEL,” column contains the predicted cache areas,
scaled appropriately by the TF factor. The absolute average
error (AAJ3) is about 8.9%. The average error is - 6.5% with
a standard deviation of around 8.6%. The M68020 and DEC
pVAX processors use one-transistor cells in the cache arrays.
This has been modeled here using the read equation for
dynamic memory. The DEC2 processor uses four-transistor

104 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 26, NO. 2, FEBRUARY 1991

4 16 64 256 1024 4096 16384
area in 32-b units (a)

+ twpway
1.6

0.6 b. i

4 16 64 256 1024 4096 16384
size in 32-M words (b)

Fig. 8. Performance as a function of set associativity, area, and size.

::$-Zs+; :I:
a: area

0.5 0.5
4 16 64 256 1024 4096 16384 4 16 64 256 1024 4096 16384

(a) am in 32-rbe units (b) sire in 32-bit words

Fig. 9. Full versus set associativity.

cells in the cache,
six-transistor static
The data and error

1.7 .P
I 1.6

1.5 f
1.4 f
1.3

1.2

1.1

1 .o
0.9

4 16 64 256 1024 4096 16384
area in 3 2 h units (a)

1.7
1.6

1.5
1 A

1.3

1 2

1.1

1 .o
0.9

4 16 64 256 1024 4096 16384
size in 32-bi words (b)

Fig. 10. Performance as a function of line size, area, and size.

which are about 10% smaller than the
cells assumed in the present study [lo].
given in Table I include this adjustment.

The DEC pVAX processor also uses a folded-bit-line sens-
ing scheme to reduce the size of the cache; the actual cache
size and error should have been larger than those indicated
in the table.

A similar set of data is presented in Table I1 for register
files. The area data are obtained with the same procedure.
The AAE is about 7.1%. The average error centers at 1.4%
with a standard deviation of 9.9%. The MIPS-X register file
includes the double-bypass logic, which occupies roughly
40% of the total area as estimated by visual inspection of the
micrograph. The register file in the HP RISC processor
drives the bus lines directly, requiring register cells that are
50% (1.5 rbe) larger than the conventional ones [l l] . The
register files in GEl and GE2 processors use bigger cells
than necessary because of the requirements of low soft-error
rates. The actual cell size is 3 7 x 100 p m 2 in a 1.2-km
technology. We accounted for this by using this given size as

the area unit (instead of rbe). The data presented in Table I1
include all these adjustments.

IV. CACHE ORGANIZATION TRADE-OFFS AS A

FUNCTION OF AREA
To assess trade-offs in cache design, we consider the area

and size effects with different line size and associativity on
traffic ratio. Traffic ratio is defined here as the ratio of the
total number of words transferred between the cache and
the memory to the total number of cache accesses. In essence,
traffic ratio measures the cache effectiveness in reducing
memory traffic. Only write-back caches are investigated in
this study and all caches use a cell size of 0.6 rbe. The
benchmarks used consist of five medium-sized programs
(dynamic size of 2.5 to 35 million bytes) generally representa-
tive of a workstation environment (nonscientific). The reader
is referred to [121 for additional information.

In the following figures the left-hand graph (a) always
shows the traffic ratio as a function of area and the right-hand

MULDER et al.: AREA MODEL FOR ON-CHIP MEMORIES 105

graph (b) shows the traffic ratio as a function of size (storage
capacity). All graphs show traffic relative to one particular
organization.

A. Associativity

The traffic ratio of caches with different set associativity
(Fig. 8(b)) relative to four-way associativity is relatively inde-
pendent of cache size. Associativity of two-way and four-way
performs better than direct-mapped for caches larger than
256 words. For caches larger than 4096 words, the associativ-
ity differences reduces to zero. Cache traffic as a function of
area (Fig. 8(a)) deviates significantly from the traffic as a
function of size for small caches (< 256 words). At these
sizes, direct-mapped caches perform significantly better as a
function of area than as a function of size.

Fig. 9(a) and (b) also shows performance as a function of
area, size, and associativity, but relative to a fully associative
cache. While for small caches the CAM cells for the tags
outweigh the comparators of the set-associative (two-way and
four-way) organizations, for larger caches (> 128 rbe) the
set-associative caches outperform fully associative caches of
the same area. At this line size, a direct-mapped cache
always produces equal or more traffic than a fully associative
cache for all areas considered. The performance variations
between fully and set-associative caches are significantly
smaller when compared by area rather than by size (-25%
to +50% versus +40% to +200%).

B. Line Size

Fig. 10(a) and (b) shows relative traffic ratio as a function
of area and size with line sizes ranging from one to eight
words. The traffic ratio is relative to a cache with a line size
of one word. The differences in relative traffic ratio among
caches are quite large when compared by size (up to 65% for
a cache with a line size of eight words (see Fig. 10(b)), but
become noticeably smaller when compared by area, espe-
cially for medium-size caches (256 < size < 4096 rbe). Fig.
10(a) also shows a different performance order from
Fig. 10(b).

V. CONCLUSION
In this paper, we have presented an area model suitable

for comparing data buffers of different organizations (e.g.,
caches versus register files) and arbitrary sizes. The model
incorporates such overhead area as drivers, sense amplifiers,
tags, and control logic. Data cells are distinguished according
to their delivered bandwidth in the model. The model gave
less than 10% error when verified against real caches and
register files.

Comparing caches and register files in terms of area
reveals that for the same storage capacity, caches generally
occupy more area per bit than register files for small caches
because the overhead dominates the cache area at these
sizes. For larger caches, the smaller storage cells in the cache
provide a smaller total cache area per bit than the register
set. The exact crossover point depends strongly on the line
size (Fig. 4).

Studying cache performance (traffic ratio) as a function of
area with the present area model, we found: 1) for small
caches (less than the area occupied by 256 register bits-rbe
-or 32 bytes), direct-mapped caches perform significantly

better relative to four-way set-associative caches (Fig. 9); and
2) for caches of medium areas (between 256 rbe and 4096
rbe), both direct-mapped and set-associative caches perform
better relative to fully associative caches with set-associative
caches actually outperforming fully associative caches (Fig.
8). Furthermore, for set-associative caches of these medium
areas, line size has far smaller effects on traffic ratio for
caches of the same area (Fig. lO(c)).

ACKNOWLEDGMENT

D. Alpert of Intel Corporation kindly provided informa-
tion regarding the i486 cache. J. Levy of National Semicon-
ductor Corporation, R. Heye, N. Jouppi, and S. Morris of
Digital Equipment Corporation, L. Kohn of Intel, K. Molnar
and D. Lewis of General Electric, and J. Yetter of Hewlett-
Packard have been helpful in clarifying some of the data in
their papers. The authors wish to thank them all. The
authors wish to also thank the referees for their valuable
comments on the paper.

REFERENCES

M. D. Hill and A. J. Smith, “Experimental evaluation of
on-chip microprocessor cache memories,” presented at the
1 lth Annual Symp. Computer Architecture, June 1984.
D. Alpert and M. J. Flynn, “Performance tradeoffs for micro-
processor caches memories,” IEEE Micro, pp. 44-54, Aug.
1988.
J. M. Mulder, N. T. Quach, and M. J. Flynn, “An area-utility
model for on-chip memories and its application,” Stanford
Univ., Stanford, CA, Tech. Rep. CSL-TR-90-413, Feb. 1990.
J. Newkirk and R. Mathews, The VZSI Designer’s Library (The
VLSI Systems Series).
P. Chow, The MIPS-X RISC Microprocessor. Boston: Kluwer,
1989.
INMOS Ltd., Reference Manual and Product Data, Bristol,
England, 1985.
F. F. Lee, Dept. Electrical Engineering, Stanford Univ., Stan-
ford, CA, private communication, 1989.
D. Alpert, “Memory hierarchies for directly executed language
microprocessors,” Computer Systems Lab., Stanford Univ.,
Stanford, CA, Tech. Rep. 84-260, June 1984.
A. Aganval et al., “On-chip instruction caches for high perfor-
mance processors,” in Advanced Research in VZSI , Stanford
Univ., Stanford, CA, Mar. 1987.
R. Heye and S. Morris, Digital Equipment Corporation, Hud-
son, MA, private communication, 1989.
J. Yetter, Hewlett-Packard, private communication, 1989.
M. J. Flynn, C. Mitchell, and J. M. Mulder, “And now a case
for more complex instruction sets,” IEEE Computer, pp. 71-83,
Sept. 20, 1987.
T. L. Harman, The Motorola 68020 and 68030 Microprocessors.
Englewood Cliffs, NJ: Prentice Hall, 1989.
A. Marston et al., “ A 32b CMOS single-chip RISC type proces-
sor,” in ISSCC Dig. Tech. Papers, Feb. 1987, pp. 28-29.
J. Levy, National Semiconductor Corporation, private commu-
nication, 1989.
K. Kaneko et al., “A 64b RISC microprocessor for parallel
computer system,” in ISSCC Dig. Tech. Papers, 1989, pp.

D. Archner et al., “ A 32b CMOS microprocessor with on-chip
instruction and data caching and memory management,” in
ISSCC Dig. Tech. Papers, Feb. 1987, pp. 32-33, 329-330.
R. Conrad et al., “A 50 MIPS (peak) 32/64b microprocessor,”
in ISSCC Dig. Tech. Papers, 1989, pp. 76-77.
N. P. Jouppi, J. Y. F. Tang, and J. Dion, “A 20 MIPS sustained
32b microprocessor with 64b data bus,” in ISSCC Dig. Tech.
Papers, 1989, pp. 84-85.’
M. Horowitz et al., “ A 32b microprocessor with on-chip 2k byte
instruction cache,” in ISSCC Dig. Tech. Papers, Feb. 1987, pp.

Reading, MA: Addison-Wesley, 1983.

78-79.

30-31, 328.

106 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 26, NO. 2, FEBRUARY 1991

[21] H. Kadota et al., “ A CMOS 32b microprocessor with on-chip
cache and transmission lookahead buffer,” in ISSCC Dig. Tech.
Papers, Feb. 1987, pp. 36-37, 332-333.

[22] T. S. Perry, “Intel secret is out,” IEEE Spectrum, pp. 22-28,
Apr. 1989.

[23] D. Alpert, Intel Corporation, private communication, 1989.
[24] J. Yetter, M. Forsyth, W. Jaffe, D. Tanksalvala, and J. Wheeler,

“ A 15 MIPS 32b CMOS Microprocessor,” in ISSCC Dig. Tech.
Papers, 1987, pp. 26-27.

[25] K. Molner, C.-Y. Ho, D. Staver, B. Davis, and R. Jerdonek, “ A
40 MHz 64-bit floating point processor,” in ISSCC Dig. Tech.
Papers, 1989, pp. 48-49.

[26] D. K. Lewis, T. J. Wyman, M. J. French, and F. S. Boericke 11,
“A 40 MHz 32b microprocessor with instruction cache,” in
ISSCC Dig. Tech. Papers, 1988, pp. 30-31.

[27] L. Kohn, Intel Corporation, private communication, 1989.

Johannes M. Mulder (S’82-M’87) received the
M.S. degree from Delft University of Technol-
ogy, Delft, The Netherlands, and the Ph.D. de-
gree from Stanford University, Stanford, CA.

He is an Assistant Professor in the Depart-
ment of Electrical Engineering, Delft University
of Technology. His main research interests are
computer architecture, compilers and VLSI de-
sign for high-speed computing, and computer-
aided architecture and system design. He is the
principal investigator of the SCARCE project,

which concerns the design of application-specific processors for high-
speed embedded controllers.

Dr. Mulder is a member of the IEEE Computer Society and the
ACM.

Nhon T. Quach (S’87) received the B.S. degree
from the University of Texas at Austin in 1982
and the M.S. degree from the Massachusetts
Institute of Technology, Cambridge, in 1984. He
is currently a Ph.D. candidate at Stanford Uni-
versity, Stanford, CA, where he researches in
the area of high-speed computer arithmetic.

From 1984 to 1987 he was one of the princi-
pal developers of a I-ym CMOS process at the
Fairchild Advanced Research Laboratory. His
other research interests include computer archi-

Mr. Quach is a member of the IEEE Computer Society and the ACM.
tecture, compilers, and VLSI circuits and systems design.

Michael J. Flynn (M’56-SM’79-F‘80) is a Pro-
fessor of Electrical Engineering at Stanford
University, Stanford, CA. His experience in-
cludes ten years at IBM corporation working in
computer organization and design. He was also
a faculty member at Northwestern University
and Johns Hopkins University, and the Director
of Stanford’s Computer Systems Laboratory
from 1977 to 1983.

Mr. Flynn has served as vice president of the
IEEE Computer Society and was founding

chairman of CS’s Technical Committee on Computer Architecture, as
well as ACM’s Special Interest Group on Computer Architecture.

