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Absfrud --In the implementation of a processor, it is often necessary 
to abstract cost constraints into architecture measures for making 
trade-offs. An important cost measure for an on-chip memory is its 
occupied silicon area. Since the performance of an on-chip memory is 
characterized by size (storage capacity), a mapping from size to area is 
needed. Simple models have been proposed in the past for such a 
purpose. These models, however, are of unproven validity and only apply 
when comparing relatively large buffers ( > 128 words for caches, > 32 
words for register sets) of the same structure (e.g., cache versus cache). 

In this paper we present an area model for on-chip memories. The 
area model considers the supplied bandwidth of a memory cell and 
includes such buffer overhead as control logic, driver logic, and tag 
storage, thereby permitting comparison of data buffers of different 
structures and arbitrary sizes. The model gave less than 10% error when 
verified against real caches and register files. We then show that 
comparing cache performance as a function of area, rather than size, 
leads to a significantly different set of organizational trade-offs. 

I. INTRODUCTION 
ERFORMANCE requirements and costs constraints P placed on an implementation directly influence processor 

and memory architecture design decisions. In the design of 
an architecture, it is necessary to abstract these cost con- 
straints to architectural measures for making trade-offs. An 
important cost measure for an on-chip buffer is its occupied 
silicon area. Since the performance of a data buffer is 
characterized by its size (storage capacity), a mapping from 
size to area is needed. 

Hill and Smith [l] and Alpert and Flynn [2] have used 
simple area models for such a purpose. These simple models 
account for tag and line-status bits in addition to the data 
bits. The difference in area between the content addressable 
memory (CAM) cells and the normal storage cells is also 
included [2]. The validity of these simple models, however, 
has thus far remained unproven. Moreover, the models only 
apply when comparing large caches of the same structure. 
When comparing small caches or comparing buffers of dif- 
ferent structures (e.g., cache versus register), the simple area 
models do not suffice. In small caches the area overhead 
dominates, but is not included in the simple models. When 
comparing buffers of different structures, it becomes impor- 
tant to consider the supplied bandwidth of the buffers in the 
area model. A register set, for example, often supplies two to 
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Fig. 1. Proposed area model relative to simple models. 

four times the bandwidth of a cache. This bandwidth differ- 
ence shows up in the additional area occupied by a register 
bit as compared to a cache bit. The difference between the 
simple models and the present model is shown in Fig. 1 for a 
two-way set associative cache, a fully associative cache, and a 
register set. For small cache, the differences in area pre- 
dicted by the models are significant. 

The area model presented in this paper corrects these 
deficiencies by 1) including data bits, tag bits, and overhead 
logic (i.e., drivers and comparators) in the model, 2 )  consid- 
ering the effects of bandwidth on individual memory cells, 
and 3) establishing the model validity by comparing the 
model prediction with real caches and register files. The area 
model is presented in Section I1 and verified in Section 111. 
Section IV follows with an application of the area model to 
assess cache organization trade-offs.' Concluding remarks 
are given in Section V. 

11. AREA MODEL 
In the present area model, the total amount of area 

occupied by a combination of buffers is simply the sum of the 
individual areas, as shown in Fig. 2.  We ignore wiring over- 
head necessary to combine the buffers for modeling simplic- 
ity. 

A. Area Unit 

Although the most obvious unit for area is square microm- 
eters, the unit for the present area model is a technology- 

'Although the area model presented in this paper allows us to com- 
pare buffers of different structures (e.g., caches versus register files) as 
mentioned previously, doing so requires the introduction of a timing 
model for each type of buffer with different timing characteristics. Due 
to space limitation, only cache design trade-offs are considered in this 
paper. The reader is referred to [3] for a comparison of relative cycles of 
caches and register files. 
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Fig. 3. Data- and tag-area model. 
independent notion of a register-bit equivalent or rbe. The 
advantage of this is the relatively straightforward relation 
between area and size, facilitating interpretation of area 

cause not all storage cell designs occupy the same area-a 
suitable cell has to be selected as the area unit. Static storage 
cells occupy more area than dynamic ones, and the area of 
both static and dynamic depends on the bandwidth 

and control lines (more lines crossing a cell increase the 

where registers, is the number of registers in words, 

datawidth, is the width of the data path in bits, and Wd,,,,, 
is the width of the drivers, all in units of rbe. (The subscripts 
b and w are used in this paper to denote a quantity in bit 
and in word, respectively. A word is equal to 4 bytes or 32 b.) 

rbe. Equation (1) then becomes 

figures. One rbe equals the area of a bit storage cell. Be- Lsense_amp is the length Of the bit-1ine 

required. A higher bandwidth potentially implies more bit From Lsense--amP and wdrlLer are to 

area). A higher bandwidth can also- imply an increased 
transistor size to increase the speed of driving the bus lines. arearegisjPr~ser = (registers, +6)(  datawidth, +6) rbe. ( 2 )  

The present area model uses three types of storage cells 
with different bandwidths: a six-transistor static cell with 
high bandwidth, a six-transistor static cell with medium 
bandwidth, and a three-transistor dynamic ell with low band- 
width [4] (henceforth referred to, respectively, as register 
cell, static cell, and dynamic cell). The area unit, rbe, equals 
the area of the register cell.’ We have empirically deter- 
mined that the static cell area is 0.6 rbe and the dynamic cell 
area is 0.3 rbe. Dynamic cells are sometimes used to reduce 
the area of on-chip caches at the expense of bandwidth. 

B. Register Set and Memory Areas 

Register buffers are generally an integral part of the data 
path. These buffers use high-bandwidth register cells, nor- 
mally consisting of a read port and a port that can be used 
for reading and writing. These register cells can support two 
reads and a time-multiplexed write per access cycle. 
Throughout the remainder of this paper, we refer to such 
register cells as “three-ported cells,” though they actually 
have less hardware overhead than ones with two read ports 
and a separate write port.3 Besides storage cells, register 
buffers have bit-line sense amplifiers and control line drivers, 
which occupy additional area. The overhead for sense ampli- 
fiers and drivers on all four sides of the bit array totals 
approximately 6 rbe. Fig. 3(a) shows the area model of a 
register buffer or on-chip memory. The total area in rbe for a 

In this study, datawidth, is assumed to be 32 b for all 
register buffers (or register files) unless otherwise stated. 

Large on-chip buffers, other than register buffers, are 
generally associated with cache or a similar structure [6]. The 
bandwidth requirements of these buffers or memories are 
significantly lower than that of a register set. These buffers 
usually support only one read or write at a time, and have 
more time to complete these operations than a register set. 
The storage cells used for these buffers can be either static 
or dynamic ones. Relaxed timing constraints allow use of 
smaller drivers and amplifiers. As for static cell area,4 we 
scale the equation for the register area model (i.e., equation 
(2))  by 0.6 for the static-memory area model. For a static- 
memory array of size, words each of line, bits long, for 
example, the area is 

areasjatic-memory = 0.6( size, +6) (  lineb + 6) rbe. 

The area equation for dynamic memory can be derived 
similarly, scaling (2) by 0.3. The size of the drivers in a 
dynamic memory, however, does not scale in the same man- 
ner as the storage cells and is comparable to the static-mem- 
ory one [4]. The area of dynamic memory is approximated as 

single array is 
areadynamlc-memory = 0.3( size, +6)( lineb + 12) rbe. 

area = (registers, + + Wd,,,,,) ( I )  

2MIPS-X [51 is used as the basis for certain empirical parameteriza- 
tions. This experimental microprocessor was implemented in CMOS 

p m  and its cache storage cell (static) was 3 0 x 4 0  pm. 
3Register buffer designs often differ in the way the read and write 

ports are used. For example, a three-ported register buffer may have 
two read ports and a separate write port, requiring a total of four bit 
lines, or two read ports and a timemultiplexed write port, requiring only 
two bit lines. The write port may share the decoder or the bit lines with 
the read port, or both. 

‘‘ Cache 

technology with 2-pm minimum geometry, Its register cell was 37 x 55 The area Occupied by caches is more Besides 
data bits, which we have modeled previously, a cache consists 
of area for address tags, dirty and valid bits, Comparators, 

4Here, it can be confusing. Cell area refers to the area of one cell, 
register or memory areas refer to the areas of the whole register buffers 
and the whole memory array, respectively. 

. .  
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and control logic. The control logic is usually implemented in 
a programmable logic array (PLA). Generally the cache 
divides into two relatively independent sections, one for the 
data bits and one for the tags, dirty, and valid bits. Both 
require additional area for drivers and amplifiers and the tag 
section also includes address comparators. The tags and the 
address comparators have two fundamentally different im- 
plementations. Set-associative caches generally store the tags 
in static cells (and sometimes in dynamic cells) using one 
bank of cells for each degree of associativity and one com- 
parator per bank. Fully associative caches store tags in 
content addressable memory (CAM) cells, each cell consist- 
ing of storage and a comparison circuit. These two cache 
organizations have different area models. Caches are able to 
use static cells or dynamic cells because of their relaxed 
bandwidth requirements as compared with registers. 

1) Set-Associatiue Caches: The tag area for a set-associa- 
tive cache (sac) is the tag-bit area plus the overhead for 
status bits, amplifiers, drivers, and comparators. The area of 
the comparators is largely determined by the routing of the 
address lines to the tag comparators. If the address lines run 
perpendicular to the bit lines of the tag cell, an area of at 
least the address line pitch times the number of lines is 
necessary. MIPS-X comparators are 300X 30 pm2,  mainly to 
allow 24 metal wires with 10-pm pitch to cross. Based on 
these figures the area model assumes a comparator area of 
6 ~ 0 . 6  rbe. 

The number of tag bits per line equals the number of 
address bits used to address the cache minus the bits used to 
index the transfer units and lines. The present calculation 
uses 30 address bits, which implies an address space of one 
gigaword covered by the cache. The number of status bits 
per line depends on the transfer-unit5 size and on the write 
strategy. Every line has one line-validity bit and every trans- 
fer unit has one validity bit and possibly one dirty bit. The 
dirty bit is present if the write strategy is write-back. If the 
write strategy is write-through, there is no need for a dirty 
bit. Area data presented in this and the later sections use 
one bit per line and two bits per transfer unit. Besides data 
and tags, caches require PLA’s for control. Only for small 
caches does this influence the overhead noticeably. The size 
of the controller depends strongly on the write and prefetch 
strategies. The assumed size of the PLA is 130 rbe [71, a 
fairly low estimate. 

Fig. 3(a) shows the layout of a cache array (data), and Fig. 
3(b) shows the layout of a directory area. Fig. 3(c) shows the 
floorplan of a four-way set-associative cache; the four data 
areas are placed side by side and driven by one set of drivers. 
The four directory areas are also placed side by side across 
from the four data array areas. 

Excluding the space taken by the address and data buses, 
the total area of a set-associative cache is 

areasac = pla + data + tags + status. 

The area of the different items are a function of the storage 
capacity size,, the degree of associativity assoc, the line size 
line,, and the size of a transfer-unit transfer,. The number of 
transfer units in a line tunits, the total number of address 

’This is because of the assumption that subblock placement with 
subblock size equals the size of the transfer unit between cache and 
memory. 

tags tags, the total number of tag and status bits tsb, are 

line b 
tunits = ____ 

transferb 

size, 
tags = - 

line 

where y equals 2 for a write-back cache and 1 for a write- 
through cache. According to Fig. 3(c) the area of a set- 
associative cache using static cells is 

areasac = 130 + 0.6( line,. assoc + 6) ( tags + 6) 
assoc 

+ 0.6( tsb,. assoc + 6) ( - tags + 6 + 6 )  rbe 
assoc 

= 195 +0.6.0uhd,.sizeb +0.6.0uhd2.tsbitsb rbe 
where 

6 6 .  assoc 
ouhd1=1+ ~ + 

tags line,. assoc 
and 

12. assoc 6 
ouhd2 = 1 + ~ + 

tags tsb,. assoc ’ 

The area of a set-associative cache using dynamic cells can 
be derived similarly as 

areasac = 195+0.3.0uhd,.sizeb +0.3.0uhd4.tsbitsb rbe 

where 
6 .  assoc 12 

ouhd,=l+--- + 
tags line,. assoc 

and 
12. assoc 12 

ouhd4 = 1 + ~ + 
tags tsb,. assoc 

Fig. 4(a) shows the effect of line sizes on a direct-mapped 
cache area relative to the storage capacity (arearbe /size,). 
The area reduction is rather small when moving from a 
two-word line to a 16-word line since the tag-area reduction 
is partially compensated by an increase in transfer-unit status 
bits. Fig. 4(b) shows the effect of the associativity on the 
cache area per data bit. As soon as the area becomes 
dominated by data array bits the associativity has little effect 
on the cache area per data bit. For small caches, however, 
the tag comparators determine the differences among cache 
organizations. Fig. 4(c) shows the area of a direct-mapped 
cache and set-associative caches relative to the area of a 
three-ported register set. For the same storage capacity, 
caches generally occupy more area than registers for small 
sizes (the exact crossover point depends strongly on line size) 
because the cache overhead dominates the cache area at 
these sizes. For larger sizes, the smaller storage cells in the 
cache provide a total cache area smaller than the register set. 
A four-way set-associative cache of 1024-word size with 
two-word lines, for example, only takes 75% of the area of a 
register file of 1024 words. 
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Fig. 4. Relative area for associative caches as a function of line size, 
associativity, and provided storage. 

2) Fully Associative Caches: The tag area of a fully associa- 
tive cache (fac) is only a function of the number of address 
bits. The tag bits, however, are not stored in static or 
dynamic cells but in CAM cells. Alpert [8] assumed CAM 
cells to be twice the size of a static cell (1.2 rbe), basing his 
assumption on data for the 280,000. Our tag-area model 
assumes the same ratio. Fig. 5 shows the layout of a fully 
associative cache. If the associative search through the tags 
yields a hit, then the corresponding status bits are examined 
and the data array indexed. Generally, the status bits are 
combined with the tags to get the status early, which is useful 
if the tags and data are not placed immediately next to each 
other. The status bits, however, can be data-type cells. The 
occupied area of a fully associative cache is 

areafa, = pla + data + status + CAM 

= 130+0.6(tags +6)(p.lineb-,,,, + 6 )  

Fig. 5. Fully associative cache layout. 
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Fig. 6 .  Relative area of fully associative caches as a function of line 
size and provided storage. 

panding, and rearranging, we rewrite (3 )  as 

areafa, = 175 +0.6.p.  ouhd, . sizeb-dara 

+ 1.2.0uhd6.sizeb C A M  rbe 

where 

6 .p  12 
tags P.line, 

ouhd, = 1 + - + ___ 

+0.6 ( f i . t ags  + 6 ) ( f i . h e b - c ~ ~  + 6 )  rbe ( 3 )  

where p = 1+ y/transferb and lineb-CAM = 30-log2(1ine,). 
The derivation of the equation follows the static memory one 
in the previous subsection. The CAM cells are assumed to 
have an aspect ratio of 1, so that the width and length are 
equal (fi rbe). Defining size,-cAM = tags. line, C A M ,  ex- 

and 
8.5 8.5 
tags lineb ouhd, = 1+ - + -. 

The effect of organization on the area of fully associative 
caches is shown in Fig. 6(a). Increasing the line size has 
significantly more effect for fully associative caches than for 
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direct-mapped ones (Fig. 4(a)). Moving from one-word lines 
to 16-word lines, for example, reduces the cache area by 
60%; the same move for a direct-mapped cache results in 
35% less cache area. Fig. 6(b) shows the area of various 
cache and register configurations relative to the area occu- 
pied by a fully associative cache of indicated sizes in 32-b 
words. Generally, fully associative caches occupy the most 
area per bit for sizes in excess of 64 words and registers 
occupy the next most area per bit with direct-mapped and 
set-associative caches occupying the least area over the same 
range. Similarly from Fig. 6(c), fully associative caches oc- 
cupy more area than four-way set-associative caches at large 
sizes with the crossover point depending on the line size. 

(a) we' 1, aspect ratio 7 

(b) size: 1.15.aspectratii:~ 

D. Limitation of the Area Model 

The area model is based on three assumptions. The first 
and most important assumption is that the access time of a 
buffer is independent of the storage capacity. Second, the 
area only depends on the buffer organization and not on the 
layout specifics. Finally, the aspect ratio is not significant for 
modeling purposes. We consider each of these assumptions 
in more detail below. 

I )  Access-Time Dependencies: To maintain the same access 
time while increasing the buffer size generally means that 
the storage cells, the drivers, and amplifiers also grow in size. 
This implies that the model is accurate for buffer sizes about 
which we have parametrized the model. These sizes are 
approximately 32 X 32 b for register buffers and 2 kilobytes 
for caches. 

2) Influence of Layout on Area: In any implementation, 
the amount of wasted area depends on the actual layout of 
the buffer. Our model allows for some wasted area because 
it abstracts both tag and data area to rectangles. Further, a 
circuit can be laid out in several ways, requiring slightly 
different amounts of area. 

3) Aspect Ratio: Fig. 7 illustrates the relation between size 
and aspect ratio (defined here as the width-to-height ratio of 
a geometry). If small caches with high degrees of associativity 
are laid out according to Fig. 3(c), the aspect ratios may 
become large. Fig. 7(a) shows a four-way set-associative 
cache laid out according to our model. Although the area is 
optimal, the aspect ratio may be impractical for wiring pur- 
poses. Folding the cache twice (Fig. 7(b)) and four times 
(Fig. 7(c)) improves the aspect ratio from 7 to 2 and to 0.6 
but increases the area by 15% and by 40%, respectively. 
Ignoring aspect ratio then can introduce an error of +20% 
(over the aspect ratios considered, with model centered on 
an aspect ratio of about 2). The area increase is caused by 
two factors. First, every fold requires its own drivers for both 
tag and data arrays and, second, every fold increases the area 
for both address and data buses supplying the cache. While 
the aspect ratio in cache design can be important [9], we 
chose to ignore it to simplify modeling. This necessarily 
limits the achievable accuracy of our model. 

111. VERIFICATION OF AREA MODEL 
Clearly, the best way to establish the validity of the model 

is to compare the model prediction with actual caches and 
register buffers (or register files). For this purpose, we intro- 
duce a technology factor (TF) for both caches and register 
files. TF arises because our model was derived based on the 

(C) size: 1.4, aspect ratio: 0.6 

Fig. 7. Aspect ratio and area change as a function of layout. 

MIPS-X data, which is built with a 2-pm technology. The use 
of T F  permits comparison of caches and register files across 
generations of technologies (e.g., 1 versus 2 pm). Since T F  is 
an area scale factor, it can be obtained simply as 

minimum geometry in pm 

2 1 .  T F =  ( 
For register files, the situation is more complicated because 
not all register files have the same number of read and write 
ports as the MIPS-X does. Also, read and write methods 
vary among processors. A read or a write port needs a 
decoder (and a word line) and one to two bit lines depending 
on the accessing methods. Single-ended ports require only 
one bit line; differential ports require two. To account for 
the different numbers of ports, we modify (1) as 

area = (registers, + Lsense_amp)( datawidthb + W,,;N,,,,) 

.PF rbe (4) 

where W,,, is the width and Ndec is the total number of the 
decoders,6 and PF is an empirical factor accounting for the 
number of register ports in the register file. W,,, and PF are 
modeled as 

wd,,  = a '  datawidthb (5) 

(6) 

and 

PF = [ 1 + 0.25( Nbit-2ines - 2)] . 

'In a register file, the word-line drivers are the decoders. We used 
decoders in (4) but drivers in (1). 
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TABLE I 
COMPARISON OF ACTUAL AND PREDICTED CACHE AREAS 

TECH. 
( p m )  

M68020 
M68030 

HP RISC 
NS32532 

Matsushita2 
DECl (pVAX) 
DEC2 

DEC3 

Matsushital 
i860 

MIPS-X 

i486 

2.0 
1.2 
1.2 
1.6 
1.25 
1.25 
1.2 
2.0 
1.5 
1 .5 
1 .5 
2.0 
1 .o 
1 .o 
1 .o 
1.0 

SIZE AREA* MODEL 
TYPEb (Bytes) (Kpm’) (Kpm2) 

1,lw 246 4449 4048 
1,lw 256 2445 2184 
D,lw 256 2345 2184 
1,lw 256 2775 3134 
I,2w 512 3776 3246 
D,lw 1K 7699 6153 
1,lw 1K 9448 8596 
I/D,2w 1K 8750 8705 
1,s 1K 9448 9858 
D,lw 2K 20125 16935 
1,lw 2K 18463 15773 
1,s 2K 27517 27545 
I,2w 2K 11188 10448 
I,2w 4K 13347 12805 
D,2w 8K 26977 23904 
I/D,4w 8K 26000 26500 

ERROR 
(%I+ 
- 9.0 
- 10.7 
- 6.9 
12.9 

- 14.0 
- 20.1 
- 9.0 

0.5 
4.3 

- 15.9 
- 14.6 

0.1 
- 6.6 
-4.1 
- 11.4 

1.9 

REF. 

~~ ~ 

kegend: 
I-I-cache; D-D-cache; I/D-Mixed cache or cache that can be used either as an I-cache 

or as a D-cache; lw-Direct-mapped; 2w-two-way set-associative; 4w-four way set-associa- 
tive; S-Sector cache. 

‘Measured or reported areas. 
‘Percent error is calculated as: 

Model - Actual 
Actual 

%error = ,100 

TABLE I1 
COMPARISON OF ACTUAL AND PREDICTED REGISTER-FILE AREAS 

PP ( p m )  R/W/(R/W) N#brl - , rnes TYPEb (bits) (Kpm’) (Kpm’) (%) REF. 

DEC3 1.5 l / O / l  4 I 48x32 3534 3523 
HP1 1.5 2/2/0 4 I 31x32 3450 3737 8.0 [24] 

GE2 1.2 2/1/1 4 FP 21x32 3734 4396 17.7 [26] 

TECH. PORTS SIZE AREA* MODEL ERROR+ 

MIPS-X 2.0 2/0/1* 2 I 32x32 3330 3217 -3.4 [201 
-0.3 [19] 

GE1 1.2 2/1/1 4 FP 8 x 6 4  4760 4558 -4.2 [25] 

i860 1.0 3/2/0 5 FP 8x128 2581 2343 -9.2 [27] 

Legend: 
‘ N h l l - l r n P r  is the total number of bit lines in the register file; it is equal to the number of ports if only single-ended 

bFP-floating point registers,-I-integer registers. 
‘Measured or reported areas. 
’% Error is calculated as: 

Ports are used. In general, Nhlr l L n e s  = Ndecoders + Ndlfferenlrn/-porls (see text). 

Model - Actual 

Actual 
% Error = .loo. 

*MIPS-X’s register file has three sets of decoders but has only two bit lines (see text). 

Incorporating ( 5 )  and (6) and rearranging, (4) becomes 

. [ 1 + 0.25( Nbit-lines - 2 ) ]  rbe 

where Nbrt-ines, is the number of bit lines in the register file. 
For register files with only single-ended ports, Nbit-lines 

In words, (5)  states that the size of a decoder in a register 
file is proportional to datawidth,, the number of bits it has 
to drive. MIPS-X data indicate that this proportionality 
constant a is 0.1. Equation (6) models the effect of each bit 
line in excess of two as increasing the register file area by 

- 
Ndec. In general, Nbit_lines - Ndec + Ndi jferential-ports. 

25% over a register file that has two bit lines (specifically, 
over the MIPS-X register file). 

Table I compares the actual cache sizes with the present 
area model prediction. The cache areas in the “AREA” 
column are in thousands of square micrometers, obtained 
from the micrographs or the designers of the processors. The 
“MODEL,” column contains the predicted cache areas, 
scaled appropriately by the TF  factor. The absolute average 
error (AAJ3) is about 8.9%. The average error is - 6.5% with 
a standard deviation of around 8.6%. The M68020 and DEC 
pVAX processors use one-transistor cells in the cache arrays. 
This has been modeled here using the read equation for 
dynamic memory. The DEC2 processor uses four-transistor 
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Fig. 8. Performance as a function of set associativity, area, and size. 
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Fig. 10. Performance as a function of line size, area, and size. 

which are about 10% smaller than the 
cells assumed in the present study [lo]. 
given in Table I include this adjustment. 

The DEC pVAX processor also uses a folded-bit-line sens- 
ing scheme to reduce the size of the cache; the actual cache 
size and error should have been larger than those indicated 
in the table. 

A similar set of data is presented in Table I1 for register 
files. The area data are obtained with the same procedure. 
The AAE is about 7.1%. The average error centers at 1.4% 
with a standard deviation of 9.9%. The MIPS-X register file 
includes the double-bypass logic, which occupies roughly 
40% of the total area as estimated by visual inspection of the 
micrograph. The register file in the HP  RISC processor 
drives the bus lines directly, requiring register cells that are 
50% (1.5 rbe) larger than the conventional ones [l l] .  The 
register files in GEl and GE2 processors use bigger cells 
than necessary because of the requirements of low soft-error 
rates. The actual cell size is 3 7 x  100 p m 2  in a 1.2-km 
technology. We accounted for this by using this given size as 

the area unit (instead of rbe). The data presented in Table I1 
include all these adjustments. 

IV. CACHE ORGANIZATION TRADE-OFFS AS A 

FUNCTION OF AREA 
To assess trade-offs in cache design, we consider the area 

and size effects with different line size and associativity on 
traffic ratio. Traffic ratio is defined here as the ratio of the 
total number of words transferred between the cache and 
the memory to the total number of cache accesses. In essence, 
traffic ratio measures the cache effectiveness in reducing 
memory traffic. Only write-back caches are investigated in 
this study and all caches use a cell size of 0.6 rbe. The 
benchmarks used consist of five medium-sized programs 
(dynamic size of 2.5 to 35 million bytes) generally representa- 
tive of a workstation environment (nonscientific). The reader 
is referred to [ 121 for additional information. 

In the following figures the left-hand graph (a) always 
shows the traffic ratio as a function of area and the right-hand 
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graph (b) shows the traffic ratio as a function of size (storage 
capacity). All graphs show traffic relative to one particular 
organization. 

A. Associativity 

The traffic ratio of caches with different set associativity 
(Fig. 8(b)) relative to four-way associativity is relatively inde- 
pendent of cache size. Associativity of two-way and four-way 
performs better than direct-mapped for caches larger than 
256 words. For caches larger than 4096 words, the associativ- 
ity differences reduces to zero. Cache traffic as a function of 
area (Fig. 8(a)) deviates significantly from the traffic as a 
function of size for small caches ( < 256 words). At these 
sizes, direct-mapped caches perform significantly better as a 
function of area than as a function of size. 

Fig. 9(a) and (b) also shows performance as a function of 
area, size, and associativity, but relative to a fully associative 
cache. While for small caches the CAM cells for the tags 
outweigh the comparators of the set-associative (two-way and 
four-way) organizations, for larger caches ( > 128 rbe) the 
set-associative caches outperform fully associative caches of 
the same area. At this line size, a direct-mapped cache 
always produces equal or more traffic than a fully associative 
cache for all areas considered. The performance variations 
between fully and set-associative caches are significantly 
smaller when compared by area rather than by size (-25% 
to +50% versus +40% to +200%). 

B. Line Size 

Fig. 10(a) and (b) shows relative traffic ratio as a function 
of area and size with line sizes ranging from one to eight 
words. The traffic ratio is relative to a cache with a line size 
of one word. The differences in relative traffic ratio among 
caches are quite large when compared by size (up to 65% for 
a cache with a line size of eight words (see Fig. 10(b)), but 
become noticeably smaller when compared by area, espe- 
cially for medium-size caches (256 < size < 4096 rbe). Fig. 
10(a) also shows a different performance order from 
Fig. 10(b). 

V. CONCLUSION 
In this paper, we have presented an area model suitable 

for comparing data buffers of different organizations (e.g., 
caches versus register files) and arbitrary sizes. The model 
incorporates such overhead area as drivers, sense amplifiers, 
tags, and control logic. Data cells are distinguished according 
to their delivered bandwidth in the model. The model gave 
less than 10% error when verified against real caches and 
register files. 

Comparing caches and register files in terms of area 
reveals that for the same storage capacity, caches generally 
occupy more area per bit than register files for small caches 
because the overhead dominates the cache area at these 
sizes. For larger caches, the smaller storage cells in the cache 
provide a smaller total cache area per bit than the register 
set. The exact crossover point depends strongly on the line 
size (Fig. 4). 

Studying cache performance (traffic ratio) as a function of 
area with the present area model, we found: 1) for small 
caches (less than the area occupied by 256 register bits-rbe 
-or 32 bytes), direct-mapped caches perform significantly 

better relative to four-way set-associative caches (Fig. 9); and 
2) for caches of medium areas (between 256 rbe and 4096 
rbe), both direct-mapped and set-associative caches perform 
better relative to fully associative caches with set-associative 
caches actually outperforming fully associative caches (Fig. 
8). Furthermore, for set-associative caches of these medium 
areas, line size has far smaller effects on traffic ratio for 
caches of the same area (Fig. lO(c)). 
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