
Citation: Ngo, C.T.; Eshraghian, J.K.;

Hong, J.-P. An Area-Optimized and

Power-Efficient CBC-PRESENT and

HMAC-PHOTON. Electronics 2022,

11, 2380. https://doi.org/10.3390/

electronics11152380

Academic Editor: Cheng-Chi Lee

Received: 22 June 2022

Accepted: 25 July 2022

Published: 29 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

An Area-Optimized and Power-Efficient CBC-PRESENT and
HMAC-PHOTON
Chi Trung Ngo 1 , Jason K. Eshraghian 2 and Jong-Phil Hong 1,*

1 School of Electrical Engineering, Chungbuk National University, Cheongju 28644, Korea; trung@cbnu.ac.kr
2 Department of Electrical and Computer Engineering, University of California Santa Cruz,

Santa Cruz, CA 95064, USA; jeshragh@ucsc.edu
* Correspondence: jphong@cbnu.ac.kr

Abstract: This paper introduces an area-optimized and power-efficient implementation of the Cipher
Block Chaining (CBC) mode for an ultra-lightweight block cipher, PRESENT, and the Keyed-Hash
Message Authentication Code (HMAC)-expanded PHOTON by using a feedback path for a single
block in the scheme. The proposed scheme is designed, taped out, and integrated as a System-
on-a-Chip (SoC) in a 65-nm CMOS process. An experimental analysis and comparison between
a conventional implementation of CBC-PRESENT/HMAC-PHOTON with the proposed feedback
basis is performed. The proposed CBC-PRESENT/HMAC-PHOTON has 128-bit plaintext/text
and a 128-bit secret key, which have a gate count of 5683/20,698 and low power consumption of
1.03/2.62 mW with a throughput of 182.9/14.9 Mbps at the maximum clock frequency of 100 MHz,
respectively. The overall improvement in area and power dissipation is 13/50.34% and 14.87/75.28%
when compared to a conventional design.

Keywords: lightweight cryptography; HMAC-PHOTON; CBC-PRESENT; IoT; authentication

1. Introduction

The Internet of Things (IoT) is an emerging paradigm in which billions of physical
devices can be connected together in a heterogeneous network [1]. The exchange of data
between these devices, such as radio-frequency identification (RFID) tags and IoT sensors
and smart cards, raises concerns about data security and privacy [2–4]. This demands
the exploration of cryptographic methods that enable secure communication to ultimately
ensure the protection of confidential data, integrity, and authentication for IoT networks.
The National Institute of Standards and Technology (NIST) specified five block cipher
modes to provide data confidentiality: Electronic Code Book (ECB), Cipher Block Chaining
(CBC), Cipher Feedback (CFB), Output Feedback (OFB), and Counter (CTR) [5]. Other
than ECB, which is the smallest cipher mode, the modes require an Initial Vector (IV) to
make ciphered messages unique. The modes can be used in conjunction with an approved
symmetric key algorithm by using a Federal Information Processing Standard (FIPS), such
as the Advanced Encryption Standard (AES) and Triple DES (TDES). However, NIST also
specifies the use of Keyed-Hash Message Authentication Code (HMAC) to pursue message
authentication and integrity [6]. The HMAC algorithm requires an approved hash function,
such as the SHA-2 family [7], to generate Message Authentication Codes (MACs).

However, most conventional cryptography methods and algorithms are implemented
in security systems intended for desktop/server environments, which demand a large
implementation area, a high-power consumption, and a large memory capacity [8]. Fox
example, the proposed TDES structure in [9] requires approximately 10,641 equivalent
transistor gates, which exceeds the gate count of 1000–10,000 for low-cost RFID tags
recommended by NIST [10]. In addition, standardized hash functions, such as SHA-2, are
too large to fit within resource-constrained devices, occupying a 10,868 gate equivalent
(GE) [11]. As a result, these algorithms are unsuitable for resource-constrained IoT devices,

Electronics 2022, 11, 2380. https://doi.org/10.3390/electronics11152380 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11152380
https://doi.org/10.3390/electronics11152380
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2641-2631
https://doi.org/10.3390/electronics11152380
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11152380?type=check_update&version=2

Electronics 2022, 11, 2380 2 of 16

such as embedded systems, RFID devices, and low-power sensor networks. Thus, several
lightweight cryptography (LWC) methods have been introduced as security solutions
for sensitive data in constrained IoT devices [12]. When compared with conventional
cryptography methods, LWC can reduce a silicon area occupation and power consumption
by using fewer computing resources and lower power supply voltages that are better
tailored for edge devices [13]. Among various LWC algorithms, PRESENT is one of the
first standardized lightweight symmetric key algorithms designed for security services for
RFID air interface communication [14]. Moreover, PHOTON is among the first approved
lightweight hash functions designed for constrained devices. CBC-PRESENT and HMAC-
PHOTON are potential LWC candidates for IoT sensor devices due to their compactness.
In the former, CBC is an operation mode of the lightweight algorithm PRESENT. In the
latter, PHOTON is a LWC hash function and HMAC is a message authentication protocol
using cryptographic hash functions. However, in the conventional operational flows of
both methods, the designs utilize multiple hash functions and block ciphers independently.
This in turn increases their implementation areas and power consumption due to the large
number of hash functions and block ciphers utilized.

In this paper, an optimized operational flow of CBC-PRESENT and HMAC-PHOTON
is proposed by applying feedback such that the implementation of the proposed structure
requires only a single hash function and a block cipher within a unified scheme. This
paper extends our work in [15,16], where the hardware architectures of both algorithms
are briefly introduced. The proposed structure is shown to reduce the number of either
block ciphers or hash functions, hence reducing the implementation overhead in terms
of area and power consumption. Thus, it can be combined with security primitives, such
as physically unclonable functions (PUFs) [17–20], to provide the security services for
edge devices while still meeting their requirements. This approach can be applied to
HMAC based on various hash functions (SHA, SPONGENT, etc.) and the CBC modes of
various block ciphers (AES, CLEFIA, etc.) regardless of size of plaintext and key. In this
paper, this optimization is performed for PRESENT-CBC and HMAC-PHOTON with
128-bit plaintext and a 128-bit key. Both algorithms are implemented in a 65-nm CMOS
process with the experimental results of our chip provided in full. The results of the
CBC-PRESENT encryption, decryption, and HMAC-PHOTON are verified by using a
MATLAB implementation and test vectors in their original papers [21,22]. The rest of the
paper is organized as follows. In Sections 3 and 4, analyses of the original algorithms
and the conventional operation of CBC-PRESENT and HMAC-PHOTON are presented to
deliver the proposed optimization architecture for each structure. Section 5 analyzes the
security strengths of CBC-PRESENT and HMAC-PHOTON. Finally, Section 6 summarizes
the findings of this paper.

2. Literature Review

IoT devices are considered resource-constrained devices [4]. Resources refer to the
hardware perspective, including area and power consumption. Conventional cryptography
algorithms, each of which requires a high power and large area, are unsuitable for IoT de-
vices. Consequently, lightweight cryptography algorithms are necessary to balance security
requirements with hardware requirements. In the early work on lightweight cryptography
in the 80s and 90s, numerous compact cipher implementations were proposed, namely
Noekeon [23], Des [24], Camellia [25], etc. The next decades saw extensive research on
optimizing various constraints with a special effort on area occupation. The international
organization of standards published two documents to standardize PRESENT [21], CLE-
FIA [26], Led [27], etc. as a lightweight block cipher [22] and to standardize PHOTON [22],
SPONGENT [28], Lesamnta-LW [29], etc. as lightweight hash functions [30]. Since that
point forward, numerous algorithms have been proposed to focus on optimizing speed
and enhancing security, but no official ISO standards have been released. Among the
standardized LWC, PRESENT and PHOTON hardware requirements are competitive with
today’s leading compact block ciphers and hash functions [21,22].

Electronics 2022, 11, 2380 3 of 16

Moreover, cryptography methods are moving toward parallel structures to increase
system speeds and integrate multiple security services into single systems. In 1981, the
NIST specified four modes of operation to satisfy data confidentiality: ECB, CBC, OFB,
and CFB [31]. The institute recommended CTR as a fifth mode of operation in 2001. CTR
mode adopts a parallel structure for encryption and decryption methodology, but it costs
additional effort to keep a requirement on a counter function. In 2010, the NIST addressed
the latest mode of operation named XTS-AES [32]. This mode utilizes heavyweight AES to
guarantee confidentiality for storage devices. This mode requires double encryption with
two independent keys for each block cipher. Thus, the complexity of the XTS structure
is unsuitable for low-resource devices. To guarantee data integrity, the NIST approved
HMAC [6] in 2002. Later, hybrid-mode CCM and GCM, which combined confidentiality
and data integrity, were introduced [33,34]. In fact, combining security services increases
the complexity of the mode of operation, thus increasing the area occupation and power
consumption. Deploying the parallelizable structure, the implemented area increases
linearly with the input block. In addition, among the recommended mode of operations
in [5], CBC shows a competitive implementation result [35].

Using lightweight cryptography in a conventional operation mode with parallel
structures increases resource consumption. To make the area occupation suitable for
IoT devices, we applied a feedback path and resource reuse techniques with lightweight
algorithms and compactness cryptography methods.

3. Proposed CBC-PRESENT Algorithm and Hardware Architecture
3.1. Proposed Area Optimization of CBC Architecture

The block cipher mode of operation is specified in (1) and (2). Figure 1 illustrates the
conventional CBC mode structure as recommended by NIST [5]. In this figure, the symbol
⊕ represents the XOR operation. The size of the conventional structure increases linearly
with respect to the length of the input plaintext (X1:n)/ciphertext (C1:n).In the encryption
process, the raw plaintext is split to the sub-block plaintexts Xi, as illustrated in Figure 1a.
Before an encryption by a cryptography algorithm, the plaintext sub-block Xi is XORed with
a previous ciphertext. An initial plaintext sub-block is XORed with an Initialization Vector
(IV). In contrast, decryption reverses the encryption process, as illustrated in Figure 1b.
A conventional implementation of the block cipher adopts a parallel datapath architec-
ture [5]. Therefore, it costs M encryption/decryption blocks to generate the output/input
ciphertext/plaintext.

Ci = EncK(Xi ⊕ Ci−1), with C0 = IV. (1)

Xi = DecK(Ci ⊕ Ci−1), with C0 = IV. (2)

To overcome the increasing area of the conventional structure, we propose a serial
datapath architecture to reduce the number of cryptography algorithm blocks in the sys-
tem by incorporating feedback for the CBC mode. The encryption dataflow is shown in
Figure 2a. For the decryption process, inputs are replaced with Ci and outputs switch
between operating modes (encryption and decryption). The proposed structure uses the
CBC sequential block to switch between the operating modes and perform the XORed bits
between the ciphertext and plaintext as represented by (1) and (2). By taking advantage of
the feedback technique and the serial datapath, only one cryptography block is required
to encrypt M × Xi blocks or to decrypt M × Ci blocks. If M is significantly large, the area
consumption of the CBC sequential block can be considered negligible. Then, our structure
reduces the area occupation by a factor of M when compared to the conventional structure.
Additionally, the CBC sequential block requires three states to control the operating modes
of the cryptography algorithm, as specified in Figure 2b. A “RESET” state resets the algo-
rithm after completing one encryption/decryption cycle in a “WORK” state. A controller
loops between the two states until it encrypts or decrypts an entire input bit sequence and
generates an output at the “FINISH” state.

Electronics 2022, 11, 2380 4 of 16

(a)

(b)

Figure 1. (a) CBC mode encryption, (b) CBC mode decryption.

The latencies for the encryption and decryption process are denoted as ten and tde, re-
spectively. By incorporating feedback, the latency of the proposed structure is M × (ten + 1)
for encryption and M × (tde + 1) for decryption. The additive “+1” term appears because
the controller transitions between a “WORK” state and “RESET” state. In the encryption
architecture, ciphertext Ci depends upon the concurrent plaintext sub-block Xi and the
previous ciphertext Ci−1. Thus, the conventional structure costs M × ten to generate a final
ciphertext from the original plaintext. For encrypting M × Xi blocks, one defines (3), which
shows the relationship between the latency and the number of inputs. ∆ represents the
difference in latency between the proposed structure and the conventional architecture as
a percentage:

∆ =
M× (ten + 1)−M× ten

M× ten
× 100% =

1
ten
× 100%, (3)

∆ =
M× (tde + 1)− tde

tde
× 100% = (M− 1 +

M
tde

)× 100%. (4)

Equation (3) shows that ∆ depends only on ten and not on the number of inputs.
If the encryption latency for the cryptographic algorithm is in the order of 50–100 clock
cycles, ∆ yields 1–2%, which can be considered a negligible increase. In fact, the existing
implementations of the cryptographic algorithms requires more than 50 clock cycles to
generate an output, such as PRESENT (563 cycles in [10]) and AES (160 cycles in [36]).
A slight increase in latency can be considered acceptable in light of the area reduction by a
factor of M. However, the decryption process does not depend on the previous ciphertext;
therefore, deciphering all the ciphertext takes only tde. The latency increases linearly with
M as specified in (4), which highlights a more critical trade-off between the area occupation
and latency during decryption, as it can no longer be parallelized when using our feedback-

Electronics 2022, 11, 2380 5 of 16

based approach. In addition, the feedback structure can be applied to other cipher blocks,
such as ECB, CFB, OFB, and CTR, to reduce the area occupation at the cost of the latency.

(a)

(b)

Figure 2. (a) Proposed hardware architecture of CBC encryption and (b) Finite State Machine (FSM)
of CBC sequential block.

3.2. Proposed Hardware Implementation of CBC-PRESENT

We implement the lightweight algorithm PRESENT-128 for a CBC expansion encryp-
tion in our SoC. PRESENT-128 generates a 64-bit ciphertext from a 64-bit plaintext and a
128-bit key. CBC-PRESENT uses 128-bit plaintext to generate 128-bit ciphertext. Therefore,
the value of the “count” (Figure 2b) is two in this case.

Figure 3a demonstrates the proposed hardware architecture of PRESENT-128 with
128-bit plaintext and CBC expansion encryption. In the CBC sequential block, the plaintext
was separated into two 64-bit plaintext sub-blocks (Plaintext_0 for a first encryption and
Plaintext_1 for a second encryption) to match with the input requirement of the PRESENT
block cipher. IV_reg stores the IV value for a first encryption, then a dataout_encrypt
of the first encryption step is stored in IV_reg for a second encryption. The selection is
performed by the CBC controller that is illustrated in Figure 4. In the WORK state, the input
plaintext of the PRESENT encryption block is the result of an XORed between IV_reg and
msg_reg. In contrast, the decryption process of CBC-PRESENT is shown in Figure 3b.
The keys for the encryption process are calculated in an update key block. Similar to an
encryption operation, the ciphertext is also divided into two 64-bit ciphertext sub-blocks
(Ciphertext_0 for the first decryption and Ciphertext_1 for the second decryption). After the
first decryption, dataout_decrypt is XORed with IV to generate plaintext_0. Plaintext_1 is
obtained by XORing the dataout_decrypt of the second decryption with ciphertext_1.

Electronics 2022, 11, 2380 6 of 16

(a)

(b)

Figure 3. (a) CBC-PRESENT encryption and (b) CBC-PRESENT decryption.

Figure 4. Hardware architecture of the CBC controller block.

Figure 5 shows the architecture of the PRESENT encryption and decryption block
cipher. In our work, we implement PRESENT by following the specifications for it in
its original paper [21]. The order of the data flow is illustrated in Figure 5b where the
red arrows depict the sequential operation of the key schedule and the round schedule

Electronics 2022, 11, 2380 7 of 16

that includes sBox/Inv-sBox, pLayer/Inv-pLayer, and a shift register. The green arrows
illustrate the feedback in a PRESENT block schedule. A PRESENT block requires 31 rounds
of operation to generate a final output. A round state uses a counter to count the number
of rounds and registers to store data from feedback. For each encryption round, the stored
data from the round state must go through an sBox block and a pLayer block, which is then
XORed with the key obtained from the key schedule. The sBox block in PRESENT is a 4-bit
to 4-bit substitution. PLayer is a bit permutation following the table from [21]. In contrast,
the decryption uses the Inv-sBox, Inv-pLayer which is the inversion mapping of sBox and
pLayer, respectively, to obtain the plaintext. The key state includes a counter to count the
number of rounds and registers for a storing key from feedback. The notations “<< 61”
and “<< 67” are a 61-bit left shift registers for encryption and a 67-bit left shift registers
for decryption, respectively.

(a)

(b)

Figure 5. Hardware architecture of PRESENT (a) encryption and (b) decryption.

4. Proposed HMAC-PHOTON Algorithm and Hardware Architecture

The NIST standard defines HMAC as a MAC that uses a cryptography hash function
in conjunction with a secret key [6]. HMAC requires two distinct parameters, a message
input text, and secret key K. Figure 6 shows the HMAC operation to generate a MAC value.
In this figure, K0 is the key K after undergoing pre-processing to obtain a sufficient bit
length output. H is the approved hash function, “ipad” refers to an inner pad that is a
repetition of the byte × 36 to achieve the same length as K0, opad is an outer pad that

Electronics 2022, 11, 2380 8 of 16

repeats the byte × 5c to achieve the same length as K0, and the symbol || is an operator
that concatenates its arguments. In Figure 6, the HMACK (text)—the MAC value generated
from the HMAC operation—is represented as (5).

HMACK(text) = H[(K0 ⊕ opad)||(H[K0 ⊕ ipad||text])]. (5)

At the initial step, determine K0; if the length of an initial secret key K is smaller than
the length of input B of the hash function, zeros are appended to the end of K to create
the B-byte string K0. If the length of K is bigger than the length of B, K0 is obtained by
hashing K, then appending zeros to create the B-byte string K0. Otherwise, K0 equals K.
Then, K0 is XORed with the ipad and concatenated with the text to initialize the inner
hash function. The outer hash is computed by concatenating the output of the inner hash
and the XORed result from K0 and the opad. Values of the opad and ipad were chosen
for ease of implementation and to provide a high Hamming distance for the pads [37].
The hash function is initialized multiple times to guarantee the security of HMAC, which is
explained in its original presentation by Ref. [37].

Figure 6. HMAC operation.

4.1. Proposed Area Optimization of HMAC Hardware Architecture

When the secret key K > B, the HMAC operation requires hashing three times to
generate a MAC value. In this case, the conventional HMAC costs three hash function
blocks, as illustrated in Figure 7. Thus, the conventional hardware architecture of HMAC
suffers from a high area occupation because of a duplication of the hash function. Before ex-
ecuting hash_function 2 and hash_function 3, the system must wait for hash_function 1
and hash_function 2, respectively, to complete the processes. Therefore, during operation,
only one hash function block is active and the other two remaining blocks are redundant.

Electronics 2022, 11, 2380 9 of 16

Figure 7. The conventional hardware architecture of HMAC when K > B.

Figure 8 presents the proposed hardware architecture of HMAC. As seen in this figure,
three hash functions are replaced with an HMAC controller that contains only one hash
function block. By reusing the hash function block, the proposed HMAC can reduce the
area occupation and power consumption. In Figure 8, hash_out1 is generated from K
then is XORed with the ipad and is concatenated with a message to obtain inter_mess1.
hash_out2 is obtained by hashing inter_mess1. The input for the final hashing is generated
by concatenating hash_out2 and the XORed result between hash_out1 and opad.

Figure 8. The proposed hardware architecture of HMAC.

The optimization of HMAC is analogous to the previous section. We deploy only one
hash function block combined with the HMAC controller to reduce the area consumption
of the HMAC algorithm. The operation principle of the HMAC controller block is similar
to the CBC controller block. In our implementation, the number for the total hashing
time depends on the initial secret key K setup. If the input bit K is smaller or equal to
the input of the hash function (100 bit for PHOTON80), a MAC value is generated by
performing hashing two times. Otherwise, it takes three repetitions of hashing to obtain a

Electronics 2022, 11, 2380 10 of 16

MAC value. The change in the latency follows Equation (3), where ten is replaced with the
time to complete a hash function. Commonly used hash functions, such as SHA [7], take
approximately 50–100 clock cycles to generate a MAC value. Thus, the latency increase is
only 1–2%, which can be treated as negligible.

4.2. Hardware Implementation of HMAC-PHOTON

For compatibility with IoT devices, we present a lightweight ASIC implementation
of HMAC based on the PHOTON family of hash functions. The bit size of the secret key
(K = 128) here is larger than the block size (B = 100) of the PHOTON hash function, so K0 is
generated by hashing K then appending zeros. The hash out of HMAC-PHOTON is 80-bit
(L = 80); therefore, K0 = H(K0), 20’b0. The message is selected as 128 bit in length in this case.
After the initial setup, the sequence of steps from Figure 6 is followed. Figure 9 illustrates
the proposed hardware architecture of the HMAC controller block. This block is designed
by using a counter associated with three selection modules. In our implementation, the first
output of the hash function Hash_out1 is an HMAC key that is selected by following the
“Determine K0” step. After that, the hash function runs another two rounds with the inputs
inter_mess1 and inter_mess2 to generate a final MAC value.

Figure 9. Proposed hardware architecture of HMAC controller.

The hardware architecture of PHOTON, which follows [22], is illustrated in Figure 10.
The red arrows demonstrate the absorbing process, the blue arrows represent the squeezing
process, and the pink arrow displays the final hash output generation. The PHOTON
selection and message-padding block select the PHOTON message corresponding with
each step and implement the padding process. The output of this block (message_padded)
is imported into the absorbing process, and the message_absorbing signal enters the hash
function permutation. The size of the message input decides the running time of the
absorbing process. After the absorbing process occurs, a squeezing process is activated.
The absorbing and squeezing process controller includes counter and memory. In our
design, the squeezing process runs five times, and the output of hash_permutation in each
instance is stored in the hash out merging block to generate the final hash_out. The structure
of the hash function permutation is designed based on a permutation controller block and a
PHOTON round block, as shown in Figure 10. A PHOTON round includes four operations:
addconstant, subcells, shiftrows and mixcolumn. For further information regarding the four
operations, the reader is referred to the original proposal of them in [22]. The permutation
controller block is constructed from a counter and memory to control the operation of the

Electronics 2022, 11, 2380 11 of 16

permutation process. In the permutation process, a PHOTON round is called 12 times, and
the last PHOTON round generates the final hash_permutation.

Figure 10. Hardware architecture of PHOTON.

5. Measurement Results

A prototype of the proposed CBC-PRESENT and HMAC-PHOTON was fabricated in
a 65 nm CMOS process to verify the performance of the proposed architectures.

Figure 11 shows a die micrograph of the proposed system. For the measurement,
a Xilinx FPGA board with the implemented SoC were used as shown in Figure 12. A test-
bench was generated using MATLAB and transmitted to the FPGA board via a universal
asynchronous receiver-transmitter (UART) cable. The FPGA stored the test-bench in SRAM,
then used a scan-chain structure to import the value of each input. After the input setup
phase, the output data was stored in SRAM and transmitted back to MATLAB in a binary
format. The captured data from MATLAB was converted to hexadecimal and compared
with the algorithm test-vector. In addition, a Logic Analyzer (LA) was used to capture the
data at the I/O pin of the SoC. The data was visualized in the LA’s display screen, and its
value was expected to be identical with the data captured from the FPGA. By comparing the
data between the LA and FPGA, we could guarantee the correctness of the measurement.
In addition, a random input vector was imported into the SoC and the MATLAB test bench.
The test results from MATLAB were used to verify the correctness of all the test vectors,
which were not included in the original paper.

Figure 11. Die micrograph of the CBC-PRESENT & HMAC-PHOTON.

Electronics 2022, 11, 2380 12 of 16

Figure 12. SoC measurement environment. MATLAB generated test vectors that were streamed
to the measurement board, where the output results were displayed on the interface of the logic
analyzer and were transmitted back to MATLAB in binary format.

The performance results were expressed in terms of area (GE), power consumption,
latency, and throughput. The area in GE was obtained by dividing the total area by the area
of a two-input NAND gate. Latency was defined as the measure of time between when the
inputs were imported into the chip and the time at which the chip generated the outputs.
Throughput was the rate at which outputs were produced by following (6). All designs
were implemented at a 100 MHz clock frequency.

Throughput =
Number of bits of data input

latency
× frequency. (6)

For the performance comparison, each algorithm was designed using Verilog and
synthesized using Synopsys tools. We compared the controller of each algorithm with
the conventional structure to highlight the efficiency of replacing PRESENT128 encryp-
tion/decryption with the CBC controller block and replacing PHOTON80 with the HMAC
controller. The synthesized results of the proposed CBC-PRESENT showed that the area
consumption of a CBC controller costs only 1226 GE, while a PRESENT encryption and
a PRESENT decryption require 3132 GE and 5999 GE, respectively. An area occupation
of the PRESENT encryption and decryption is around 2.5 times and 5 times larger than
the area consumption of the CBC controller. However, an HMAC controller costs 4038
GE. Meanwhile, a PHOTON requires 13,321 GE, which is three times greater than the area
occupation of the HMAC controller. Therefore, using the proposed controller block to
replace the cryptography algorithm saves a significant amount of area when compared to
the conventional architecture.

Table 1 shows a performance and security comparison of our proposed design, a con-
ventional CBC-PRESENT, and AES. Table 2 displays a performance and security comparison
of the proposed HMAC-PHOTON 80 architecture with the conventional architecture and
HMAC-SHA-256. We set an identical message and key size (128-bit plaintext and 128-bit
key) for a fair evaluation between all the implementations. We also included AES synthesis
results and an HMAC-SHA256 synthesis in the comparison to highlight the efficiency of
our work in terms of area occupation and power consumption. Figures 13 and 14 show
the comparison results of the area occupation and power consumption in the proposed,
conventional CBC-PRESENT and AES, respectively. The proposed architecture of the
CBC-PRESENT obtains less than the conventional designs by 13% in the occupied area
and by 14.87% in dissipated power. Compared to our AES design, PRESENT-CBC re-
duces area occupation by 79.27% and 41.14% in terms of power dissipation, as shown in
Figures 13 and 14. In addition, our encryption design has better area implementation than
the design in [35]. However, as can be seen in Figure 15, the proposed HMAC-PHOTON
decreased by 50.34% in area and 75.28% in power usage compared to HMAC-SHA256.
In addition, the results of the proposed HMAC-PHOTON reduced the area and power
dissipation of the conventional HMAC-PHOTON by 41.57% and 26.61% with regards to

Electronics 2022, 11, 2380 13 of 16

the area and power dissipation of conventional designs, respectively. The most advanced
contribution of the proposed architectures is the significant reduction of power and area
consumption by using feedback to optimize the serial procedure.

Figure 13. Die area occupation of the proposed CBC-PRESENT when compared to a conventional
design and AES.

Figure 14. Power consumption of the proposed CBC-PRESENT when compared to a conventional
design and AES.

Figure 15. Area and power consumption of cryptography algorithm base HMAC.

Electronics 2022, 11, 2380 14 of 16

Table 1. Performance and security comparison of CBC-PRESENT.

Proposed CBC-PRESENT Conventional CBC-PRESENT AES 3DES-CBC [38]

ENC DEC ENC DEC ENC DEC

CMOS Technology [nm] 65 65 65 65 65 65 65
Plaintext [bit] 128 128 128 128 128 128 64
Key size [bit] 128 128 128 128 128 128 144

Block size [bit] 64 64 64 64 128 64

Cycles 70 105 68 70 15 22
Frequency [MHz] 100 100 100 100 100 100 2100

Throughput [Mbps] 188.2 182.9 182.9 121.9 853.3 581.8 2840
Area [GE] 5.68K 7.72K 6.53K 9K 27K 36K 5.84K

Power [mW] 1.03 1.37 1.21 1.67 1.75 2.56 13.68

Table 2. Performance and security comparison of HMAC-PHOTON.

Proposed HMAC-PHOTON Conventional HMAC-PHOTON HMAC-SHA256

CMOS Technology [nm] 65 65 65
Message [bit] 128 128 128
Key size [bit] 128 128 128

Hash size [bit] 80 80 256

Cycles 860 856 320
Frequency [MHz] 100 100 100

Throughput [Mbps] 14.9 14.9 40
Area [GE] 17,359 35,423 41,681

Power [mW] 2.62 3.57 10.6

6. Conclusions

This paper presents an area-optimized and power-efficient method for CBC-PRESENT
and HMAC-PHOTON with 128-bit plaintext and a 128-bit key by applying a feedback
path in hardware structures to promote resource reuse. The proposed structures are im-
plemented in a 65-nm CMOS process. Compared with the conventional CBC-PRESENT
structure, the proposed CBC-PRESENT structure with a feedback path reduces the imple-
mentation area by 13% and power consumption by 14.87%. Similarly, compared with the
conventional HMAC-PHOTON, the proposed HMAC-PHOTON with a feedback path also
reduces the implementation area by 41.57% and the power consumption by 26.61%.

The proposed cryptography structures should be applied to information security SoC,
such as constrained IoT devices demanding small areas and a low power consumption.
Future research should consider adding additional circuit elements to protect the design
from differential power analysis (DPA).

Author Contributions: Conceptualization, J.-P.H.; methodology, J.-P.H.; software, C.T.N.; vali-
dation, C.T.N.; formal analysis, C.T.N.; investigation, C.T.N.; resources, C.T.N. and J.-P.H.; writ-
ing—original draft preparation, C.T.N.; writing—review, J.K.E.; supervision, J.-P.H.; project adminis-
tration, J.-P.H.; funding acquisition, J.-P.H. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was supported by Mid-Career Researcher Program through the National
Research Foundation of Korea (NRF) funded by the MSIT (Ministry of Science and ICT) (NRF-
2021R1A2C2005258), and by the MIST, Korea, under the Grand Information Technology Research
Center support program (IITP-2022-2020-0-01462) supervised by the IITP (Institute for Information &
communications Technology Planning & Evaluation).

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2022, 11, 2380 15 of 16

References
1. Greengard, S. The Internet of Things (MIT Press Essential Knowledge Series); The MIT Press: Cambridge, MA, USA, 2015.
2. Frustaci, M.; Pace, P.; Aloi, G.; Fortino, G. Evaluating Critical Security Issues of the IoT World: Present and Future Challenges.

IEEE Internet Things J. 2018, 5, 2483–2495. [CrossRef]
3. Zhou, W.; Jia, Y.; Peng, A.; Zhang, Y.; Liu, P. The Effect of IoT New Features on Security and Privacy: New Threats, Existing

Solutions, and Challenges Yet to Be Solved. IEEE Internet Things J. 2019, 6, 1606–1616. [CrossRef]
4. Meneghello, F.; Calore, M.; Zucchetto, D.; Polese, M.; Zanella, A. IoT: Internet of Threats? A Survey of Practical Security

Vulnerabilities in Real IoT Devices. IEEE Internet Things J. 2019, 6, 8182–8201. [CrossRef]
5. Dworkin, M. Sp 800-38A: Recommendation for Block Cipher Modes of Operation: Methods and Techniques; National Institute of

Standards and Technology: Gaithersburg, MD, USA, 2001.
6. National Institute for Science Technology (NIST). The Keyed-Hash Message Authentication Code (HMAC) (FIPS PUB 198); National

Institute of Standards and Technology: Gaithersburg, MD, USA, 2002.
7. Sklavos, K. Implementation of the SHA-2 Hash Family Standard Using FPGAs. J. Supercomput. 2005, 31, 227–248. [CrossRef]
8. Thakor, V.A.; Razzaque, M.A.; Khandaker, M.R.A. Lightweight Cryptography Algorithms for Resource-Constrained IoT Devices:

A Review, Comparison and Research Opportunities. IEEE Access 2021, 9, 28177–28193. [CrossRef]
9. Patel, D.; Muresan, R. Triple-DES ASIC Module for a Power-Smart System-on-Chip Architecture. In Proceedings of the 2006

Canadian Conference on Electrical and Computer Engineering, Ottawa, ON, Canada, 7–10 May 2006.
10. Rolfes, C.; Poschmann, A.; Leander, G.; Paar, C. Ultra-Lightweight Implementations for Smart Devices—Security for 1000 Gate

Equivalents. In Proceedings of the Smart Card Research and Advanced Applications; Springer: Berlin/Heidelberg, Germany, 2008;
pp. 89–103.

11. Feldhofer, M.; Rechberger, C. A Case Against Currently Used Hash Functions in RFID Protocols. In OTM Confederated International
Conferences “On the Move to Meaningful Internet Systems”; Springer: Berlin/Heidelberg, Germany, 2006; pp. 372–381.

12. McKay, K.; Bassham, L.; Turan, M.S.; Mouha, N. Report on Lightweight Cryptography; Technical Report; NIST Interagency/Internal
Report (NISTIR); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017.

13. Singh, S.; Sharma, P.K.; Moon, S.Y.; Park, J.H. Advanced Lightweight Encryption Algorithms for IoT Devices: Survey Challenges
and Solutions. J. Ambient Intell. Hum. Comput. 2017, 4, 1–18. [CrossRef]

14. ISO/IEC 29192-2:2019; Information Security—Lightweight Cryptography—Part 2: Block Ciphers. International Organization for
Standardization: London, UK, 2019.

15. Le, D.N.; Baek, S.; Choi, K.U.; Hong, J.P. An Area Optimization and Power Efficient Method for HMAC-PHOTON Lightweight
Cryptography. In Proceedings of the 31st Hot Chips Symposium 2019, Cupertino, CA, USA, 18–20 August 2019.

16. Le, D.N. An Area Efficient and Low Power Entity Authentication SoC Based on Physical Uncloneable Function for IoT Device.
Master’s Thesis, School of Electrical Engineering, Chungbuk National University, Cheongju, Korea 2020.

17. Nam, J.W.; Ahn, J.H.; Hong, J.P. Compact SRAM-Based PUF Chip Employing Body Voltage Control Technique. IEEE Access 2022,
10, 22311–22319. [CrossRef]

18. Choi, K.U.; Baek, S.; Heo, J.; Hong, J.P. A 100% Stable Sense-Amplifier-Based Physically Unclonable Function with Individually
Embedded Non-Volatile Memory. IEEE Access 2020, 8, 21857–21865. [CrossRef]

19. Baek, S.; Yu, G.H.; Kim, J.; Ngo, C.T.; Eshraghian, J.K.; Hong, J.P. A Reconfigurable SRAM Based CMOS PUF with Challenge to
Response Pairs. IEEE Access 2021, 9, 79947–79960. [CrossRef]

20. Nam, J.W.; Kim, J.; Hong, J.P. Stochastic Cell- and Bit-Discard Technique to Improve Randomness of a TRNG. Electronics 2022,
11, 1735. [CrossRef]

21. Bogdanov, A.; Knudsen, L.R.; Leander, G.; Paar, C.; Poschmann, A.; Robshaw, M.J.B.; Seurin, Y.; Vikkelsoe, C. PRESENT: An
Ultra-Lightweight Block Cipher. In Proceedings of the Cryptographic Hardware and Embedded Systems—CHES 2007, Vienna,
Austria, 10–13 September 2007; Paillier, P., Verbauwhede, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 450–466.

22. Guo, J.; Peyrin, T.; Poschmann, A. The PHOTON Family of Lightweight Hash Functions. In Proceedings of the Advances
in Cryptology—CRYPTO 2011, Santa Barbara, CA, USA, 14–18 August 2011; Springer: Berlin/Heidelberg, Germany, 2011;
pp. 222–239.

23. Daemen, J.; Peeters, M.; Assche, G.; Rijmen, V. The noekeon block cipher. In Proceedings of the First Open NESSIE Workshop
2000, Leuven, Belgium, 13–14 November 2000; pp. 1–30.

24. Leander, G.; Paar, C.; Poschmann, A.; Schramm, K. New Lightweight DES Variants. In International Workshop on Fast Software
Encryption, Luxembourg, 26–28 March 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 196–210.

25. Aoki, K. Camellia: A 128-bit block cipher suitable for multiple platforms—Design and analysis. In Proceedings of the 7th
Annual International Workshop, SAC 2000, Waterloo, ON, Canada, 14–15 August 2000; Springer: Berlin/Heidelberg, Germany, 2000;
pp. 39–56.

26. Shirai, T.; Shibutani, K.; Akishita, T.; Moriai, S.; Iwata, T. The 128-bit blockcipher CLEFIA. In Proceedings of the 14th International
Workshop, Luxembourg, 26–28 March 2007; pp. 181–195.

27. Knudsen, L.; Leander, G.; Poschmann, A.; Robshaw, M.J. PRINT-cipher: A block cipher for IC-printing. In Proceedings of the 12th
International Workshop, Santa Barbara, CA, USA, 17–20 August 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 16–32.

http://doi.org/10.1109/JIOT.2017.2767291
http://dx.doi.org/10.1109/JIOT.2018.2847733
http://dx.doi.org/10.1109/JIOT.2019.2935189
http://dx.doi.org/10.1007/s11227-005-0086-5
http://dx.doi.org/10.1109/ACCESS.2021.3052867
http://dx.doi.org/10.1007/s12652-017-0494-4
http://dx.doi.org/10.1109/ACCESS.2022.3153359
http://dx.doi.org/10.1109/ACCESS.2019.2961967
http://dx.doi.org/10.1109/ACCESS.2021.3084621
http://dx.doi.org/10.3390/electronics11111735

Electronics 2022, 11, 2380 16 of 16

28. Bogdanov, A.; Knežević, M.; Leander, G.; Toz, D.; Varıcı, K.; Verbauwhede, I. spongent: A Lightweight Hash Function. In
Proceedings of the Cryptographic Hardware and Embedded Systems—CHES 2011, Nara, Japan, 28 September–1 October 2011;
Preneel, B., Takagi, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 312–325.

29. Hirose, S.; Ideguchi, K.; Kuwakado, H.; Owada, T.; Preneel, B.; Yoshida, H. A Lightweight 256-Bit Hash Function for Hardware
and Low-End Devices: Lesamnta-LW. In Proceedings of the Information Security and Cryptology—ICISC 2010, Seoul, Korea,
1–3 December 2010; Rhee, K.H., Nyang, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 151–168.

30. ISO/IEC 29192-5:2016; Information Technology—Security Techniques—Lightweight Cryptography—Part 5: Hash-Functions.
International Organization for Standardization: London, UK, 2016.

31. FIPS 81; DES Modes of Operation. US Department of Commerce: Washington, DC, USA, 1980; Federal Information Processing
Standard (FIPS), Publication 81, National Bureau of Standards.

32. Dworkin, M. Recommendation for Block Cipher Modes of Operation: The XTS-AES Mode for Confidentiality on Storage Devices; Technical
Report; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2010.

33. Dworkin, M. NIST Special Publication 800-38C: Recommendation for Block Cipher Modes of Operation: The CCM Mode for Authentication
and Confidentiality; Technical Report; National Institute of Standards and Technology, U.S. Department of Commerce: Gaithersburg,
MD, USA, 2004.

34. National Institute for Science Technology (NIST). Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM)
and GMAC; Technical Report; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2007.

35. Prathiba, A.; Bhaaskaran, V.S.K. FPGA Implementation and Analysis of the Block Cipher Mode Architectures for the PRESENT
Light Weight Encryption Algorithm. Indian J. Sci. Technol. 2016, 9, 1–8. [CrossRef]

36. Hamalainen, P.; Alho, T.; Hannikainen, M.; Hamalainen, T. Design and Implementation of Low-Area and Low-Power AES
Encryption Hardware Core. In Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD’06), Dubrovnik,
Croatia, 30 August–1 September 2006; pp. 577–583.

37. Bellare, M.; Canetti, R.; Krawczyk, H. Keying Hash Functions for Message Authentication. In Proceedings of the Advances in
Cryptology—CRYPTO ’96, Santa Barbara, CA, USA, 18–22 August 1996; Koblitz, N., Ed.; Springer: Berlin/Heidelberg, Germany,
1996; pp. 1–15.

38. He, Y.; Li, S. A 3DES implementation especially for CBC feedback loop mode. In Proceedings of the 2017 IEEE International
Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017; pp. 1–4.

http://dx.doi.org/10.17485/ijst/2016/v9i38/90314

	Introduction
	Literature Review
	Proposed CBC-PRESENT Algorithm and Hardware Architecture
	Proposed Area Optimization of CBC Architecture
	Proposed Hardware Implementation of CBC-PRESENT

	Proposed HMAC-PHOTON Algorithm and Hardware Architecture
	Proposed Area Optimization of HMAC Hardware Architecture
	Hardware Implementation of HMAC-PHOTON

	Measurement Results
	Conclusions
	References

