

© 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or

for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be

obtained from the IEEE.

For more information, please see www.ieee.org/web/publications/rights/index.html.

www.computer.org/intelligent

An Argumentation Framework for
Communities of Web Services

Jamal Bentahar, Concordia University, Montreal

Zakaria Maamar, Zayed University

Djamal Benslimane, Claude Bernard Lyon 1 University, France

Philippe Thiran, University of Namur

Vol. 22, No. 6

November/December 2007

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the terms
and constraints invoked by each author's copyright. In most cases, these works

may not be reposted without the explicit permission of the copyright holder.

NOVEMBER/DECEMBER 2007 1541-1672/07/$25.00 © 2007 IEEE 75
Published by the IEEE Computer Society

A r g u m e n t a t i o n T e c h n o l o g y

An Argumentation
Framework
for Communities
of Web Services
Jamal Bentahar, Concordia University, Canada

Zakaria Maamar, Zayed University

Djamal Benslimane, Claude Bernard Lyon 1 University, France

Philippe Thiran, University of Namur

A s the number of Web services continues to increase, so does the opportunities to

compose them to build more complex and complete business solutions. To facilitate

and speed up Web-services discovery, Web services with similar (or equivalent) functional-

ities—such as flight booking and travel reservation—can be grouped into communities.1

Consequently, the multiagent research community
views Web services as a substantial application domain.
However, so far, the use of agents-based Web services
has been confined to simple software entities with basic
interaction and decision-making capabilities. Here, we
discuss how to enrich agents to apply logic-based rea-
soning and argumentation.

Argumentation is a dialectical process that uses
pro and con arguments to reach a conclusion. Argu-
ments interact by attacking each other through an
attack binary relation. In agent-based computing,
argumentation can help agents interact rationally by
letting them give reasons that support their conclu-
sions and receive counterarguments. Simply put, an
argumentative agent employs a dialectical process
when it wants to affirm or disavow the conclusions
it’s conveying to peers.2 Using these agents, com-
munities of Web services can manage themselves
and argue with peers about their status and the sta-
tus of their respective communities. We propose an

argumentation framework that defines interaction
mechanisms for peers in these communities.

Communities of Web services
Although Web services in a community have a

common functionality, they can have distinct non-
functional properties.3 Additionally, a community can
describe a desired functionality without explicitly
referring to any concrete (or preselected) Web ser-
vice that will implement this functionality at runtime.1

Figure 1 represents an argumentative agent-based
environment consisting of Web services communities;
Web service providers; Universal Description, Dis-
covery, and Integration (UDDI) registries; and software
agents. Even after a Web service joins a community,

• the process for describing, announcing, and invok-
ing Web services remains the same;

• the services that UDDI registries regularly offer,
such as announcement and consultation, remain

Argumentation theory,

implemented through

a set of software

agents that reason

about Web services,

can improve Web

services’ performance

through the notion

of communities.

A r g u m e n t a t i o n T e c h n o l o g y

76 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

the same; and
• the selection process is transparent, so users don’t have to know

that the Web services are gathered into communities.

A master Web service leads a community using special services
related to community management, such as attracting and retaining
services, which its respective argumentative master agent offers. It
can also act as a broker, matching users’ needs with Web services’
functionalities.1 All other Web services in a community are denoted
as slaves (associated with argumentative slave agents). A master Web
service can be designated in one of two ways. A community designer
can designate a Web service as the master for a particular community
(the approach we adopt), or a slave Web service can be selected from
the list of slave Web services that already populate a community. In
the latter, the selection could happen on a voluntary basis (a func-
tionality the designer allows) or after the agents or community
designer run an election among the slave Web services.

In figure 1, Web services coupled with agents engage peers in con-
versations in which the agents aim to persuade or negotiate with each
other. These conversations combine argumentation-based dialogue
games. The master Web service can persuade a Web service to join or
remain in its community. Furthermore, in the same community, slave
Web services can mutually sort out their participation in composite
Web services when conflicts arise.

Managing a community of Web services involves three main activ-
ities: developing the community (or dismantling it, if need be), attract-
ing new Web services, and retaining existing Web services.

Community development and dismantlement
Establishing a community is a designer-driven activity that occurs

in two steps. First, a community designer defines a community’s
functionality, such as flight booking, using, for example, a dedicated

ontology. Then the designer deploys the master Web service, which
invites Web services to join the community. A community’s survival,
to a certain extent, depends on how much the slave Web services par-
ticipate in compositions.

Dismantling a community is also a designer-driven activity. The mas-
ter Web service monitors the arrival of new Web services and departure
of existing ones. It also identifies Web services to be part of composite
Web services and sanctions misbehaving Web services. If the number
of Web services in the community is less than a certain threshold, and
the number of participation requests in composite Web services over
some time period is less than another threshold, the master Web ser-
vice will dismantle the community. The designer sets both thresholds.
A Web service ejected from one community can be invited to join other
communities, as long as it offers a similar functionality.

Web services attraction and retention
The master Web service regularly interacts with UDDI registries

to stay informed of their Web services advertisements, and it can use
rewards to attract new Web services. Additionally, a new Web service
can approach a master Web service if it’s interested in being part of
its community. The new Web service can try to persuade the master
Web service through argumentation that it will bring additional capa-
bilities (such as better nonfunctional properties) to the community.
The master Web service should also nominate (as part of its broker
role) slave Web services to participate as components in composite
Web services. To this end, the master Web service uses the contract-
net protocol, which consists of asking slave Web services to bid on
certain participation activities in compositions.

The ability to retain Web services in a community indicates two
things. First, although a community’s Web services must compete with
each other, it indicates that they also exhibit a cooperative attitude. Sec-
ond, it indicates that a Web service (owner) is, to a certain extent, sat-

Master-WS2

Slave-WS2jSlave-WS21

Community2

Providers of Web services
Advertisements Advertisements

Interactions

Providers of Web services

Interactions

Consultations

Interactions

Argumentative agent
(Slave Web service)

Argumentative agent
(Master Web service)

Interactions as argumentation-based dialogue games

Universal
description,

discovery, and
integration
registries

Master-WS1

Slave-WS1j Slave-WS11

Community1

Interactions

Figure 1. Web services, communities, and argumentative agents.

NOVEMBER/DECEMBER 2007 www.computer.org/intelligent 77

isfied with its level of participation in composite Web services.
A master Web service can also ask a Web service to leave a com-

munity. It might request this if a Web service has a new functional-
ity that doesn’t perfectly match the community’s functionality. Or it
could do so if the service has been unreliable, failing to participate
in composite Web services owing to recurrent operation problems.

Toward argumentative Web services
Formally, an argumentation system comprises a logical language £

and defines arguments, attack relations between arguments, and terms
of acceptability. Several proposed argumentation theories and frame-
works implement argumentation systems.4,5 Argumentation systems
based on propositional logic are intractable6 and thus not suitable for
Web services and their required business scenarios. Argumentation
systems based on logic programming lack the logical inference required
for the advanced argumentation mechanisms involved in typical busi-
ness negotiations.

We’ve found that using a restricted lan-
guage such as propositional Horn clauses is
sufficient to represent and reason about knowl-
edge that Web services use during argumen-
tative conversations. A propositional Horn
clause is a disjunction of literals (an elemen-
tary or atomic proposition or its negation) with
at most one positive literal ¬p1 � ¬p2 � … �
¬pn � c (also written as implication p1 � p2 �
… � pn � c). A propositional Horn formula
is a conjunction of propositional Horn clauses.
We focus on a further restriction called propo-
sitional definite Horn clauses, where each
clause has exactly one positive literal.

A propositional definite Horn formula is a con-
junction of propositional definite Horn clauses.
This restriction is of particular interest in model-
ing argumentation reasoning, because formulas of the type p1 � p2 � … �
pn � c are adequate to describe interrelationships between premises and
conclusions. Agents could use this to support positive literals.

Web services can use these formulas together with a logical infer-
ence to reason and argue about different matters. For example, to join
a community, an interested Web service could, through its agent, per-
suade a master Web service by presenting the conditions that this
master uses (literals p1, p2, …, pn) as premises of the conclusion c,
which represents the fact of joining the community. For this Web ser-
vice, these premises are true, so conclusion c is logically inferred. If
not, this Web service should be able to present propositional definite
Horn formulas supporting the premises p1, p2, …, pn. For example,
assume that a Web service, through its agent, believes that p11, p12,
…, p1n are true. Then, it can present the following argument sup-
porting p1: p11 � p12 � … � p1n � p1.

Furthermore, a master Web service can persuade a new Web ser-
vice to join a community by presenting the benefits of being a mem-
ber. One excellent persuasive argument that the master Web service
could use is the fact that the participation rate in compositions is high
in a community. A propositional definite Horn formula could express
such an argument.

In addition, Web services can use (general) propositional Horn
logic and the logical inference to build arguments attacking the
addressees’ arguments. For example, a new Web service can attack

a master Web service’s persuasive argument about the high member-
participation rate in composite Web services, arguing that some mem-
bers’ participation rate isn’t as claimed. Also, a master Web service
can attack a slave’s argument about its ability to join the commu-
nity—for example, if the slave’s QoS is less than the community
average. Peers that have a much higher quality of service could also
attack this slave’s argument.

Our argumentation framework differs from the one based on logic
programming. Propositional Horn formulas aren’t inference rules in
the sense of logic programming but are propositional formulas with
material implication. Consequently, agent-based Web services could
use logical inference to infer new arguments for or against proposi-
tions from these knowledge bases.

In the following, we define the concepts the argumentation frame-
work uses to manage communities of Web services. We also discuss the
framework’s underlying computational complexity. Note that � stands
for classical inference and, for the sake of simplicity, we omit the word

“propositional” (so, “definite Horn theory” des-
ignates “propositional definite Horn theory”).

DEFINITION 1 (argument). Let � be a consis-
tent knowledge base with no deductive clo-
sure under the form of a Horn theory (that
is, contains only Horn formulas). A Horn
argument is a pair (H, h) where h is a for-
mula and H a subset of � such that (i) H is
consistent and (ii) H � h. The set H is the
argument’s support and h its conclusion.

In some frameworks, H is minimal, so no
proper subset of H satisfying both (i) and (ii)
exists. We exclude this strong condition be-
cause it increases the polynomial hierarchy’s
complexity by one level.6 However, agent-

based Web services can use nonminimal Horn arguments (or argu-
ments, for the sake of simplicity). If a premise gets attacked, the agent
generates a conclusion to test the attacked premise’s relevancy. Gen-
erating a conclusion from a set of nonattacked premises means that
the attacked premise is irrelevant to the conclusion.

DEFINITION 2 (relevant premise). Let (H, h) be an argument and x �
H be a premise. x is relevant to (H, h) if and only if H � {x} h.

Proposition 1. Let (H, h) be an argument. (H, h) is minimal if and
only if �x � H, x is relevant to (H, h).

Proof. The proof is straightforward from the definitions.

DEFINITION 3 (attack). AT is a binary relation between arguments. Let
�1 and �2 be two consistent Horn knowledge bases (that is, they con-
tain a consistent set of Horn clauses). Let (H, h) and (H�, h�) be two
arguments over �1 and �2, respectively. (H�, h�) AT (H, h) if and
only if H� � ¬h or �x � H : H� � ¬x and x is relevant to (H, h) where
“¬” represents strict negation. In other words, an argument is
attacked if and only if another argument exists that strictly negates
its conclusion or one of its relevant premises.

Example 1. Let �1 = {p1, p2, p3, p1 � p2 � p3 � c, r, s, r � s � t} and

�

Argumentation systems based

on logic programming lack the

logical inference required for

the advanced argumentation

mechanisms involved in typical

business negotiations.

A r g u m e n t a t i o n T e c h n o l o g y

78 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

�2 = {¬q1 � ¬c, m, n, ¬q1}. ((p1, p2, p3), c) and (¬q1, ¬c) are two
arguments over �1 and �2, respectively, and the argument (¬q1, ¬c)
attacks the argument ((p1, p2, p3), c).

We will prove in the “Complexity analysis” section that suppos-
ing the consistency of the Horn knowledge bases makes the attack
operation tractable.

DEFINITION 4 (argumentation system for a Web service). This system
is a pair 〈A, AT 〉, where A is a set of arguments and AT ⊆ A
× A is the attack relationship. For a subset S of arguments in the
argumentation system 〈A, AT 〉,

1. a � A is acceptable with respect to S if � b � A such that b AT
a and �c � S such that c AT b.

2. S is conflict free if no argument in S is attacked by any other
argument in S.

Dialogue games
and community management

In the following, AgWS stands for agent of
a Web service and KB(AgWS) stands for the
knowledge base this agent uses to store
details (precisely, beliefs) on this Web ser-
vice. The agents’ knowledge bases are con-
flict free (see definition 4).

Formal foundations. To persuade a Web ser-
vice to be part of a community and to nego-
tiate its participation in a given composite
Web service, master and slave Web services
use persuasion and negotiation techniques
associated with their argumentation abilities.
Hereafter, we specify a Horn logic-based per-
suasion and negotiation protocol. For flexi-
bility requirements, this protocol is specified as a combination of a
set of initiative and reactive dialogue games.7

Dialogue games are interaction games in which each agent makes
a move by performing utterances according to a predefined set of
rules.8 The idea is to specify dialogue games as small rules expressed
in terms of dialogue moves and conditions (see definition 5). The
whole protocol is dynamically built by combining different dialogue
games. This protocol represents a combination of Douglas Walton
and Erik Krabbe’s persuasion and negotiation dialogues.9

From a logical viewpoint, moves in a game are expressed as Horn-
based communicative actions that agents perform by producing utter-
ances and arguments. To make the protocol simple, we proposed a
small set of communicative actions: Assert, Accept, Refuse, Chal-
lenge, Justify, Attack, and Defend. These actions are general in that
they contain general proposals (ideas, offers, and so forth). For exam-
ple, in the case of persuasion, an Assert could be an idea. In a nego-
tiation, it could be an offer, in which case it would play the role of Pro-
pose or Make Offer. Similarly, an Attack could be an offer or a
counteroffer.

DEFINITION 5 (dialogue game). Let and be two
Horn-based communicative actions performed by and ,
respectively, and let Cond be a formula from the Horn logical lan-
guage £. A dialogue game for an agent-based Web service is a set of

logical rules indicating that if performs , and if
Cond is satisfied, then will afterwards perform .
We express these rules as

We express Cond in terms of the possibility of generating an argu-
ment from an agent’s argumentation system. We identify two types
of arguments: private arguments, which an agent doesn’t reveal, and
public arguments, which an agent exchanges during conversation.
The following sets are introduced:

PrSupport(AgWS, p) = {p� � p� � p}

PbSupport(AgWS, p) = {Assert(AgWS, q) � q � p}

PrSupport(AgWS, p) is the set of AgWS’s private arguments supporting
the Horn proposition p. PbSupport(AgWS, p)
is the set of commitments AgWS creates to
support p. Assert(AgWS, q) is the Assert com-
municative action performed by AgWS, and q
is the content. This set is closed under the sup-
port relation—that is,

p2 � PbSupport(AgWS, p1) �
p1 � PbSupport(AgWS, p0) 	
p2 � PbSupport(AgWS, p0)

The formula expressed
in Horn language £ denotes that AgWS’s argu-
mentation system, Arg_Sys(AgWS), can gener-
ate a Horn propositional formula p. The for-
mula indicates that
Arg_Sys(AgWS) can’t generate p (~ represents

the negation as failure). An agent’s argumentation system can generate
a Horn propositional formula p if the agent can find an argument sup-
porting p.

Specification of dialogue games. Dialogue games are specified as a
set of logical rules whose conditions are expressed in terms of argu-
ments. These rules indicate the possible actions that agent-based Web
services can perform according to current situations. However, this
specification doesn’t describe which strategy an agent-based Web
service should select. A strategy determines

• which arguments an agent should forward to persuade another
peer,

• how to present these arguments (or which argument to present if
many are possible), and

• how to combine dialogue games to best persuade the addressee.

For example, in an attack scenario, if a Web service has several
counterarguments, the strategy identifies which one to choose on the
basis of increasing the chances for acceptance. This separation of
dialogue games and strategies is important. Dialogue games are
public and should be shared by all Web services, but strategies are
private. Agent compliance with a dialogue game protocol is verifi-
able because conditions are specified in terms of generating veri-

∼ �(_ ())p Arg Sys AgWS

p Arg Sys AgWS� _ ()

Action ActionAgWS
Cond

AgWS1 2
⎯ →⎯⎯

ActionAgWS2
AgWS2

ActionAgWS1
AgWS1

AgWS2
AgWS1

ActionAgWS2
ActionAgWS1

Dialogue games are

interaction games in which

each agent makes a move

by performing utterances

according to a predefined

set of rules.

NOVEMBER/DECEMBER 2007 www.computer.org/intelligent 79

fiable arguments (we can check to see if an agent has an argument
for or against a proposition).

Three types of dialogue games support agents performing com-
municative actions such as Assert, Challenge, and Defend:

• The entry game initiates conversation.
• The chaining game continues a conversation by combining several

dialogue games—defense, attack, challenge, and justification games.
• The termination game ends a conversation when the exit condi-

tions are satisfied.

In the entry game, a master Web service can engage in conversa-
tion a new Web service registered in a given UDDI registry. If the
new Web service accepts, then the master Web service will start
another conversation to persuade it to join the community. In the
same community, a slave Web service can invite other slave Web ser-
vices to negotiate their participation in a composite Web service. We
specify this entry game as follows:

where

Proposition p is expressed £ using a shared ontology. This propo-
sition is an invitation to start a conversation. If the invited Web ser-
vice has an argument in favor of p or doesn’t have any argument
against p, it accepts the invitation; otherwise, it refuses. For example,
if a new Web service isn’t interested in joining a community owing
to previous “bad” experiences, it sends a refusal to the master Web
service. If a Web service doesn’t have any information about the com-
munity or believes that the community’s configuration is efficient, it
accepts the invitation.

An important dialogue game in persuasion and negotiation inter-
actions is the defense game. A Web service adopts this game to defend
the propositions (in a persuasion) or offers (in a negotiation) it makes.
For example, a master Web service defends its invitation to a new
Web service with various arguments, such as the participation rate
of other slave Web services in composite Web services, the commu-
nity’s efficient configuration, or the rationale for having this Web
service. We specify the defense game as follows:

where

We define generation of a set of Horn formulas H from as
follows:

By definition, means that asserts ar-
gument (H, h) to defend h, which could be an opinion or an offer.

means that asserts argument (H�, h�)
to attack argument (H, h). accepts ’s argument if it can
generate this argument out of its knowledge base. If can’t gen-
erate a new argument for or against this argument, it challenges the
argument by requesting further explanations (the challenge game).
Finally, attacks the argument if it can generate an attacker argu-
ment (the attack game).

We specify the challenge game as follows:

where

Condition C1 should always be true, because a Web service must
always be able to justify its propositions and assertions.

We specify the justification game as follows:

Similar to the defense game, in the justification game, can
accept, challenge, or attack ’s justification. C1, C2, and C

3
are

identical to the conditions in the defense game.
Finally, we specify the attack game as follows:

where

C H Arg Sys AgWS1 2
= � _ ()

Attack Ag H h Refuse Ag hWS
C

WS(,(,)) (,)
1

4

2
⎯ →⎯

Attack Ag H h Attack Ag H hWS
C

WS(,(,)) (,(,
1

3

2
⎯ →⎯ ′ ′)))

Attack Ag H h Challenge Ag HWS
C

WS(,(,)) (,)
1

2

2
⎯ →⎯

Attack Ag H h Accept Ag hWS
C

WS(,(,)) (,)
1

1

2
⎯ →⎯

AgWS1

AgWS2

Justify Ag H h Attack Ag HWS
C

WS(,(,)) (,(,
1

3

2
⎯ →⎯ ′ ′hh))

Justify Ag H h Challenge Ag HWS
C

WS(,(,)) (,)
1

2

2
⎯ →⎯

Justify Ag H h Accept Ag hWS
C

WS(,(,)) (,)
1

1

2
⎯ →⎯

C PrSupport Ag HWS1 2
= (,)

Challenge Ag H Justify Ag H HWS
C

WS(,) (,(,)
1

1

2
⎯ →⎯ ′))

AgWS2

AgWS2

AgWS1
AgWS2

AgWS2
Attack Ag H hWS(,(,))

2
′ ′

AgWS1
Defend Ag H hWS(,(,))

1

¬ ∃ ∈ ¬H Arg Sys Ag h H h Arg Sys AgWS i i WS� � �_ () _ ()
2 2

H Arg Sys Ag h Hh Arg Sys AgWS i i WS� � �_ () _ ()
2 2

∀ ∈

AgWS2

C H Arg Sys Ag

H h H h
WS3 2

= ′ ∧

′ ′

(_ ())

(,) (,)

�

AT

C H Arg Sys Ag

H Arg Sys Ag
WS

WS

2 2

2

= ∧

¬

 ∼ �

∼ �

(_ ())

(_ ()))

C H Arg Sys AgWS1 2
= � _ ()

Defend Ag H h Attack Ag H hWS
C

WS(,(,)) (,(,
1

3

2
⎯ →⎯ ′ ′)))

Defend Ag H h Challenge Ag HWS
C

WS(,(,)) (,)
1

2

2
⎯ →⎯

Defend Ag H h Accept Ag hWS
C

WS(,(,)) (,)
1

1

2
⎯ →⎯

C p Arg Sys AgWS2 2
= ¬ � _ ()

C p Arg Sys Ag

p Arg Sys Ag
WS

W

1 2
= ∨

¬

(_ ())

(_ (

�

∼ � SS2
))

Assert Ag p Refuse Ag pWS
C

WS(,) (,)
1

2

2
⎯ →⎯

Assert Ag p Accept Ag pWS
C

WS(,) (,)
1

1

2
⎯ →⎯

A r g u m e n t a t i o n T e c h n o l o g y

80 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

An agent-based Web service accepts an attacker’s argument
if it can generate a support using its argumentation system. If it can’t
generate or negate this support, the agent challenges it. If it can gen-
erate a counterattack argument, then it plays the attack game. Oth-
erwise, it refuses the attacker’s argument. It can play this refuse move
if the negation of the attacker’s argument conclusion is in ’s
knowledge base. In that case can’t play the attack game; it
doesn’t have a counterargument—only knowledge about the negation
of the argument conclusion. This possibility of a refusal move makes
defense and attack different games. Agents play defense games only
after they agree to engage in persuasion or negotiation (by replying
to the entry game). Consequently, the invited Web service can attack
the inviter’s conclusion.

We now discuss how to combine the different dialogue games. Dur-
ing a conversation, an agent can’t play the same move (or use an argu-
ment) more than once—reiterations are prohibited. Also, dialogue
games can be played sequentially or in parallel. For example, a Web
service can accept one part of the argument presented by another Web
service and challenge another part in parallel. The conversation ter-
minates by either a final acceptance or refusal. There’s a final accep-
tance when a Web service accepts the initial proposition (for example,
to join the community) or when an agreement is reached.

The Persuasion/Negotiation for Agent-Based Web Services
(PNAWS) protocol that combines these games is specified using the
Backus–Naur Form grammar, although using other formalisms (such
as the Agent-based Unified Modeling Language) wouldn’t affect our
proposals. However, because the protocol is a combination of logi-
cal rules, using a language-driven formalism such as BNF is more
expressive, particularly for specifying parallel games and nondeter-
ministic choices. We first introduce possible parallel dialogue games.

DEFINITION 6 (possible parallel dialogue games). Let G1,2,3 be three
dialogue games, and �, “�”, “;”, and “//” be the empty dialogue
game, the choice symbol, the sequence symbol, and the paralleliza-
tion symbol, respectively. G1// G2 means that an agent can play two
games in parallel. The specification of possible dialogue games is

where

Let’s assume that the entry game is successful (accepted); we now
define the PNAWS protocol as follows (where WSDG stands for Web
Service Defense Game):

PNAWS = entry game; defense game; WSDG
WSDG = // (acceptance move; Ch; Att)
Ch = challenge game; justification game; (WSDG � Refusal)
Att = attack game; (WSDG � Refusal)

A finite-state machine could describe the PNAWS protocol dynam-
ics (see figure 2). The acceptance move, challenge game, and attack
game are possible parallel dialogue games as specified in definition
6. So, agents could play all three in parallel, play just one game, or
play two in parallel without playing the third. The state machine
describes how an agent-based Web service could use the protocol.
The state machine models the behavior of one agent when that agent
receives the communicative actions from the addressee. Each agent
will, individually, use the same protocol, because that protocol is
described independently from the agents and their roles.

Proposition 2. For any set of dialogue games, the PNAWS protocol
always terminates.

Proof. The PNAWS protocol is defined recursively because Ch and Att

G G G Gopt1 2 1 1 2/ / (/ /)� � ≥

G G G G G G1 1 2 1 2 1 2/ / (/ /)≥ �

/ / (; ;)

((/ /) / /) ((/ /

G G G

G G G Gopt opt

1 2 3

1 1 2 3 1

�

 ≥ GG G2 1 3) / /)≥

AgWS2

AgWS2

AgWS2

C h KB AgWS4 2
= ¬ ∈ ()

C H Arg Sys Ag

H h H h
WS3 2

= ′ ∧

′ ′

(_ ())

(,) (,)

�

AT

C H Arg Sys Ag

H Arg Sys Ag
WS

WS

2 2

2

= ∧

¬

 ∼ �

∼ �

(_ ())

(_ ()))

Refusal

Acceptance move

Challenge gameDefense gameEntry game
1

3

124

1. Argument supporting a given premise
2. Lack of argument supporting or attacking a given premise
3. Argument attacking a given premise
4. Refusing the initial proposal
5. Final refusal Initial state Final state Possible parallel dialogue games

1
3

1
2 5

5

Justification game

3
2

Attack game

Figure 2. The Persuasion/Negotiation for Agent-Based Web Services protocol dynamics as a finite-state machine.

NOVEMBER/DECEMBER 2007 www.computer.org/intelligent 81

are defined in terms of WSDG. Because the same move is prohibited
during a conversation, and the content of communicative acts has a
finite size, challenge and attack moves are finite. In addition, because
the agent-based Web service’s knowledge bases are finite, justifica-
tion moves are finite. Consequently, the protocol terminates by exe-
cuting either a final refusal or a final acceptance.

Complexity analysis
Here we prove that the suggested argumentation-based reasoning

for agent-based Web services is tractable.

Proposition 3. Given a Horn knowledge base �, a subset H
 �, and
a formula h; checking whether (H, h) is an argument is polynomial.

Proof. From the linear time algorithms for Horn satisfiability,10 it
follows that the Horn implication problem H � h is decidable in O(�H�
× �h�) time. From the same result, it also follows that deciding whether
H is consistent is polynomial.

Deciding whether an argument for a Web service supports a con-
clusion over a definite Horn knowledge base is polynomial. This
result follows immediately from the following proposition:

Proposition 4. Let � be a definite Horn knowledge base and h a for-
mula. �H
 � : (H, h) � A � �H� : H
 H�
 �, (H�, h) � A.

Proof. If (H, h) is an argument where H is a set of definite Horn for-
mulas under the form c or p1 � p2 � … � pn � c, where p1, p2, …
pn, c are positive literals, then adding any definite Horn formula to
H will result in a consistent set of formulas H� : � ⊇ H� ⊇ �. Because
H � h, it follows that H� � h, whence the proposition.

Theorem 1. Given a definite Horn knowledge base � and a formula
h. Deciding whether there’s an argument (H, h) is polynomial.

Proof. From Proposition 4, it follows that there is an argument support-
ing h if and only if (�, h) � A. So, by proposition 3, the theorem follows.

The following corollary is a direct consequence of theorem 1.

Corollary 1. Given a consistent Horn knowledge base � and a for-
mula h, deciding whether there’s an argument (H, h) is polynomial.

Proof. Proposition 4 holds if � is consistent. Then, by proposition 3,
the result follows.

This positive result is important for implementing Web services
and communities of Web services using argumentation-based agents
specified in Horn logic. In fact, maintaining the consistency of Horn
knowledge bases is tractable. If � is a general Horn theory, the fol-
lowing theorem holds.

Theorem 2. Given a Horn knowledge base � and a formula h, decid-
ing whether there’s an argument (H, h) is NP-complete.

Proof. Membership of this problem in NP is straightforward because
by proposition 3, checking that a guessed subset H
 � is consistent
and H � h could be done in polynomial time.

To prove the problem’s hardness, we use a transformation from
the well-known SAT (Boolean satisfiability) problem. Let C = {C1,
C2, …, Cn} be a set of propositional clauses on X = {x1, x2, …, xn}
and let X� = {x�1, x�2, …, x�n}, Y = {y1, y2, …, ym}, be sets of new
variables. So, there’s an argument (H, h) over �, where h is a for-
mula over Y and

if and only if C is satisfiable. Because � is constructible in polyno-
mial time, we’re done.

Even when using general Horn logic results in intractable reason-
ing, this result is still better than the one obtained using propositional
logic, in which the complexity is .

Now, we discuss the attack operation’s complexity.

Proposition 5. Given a Horn knowledge base �, a subset H of �, a for-
mula x � H, and a formula h. Deciding whether x is relevant to (H,
h) is polynomial.

Proof. x is relevant to (H, h) if and only if H � {x} h. This can be
done in polynomial time.

Proposition 6. Let �1 and �2 be two Horn knowledge bases and (H,
h) and (H�, h�) be two arguments over �1 and �2, respectively. Decid-
ing whether (H�, h�) AT (H, h) is polynomial.

Proof. The first condition of definition 3 (H� � ¬h) is polynomial.
The first part of the second condition (�x � H : H� � ¬x) is decidable
in O(�H� × �H� � × �¬x�), and the second part (x is relevant to (H, h))
is polynomial by proposition 5, whence the proposition.

Theorem 3. Let �1 and �2 be two consistent Horn knowledge bases
and (H, h) an argument over �1. Deciding whether there’s an attacker
of (H, h) over �2 is polynomial.

Proof. From definition 3, there’s an attacker of an argument (H, h) if
and only if another argument exists that negates its conclusion or
one of the relevant premises. From corollary 1, deciding whether
there is an argument (H� , ¬h) is polynomial. Also, from the same
corollary and proposition 5, deciding for each x � H relevant to (H,
h) whether there’s an argument (H� , ¬x) is polynomial. So, the whole
problem is decidable in polynomial time.

PNAWS against McBurney and colleagues’ desiderata
A relevant set of desiderata that permit assessing argumentation-

based dialogue games appears elsewhere.11 The following illustrates
how PNAWS meets the desiderata:

• Stated dialogue purpose: PNAWS is explicitly used for persuasion
and negotiation.

• Diversity of individual purposes: PNAWS lets agents achieve their
own purposes in terms of persuading and negotiating with peers.

• Inclusiveness: There’s no elimination of agents.
• Transparency: All agents share PNAWS’s rules and structure.

�

−∑ completep
2

({ : } { : })x y x C x y x Cj i
i

m

j i j i j i→ ∈ ∪ ′ → ¬ ∈
=1

∪

Γ = X X x x i ni i∪ ′ ∪ ¬ ∨ ¬ ′ ≤ ≤ ∪{ : }1

A r g u m e n t a t i o n T e c h n o l o g y

82 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

• Fairness: Slave Web services are treated equally, and the asym-
metry between them and master Web services is explicit.

• Clarity of argumentation theory: The argumentation theory is
explicit and clear in PNAWS’s specification.

• Separation of syntax and semantics: The PNAWS’s specification
language separates syntax from semantics. The syntax is expressed
in terms of actions and conditions, and the semantics is defined in
terms of argumentation theory.

• Rule consistency: PNAWS specifies all rules and the conditions,
expressed in terms of arguments, guarantee consistency. Further-
more, there are no infinite cycles or repeated locutions. PNAWS ter-
mination is formally proved.

• Encouragement of resolution: The rules don’t eliminate normal
termination.

• Discouragement of disruption: PNAWS precludes disruptive behav-
ior by prohibiting the performance of the same communicative
acts repeatedly and the use of the same arguments.

• Enablement of self-transformation: PNAWS enables self-transfor-
mation by allowing acceptance moves, so agents can accept
addressees’ arguments and update their knowledge bases.

• System simplicity: PNAWS includes only seven locutions, which
keeps PNAWS simple.

• Computational simplicity: It’s proved that the reasoning is tractable
and computationally simple (polynomial complexity).

PNAWS is fully specified and some criteria are formally proved. In
particular, its computational simplicity is significant, because this
isn’t the case in many other dialogue game protocols, some of which
are even intractable.

Argumentation automation
We implemented our dialogue game protocol to provide a practi-

cal proof that argumentation-based reasoning using propositional
Horn logic for Web services is tractable. We used XML and Java devel-

opment kit version 1.4 for operation process-
ing. We used the JACK Intelligent Agents
framework, equipped with logical inference,
for Horn formulas to implement agents, their
knowledge bases, and argumentation-driven
reasoning. We also used the JACK framework
to specify dialogue games. Figure 3 shows the
system architecture.

The prototype shows how agent-based
Web services operate on top of their knowl-
edge bases, update their knowledge bases
during and after conversations, and generate
arguments for and against propositions.
Moreover, the prototype simulates how
agents trigger persuasion scenarios that lead
Web services to, for example, join commu-
nities or participate in compositions.

In the prototype, each agent-based Web ser-
vice has, as part of its internal structure, a
knowledge base of beliefs and an argumenta-
tion system it uses to reason about these beliefs
by selecting and combining dialogue games.
Agents share the same ontology for defining
literals.

After several simulations, we noted that generating arguments and
converging toward agreements in persuasions and negotiations are
faster when the agents’ knowledge bases are small. Also, reaching
agreements between a master Web service and a new Web service
about joining a community is faster when the number of candidate
communities is small.

Dialogue games are declaratively specified outside agents’ struc-
ture and stored in a shareable store. Agents refer to dialogue games’
specifications when they need to determine their next moves accord-
ing to the argumentation system.

We implemented agent knowledge bases as a set of tables. Addi-
tionally, we implemented beliefs in these knowledge bases as data
structures called beliefsets and represent them using Horn logic and
a tuple-based relational model. JACK automatically maintains the
logical consistency of the beliefs in a beliefset. So, if an agent believes
that p is true and, after a persuasion phase with another agent accepts
¬p, the agent can update its beliefset by removing p and all argu-
ments supporting p and adding ¬p to the knowledge base.

On top of beliefs, the knowledge base contains arguments that have
the form ([Support],Conclusion), where Support is a set of Horn clauses and
Conclusion is a Horn formula. The meaning of literals according to the
ontology is recorded in a beliefset implemented in JACK as a
table_ontology that contains two fields: Literal and Meaning. All agents share
access to the table_ontology.

Agents communicate through messages that are events, which
extend JACK’s MessageEvent class. An agent can send a MessageEvent using
a Send(Destination, Message) primitive. We implemented each dialogue
game as a set of events (or (MessageEvents)) and plans. A plan describes
a sequence of actions that an agent can perform when an event occurs.
Whenever an event is posted, the addressee uses its argumentation
system to find a plan that would handle this event. Games aren’t
implemented in the agents’structure but as independent event classes
and plan classes. So, each interacting agent-based Web service can
instantiate these classes.

Dialogue games

JACK event -> JACK plan
...

JACK event -> JACK plan

Agj (JACK agent)Agi (JACK agent)

Interacts
by using

Interacts
by using

SharesShares

Argumentation system
(logical implication for Horn formulas)

Argumentation system
(logical implication for Horn formulas)

Has

Ontology
(JACK beliefset)

Knowledge
base

(JACK beliefset)

Knowledge
base

(JACK beliefset)

Has

Reasons about Reasons about

Figure 3. The system architecture for our proposed dialogue game protocol.

NOVEMBER/DECEMBER 2007 www.computer.org/intelligent 83

Execution is as follows. Initially, uses its argumentation
system to generate an argument supporting its initial proposition—
let’s say to invite a new Web service to join the community. It starts
a dialogue game according to the shared dialogue game description
by generating an event that corresponds to a move. It sends this event
to the interlocutor, . then uses its argumentation system
to determine its move (in this game that started) according to
the shared dialogue game description. executes its plan cor-
responding to this move, generates another event, and sends the event
to . This starts a new dialogue game—perhaps refuses
some of the inviter’s ’s joining conditions or rewards.
then determines the next dialogue game in accordance with the dia-
logue game description, and so on until the dialogue terminates. Con-
sequently, both agents can communicate using the same protocol,
because they can instantiate the same classes representing all events
and plans. For example, Event_Attack and Plan_ev_Attack implement the
Attack game.

Combining argumentation theory and Web services opens up
multiple research opportunities. For example, the dynamic

nature of a community calls for adaptable security mechanisms that
could be based on trust networks and role-based trust management.
Another opportunity is to examine alliances of Web services as a
means for structuring communities and forming collaborative part-
nerships among Web services in communities.

References

1. Z. Maamar et al., “Web Services Communities—Concepts & Opera-
tions,” Proc. 3rd Int’l Conf. Web Information Systems and Technologies
(WEBIST 07), 2007, pp. 323–327.

2. I. Rahwan, “Guest Editorial: Argumentation in Multi-Agent Systems,”
J. Autonomous Agents and Multiagent Systems, vol. 11, no. 2, 2006, pp.
115–125.

3. B. Benatallah, Q.Z. Sheng, and M. Dumas, “The Self-Serv Environment
for Web Services Composition,” IEEE Internet Computing, vol. 7, no. 1,
2003, pp. 40–48.

4. C.I. Chesñevar, A. Maguitman, and R. Loui, “Logical Models of Argu-
ment,” ACM Computing Surveys, vol. 32, no. 4, 2000, pp. 337–383.

5. H. Prakken and G.A.W. Vreeswijk, “Logics for Defeasible Argumenta-
tion,” Handbook of Philosophical Logic, 2nd ed., Kluwer Academic,
D.M. Gabbay and F. Guenthner, eds., vol. 4, 2002, pp. 219–318.

6. S. Parsons, M. Wooldridge, and L. Amgoud, “Properties and Complex-
ity of Some Formal Inter-agent Dialogues,” J. Logic and Computation,
vol. 3, no. 13, 2003, pp. 347–376.

7. J. Bentahar, B. Moulin, and B. Chaib-draa, “Specifying and Imple-
menting a Persuasion Dialogue Game using Commitments and Argu-
ments,” Argumentation in Multi-Agent Systems, vol. 3366, Springer,
2005, pp. 130–148.

8. P. McBurney and S. Parsons, “Games That Agents Play:A Formal Frame-
work for Dialogues between Autonomous Agents,” J. Logic, Language,
and Information, vol. 11, no. 3, 2002, pp. 315–334.

9. D. Walton and E. Krabbe, Commitment in Dialogue: Basic Concepts of
Interpersonal Reasoning, State University of New York Press, 1995.

10. W. Dowling and J.H. Gallier, “Linear-time Algorithms for Testing the
Satisfiability of Propositional Horn Theories,” J. Logic Programming,
vol. 1, no. 3, 1984, pp. 267–284.

11. P. McBurney, S. Parsons, and M. Wooldridge, “Desiderata for Agent
Argumentation Protocols,” Proc. 1st Int’l Conf. Autonomous Agents and
Multi-Agent Systems, 2002, pp. 402–409.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/csdl.

AgWSiAgWSi

AgWS jAgWSi

AgWS j

AgWSi

AgWS jAgWS j

AgWSi T h e A u t h o r s
Jamal Bentahar is an assistant professor of com-
puter science and software engineering at the Con-
cordia Institute for Information Systems Engi-
neering at Concordia University, Montreal. His
research interests include multiagent systems,
argumentation theory, logic and formal methods,
Web services, and grid computing. He received
his PhD in computer science from Laval Univer-
sity. He’s a member of the IEEE and ACM. Con-

tact him at Concordia Univ., Concordia Inst. for Information Systems Eng.,
1455 de Maisonneuve Blvd. West, EV007.640, Montreal, QC, H3G 1M8,
Canada; bentahar@ciise.concordia.ca.

Zakaria Maamar is an associate professor at the
college of information technology at Zayed Uni-
versity. His research interests include Web ser-
vices, software agents, and context-aware com-
puting. He received his PhD in computer science
from Laval University. Contact him at Zayed
Univ., College of Information Technology, Dubai
Campus, PO Box 19282, Dubai, United Arab
Emirates; zakaria.maamar@zu.ac.ae.

Djamal Benslimane is a full professor of com-
puter science at Claude Bernard Lyon 1 Univer-
sity. His research interests include interoperabil-
ity, Web services, and ontologies. He received his
PhD in computer science from Blaise Pascal Uni-
versity. He’s a member of the Laboratoire d’In-
foRmatique en Images et Systèmes d’informa-
tion—Centre National De la Recherche
Scientifique (LIRIS-CNRS). Contact him at the

Univ. of Claude Bernard Lyon 1, LIRIS Laboratory, IUT A Informatique,
18, Bld Niels Bohr 69622, VIlleurbanne Cedex, France; djamal.bensli-
mane@liris.cnrs.fr.

Philippe Thiran is an associate professor of man-
agement information systems in the University of
Namur’s Department of Business Administration.
His research interests include Web services, data-
bases, and distributed information systems. He
received his PhD in computer science from the
University of Namur. He’s a member of the PRe-
CISE Research Center. Contact him at the Dept.
of Business Administration, FUNDP-Univ. of

Namur, 8, rempart de la Vierge, B-5000 Namur, Belgium; pthiran@
fundp.ac.be.

