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Introduction. In classical algebraic geometry the adjoint curves to an
irreducible plane curve are an essential tool in the study of the geometry on
the curve. In this paper we shall give an algebro-arithmetic development of
the theory of adjoint curves, and shall extend the classical results to irre-
ducible plane curves with arbitrary singularities defined over arbitrary ground
fields. Our definition of the adjoint condition at a given singular point of the
curve is stated in terms of the conductor between the local ring of the point
and its integral closure. The fundamental properties of the adjoint curves
are then derived from corresponding properties of the conductor.

The single deepest and most important property of the adjoint curves is
that, on a curve of order m, the adjoint curves of order m — 3 cut out the
complete canonical series. This property is equivalent to the fact that the
degree of the fixed component of the adjoint series is twice the number of
conditions which the adjoint curves impose on the curves of sufficiently high
order('). We shall give two distinct and independent proofs of this proposi-
tion.

The first proof is a direct one, based upon a detailed analysis of the singu-
larities of the given curve. This analysis, to which part I is devoted, applies
equally well to algebraic number fields, and our treatment will include this
case with that of algebraic function fields of one variable.

The second proof is more indirect, depending upon the Riemann-Roch
theorem and a generalization of the classical representation theorem of the
differentials of the first kind. This proof, which will be given in part II, holds
only for plane curves whose function field is separably generated over the
ground field.

Part I. Local analysis of the singularities
1. Algebraic preliminaries. In this section we shall develop the basic

notation and results necessary for the local theory. The notation we establish
will be valid simultaneously for algebraic number fields and algebraic function
fields of one variable. Let Oo be either the ring 7 of ordinary integers or the

Received by the editors July 19, 1951.
(') For example, an adjoint curve to a curve with ordinary multiple points Pi, Ps, • • • , P,

of multiplicities n, r2, ■ • ■ , r, respectively is one which has an (/; — l)-fold point at each
Pi. In this case, the degree of the fixed component is 23<_i r<(f<—1), while the number of
conditions which  the adjoint  curves  impose on the curves of  sufficiently high  degree  is
zZ'i^nin-D/l.
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ring k[X] of polynomials in an indeterminate X with coefficients in an
arbitrary field k. Let F(F)Goo[F] be irreducible and let y be a root of F(Y)
= 0. Call Oo[F], 0o[y] respectively D and o. If K denotes the quotient field of
0, K is an algebraic number field or an algebraic function field of one variable
according as 0o is 7 or &[X].

If p is a maximal ideal in o, let Op be the ring of quotients of o with respect
to p. If po = pn0o, denote by 0p0 the quotient ring of o0 with respect to p0.
Op and 0p„ are local rings and, moreover, the completion o*0 of 0p0 is a subring
and subspace of the completion o* of Op.

It is well known that there exists at least one and at most a finite number
of valuation rings P¿ of K, i — \, 2, ■ ■ ■ , r, which contain Op (compare
Chevalley [2, Chapter I, Theorem 1 and Lemma l](2)). If öp denotes the
integral closure of Op in K, it follows readily that 5p = fi<_i Ri- Let m¿ be the
ideal of nonunits in Riy i=\, 2, ■ ■ ■ , r, and let m< = m¿nop. Then rrt< y^mf,
iy*j, mí nop = pOp for all i, j=l, 2, • • • , r, and the in/ are the only ideals in
öp which contract to pop in op (Zariski [12, p. 511 ]). It follows that
mi, m», • • • , m/ are the only ideals in 5P which are distinct from the zero
or unit ideals, whence Sp is a semi-local ring in the sense of Chevalley. Since
evidently R{ is the ring of quotients of öp with respect to m/ , i = 1, 2, • • • , r,
Proposition 8 of Chevalley [l, p. 700 ] implies that the completion ôp* of the
semi-local ring öp is isomorphic to the direct sum of the completions R * of

(1) op*^¿F*
•-i

On the other hand, let ty be the maximal ideal in O whose residue
(mod F(Y)) is p. Then o*0 can also be regarded as a subring and subspace of
the completion D| of O with respect to $. 0| is a complete regular ring of
dimension 2, and as such is a unique factorization domain (Cohen [4,
Theorem 18]). The following relation exists between 0| and Op* (Chevalley
[l, Proposition 5, p. 699]):

(2) 0p*^D*5/D*P(F).

Let F(Y) = Yl"=i F* be a factorization of F(Y) into irreducible elements
of Dfj, in which each factor F¿* is a nonunit in £)|. It is known that the zero
ideal in Op* is the intersection of prime ideals (Zariski [13, p. 356]). This im-
plies, together with (2), that F*t*F}*, iy*j. Define o/* = Og/F*, j = 1, 2, • • • ,
h. Then each o/ is itself a complete local domain. Moreover, the natural
homomorphism of 0| on o* maps Oo[F] onto a subring of o* which is iso-
morphic to o. Thus if 2¿* denotes the quotient field of 0j*, we may identify
K with a subfield of 2/*, j = i, 2, ■ ■ • , h. It can be further shown, by using

(2) Numbers in brackets refer to the bibliography at the end of the paper.
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Hensel's lemma (Cohen [4, Theorem 4]), that Op is then identified with a
subring and subspace of o¡*. Since the integral closure 5/ of of in 2/ is a
complete discrete rank 1 valuation ring, its contraction öf C\K is a valuation
ring of K containing Op. It follows readily that each 5/ is isomorphic to one
of the complete valuation rings R*, and that distinct of* correspond to dis-
tinct Fi*. We therefore conclude that ftgr.

Conversely, 0p*0 can be identified with a subring and subspace of Ri*,
i=l, 2, • • ■ ,r. Since F(F)=0 in Op, this implies that some F,* = 0 in R*,
whence it can be seen that F¿* is isomorphic to the corresponding complete
valuation ring of*. Thus r = h, and for a suitable ordering of the indices
Xf-öf, f-1, 2, ■ ■ ■ ,r.

Let So* be the quotient field of 0p*„. To simplify the exposition, we shall
identify K and S0* with their isomorphic images in 2*, shall identify 5,*
with Rf, i — \, 2, • • • ,r, and shall identify öp* with J^-i Rf. With this
identification each 2 * is a finite algebraic extension of 20*. Since F * and F,*
are relatively prime in 0|, iy*j, it can be further shown that £)|/D|F(F)
= 2^í-i 0|/0|F¡*, whence Op*^]Cí-i o¡* in view of (2). We see then that
Op* is identified in a natural way with a subring and subspace of öp*.

Let v¿, Vi* be the valuations whose corresponding valuation rings are re-
spectively Ri and Rf, i= 1, 2, • • • , r. We shall say that v, or v* has center p
in o.

Every element z£op* (or öp*) has a unique representation of the form
2= XXi *<i z¿£F¡*. We define vf(z) = v?(zi), i = l, 2, • ■ ■ , r. With this con-
vention, we shall call q*Cop* (or öp*) a valuation ideal or simply a vf-ideal
if z(EoP* (or ö*), vf(z) S: v?(q*), implies zEq*. We also agree to call the inter-
section of Vj-ideals, i=l, 2, • • ■ , r, in o, Op, or öp, or the intersection of
v¡*-ideals, i = l, 2, ■ ■ ■ , r, in Op* or öp* a complete p-ideal in its respective ring.
In the one-one correspondence between the primary ideals in Op and Op*
the complete p-ideals correspond in a natural way: q, q* correspond if and
only if vt*(q*) =v,-(q), ¿=1,2, • ■ • , r.

Let &o = 0o/po; ¿o is either the prime field with p0 elements or a finite ex-
tension of k. If &(p) =o/p, &(p) is a finite extension of k0. We define the de-
gree a\ of p to be, on the one hand, the number of elements in k(p) or, on
the other hand, [&(p):¿]. Furthermore the residue field A,- of Ri (or of R,*,
since their residue fields are isomorphic) is in turn a finite extension of k(p),
i=l, 2, ■ ■ • , r. We define the degree ¿¿ of v¿ (or v?) to be the number of
elements in Af or [A,-:&], as the case may be.

Let q'Cq be zero-dimensional primary ideals in any one of the rings con-
sidered above (including O and Op*). We allow q = (l). The additive group
of the ring q/q' can be regarded in a natural way as a finite-dimensional
vector space over k0, and in the algebraic function field case, a fortiori, as
a vector space over k. We define then dim q/q' to be the dimension of this
vector space over k. In the alternative case, we define dim q/q' to be the
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total number of elements in q/q'. We also say a given set of elements of q
are linearly independent modulo q' if, on the one hand, their residues are
linearly independent over k or, on the other hand, are distinct elements of
q/q'-

The notion of the degree d(q) of a valuation ideal or complete p-ideal q
will be of considerable importance in the sequel. We define d(q) =¿¿v,(q)
or d(q) = XX-i d{Vi(q) according as q is a v,-ideal or complete p-ideal in o, Op,
or öp; and define d(q)=d(v*(q) or d(q) = XXi diV*(q) according as q is a
vf-ideal or complete p-ideal in Op*, öp*, of, or Rj*.

If q'Cq are each vrideals, vf-ideals, or complete p-ideals, it is easily
verified that dim q/q' ^d(q')—d(q). Moreover, it is a direct consequence of
the independence of places that dim q/q' = d(q') — d(q) if q, q' are valuation
ideals or complete p-ideals in any one of the integrally closed rings öp, op*,F¿*,
and hence, in particular, that d(q) ^dim (l)/q.

For valuation ideals or complete p-ideals in o, Op, Op*, or of*, we shall also
introduce the integer 8(q) =dim (l)/q. Thus ô(q) ^d(q). We shall see in part
II that this integer has a special geometric significance. If q'Cq is also a
vt-ideal, vf-ideal, or complete p-ideal in o, Op, Op*, or of, as the case may be,
we have dim q/q'= dim (l)/q' —dim (l)/q, whence

(3) dim q/q' = <5(q') - 8(q) á d(q>) - d(q).

This inequality leads finally to the concept of a regular ideal.
Definition. A v,-ideal, vf-ideal, or complete p-ideal q in o, Op, Op*, or of

is called a regular ideal if, for any Vi-ideal, vf-ideal, or complete p-ideal
q'Cq. we have

(4) i(q') - 5(q) = rf(q') - d(q).

2. Some properties of the conductor.

Theorem 1. If (Sf is the conductor between R* and of, i=\, 2, • ■ ■ , r,
then (Sf is the largest regular ideal in of.

Proof. To simplify the notation, we drop the subscript i. Let ZoC<S*,
v*(z0)=v*((S*). If zGR* and v*(z) èv*((S*), then v*(z/z0)èO, whence z/z0
GF*. Thus z = Zo(z/zo)CÊ*, whence (S* is in fact a v*-ideal.

Let q*C<S* be a v*-ideal, and let a = v*(q*) — v*((S*). If ©* is the ideal in
R* of value a, dim R*/<B>*=da. If fy, j=i, 2, ■ ■ ■ , da form a basis for R*
modulo ©*, the elements Zof i are in (S* and are linearly independent modulo
q*, whence ô(q*) -5(6*) ^ad, while 5(q*)-ô(S*) ^ad by (3). We conclude
that (S* is a regular ideal in o*.

We shall now show that for any regular ideal W* in o*, 2fî*C(S*. It will
suffice to prove:

(5) a C R*. v*(z) ^ v+(2K+)    imply    z G o*.
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For if zER*, <pGM*, v*(z<£)^v*(9>?*) whence zd,Co*. Hence </>C6*, and
so 5TJJ*C(S*.

Let zGF*, v*(z) e£ v*(UTJÎ*). Denote by {qf} the sequence of v*-ideals in
0*; and let v*(z) =b. We construct a sequence of elements zyCq*+i> J = 0» L 2,
• • • , such that v*(z— 2Z*=0 z;) >v*(q*+ft) for every integer h. Suppose z¡,

j = 0,1, • • • , fe—1, have been constructed. Since qUV/iCSD?*, q*+A is itself a reg-
ular ideal, and so 5(q*+Ä+i)-5(q*+„) =d. Let ¿CF* with v*(t) =v*(q*+n). The
previous equality implies at once that for any «ÇA, there exists an element
rçGq*+A such that the residue in A of rj/t is a. It follows from this remark
that we can find an element Zz¡Cq*+A such that v*([z— X^=o zj]~zh)>v*(t),
whence v*(z— 2^*_0 zf) >v*(q*+„), as asserted.

Since f\fL0 qf = (0) and since o* is complete, it follows from Chevalley
[l, Lemma 7, p. 695] that the series Xw" o zi IS convergent in o* to an ele-
ment z*. Since by construction v*(z —z*) = <», z —z* = 0, and hence zÇo*,
which proves (5).

On the basis of the preceding analysis, we prove two theorems concerning
the conductor (Sp between op and Op. The first theorem gives the complete
structure of (Sp, while the second gives a valuation-theoretic characterization
of (Sp.

Theorem 2. Let (Sp* be the conductor between öp* and Op*, and let wf be the
residue in of of the elements YLi^i Ffi * = 1» 2, • • •, f. Then

Gp* = ¿ Sf«,*,    (Sp = (Sp* r\ op,    and   (Sp* = 0p*(Sp.
t=i

Theorem 3. Sp is the largest regular p-ideal in Op.

We prove both theorems simultaneously. Let flf = JX^i F?> *
= 1, 2, ■ • • , r, and let Q* be the ideal (flf, fl2*, ■ • • , flf) in £>|. Since
D|F(F)=lXi 0|flf, it is easily verified that Cl*/0|F(F)= 2Xi of«,*.
In view of the identification of Op* with a subring of öp*, it follows that
¿jî-i ofwf Cop* and hence also >i_i (Sfwf Cop*. The first assertion of Theo-

rem 2 thus has a meaning. In addition, it follows that (S*= /%-i (Sfwf is
an ideal in Op* and, since (S* is manifestly the conductor between öp* and
2Jt-i ofwf, that (S*C6p*- The proof that (S*CS* depends upon two asser-
tions:

(a) 6* is a regular ideal.
(b) No ideal containing (S* properly is a regular ideal.
Let q*C(S* be a complete p-ideal in Op*. Denote by Qf, i=i, 2, ■ ■ ■ , r,

the vf-ideal in of such that vf (Ofwf) = vf (q*). If zCq*, write z— XX-1 s¿>
Zi<ER?. If 0,- = Zi/wf, t = l, 2, ■ ■ ■ ,r, vf(</>i)èvf(Of)èvf((Sf), whence 0¿
Cof, and, in fact, (biEiQ,?. Thus z= Xli-i #t<»>i\ an<3 it follows that q*
= Si-i Of»»*. In particular, this implies that (S* is a complete p-ideal.

Since,  by Theorem 1,  each (Sf is regular,
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5(Of)-5((Sf)=¿,[vf(Of)-vf((Sf)], * = 1, 2, • • • , r,
whence 5(q*)-8(1*) = Sí.! d,[rf (Of)-^í*(@f)] =d(q*)-d(i*). Thus g*
is a regular ideal as asserted in (a).

Consider now the complete ideals 21/ in Op* defined by the relations:

vf(kr) = *f@*) - 1.    rJKff) = vf(6*), k y* j, j = I, 2, ■ ■ ■ , r.
If q*D(S* properly isa complete p-ideal in Op*, q*Z)2lf for some j. To prove
that q* is not a regular ideal, it is sufficient, in view of (3), to show that

(6) i(S*) - K%n < di, j = 1, 2, • • • , r.
For definiteness, take 7 = 1, and suppose zGSIf • Write z= ^î„i z¿, ZiÇzR*.

By assumption, vf (z.) ̂ vf((S*) =vf (Sfwf), for all *>1, whence z,G®f«fi
*>1. It follows that we can find an element z'Ç(S* such that z — z'=zi. If
Z, Z' are representatives of z, z' in 0|, this implies that Z — Z'=d>flf,
$CO|. If <£ is the residue of <£ in op*, we conclude that z=</>wf (mod (S*).
This implies in turn that dim 2If/(S*i2dim qf/Sf, where q* is the vf-ideal in
of immediately preceding (Sf. By Theorem 1, dim q*/(Si* = S((Si*) —¿>(qf) <dj.
This proves (6) and hence also (b).

Suppose now zGSp* and z(£(S*- Then for some i, say i — i, v*(z) <v*((S*).
Define the complete p-ideals 33f, 3)* in öp*, as follows:

viW) = vi*(6*) - vi*(z) - 1, v,*(Si*) = vf(I*), ¿>1;
vf(3)f) = vf(ë*) - vf(2), vfCDf) = vf(S*), í > 1.

There exist di elements ypi, ¿=1, 2, ■ ■ ■ , di, in 53* linearly independent
modulo jD*. The di elements zipi, î = 1, 2, • • • , du are then in 2ff and are
linearly independent modulo (S*. Thus 5(6*) — 5(?(f) =di, in contradiction to
(6). Therefore (Sp*C(S*, which proves the first assertion of Theorem 2.

It follows from the one-one correspondence between the complete ideals
in Op* and Op that (Sp*Mop is a regular ideal, while for each i=i, 2, • • ■ , r,
StfHop is not a regular ideal, and also that (Sp* = 0p*((Sp*P\0p). The argument
vvhich proved that (SP*C(S* can now be repeated to show that (SpC(Sp*/^0p.

Conversely, if zC(Sp*P\Op, r/Cöp, z?7G0p*rAöp = 0p, whence (Sp*P\0pC(Sp.
Hence (Sp*P\0p=(Sp, which completes the proof of Theorem 2.

To complete the proof of Theorem 3, it remains to show that every regular
ideal in op is contained in Sp. It will suffice to prove that if 9JÎ* is a regular
ideal in Op*, then 9Dî*CSp*- Suppose zCop* and vf(z)^vf(W*). Define an
ordered sequence {q»f} of complete p-ideals in op* by the relations: vf(q„f)
= v*(z)+m, i=l, 2, ■ ■ ■ , r. Since qm*C30li*, c\n? is a regular ideal, m
= 0, 1, 2, • ■ • , r. It follows as in the proof of Theorem 1 that we can con-
struct elements zmCq»f, m = 0, 1, 2, • • • , such that, for each integer h,
v*(z- X)m=o Zm)>W(q*,+»), ¿=1, 2, ■ • ■ , r. Since q^+iCq*», rC=0q* = (0),
and Op* is complete, it follows again from Lemma 7, Chevalley [l, p. 695],
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that the series 2Z„=0zm converges toan element of Op*, and hence that zCop*.
We conclude at once that 2tt*C(Sp*. Q.E.D.

3. Semi-groups of positive integers. In order to establish a deeper prop-
erty of the conductor, we must first consider certain arithmetic properties
of integers which can be expressed in a specially designated way as a linear
combination of n positive integers bi, b2, • • • , bn.

Let Ki = (bi, bz, ■ ■ ■ , bi), ¿=1,2, • • • , n, and let 52, s3, • • • , sn be another
set of positive integers. We shall be interested in linear combinations of
bi, b2, ■ ■ • , bn with non-negative coefficients which for i = 2, 3, • • ■ , n are
respectively <s»(k,_i/k,). An integer which can be written in this fashion will
be called a proper combination of bi, b2, • • • , bn. We denote by
Rm(bi, bz, ■ ■ ■ , bn) the set of integers which can be expressed in exactly m
distinct proper combinations of bi, b2, • ■ ■ , bn. For any integer c, if
cGFm(6i, bz, • ■ ■ , bn), we shall write x(c) =m.

We shall also have to consider linear combinations of bi, b2, • ■ ■ , bn with
positive coefficients which for i = 2, 3, ■ ■ ■ , n are respectively ^s»(/Ci_i/x,).
Such a linear combination of bi, bz, ■ ■ ■ , bn will be called proper+, and
Rm(bi, bz, ■ • ■ , bn) will denote the set of integers expressible in exactly m
distinct proper-1- combinations of b\, b2, • • • , b„.

Let d = YL"-2S>- We define two integers pa(bi,bz, ■ ■ ■ ,bn),vd(bi,b2, • ■ -,b„)
which will be important in our considerations: pd(bi, bz, ■ ■ ■ , bn)
= 2^.a Si(Ki-i/Ki)bi, vd(bi, b2, ■ ■ ■ , bn)=pd(bi, b2, ■ ■ ■ , bn) + \— Yl"=i b<-

Theorem 4. Assume (bi, ■ • ■ , bn) = 1. Then
(a) if ctvd(bi, • • • , bn), cERd(bi, ■ ■ ■ , bn);
(b) vd(bi, ■ ■ ■ , bn)-lGRd-i(bi, ■ • • , bn);
(c) B^o"''6"'"1 XW =2-H-vd(bi, ■■■, bn).

Proof. We establish a sequence of shorter propositions which together
will form the proof of the theorem.

(d) If c>pd(bu bz, ■ • ■ , bn), then cGRt(h, ■ ■ ■ , bn).
If n = 2, (bi, bz) = 1, s2=d. The relation c — xzb2=c — Xzbz (mod bi) implies

x2=x{ (mod bi). It follows that c— z2bz = 0 (mod bi) for some integer z2 such
that 1 ú.zzúbi. If Opd(bi, bz) =dbib2, it follows thatc— (z2+rbi)bz isa positive
multiple of h for r = 0, 1, 2, ■ • • , d—l. On the other hand, if c=yiei-f-y2¿>2
is a proper combination of bu b2, yz=Zz+rbi for some r = 0, 1, ■ • • , d—l.
Hence c£Rd+(bi,bz).

We proceed by induction. Since (¿>i/k„_i, • • • , ¿>„_i/Kn_i) = 1, we can ap-
ply induction to these n — 1 integers. Observe also that Si(K»_i//c,»_i)/(jCi/Kn_i)
= 5í(kí_i/k»), i = 2, 3, ■ ■ ■ , n — 1, so that the upper bounds on the coeffi-
cients of bz/Kn-i, ■ ■ ■ , &„_i/k„_i are the same as those of b2, ■ • • , bn-i-

Let d'= Y\j-i s«'i so that d = d'sn. Since (*cn-i, bn) = l, c—(z„+rKn-i)bn
= 0 (mod k„_i) for some z„ such that 1 ^zn^Kn-i and for r = 0, 1, ■ • • , s„ — 1.
Let cr=(c— (zn+rKn~i)bn)/Kn-i, r = 0,  1, • • • , s„ — i.   Now,   by  definition,
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Pd(h, b2, ■ ■ • , bn) =K„-ipd>(bi/Kn-i, • • • , bn-i/Kn-.i)+SnKn-ibn- It follows from
thiseqxiaiity that each cT>pd>(bi/Kn~i, • • • , bn-i/Kn-i), sincec>pd(bi, b2, ■ ■ ■ ,
bn). Hence by induction crGRd'(bi/Kn-i, • • -, 6„_i/icB_i), r = 0, 1, • • • ,
sn— 1. Thus cCF„(6i, b2, ■ ■ ■ , bn) with a^snd'=d. On the other hand, if
c—ynbn = 0 (mod Kn-i) with0<y„^snK„_i, yn = Zn+>'Kn-ifor somer = 0,1, • • -,
sn — 1. We conclude that cÇ£Rd(bi, b2, ■ • • , b„).

(e) If c^vd(bi, bz, ■ ■ ■ , bn),thencE:Rd(bi,bz, ■ ■ ■ , bn).
In fact, if c^vd(bi, bz, • • ■ , bn), c+ JXi bi>pd(bi, b2, ■ ■ ■ , bn), whence,

by (d), c+ £,»_, bi^Rt(bi, bz, ■ ■ ■ , bn). Thus cGRd(bi, b2, ■ ■ ■ , bn).
(f) pd(bi, bz, • ■ • , bn)GRd-i(bi, bz, ■ ■ ■ , bn).
For the case n — 2, pd(bi, bz) = dbibz- The representations of dbibz are all of

the form dbib2 = (db2 — rb2)bi+(rbi)b2, whence the proper4- representations of
dbibz occur for r = l, 2, ■ • • , d—i.

We use induction once again. Since Pd(bi, b2, ■ ■ ■ , ¿>n)—0 (mod Kn-i)
and since (/c„-i, bn) = i, every proper4- representation of Pd(bi, b2, • ■ • , bn)
is of the form ^"lí Zibi+rKn-ibn, r = \, 2, • ■ ■ , sn. Furthermore eT
= (Pd(bi, • • • , bn)—rHn-ibn)/Kn-i=Pd-(bi/Kn-i, • ' • , bn-i/Kn-i) + (sn-r)bn,
r = \, 2, ■ ■ ■ , sn. By (d), e, = FÍ(&i, bz, ■ ■ ■ , bn), t'=l, 2, • • • , sn-l. By our
induction hypothesis een(E.Rd>-i(bi/iCn-i, • ■ • , Z>„_i/k„_i). Consequently
Pd(bi, bz, ■ ■ • , bn)G.R£-i(bi, b2, • ■ ■ , bn).

(g) vd(bi, bz, ■ ■ ■ , bn) — 1 ERd-i(bi, b2, • • • , K).
This follows at once from (f) and the fact that Pd(bi, b2, ■ • • , bn)

= Vd(bi, bz, ■ • • , bn) — 1+ XX i bi-
(h) For any c, if cE.Ra(h, b2, • ■ • , bn), then a^d.
The statement: for any m, if mÇHRa(bi, b2, • ■ ■ , b„), then a^d, is proved

in the same manner as (d). Applying this remark to m = c+ ^f}=i bi will
prove (h).

(i) If c?¿Vd(bi, bz, ■ ■ ■ , bn) — l and cERa(bi, b2, ■ ■ ■ , bn), then
Vd(bi, bz, • ■ • , bn) — 1 — cGFd_0(&i, bz, ■ ■ ■ , bn).

Consider first the case w = 2. If cÇzRa(bi, b2), we can find an integer z2,
0^z2<bi, such that c=zi&i+Z2&2- All the representations of c are then of the
form c = (zi — rbz)bi+(zz+rbi)bz, and the proper representations occur
for r = 0, 1, •••, a —1. Hence (a — i)bz^zi<ab2. Since Vd(bi, b2) — \
= [(d — i)b2— l]èi + (èi — l)bz, it follows that vd — '\.—c=yibi+y2b2 with

yi = (d — l)b2 — l—zi, whence (d— 1— a)b2^yi<(d — a)b2, and with y2 = &i—1
— z2, whence Q^yz<bi — 1. We conclude that (yi — rbz)bi + (y2+rbi)bz are
proper representations of vd— 1— c if and only if r = 0, 1, • ■ ■ , d — a — 1.
Hence vd—l—cERd-a(bi, b2).

We proceed by induction. Assume cGF0(¿>i, b2, ■ ■ • , bn). If c— znbn
= 0 (mod k„_i) with 0^Zn<Kn-i, let, as above, cT = (c— (zn+rKn-i)b„)/Kn-i,
r = 0, 1, • • • , sn — 1. It is clear that distinct representations of cr as a proper
combination of ¿>i/k„_i, ■ • ■ , bn-i/Kn-i will yield distinct representations of
c as a proper combination of bi, b2, ■ ■ ■ , b„, and will, in fact, give all possible
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proper representations of c. If then crGÄ«w(Ji/tn-i, • • • , bn-i/Kn-i), it fol-
lows that a= X)*"!)1 a(r)-

By induction, vd- — 1 — crGRd'-a(r)(bi/Kn-i, • • • , ¿>»_i/kb_i), r = 0, 1, • • • ,
sn — 1. We have p,,—1 =k„_i(j'<,< —l)-f-(sBKB_i—1)6„. Therefore, if r#-*l— c,
= Z)"= i1 Zí(&í/kb_i), then vd — 1 — c = X"= i1 Ziii+(sBKB-i — 1 - (zB+rKB_i))&„.
This shows that every proper representation of vd' — 1 — cr gives rise to a rep-
resentation of c as a proper combination of bi, b2, • • • , bn, and hence there
are at least   /.^"Ti1 (d' —a(r)) =d — a proper representations of vd — \ —c.

On the other hand, iîvd—l—c= 2I?=iy»&», theny„=snKn„i — 1 — (z„+r/cB_i)
for some r = 0, 1, • • • , s„—1, and so ("¿/ — l—er= ^Z^i1 yi(bi¡Kn-i). Thus
every representation of vd — 1 — c arises from one of v# — i — cr for some integer
r = 0, 1, • • • , Sn — 1. Hence vd—i—c£Rd-a(bi, b2, • • • , b„).

(j). Proof of (c).
It follows from (i) that for every integer c<vd, xM+xC'V-■ 1 ~~c) ~d. We

consider the pairs of integers: c, Vd — l—c. If vd is an even integer, we have
exactly 2~lvd distinct pairs, and hence J^íV x(c) =d(2~lVd). If vd is odd,
there are 2~1(vj— 1) distinct pairs in addition to the single integer 2~1(vd — 1)
which is paired with itself. Since (i) implies that 2_1(^<i — l)CFa/2(ôi,&2, • • -,&B),
we conclude that X^io1 xW =d(2-1(?'í¡—l))+2-1d = 2-1dí'(¡. This completes
the proof of the theorem.

We conclude with two arithmetic results which we shall need in the next
section.

Lemma 1. Assume ô»>s»-_i&,_i(k,_2//c»_i), i = 3, 4, • • • , n. Then there exist
non-negative integers ya,j = i, 2, ■ ■ ■ , n — 1; i=j+l, ■ ■ ■ , n, such that

(a) (k<_i/k,)&»= X)]:J yijbj, i = 2, 3, ■ ■ ■ , n;
(b) 0á7y— YX-i+1    JmiiSm — l)<(*/_lAy),    j = 2, •••,»— 1;    i=j+l,

• • ■ ,n;
(c) 0^7»i- XX=2 7ml(sm— 1), i = 2,  3,   •   •   •  , W.

Proof. We first prove the assertion:
(d) Let c be an arbitrary integer divisible by k„ and let a2, a3, ■ • ■ , an be

given integers. Then we can write c= J^"-i z¿^¿ with a.-^z,<a»+(Kt_i/K,-),
t = 2, 3, • • • , m.

Since (k„_i/kb, è„//cB) = l, (c/Kn)—Zn(b„/Kn)=0 (mod kb_i/kb) for some z„
such that aB^zB<aB+(KB_i//c„). Hence c — znbn = 0 (mod /cn_i), and (d) fol-
lows by induction.

As for the lemma itself, if w = 2 we have (bi/K2)bz= (bz/Kz)bi. Thus
721 = (bz/xz). We proceed by induction. Applied to the integers bi, bz, ■ ■ ■ , bn~i,
we may assume the existence of integers y a, i=l, 2, • • ■ , n — 2; i=j
+ 1, • • • , n— 1 which satisfy (a), (b), and (c).

Let aj= Xm=m y<nj(sm—i), i = l, 2, ■ • • , n — 2, and let a„_i = 0. Since
(Kn-i/Kn)bn is divisible by k„-i, we can apply (d) to it and to the integers
a2, a3, • • ■ , a„-i, as just defined.  We conclude that there exist integers
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Y»i. 7*2, • • • , 7»B-i such that (kb_i/k„)&„ = XXi1 7»A and 0á7„y —a,-
<(kj_i/kj), j = 2, 3, ■ ■ • , n — 1. Hence the integers ynj, j = i, 2, • • ■ , re —1,
satisfy (a) and (b). The proof will be completed by showing that 7„i satisfies
(c)—that is, 7„i ^ ai.

n—1 B—1

7nl&l  =   (<íB-lAB)6B  —   S ynjbj è   (Kn-i/Kn)bn —   J]  (a¿ +   (KJ-lAí)   "~   l)*i,
3=2 j=2

whence it will suffice to prove that (kb-i/kb)£>„— ̂ JfZ2 (ay+(Ky-iAí) — 1)^'
^aibi. Using the definition of the integers ay and condition (a), this last
inequality can be rewritten, as follows:

(e)    bn-  ZU  (Si(Ki-l/Ki)-l)bi^O.
Since by hypothesis 6, >Sí_i&,_i(k,_2/k¿-i), i = 3, ■ • • , n, it follows that

bn  >  î»-l&n-l(Kn-îAn-l)   =   [¿*-i(k»-«A*-i)   —   l]2>„__i-f- bn-l,

and (e) follows by induction. Q.E.D.
Let R(bi, ■ ■ ■ , bn) denote the set of integers which may be written as a

linear combination of &i, • • • , bn with arbitrary non-negative integers.

Lemma 2. Assume bi>Si-ibi-i(Ki-z/i<i~i), i = 3, ■ ■ ■ , n. Then
(a) If cER(bu b2, ■ • ■ , bn), then cCF„(6i, b2, • ■ ■ , bn) with a^l.
(b) If C> (bn/ Kn)(Kn-l/ K-n) , KncER(h,   •   '   •  ,  &„).
(c) Define ti=ti-iSt-i(Ki-Jt/#{-.i), i = 3, • • ■ , n, with tz an arbitrary positive

integer. Then (kb-iAb)¿» = ¿2 + Y^tisAKt~iß'*») —1)*¿

Proof. If cCF(&i, • ■ ■ , ¿>B), c = X"-i ¡y«&»i y<^0. Write y„ = r„(Kn_iA»)
+ z», 0^z„<(kb_i/k„), rn^0. Since (kb_i/kb)6b= S^Ti1 7„y&y and 7„yè0,
7 = 1, 2, ■ ■ • , w, it follows that c= 2Z"ri y,'è»-f-zB6B with y,'^0, ¿ = 1, 2, • • -,
n — 1. Thus by induction we conclude that that c= XXi zi°» s» = 0, f = 1, 2,
• • • , n, and 0,<(k<_i/k,), î' = 2, • • • , re. Thus c may be written as a proper

combination of bi, b2, ■ ■ ■ , b„ in at least one way, and hence c
ERa(bi, bz, • ■ ■ , bn) with a^l.

Take n = 2, and suppose c>(bz/K2)(bi/Kz). As in Theorem 4, (d),
c = yi(bi/Kz)+yz(b2/K2), y;si0, i=i, 2; whence K2cÇ.R(bi, b2). We use induc-
tion. If c>(èB/(cB)(/£B_i/icB), there exists an integer zn with 0 5|z„ < (kb_i/kb)
such that c — Zn(bn/Kn) =0 (mod (Kn_iA„)). Denote the integer (Knc — z„b„)/ku-i
by  c'.   Since  c >(&„/«„) (kb_iA„)   and   z„ is (k„_i A„) — 1,   it  follows   that  c'
> [(bnKn-l/ Kn) - ((Kn^l/ Kn) — \)bn]/ Kn-1 = (bn/ Kn).       bn > S„_i&b_i(kb_2/kb_i)       by
hypothesis, and í„_i^1, so that c'>(2>b_i/kb_i)(kb_2/kb_i). By induction,
Kn~ic'ÇiR(bi, ■ ■ ■ , bn-i). Since kb_ic' = k„c —zn2>B, (b) is proved.

(c) is established in the same way as part (e) of Lemma 1.
4. A generalization of a theorem of Seidenberg. Seidenberg [7 ] has given

a detailed analysis of the valuation ideals in a polynomial ring in two inde-
pendent variables over an algebraically closed ground field. As a special
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case of his theory one can obtain the corresponding analysis for the valua-
tion ideals in a nonhomogeneous coordinate ring of a plane algebraic curve
(over an algebraically closed ground field). The main tool in his work is the
construction, for a given valuation, of a special set of polynomials intrin-
sically associated with the valuation (Theorem 6).

We shall generalize this construction for valuations of an algebraic func-
tion field of one variable over an arbitrary ground field and for discrete
valuations of an algebraic number field.

Denote by 7Ti the irreducible monic polynomial in X with coefficients in
k or the rational prime integer which generates the prime ideal po in Oo. Let
7Ti, ttz be a basis for the prime ideal p in o. If we assume that 7r2 is a monic
polynomial in y whose coefficients are, in the one case, in k[X] of degree less
than degx 7ri or, in the other case, non-negative integers less than 7Ti, then
7T2 is uniquely determined. Clearly every element of o is congruent modulo p
to a polynomial in y of degree less than deg¡, ir2. Let rji, i=\, 2, ■ • ■ , dp, be
elements of o which form a basis for o modulo p and such that deg„ rn <deg„ tt2.

Theorem 5. Let v be a valuation of K with center p in o. It is possible to
construct a set of elements ir3, irt, ■ • ■ , 7r„ in o which together with tti, tt2 satisfy
all the following conditions:

(a) 7T» may be written as a monic polynomial in y with coefficients in Oo,
i — 3,---,n.If degy 7r,=/», i = 2, • ■ ■ , n, and if v(7r») =&,-, i= 1, 2, • • • , re,
while Ki = (bi, ■ ■ ■ , bi), there exist positive integers s2, s3, ■ ■ ■ , sn such that

(b) tz = siand ti = ti-iSi-i(Ki-2/Ki-i),i = 3, • ■ -, re;
(c) &»>5»_iO,_i(k,_2/kí_i), i = 3, ■ ■ ■ , re;
(d) If d = the degree of v, then d = d9 Yl"=2 s i ; moreover,
(e) (bu bi, • • • , ô„) -1 ;
(f) If<peo,v(d>)eR(bi,bz, ■ ■ ■ ,bn);
(g) If {qy} denotes the sequence of v-ideals in o, then the monomials

i)hY\s-i ^V with h = \, 2, • • • , dp and ai<Si(Ki_i/K¡), i = 2, 3, • ■ ■ , n, of value
v(qf) form an independent basis for q,- modulo q,+i.

Proof. For brevity, we call a monomial 77/» XIi-171"?* with a,<Si(K»_i/K,),
î' = 2, 3, • • ■ , r, a canonical product of «i, • • • , irr. If </>Co can be expressed
as a linear combination (with coefficients in k or in 7, as the case may be) of
canonical products 7Ti, • • • , irr, we shall write <pCzR(iri, ■ • • , w,).

It will be convenient to add the statement:
(h) if deg„ <b<ti for some i, then <££F(7ti, • • • , ir,_i) and v(<p)

£R(bi, ■ ■ ■ , bi-i).
If deg„ 4><tz, it is clear that <b= /fût CiVha^W a.-^O, and c¿G& or c,C7,

i = \, 2, ■ ■ • , m, whence (h) holds in this case. Assume that w3, ■ • • , tt,
have been constructed satisfying (a), (b), (c), and (h). Then bi, ■ • ■ , bT
satisfy the hypothesis of Lemmas 1 and 2. Let o~i = Y¥s-\ '"'iyii\ ¿ = 2,3, • • •, r,
where the 7,7 are the integers whose existence is asserted in Lemma 1. Also let
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&i = (íTi(,íi_l/'íi)/<ri), i = 2, 3, ■ ■ ■ , r. By the definition of 7»y, v(<t.) = (kí_i/k,)¿),-
and v(i^,)=0, i = 2, 3, ■ ■ ■ , r.

As part of our induction hypothesis, we shall assume: if a2 = y and a,-+i
=^,-, ¿ = 2, 3, • • • , r (~ denotes the residue, modulo the ideal of nonunits,
of an element of the valuation ring of v), then

(i) Si= [k0(a2, • • • , ai+i):kü(a2, • • ■ , ai)], i = 2, 3, • • • , r — 1.
We define sr by (i) and proceed to construct an element 7rr+i in o satisfying

(a), (b), (c) and (h). There exists a unique polynomial gr(a2, • ■ ■ , ar, Z)
with coefficients in ko, monic in Z of degree sr, whose degree in a,-<5,_i,
i = 2, 3, ■ ■ ■ , r, and which is zero for Z=ar+i. Let gr' (y, fa • • • , ^r-i, Z) be
a monic polynomial obtained from gT by replacing a2 by y, ai+i by \f/i, i
= 2, • • • , r—í, and each coefficient by a representative in Oo.

It follows directly from part (b) of Lemma 1 that JJil] o?-1 divides ov
in o; and hence by the construction of g'T and the definition of ^»,
ofgt(y,fa ■ ■ • ,WGo.

We define irr+i to be <rs/-gf(y, fa ■ • • , ^v). By construction

y(gr(y,fa ■ ■ ■ ,fa)>o,
whence v(7rr+i) >v(asrr) = sr(/cr_i/Kr)br. Hence (c) holds for 7Tr+i.

The proof of (a) and (b) depends upon the following assertion:
(j) deg„ o\<deg¡, tv\h-1,h) = (kí_i/k,-)<¿, i = 2, 3, ■ ■ ■ , r. For ¿ = 2, o-2 is a

power of 7Ti whence deg¡, <r2 = 0. Assume (j) for a2, • • • , o>_i. By definition,
deg„ (r»= 23y-2 lijtjt i = 3, ■ ■ ■ , r. Combining these relations with the in-
equalities 7,y g (Ky-i/xy) -1 + XXj+i Y«y(*«—1). j = 2, 3, ■ ■ ■ , r —1, a direct
computation yields deg„o-r< ^,I2 IA» — l)deg¡,o-¿+(/c,_iA») — 1)/»]. Applying
(j) for i <r, we obtain degy ar < ^ZílJ (s,-(ifi_iA») — 1)/» < (/ír_i//cr)/r by Lemma
2.

The conclusion to be drawn from (j) is the following: the term of
highest degree in y in 7rr+i is either less than or equal to the degree in y of
öi=y*1-1<r*rTJ;=2i/'ii"1, or is equal to the degree in y of ö2 = ir*r("r-l/'ir>, since
deg„ 0i = deg„ <rr- XX2 IA.-1) deg„ <Ti]+Si — 1+ S-s fo—l )(«*-! A<)*i-
It follows from Lemma 1 that

f—1 r—1

deg„ o-r — X (*< — !) dega o-, ̂  2 ((k.-iA¿) — l)k
t'=2 »'—!

whence deg¡, 81 ¿Si —1+^,;2 (s»(kí-iA«') — 1)'»- Since si = ¿2 and srèl, it
follows from Lemma 2 that deg¡, 0i<sr(Kr_i/Kr)¿r = deg,, ô2.

Thus 7rr+i is indeed monic in y of degree tr+i = sT(nr-i/Kr)tr.
Suppose 0£o and deg„ <p<tr+i. Since 7rr is monic in y we may write

<P=<Po+<t>iTrr • ■ ■ (peir*, e<sT(Kr-i/Kr), and deg„ <bi<tr (by (b)). Hence by in-
duction 0»CF(7Ti, • • • , iTr-i) and <p(E.R(iri, • ■ ■ , irr). The proof that v(<f>)
CF(¿>i, • • • , br) depends upon a portion of (g), namely:
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(k) The canonical products of *i, • • • , xr of value v(qy) are linearly
independent modulo qJ+i.

For we already know that <p is a linear combination of canonical products
of 7Ti, • • • , xr, and (k) shows that v(<b) is equal to the minimum value of the
canonical products which occur in the expression for <b. Hence v(<p)
ER(bi, ■ ■ • , br).

To prove (k), proceed inductively, observing that (k) certainly holds for
the canonical products of Xi (if any) of value v(q,-). Assume (k) for canonical
products of 7Ti, • • ■ , 7Tr_i, and let f = ?5Lt c£t be a linear combination of
canonical products f» of an, • .• • , 7rr in which v(qy) = v(f»), i=l, 2, ■ ■ ■ , m.
We must prove that f Cqy+i-

We first prove:
(1) A power product %= LTi=i ""?' with a¿>0, =0, or <0, and with v(x)

= 0 may be expressed in the form XIt=2 '/'í"*. fw»>0, =0, or <0. In fact,
¿Jt-i a fi i = 0, whence ar = mr(Kr^i/Kr) for some integer mr>0, =0, or <0. Thus
X=4'?'<Tr"r YIa-Wí'- Since cr™rTJjl} -wf is a power product of Xi, • • • , xr~i
and since v(\pr) =0, (1) follows readily by induction. An immediate corollary
of (1) is that (£Vffc)G&o(o!2, • • • , ov+i) for all i, k = l, 2, ■ ■ ■ , m.

If e» = exp xr in Çit we may assume that max (eu ■ ■ ■ , em)>0 and, for
definiteness, that ei = min (ei, ■ ■ ■ , em). It follows at once from the preced-
ing remark that (f/fi) is a polynomial P(ar+i) in ar+i with coefficients in
ko(a2, ■ ■ ■ , ar). Since e»<ir(Kr_i/Kr) for each i, degz P(Z) <sr. But if f
Cqy+i, v(f) > v(J"i) whence (f/fi) =0 =F(ar+i), in contradiction to the fact
that aT+i satisfies no polynomial of degree <sr with coefficients in
k0(az, ■ ■ • , ar).

We have thus succeeded in constructing an element 7rr+i which satisfies
(a), (b), (c), and (h). The remainder of the proof consists in showing that after
a finite number of such constructions (d), (e), (f), (g) can also be made to
hold.

It may happen first of all, at some step in this process that 7rr+m+i = 0.
In this case, we assert an, *. * * ■ 7Tr+»» satisfy all the conditions of the theorem.
Indeed every <£Go can then be expressed as a polynomial in y with coeffi-
cients in Oo of degree<tr+m+i(s). By (h), v(<p)ER(bu ■ ■ ■ , br+n) and <f>
£F(7Ti, • • • , xr+m) which proves (f) and, in view of (k), also proves (g).
Moreover, if cbÇzK, v(<f>) = XXia«fr», a»>0, =0, or <0, and since K contains
an element of value 1, it follows that (bi, bz, ■ • ■ , br+m) = 1. Finally (e) implies
that k0(az, • ■ • , ar+m+i) is the entire residue field of v, whence d = df Hît™ s<'
proving (d).

Suppose now that Kr=l. If </>Co, and v(<p) >sr(nr~i/Kr)br, it follows from
Lemma 2 that v(<p)(ER(bi, ■ • • , br). On the other hand, if </>Go, and v(0)
úsr(iíT-i/Kr)br, <j> =<pi+<pzxr+i, <£¿Go, î = l, 2, and degB <pi<tr+i. Since v(7Tr+i)
>srKr^ibr, v(d>)=v(4>i)C¡:R(bi, • ■ ■ , br) by (h). Therefore (e) implies (f).

(3) ¿r+m+i denotes the formal degree of Trr+m+i as a polynomial in y.
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To prove (e) suppose /cr>l. Then there exists 0Go such that v(<p)
£F(¿>i, • • • , br). Suppose 7rr+1, i=l, 2, ■ ■ ■ , e, have been constructed and
that ôr+» = v(7rr+»)GF(ôi, • • • , br), t=l, 2, • • • , e. Assume br+i>v(<p) for
some i. As above, <b=<bi+<pzxr+i, degv </>i<ir+t-. Hence v(<b)=v((pi)
CF(ôi, • • • , br+i-i)=R(bi, ■ ■ ■ , br), contrary to the choice of <p. Thus if
br+iÇzR(bi, ■ ■ ■ , br), br+i<v(<p). Since br+i+i>br+i, there exists an integer m
such that br+m = v(wr+m)Ç£.R(bi, • ■ ■ , bT). We shall show that Kr+tn<Kr. Since
certainly br+m>br(Kr^i/Kr), (br+m/icr+m) > (br/Kr)(Kr^i/Kr+m). If Kr+m = /cr, we

conclude immediately from Lemma 2 that ¿>r+>»GF(ôi, • • • , br), a contra-
diction; whence Kr+m<KT. Consequently a finite number of constructions of
elements ar¿, * = 1, 2, • ■ • , re, will be sufficient to insure that (bi, bz, ■ ■ ■ , bn)
= 1.

Assume that the residue field of v contains an element a' not in
&o(«2, • • • , ar+i). If 4>i/<Pz is a representative of a' in K, </>»Go, t' = l, 2, let
b' = v((pi) =v(<p2). Construct xr+i, » = l, 2, • • • , m+l, so that b'<br+m+i. As
above, write <bi=(pí +<bi'xr+m+i, deg„ 0,' </r+m+i, *™1, 2. Then b' = v(<pi),
i—\, 2, and by (1) the residue of <p{ /<p2 is in k0(az, ■ • ■ , ar+m+i)- But clearly
this residue is a', whence a'£&o(a2, • • • , ar+m+i). We conclude from the
definition of s¿ and the preceding results that we can construct elements
an, 7T2, • • • , 7TB in o which satisfy (a)-(f).

To complete the proof we need only verify that the canonical products
of 7Ti, 7T2, • • ■ , xn of value v(qy) span qy modulo qJ+i. This will establish (g)
since the independence of these canonical products has already been proved.
If v(qf) =s„Kn_i&B and if </>£qy, write 4>=4>i+4>zxn, with deg„ cbi<tn. Then
<p=(j>i (mod qJ+i) and, by (h), <piER(xi, x2, ■ ■ ■ , ir«_i).

Suppose that v(qy) >s„K„^ibn. Using equation (e) of Lemma 1, we have

snK„-ibn >     X¡ (síKí-i/kí — l)bi    — (&i — 1) = vd'(bi, b2, • ■ • , bn),

where d'=YL"-2 *<■ It follows then from Theorem 4 that v(q;)
ERd>(bi, bz, ■ ■ • , bn). Let v(q,-) = X)"=i aimbi, m = \, 2, • • • , d', be the dis-
tinct representations of v(q;) as a proper combination of bi, b2, • ■ ■ , bn.
Then the d monomials yihY[$=ilv'iim\ h = \, 2, • ■ ■ , dp; m = l, 2, ■ ■ ■ , d', are
distinct canonical products of value v(qy), which are linearly independent mod-
ulo qy+i by (k). We conclude that dim qy/qJ+i = d and that these d canonical
products span qy modulo qy+i. Q.E.D.

5. The main theorem.

Theorem 6. d((Sp) =2S(Sp), or equivalently dim öp/(Sp = 2 dim Op/Sp.

Proof. Because of the one-one correspondence between complete p-ideals
in Op and oB*, we need only prove d(Sp*) = 25(Sp*). Since d(Sp*) = XXi d,-vf ((Sp*),
and since Sp* = Xï=i Sfwf, this is equivalent to the assertion
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(7) 5(Sp*) = — ¿ á.K,*(6f«f),2  »=i

which we proceed to verify.
Let o*= XXi ofwf. Then clearly

(8) 5(Sp*) = dim Op*/o* + ¿ 5(Sf).
¿-i

(7) follows at once from (8) and from the following two statements:

(9) dim Op*/o* = — ¿ div?(ù>?),
2 ,-=i

(10) 5(Sf) = ~ divf(Sf), t - 1, 2, • • • , r.

For each j, 2^j^r, define fl*,= ni,,i,mííl Fm*, i = l, 2, • • • ,j, and let
»*, be the residue of fly in of. Also denote by Oy* the ideal (fl*i( flj, • • • , A*,)
in Oç*. We shall prove

(9') dim Oi/Of - — ¿ d.v.*(«,-,*).
2   ,_i

Since Of = o*, (9') implies (9).
We shall prove (9') by induction on r. Let /f be the residue of F* in

of, »-1, 2, • • • , r. If r-2, Of = (Ff, F2*), w*=/2*, <4-/t*, and (9') is a
direct result of the following lemma:

Lemma 3. dim 0^/(Ff, F2*) =divf(f2*) =d2v2*(fff).
Proof. It suffices to prove the first equality. Since F2* is a nonunit in

0|, /î* is a nonunit in of. Hence of contains the ring T*, which is defined,
according as K is an algebraic number field or an algebraic function field, as
the completion of l[fz*] or of k[fz*] with respect to the principal ideal (f*).
o* is, in fact, a finite F*-module (Chevalley [l, Proposition 5, p. 699]):
of = ^Xi T*Ui, MiGof, î'=1, 2, • • • , s. If L* denotes the quotient field of
F*, it follows that [2f:F*]=s. On the other hand, [2f:F*] =divf(/2*)
(Chevalley [2, Theorem 5, p. 6l]), whence s—div*(f2*). Since clearly
dim £)%/(F*, Fz*) =dim of /of/2*, we have only to verify that dim o*/o*fz* = s.

If zCof, z= ]0«i '**•<» t*ÇzT*. There exist constants c,- in ¿ (or 7) such
that if — c,CF*/2*, î=1, 2, • • • , 5. It follows at once that z— ¿lrl=i ciui
Cof/2*, and hence that «i, Ms, • • • , «, span of modulo of/2*. On the other
hand, if ?L.* c{Ui = zf2* with c,C^ (or 7) and zCof, we may write
z= X^f=i tfui, t*(ET*, whence ¿Xi tc»—/**<*]«< = 0. Since the re¿ are linearly
independent modulo T*, we conclude that c, = 0, t = l, 2, ■ • ■ , s, and so the
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Ui are linearly independent modulo of/2*. This completes the proof of the
lemma.

Now assume (9') for j<r. To prove the assertion for j = r, write
dim Ol/Or* = dim 0$/Or*_i+dim 0*_i/Of, apply the induction hypothesis
for j = r — 1, and use the equality

(11) dim   (Of-l/Of)   =   £ drV*(/,*),
»=1

to be verified in the next paragraph. A direct computation will yield (9') at
once.

Define  the   ideals   ©„*   in  Of,   h = 0,   1, • • • ,   r — 1,   as  follows:   ©0*
= IXi (fl*-i); ©a* = ¿i-i i«-i(/?.*, W)+25:»+i (ß--i)> *-i. 2- • • •.
r-l. Clearly @0* = Or*_i, ©*_, =Of. Since ©*_0©„*, we prove (11) by show-
ing that dim (©f/©^) =drvf (ff), h = \, 2, ■ ■ ■ , r-l. In fact, if ¿f,
• «■I, 2, ■ ■ • , drvT*(f*), form a basis for Off modulo (F„*, Fr*), it follows from
the definition of ©* that the elements ^4ffl*r_i span ©*_x modulo ©*.
Moreover, if ¿*COff and ¿*fl*r_1G©„*, it follows easily that ¿*fl*,_i
■B*0£_iF,* (mod Ff), F*CO$. Since A*r_i and Ff are relatively prime,
we have A*Çz(F*, F*), which implies that the elements A* A*r_i are linearly
independent modulo @f. Hence dim (©*_i/©f ) =drvf i/f), as asserted.

To prove (10), let 33,- be the valuation ideal in 0 defined by v»(SB»)
= W(Sf). In view of the natural correspondence of the vf-ideals in of
with v.-ideals in 0, we have only to prove 5(93») = 2~1d,v,(93!), i = i, 2, • • ■ ,r.

Theorem 1 implies that S3» is the largest regular v,-ideal in 0. For definite-
ness, take i = 1, and let {q,-} be the sequence of vi-ideals in 0. Let 7Ti, • • ■ , 7rB
be the set of elements, constructed in Theorem 5 for Vi, and let d' = XT"=2 **■
Let qB be the vi-ideal in the sequence of value vd'(bi, ■ ■ ■ , b„). Theorem
4 (a) implies that, for all j^h, and for all m^O, vi(qy+m)CF,,-^, ■ • • , bn),
and hence that there exist di = dpd' distinct canonical products of an, • • • , 7rB
of value vi(qJ+m). Since these canonical products are linearly independent
modulo qy+m+i, we conclude that q,- is a regular Vi-ideal for all j ]ä h.

On the other hand, vd>(bi, • • • , b„) — l(E:Rd'-i(bi, • • • , bn), by The-
orem 4 (b), whence there exist only dp(d' — 1) <di canonical products of
xi, ■ ■ ■ , xn of value vi(qA_i) which are linearly independent modulo qB. It
follows that neither is q„_i nor any q3Oq*-i a regular vi-ideal. We conclude
that qn = 93i, and consequently vi(S3i) =vd'(bi, • ■ ■ , bn).

Since 5(S8i) = ^¡Zo dim (qy/qy+i), where q0 = o, and since dim (qy/cfy+i)
= dPx(vi(qj)), it follows that 5(33i) =^pxX1î=o (^i(qy)). Furthermore by Theo-
rem 4 (c) we have Y11-o xC^ifa/)) =2~ld'vd'(bi, • • • , b„), whence S(S3i)
= 2-^1^(501).

Corollary. If ö is the integral closure of 0 in K, and S is the conductor
between ö and 0, then dim (ö/S) =2 dim (o/S).
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Proof. Let p be a prime ideal in o. Clearly OpSCSp. Since öp is a finite
Op-module (compare Chevalley [2, Theorem 3, chap. 4] or Zariski [12, p.
507]), we have öp= XXi Opß», ßiGK, i=í, 2, ■ ■ ■ , m. If zCSp, then zp\-Cop,
for all i=\, 2, ■ ■ ■ , m. Write zßi = (vi/vo), rç.CTC, i = 0, 1, ■ ■ ■ , m, and
rjoCP- Then (i7oz)|3» = ?7iCo for each i, whence r/ozCS. Hence zCopS, and
it follows that OpS = Sp.

Let S = nj=iqt- be a representation of S as the intersection of primary
ideals, and let p.- be the associated prime ideal of q»-. The preceding equality
implies that q»=SpiP\0, i=i, 2, ■ ■ • , s, and, since Sp< is a complete p,-ideal
in oPi, that each q¿ is a complete p,-ideal in o. Hence S is a complete ideal in
o, and d(S)=dim (ö/S) = 23-1 d(Sp¿). Moreover, it is readily verified that
S(S) =dim (o/S) = XZi-i ^(Sp,). The corollary now follows at once from the
theorem.

Part II. The geometry in the large
6. Geometric preliminaries. Throughout part II, we consider a fixed ir-

reducible plane curve T: F(X0, X\, X2)=0 of degree m, defined over an
arbitrary ground field k, with function field K. We denote by (x0, ¡n, x2) the
set of homogeneous coordinates of T. For our purposes, it will be convenient
to define a point of T to be a complete set of conjugate points in the ordinary
sense. It will also help to make a few minor changes in the notation of part I.
If F is a point of T, we denote by oP (rather than Op) the local ring of F on T.
If v.-, i—i, 2, • ■ ■ , r, are the valuations of K whose valuation rings contain
Op, we say that each v, has center F on T, and call the intersection of v »-ideals,
t = l, 2, • • • , r, in Op a complete F-ideal. Because of the identification of
conjugate points, every valuation of K has a uniquely determined center
onT.

By definition, a prime divisor of K is a complete set of conjugate places of
K. To each prime divisor p is associated a unique valuation vp of K, and con-
versely. By the center of p on V is meant the center of the corresponding
valuation vp, and by the degree d(p) of p is meant d(vp). A divisor of K is
any formal power product B=pi1p22 ■ ■ ■ pj" of prime divisors pi, • • • , p,
with arbitrary integral exponents pi, ■ ■ ■ , ps. Its degree d(B) is defined to be
d(B) = 23-1 «id(pi).

Let r": G(X0, Xi, X2) =0 be a curve not containing T as a component, and
letp be a prime divisor of K. HP is the center of p on T, X\y±0 at F for some
X = 0, 1, or 2. We define the intersection of T and T' at p to be the divisor
p" where p = vp(G((xo/x\), (xi/x\), (x2/x\))), and define the intersection multi-
plicity i(p;T, r") of T and V at p to be d(p"). If pi=p, pt, • ■• * ,p» are all the
prime divisors of center F on T, we define the intersection multiplicity
i(F;r, r") to be 22y=i *'(py! I\ V). Thus the complete intersection of T and
r is a divisor (T, T') whose degree i(T, V) = ¿Per i(F;l\ T'). Bézout's
theorem asserts that if T' is of degree re, i(T, V) =mn.

It will be convenient to denote by g(n) the linear series cut out on T by
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the system of all curves of order re, and by g(B; re) the system of all curves
of order re whose complete intersection with V contains the integral divisor B
as a fixed component. The quantity dim g (re) —dim g (B; re) is a constant for
all re sufficiently large. We define 8(B) =dim g(n) —dim g(B; n) for large re.
8(B) designates the number of conditions which the divisor B imposes on
the curves of sufficiently high degree.

Let Bi, i=l, 2, ■ ■ ■ , h, be integral divisors, and assume that each prime
factor of Bi has its center at a given point F,- of V, Piy^Pj, iy^j. Then the
theorem on the independence of conditions asserts that, if B= YLi=i ^>'i
then

(12) 0(B) = X: 8(Bi).i=i
Let F be a point of T and let pi, • • • , pr be the prime divisors of K of

center P, with vi, ■ • • , vr the corresponding valuations. There is a natural
one-one   correspondence   between   the   integral   divisors   of   the   form   A
=Pi1.Pr^ and complete F-ideals q in Op: A<->q if and only if /u, = v,(q),
i=\,  2, ■ ■ ■ , r.  For corresponding pairs  A,  q, the

(13) basic equalities 5(A) = 8(q),    d(A) = d(q)

are easily verified.
7. Adjoint curves. Let F be a point of r. The conductor Sp between

Op and öp is, by Theorem 3, a complete F-ideal. The divisor corresponding to
Sp is designated by CP and is called the adjoint divisor at P.

If F is a simple point of l\ CP is the unit divisor. Since T has only a finite
number of singular points, the divisor C= üpgr CP is well-defined and is
called the adjoint divisor of T.

Definition. An adjoint curve to T is any curve which cuts out on T a
multiple of the adjoint divisor C.

Lemma 4. If A is any integral divisor, we have 8(AC) = 8(C) + d(A).

Proof. Let AC= Hi-i APiCPi where APi, CPi are the factors of A and C
respectively which contain those prime divisors of center F» on T. Let q,- be
the complete F»-ideal in Op; which corresponds to APiCPi, i = l, 2, ■ • ■ , t.
It follows at once from equations (12) and (13) that 8(C) = 23-1 8(CPi)
= ZU «(Sp,), and 8(AC)= Eli 8(APiCPi) = 23-a. «(*), whence 8(AC)
= 5(C)+XXi   [ô(q»)-ô(Sp,.)]. Since each Sp,. is a regular ideal(4),

(4) In the case in which k is infinite a simple proof of the regularity of £p, for any point P
of r, can be given. Forthen thereexistsanelementzCEpsuch that r,(z)=i','(@i.),_; = l, 2, ■ • • ,r,
where vi, vt, • • • , vf are valuations of K of center P on r. Let qCSp be a complete -P-ideal.
Define the ideal q' in öp by the relations: v,(q') =v¿(q) —v,(Êp),7 = l, 2, • • ■ , r. Then dim ü>/q'
= <¿(q) — d(Sp). If w», i = l, 2, • • • , d(q) —d(Sp), form an independent basis for op mod q',
the elements zuí form an independent basis for <Ep mod q. Thus dim Sp/q=¿(q) —d(Sp) and
so Ep is a regular ideal.
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5(q») -o(Sp,.) =d(q») -d(Sp.) = d(APi).

Hence 8(AC) =8(C)+d(A), as asserted.

Theorem 7 (The Noether Fundamentalsatz). Let T':G(X)=0 be a
curve not containing T as a component, and let A = (V, V). Then ifT":H(X) =0
cuts out a multiple of AC on T, there exist forms A(X), B(X) with coefficients in
k such that H(X) =A(X)F(X)+B(X)G(X).

Proof (6). We treat first the case in which the degree n of T" is sufficiently
high so that S(^4C)=dim g(n)— dim (AC; re), and also that n^m+e,
where e is the degree of V. In this case,

dimg(AC;n)=(n+l)(n + 2)/2-(n-m + l)(n-m + 2)/2-8(AC).

Since 8(AC) =8(C)+d(A) by Lemma 4 and sinced(A) =me, it follows that

(14) dim g(AC; n) = nm - em - (\/2)m(m - 3)/2 - 5(C).

On the other hand, let g' denote the linear series cut out on T by the sys-
tem of all curves of the form A(X)F(X)+B(X)G(X) =0 of degree re for
which B(X)=Q is an adjoint curve. Clearly g'(Zg(AC; re), and
dim g'^dim g(C; n — m)=nm — em(m2 — 3m)/2 — 8(C). It follows from (14)
that g'= g(AC; n).

If the degree re of T" is arbitrary, let Pi, ■ • • , P, be the points of inter-
section of r and r". There exists an irreducible curve <b(X) =0 which does not
pass through any Pi, î = 1, 2, • • ■ , s. By the first part of the theorem, we have,
for <r sufficiently large,

(15) 4>(X)'H(X) = A(X)F(X) + B(X)G(X),
for suitable forms A(X), B(X). Let X = (Xi/X0), Y=(X2/X0), and let fe, fe
be the residues of X, Y respectively modulo 0(1, X, Y). Let (G(l, fe, ¿2))
= D*=1 qy be the decomposition of this ideal into primary components in the
ring ¿[fe, fe]. Sirfce A(l, fe, fe)F(l, £1, fe) = -F(l, fi, &)G(1, Ci, fe),
-«4(1, fe, k)F(l, fe, fe)Gqy for all i=l, 2, • ■ • , h. If, for some j, F(l, fe, fe)
Crad qy, it would imply that the three curves T, V, and (b(X)=0 have a
point in common, contrary to the construction of 4>(X). Hence ^4(1, fe, fe)
enj_1qy = (G(lFfe,fe)). It follows easily thatA(X)=A0(X)G(X)+Ai(X)<b(X),
B(X) = -Ao(X0)G(X)+Bi(X)(b(X) for suitable forms 4,(1), Ai(X), and
Fi(Z).

Substituting these relations in (15), we conclude that cb(X)''~1H(X)
=Ai(X)F(X)+Bi(X)G(X). By a repetitions of this argument, we com-
plete the proof of the theorem.

The completeness of the adjoint series is an immediate corollary of the

(6) Compare the proof in Severi [9].
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Noether Fundamentalsatz, as is well known (6).

Theorem 8. The adjoint curves of any order cut out complete linear series
onT.

8. Adjoint curves of order m — 3 and the canonical series(7). Our present
object is to derive the following basic properties of the adjoint curves:

Theorem 9. The adjoint curves of order m — 3 cut out on T outside of the
fixed component C the complete canonical series.

Theorem 10. d(C) = 25(C).

As a direct corollary of these two results, we shall also obtain :

Theorem 11.7/ the genus(s) of V is denoted by g, then

g = (m-l)(m-2)/2-8(C).

We shall give two independent proofs of Theorems 9 and 10. In fact, we
shall prove first that these two theorems are equivalent to each other. We
shall then show that Theorem 10 is a direct consequence of Theorem 6, the
main theorem of part I. Finally we shall give a proof of Theorem 9, in the
case in which the function field K of T is separably generated over k, based
upon a representation theorem for the differentials of the first kind of K.

Assume first that d(C) = 25(C). Take re so large that dim g(n)— dim g(C; n)
= 5(C) and thatg(C; re) is a nonspecial series(9). Then, as in (14), dim g(C; re)
— mn — (m2 — 3m)/2 — 8(C). On the other hand, since g(C; n) is a complete
series of degree mn — d(C), it follows by the Riemann-Roch theorem
(Chevalley [2, Theorem 7, p. 33]) that dim g(C; n)=mn — d(C)—g+l,
whence

(16) (m - l)(w - 2)/2 + 8(C) - ¿(C) = g.

Since d(C) = 25(C), we conclude that

(6) B. L. van der Waerden [10, p. 216].
(') For the definitions of the various concepts concerning algebraic curves which we shall

need in this section, we refer the reader to Chapters I and II of Chevalley [2]. We point out,
however, that there exists a direct connection between the notion of a divisor class of K as
defined by Chevalley on p. 19 and the concept of a complete linear series on T: namely, the
integral divisors in a divisor class of K form a complete linear series, which can be cut out on r
by a linear system of plane curves. In particular, the integral divisors in the canonical divisor
class (Chevalley p. 32) form the canonical series. Furthermore the degree and dimension of a
divisor class is equal respectively to the degree and dimension of the corresponding complete
linear series. Hence the canonical series is of dimension g and of degree 2g — 2, where g is the
genus of K (Chevalley, chapter II, Theorems 4 and 6).

(8) By the genus of r we mean the genus of the function field K of r.
(9) A linear series is called special if it is a subseries of the canonical series; otherwise it is

called nonspecial. A series of degree greater than 2g —2 is necessarily nonspecial (Chevalley
[2, p. 32, corollary]).
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(17) m(m - 3) - d(C) = 2g - 2,

and

(18) (m - 1)(*B - 2)/2 - 8(C) = g

(which establishes Theorem 11).
(17) implies that deg g(C; m — 3)=2g — 2, while (18) implies that

dim g(C; m — 3)~^g. Since g(C; m — 3) is complete, it follows at once from the
Riemann-Roch theorem that g(C; m — 3) is a special series. In fact,
dim g(C; m — 3)— deg g(C; m — 3)+g — í^g — (2g — 2)+g — í = l, whence
g(C; m — 3) is a subseries of the canonical series. Since its degree, 2g — 2, is
equal to the degree of the canonical series, it follows that g(C; m — 3) is itself
the complete canonical series.

Conversely, if we assume Theorem 9, then

deg g(C; m-3)=m(m-3)-d(C)=2g-2.

Combining this equality with equation (16) gives at once d(C)= 28(C).
To prove Theorem 10, let Pi, P2, • • • , P, be the singular points of V.

Since d(Sp,) =25(Sp,), * = 1, 2, ■ ■ ■ , s, by Theorem 6, we have d(CPi)
= 28(CPi), i=\, 2, ■ ■ ■ , s, in view of (13). Since C= Ij%i CPi, it follows
immediately that d(C)= 28(C).

Finally let (X, Y) be a set of nonhomogeneous plane coordinates. For
simplicity, denote by F(X, F)=0 the nonhomogeneous equation of V, of
degree m, and let (x, y) be corresponding nonhomogeneous coordinates of the
general point of T. Assume that the function field K = k(x, y) of Y is separably
generated over k. Then either x or y is a separating variable. We assume, for
definiteness, that x is a separating variable, and that y is an integral element
over k(x)(10).

If T':<p(X0, Xi, X2) =0 is an adjoint curve to T, we shall write <b(X, Y) =0
for the nonhomogeneous equation of V, and shall say that <b(X, Y) =0 is an
adjoint curve of order n if deg <b(X, Y) ^n.

Since the differentials of K(n) form one complete divisor class—the
canonical class—Theorem 9 is a direct corollary of the following representa-
tion theorem.

Theorem 12. A differential ü of K is of the first kind if and only if it can
be written in the form (<b(x, y)/F„' (x, y))dx, where T':<b(X, Y) =0 is an adjoint
curve of order m — 3. If ¿j is of the first kind, the divisor of ¿b = (T, T')/C.

(10) If k is infinite, this is no restriction; for then ax-\-by = yy will be integral over k{x) for
suitable a, &C&, and the curve T¡ whose general point is x, yi will be projectively equivalent to r.

(") For the definitions of a differential of Ä', the order of a differential, the divisor of a
differential, a differential of the first kind, etc., see Chevalley [2, chapter II, §§5 and 6]. Since
x is a separating variable for K, every differential of K is of the form Adx, AÇzK (Chevalley
chapter VI, Theorem 4).
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Proof. If ¿ó is any differential of K, we can write ¿> = (<b(x, y)/Fy' (x, y))dx,
where <b(x, y)£K. Let o=k[x, y], and let S be the conductor between ö and
o. The following results are well known :

oFy (x, y)=S£) where 35 is the different of K with respect to k(x)
(Hecke[6, p. 145]).

vp(35) = vp(dx) for any prime divisor p of K whose center on T is at finite
distance in the (X, F)-plane (Chevalley [2, Theorem 7, p. 110]).

Together these results imply that vp(co)^0 if and only if vp(<j>(x, y))
= ^(S). Thus ¿3 is of the first kind at finite distance if and only if vp(<b(x, y))
= *p(S) for all prime divisors of center at finite distance on V. Since S is a
complete ideal, this last condition is equivalent to the assertion cb(x, y)
CS, which in turn is equivalent to the statements: <b(x, y) is a polynomial
in x, y and (p(x, y)CSp for every point P of Y at finite distance (compare
proof of corollary to Theorem 6).

Consider now the nonhomogeneous plane coordinates: X' = X0/Xi,
Y' = X2/Xi; and X = X0/X2, Y = Xi/X2. Every point P of T at infinity in
the (X, Y) -plane (at least one such point exists) is at finite distance in either
the (X', Y')- or (X, Y)-plane.

If x', y' are nonhomogeneous (X', Y')-coordinates of T, then x' = l/x,
y'=y/x. Write F(X, Y) = F'(X', Y')/X'm and cb(X, Y)=<p'(X, Y')/X'\
where h is the degree of <p(X, Y). We have F„' (x, y)=Fy>(x', y')/x'm~x and
also, since x is a separating variable, dx= — (\/x'2)dx'. It follows that
5> = -(4>'(x', y')x'm-*-h/F'y(x', y'))dx'.

In the second case, write F(X, Y)_ = F_(X, Y)/Ym, <b(X, Y)=$(X, Y)/Yh,
and let x, y be nonhomogeneous (X, Y)-coordinates of Y. Then x = x/y,
y = l/y. If y is also a separating variable, then dx/Fy (x, y) = —dy/Ff (x, y),
and it follows that ¿5= — ($(x, y)ym~~z~h/Ff (x, y))dx. If, however, y is not a
separating variable, we find directly that F„' (x, y)=Fj(x, y)/y™~~2. Let Dx
be the unique derivation of K for which Dx(x) =1. We have then by Chevalley
[2, Chap. 6, Theorem 9] dx = Dx(x)dx = (l/y-(x/y2)Dx(y))dx = (l/y)dx
since Dx(y) =0. We conclude in this case that «5 = (<j>(x, y)ym~3~h/Ff (x, y))dx.

For w to be of the first kind at every point of Y, it follows from the first
part of the proof that we must have (in addition to the conditions already
obtained) that <b'(x', y')x'm~3~'h and <j5(x, y)ym~i~h are polynomials in x', y'
and x, y respectively, which belong to Sp for every point P of Y at finite
distance in the (X', Y')- or (X, F)-plane, as the case may be; and conversely.
Since 4>'(x', y') and <f>(x, y) are not divisible by x' or y respectively, these
conditions imply that h^m — 3.

There exists then a form $(X0, Xi, Xz) of degree m — 3 such that $(1, x, y)
= <p(x, y), $(x', 1, y')=<b'(x', y')x?mr*-h, and $(x, y, l)=$(x, y)ym~3~h. It
follows that £> is of the first kind if and only if <ï?(.X"o, Xi, X2) =0 is an adjoint
curve to Y of order m — 3.

The final assertion of the theorem follows directly from the proof.
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