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BY
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Introduction. In classical algebraic geometry the adjoint curves to an
irreducible plane curve are an essential tool in the study of the geometry on
the curve. In this paper we shall give an algebro-arithmetic development of
the theory of adjoint curves, and shall extend the classical results to irre-
ducible plane curves with arbitrary singularities defined over arbitrary ground
fields. Our definition of the adjoint condition at a given singular point of the
curve is stated in terms of the conductor between the local ring of the point
and its integral closure. The fundamental properties of the adjoint curves
are then derived from corresponding properties of the conductor.

The single deepest and most important property of the adjoint curves is
that, on a curve of order m, the adjoint curves of order m—3 cut out the
complete canonical series. This property is equivalent to the fact that the
degree of the fixed component of the adjoint series is fwice the number of
conditions which the adjoint curves impose on the curves of sufficiently high
order(!). We shall give two distinct and independent proofs of this proposi-
tion.

The first proof is a direct one, based upon a detailed analysis of the singu-
larities of the given curve. This analysis, to which part I is devoted, applies
equally well to algebraic number fields, and our treatment will include this
case with that of algebraic function fields of one variable.

The second proof is more indirect, depending upon the Riemann-Roch
theorem and a generalization of the classical representation theorem of the
differentials of the first kind. This proof, which will be given in part 1I, holds
only for plane curves whose function field is separably generated over the
ground field.

PART 1. LOCAL ANALYSIS OF THE SINGULARITIES

1. Algebraic preliminaries. In this section we shall develop the basic
notation and results necessary for the local theory. The notation we establish
will be valid simultaneously for algebraic number fields and algebraic function
fields of one variable. Let py be either the ring I of ordinary integers or the
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(1) For example, an adjoint curve to a curve with ordinary multiple points Py, Pe, * + +, P,
of multiplicities 71, 7y, « « -, r, respectively is one which has an (r; —1)-fold point at each
P;. In this case, the degree of the fixed component is Z:._l r:(r;—1), while the number of
conditions which the adjoint curves impose on the curves of sufficiently high degree is

i nln—1)/2.
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ring 2[X] of polynomials in an indeterminate X with coefficients in an
arbitrary field k. Let F(¥)&o,[Y] be irreducible and let ¥ be a root of F(Y)
=0. Call 0o[ V], 0o[v] respectively O and o. If K denotes the quotient field of
0, K is an algebraic number field or an algebraic function field of one variable
according as 0 is I or £[X].

If p is a maximal ideal in o, let o, be the ring of quotients of o with respect
to p. If po=po,, denote by oy, the quotient ring of o, with respect to po.
op and oy, are local rings and, moreover, the completion oy, of vy, is a subring
and subspace of the completion o; of oy.

It is well known that there exists at least one and at most a finite number
of valuation rings R; of K, ¢=1, 2, - - -, r, which contain o, (compare
Chevalley [2, Chapter I, Theorem 1 and Lemma 1](?)). If 5, denotes the
integral closure of oy in K, it follows readily that o,=0_; R;. Let m; be the
ideal of nonunits in R;, 7=1, 2, - - -, 7, and let m/ =m;M\dy. Then m{ =m/,
15, m! Mo, =po, for all £, j=1, 2, - - -, r, and the m/ are the only ideals in
8 which contract to po, in o, (Zariski [12, p. 511]). It follows that
my, mg, - - -, m/ are the only ideals in d, which are distinct from the zero
or unit ideals, whence y is a semi-local ring in the sense of Chevalley. Since
evidently R; is the ring of quotients of §, with respect tom/,7=1,2, - -+, r,
Proposition 8 of Chevalley [1, p. 700] implies that the completion b;* of the
semi-local ring 8 is isomorphic to the direct sum of the completions R¥* of
R;:

(1 ngm

On the other hand, let P be the maximal ideal in © whose residue
{(mod F(Y)) is p. Then ofo can also be regarded as a subring and subspace of
the completion Of of © with respect to PB. OF is a complete regular ring of
dimension 2, and as such is a unique factorization domain (Cohen [4,
Theorem 18]). The following relation exists between 0% and o,* (Chevalley
[t, Proposition 5, p. 699]):

(2 o = O /OsF (V).

Let F(Y)= []?., F* be a factorization of F(Y) into irreducible elements
of £, in which each factor F*is a nonunit in £§. It is known that the zero
ideal in o,* is the intersection of prime ideals (Zariski [13, p. 356]). This im-
plies, together with (2), that F*#F;*, i7j. Define 0*=90%/F*, j=1,2, - - -,
h. Then each o* is itself a complete local domain. Moreover, the natural
homomorphism of O§ on 0,* maps 0o[ Y] onto a subring of o* which is iso-
morphic to 0. Thus if Z* denotes the quotient field of 0,*, we may identify
K with a subfield of Z*, =1, 2, - - -, k. It can be further shown, by using

(?) Numbers in brackets refer to the bibliography at the end of the baper.
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Hensel's lemma (Cohen [4, Theorem 4]), that o, is then identified with a
subring and subspace of o/*. Since the integral closure b;* of 9/ in Z¥ is a
complete discrete rank 1 valuation ring, its contraction 5* K is a valuation
ring of K containing oy. It follows readily that each 5,* is isomorphic to one
of the complete valuation rings R*, and that distinct 5;* correspond to dis-
tinct R:*. We therefore conclude that 2 <7,

Conversely, 0¥, can be identified with a subring and subspace of R,
i=1, 2, - - -, r. Since F(Y)=0 in o, this implies that some F¥*=0 in R},
whence it can be seen that R* is isomorphic to the corresponding complete
valuation ring §;*. Thus r=#, and for a suitable ordering of the indices
Ri*=5.'*, i=1, 2, e, 7.

Let Z¢* be the quotient field of o*,. To simplify the exposition, we shall
identify K and Z¢* with their isomorphic images in £, shall identify 5%
with R¥, i=1, 2, - - -, r, and shall identify 5* with D> ;_; RX* With this
identification each Z* is a finite algebraic extension of Z¢*. Since F* and Fj*
are relatively prime in ©§, ¢/, it can be further shown that Og/O3F(Y)
o~ Y OF/OFF¥, whence oS > 7, 0¥ in view of (2). We see then that
oy* is identified in a natural way with a subring and subspace of 5"

Let v, v* be the valuations whose corresponding valuation rings are re-
spectively R;and R¥,7=1, 2, - - -, r. We shall say that v; or v.* has center p
in o.

Every element z&0* (or §*) has a unique representation of the form
2= D i_1 %, 2:CR¥ We define v¥*(z) =v¥(), i=1, 2, - - -, r. With this con-
vention, we shall call ¢*Coy* (or 5*) a valuation ideal or simply a v¥*-ideal
if zE0.* (or 8y), v¥*(2) =v¥(q*), implies 3&q*. We also agree to call the inter-
section of v;-ideals, =1, 2, - - -,r, in o, 0y, or Oy, or the intersection of
vi*ideals, =1, 2, - - -, 7, in py* or By* a complete p-ideal in its respective ring.
In the one-one correspondence between the primary ideals in o0, and oz
the complete p-ideals correspond in a natural way: q, q* correspond if and
only if v¥*(q*)=v.(q), 7=1,2, -, 7.

Let ko=00/po; ko is either the prime field with p, elements or a finite ex-
tension of k. If k(p) =o0/p, k(p) is a finite extension of ks. We define the de-
gree dy of p to be, on the one hand, the number of elements in k(p) or, on
the other hand, [k(p):%]. Furthermore the residue field A; of R; (or of R¥,
since their residue fields are isomorphic) is in turn a finite extension of k(p),
i=1,2, - - -, r. We define the degree d; of v; (or v*) to be the number of
elements in A; or [A;:%], as the case may be.

Let ¢’ Cq be zero-dimensional primary ideals in any one of the rings con-
sidered above (including © and Oy*). We allow q=(1). The additive group
of the ring q/¢’ can be regarded in a natural way as a finite-dimensional
vector space over ko, and in the algebraic function field case, a fortiori, as
a vector space over k. We define then dim q/q’ to be the dimension of this
vector space over k. In the alternative case, we define dim q/q’ to be the
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total number of elements in q/q’. We also say a given set of elements of q
are linearly independent modulo q if, on the one hand, their residues are
linearly independent over k or, on the other hand, are distinct elements of
a/q’.

The notion of the degree d(g) of a valuation ideal or complete p-ideal g
will be of considerable importance in the sequel. We define d(q) =d.vi(q)
or d(q) = Y i, divi(q) according as q is a vi-ideal or complete p-ideal in o, oy,
or by; and define d(q) =dw¥*(q) or d(q) = X 5., dwv#*(q) according as q is a
v#-ideal or complete p-ideal in o), by¥, 0* or R*.

If ¢’Cq are each v;-ideals, v*-ideals, or complete p-ideals, it is easily
verified that dim q/q" £d(q") —d(q). Moreover, it is a direct consequence of
the independence of places that dim q/q’ =d(q’) —d(q) if g, ¢’ are valuation
ideals or complete p-ideals in any one of the integrally closed rings by, 8,5,R*,
and hence, in particular, that d(q) <dim (1)/q.

For valuation ideals or complete p-ideals in o, oy, 0%, or 0%, we shall also
introduce the integer 6(q) =dim (1)/q. Thus §(q) =d(q). We shall see in part
II that this integer has a special geometric significance. If ¢’Cq is also a
vi-ideal, vi*-ideal, or complete p-ideal in o, oy, 0%, or 0/*, as the case may be,
we have dim ¢/¢’ =dim (1)/q’—dim (1)/q, whence

3) dim q/q" = 8(¢") — 6(a) = d(q") — d(a).

This inequality leads finally to the concept of a regular ideal.

DEeFINITION. A v;-ideal, v*-ideal, or complete p-ideal q in o, oy, 0%, or o
is called a regular ideal if, for any v;-ideal, v*-ideal, or complete p-ideal
q’Cq, we have

4 8(a’) — 8(q) = d(a’) — d(a).
2. Some properties of the conductor.

TuroreM 1. If €F 1s the conductor between R¥ and o, 1=1, 2, -, 7r,
then G F 15 the largest regular ideal in o*.

Proof. To simplify the notation, we drop the subscript . Let z,E€¥,
v¥(20) =v*(€*). If 2ER* and v*(z) = v*(€*), then v*(z/2,) =0, whence 2/2,
& R*. Thus z=2¢(2/2,) €C*, whence §* is in fact a v*-ideal.

Let q*CE* be a v*-ideal, and let e =v*(q*) —v*(€*). If &* is the ideal in
R* of value @, dim R*/&*=dea. If {;, j=1, 2, - - -, da form a basis for R*
modulo &*, the elements z.{; are in €* and are linearly independent modulo
q*, whence §(q*) —8(€*) = ad, while §(q*) —6(€*) <ad by (3). We conclude
that €* is a regular ideal in p*.

We shall now show that for any regular ideal IM* in o¥*, IM*CE*. It will
suffice to prove:

(&) & RY v (E) 2 ovH (M) unply 2 & ot
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For if zER*, ¢ EM*, v*(2¢) = v*(IN*) whence z¢pEo0*. Hence ¢ &E*, and
so IM*CE*.

Let & R*, v*(z) Zv*(M*). Denote by {q*} the sequence of v*-ideals in
0*; and let v*(z) =b. We construct a sequence of elements z,E4q5,,, /=0, 1, 2,

-, such that v*(z— D 1o 2;) >v*(q5.,) for every integer k. Suppose z;,
j=0,1, - - -, k—1, have been constructed. Since q},, CIN*, a5, is itself a reg-
ular ideal, and so 8(qf,s41) —8(qra) =d. Let tER* with v*(t) =v*(q},,). The
previous equality implies at once that for any a €A, there exists an element
1€y such that the residue in A of n/¢ is a. It follows from this remark
that we can find an element 2, ¢}, , such that v¥*([z— D> 23 2;] —2s) >v*(8),
whence v*(z— D1 o 2;) >v*(qF.,), as asserted.

Since N2, ¢*=(0) and since o* is complete, it follows from Chevalley
[1, Lemma 7, p. 695] that the series ) o, z; is convergent in 0* to an ele-
ment z*. Since by construction v*(z—z*)= x, 3—2z*=0, and hence zEC0%*,
which proves (5).

On the basis of the preceding analysis, we prove two theorems concerning
the conductor §, between 8, and o9,. The first theorem gives the complete
structure of §;, while the second gives a valuation-theoretic characterization

of @p.
THEOREM 2. Let G be the conductor beiween b and o, and let w®* be the
restdue in 0 of the elements H,-#,‘ F¥ 1=1,2,---,r. Then

GF = 2 CFo¥, G =GCFNoy, and GF = oG,

=1
TuaEOREM 3. &, 15 the largest regular p-ideal in oy.

We prove both theorems simultaneously. Let QX*=][;u F¥ <
=1,2,---,7, and let Q* be the ideal (2% QF, - - -, Q% in Of. Since
OF(Y) =N, O5Q*, it is easily verified that Q*/OFF(V) = D i1 ofwk.
In view of the identification of o* with a subring of 3% it follows that
D i1 0Fw*Coyk and hence also D ;_; G*w*Cos*. The first assertion of Theo-
rem 2 thus has a meaning. In addition, it follows that §*= > ;_, CX*w>* is
an ideal in o* and, since G* is manifestly the conductor between &, and
i1 0¥wX, that €*CG*. The proof that §F CG* depends upon two asser-
tions:

(a) ©* is a regular ideal.

(b) No ideal containing §* properly is a regular ideal.

Let ¢*CG* be a complete p-ideal in o*. Denote by Q. i=1,2, - - - , 7,
the v¥-ideal in 0* such that v¥(QXw#) =vX(*). If 2Eq*, write 2= D 1, 2;
2 ERE I pi=2z;/w¥, 1=1, 2, - - -, r, v¥ () Zv¥(Q ¥ =2 v EF), whence ¢;
€0k and, in fact, ¢;&QX Thus z= 2 ;_; ¢w¥* and it follows that gq*
= Yi 1 Qfw# In particular, this implies that §* is a complete p-ideal.

Since, by Theorem 1, each €% is regular,
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3(QF) —8(CH) =di[vF(Q¥) —v¥EH)], 1=1,2,---,71,

whence §(q*) —8(C*) = 201, d:[v¥(Q#) —v*@€¥)] =d(¢*) —d(€*). Thus T*
is a regular ideal as asserted in (a).
Consider now the complete ideals %* in o, defined by the relations:

vIF) = v — 1, v¥UP) = vEC¥), Estj,j=1,2+,r

If ¢*DE* properly is a complete p-ideal in o, ¢* DU;* for some j. To prove
that q* is not a regular ideal, it is sufficient, in view of (3), to show that

(©) 8(C*) — s(U¥) < d, j=1,2,r

For definiteness, take =1, and suppose s&U*. Write 2= Z;=1 z;, 2, ERF.
By assumption, v*(z,) 2 v*(€*) =v¥(€*w#), for all #>1, whence z,EC*wf,
i>1. It follows that we can find an element 2’ €€* such that z—3' =z If
Z, Z' are representatives of z, z’ in Of, this implies that Z—2Z'=®Q¥,
®c05. If ¢ is the residue of ® in 0¥, we conclude that z=¢w* (mod €*).
This implies in turn that dim %*/C* <dim q*/C*, where q/* is the vi*-ideal in
o* immediately preceding €*. By Theorem 1, dim ¢*/C* =6§(C*) — 6(a*) <d1.
This proves (6) and hence also (b).

Suppose now 2&G* and z&EG*. Then for some 7, say i =1, vi*(z) <v*(C*).
Define the complete p-ideals B*, D* in 5%, as follows:

v®F) = vi€) —vife) — 1, vF®B) = v}(E, i>1;

vE@F) = vii@*) — vi'@), vEOF) = vx@%), > 1.
There exist d; elements y,;, 1=1, 2, - - -, dy, in B,* linearly independent
modulo D*. The d; elements =), 1=1, 2, - - -, d;, are then in ;* and are

linearly independent modulo §*. Thus 8(€*) —8(A*) =d,, in contradiction to
(6). Therefore §*CG*, which proves the first assertion of Theorem 2.

It follows from the one-one correspondence between the complete ideals
in o,* and o, that §*Noy is a regular ideal, while for each z=1, 2, - - -, 7,
A*Mo, is not a regular ideal, and also that €*F =0.*(E€*Moy). The argument
which proved that §*CG* can now be repeated to show that € CG&*Mo,.

Conversely, if zEEF* Mo, 7ED, zpEofM\bp=10y, whence EF Mo, CG,.
Hence €* Mo, =§,, which completes the proof of Theorem 2.

To complete the proof of Theorem 3, it remains toshow that every regular
1deal in o, is contained in §,. It will suffice to prove that if I* is a regular
ideal in o, then M*CG*. Suppose z&o0* and v¥*(z) 2 v*(IM*). Define an
ordered sequence {q,,.*} of complete p-ideals in o* by the relations: v*(q.*)
=v¥i)+m, 1=1, 2, --.,r. Since q.fCIM*, q.* is a regular ideal, m
=0, 1, 2, - - -, r. It follows as in the proof of Theorem 1 that we can con-
struct elements 2,Eq.", m=0, 1, 2, - - -, such that, for each integer #,
v*(z— Z?n=o ZM)>V€*(q:t+h)r i=1, 2, - -, r. Since quHqui, ﬂ,:zoq,’f,=(0),
and op* is complete, it follows again from Lemma 7, Chevalley [1, p. 695],
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that the series ) _m_o%= converges toan element of 0¥, and hence that zEo.*.
We conclude at once that M*CE*. Q.E.D.

3. Semi-groups of positive integers. In order to establish a deeper prop-
erty of the conductor, we must first consider certain arithmetic properties
of integers which can be expressed in a specially designated way as a linear

combination of »# positive integers by, by, - « -, b,.

Let k;=(by, b2, + - -, b:),2=1,2, - - -, m,and let 53, 53, - - -, 5, be another
set of positive integers. We shall be interested in linear combinations of
b1, bs, - - -, b, with non-negative coefficients which for ¢=2, 3, - - -, n are
respectively <s;(ki-1/k:). An integer which can be written in this fashion will
be called a proper combination of by, by ---, b,. We denote by
Rn(dy, be, - - -, ba) the set of integers which can be expressed in exactly m
distinct proper combinations of &y, bs, : - -, b.. For any integer ¢, if
¢&Rm(by, by, - - -, ba), we shall write x(c) =m.

We shall also have to consider linear combinations of by, by, - - -, b, with
positive coefficients which for 7=2, 3, - - -, n are respectively =s;(xk;1/k:).
Such a linear combination of by, bs, - - -, b, will be called propert, and
RY (b1, be, - + -, b,) will denote the set of integers expressible in exactly m
distinct proper* combinations of by, by, - - -, by.

Letd =[], s.. We define two integers ua(by, bs, - + +, ba), va( by, b2, -« «, by)
which will be important in our considerations: wug(by, by, - - -, by)
= Z?=2 si(Kf—l/Ki)biv Vd(blv by, - - -, bn)=”d(blr by, -+ -, bn)+1_ Z?:l b

THEOREM 4. Assume (by, - + -, by)=1. Then

(@) if czva(by, - - -, ba), €ERs(by, - - -, by);

(b) Vd(blr R bn)_leRd—'l(bll T bn);

(€) vl =1 5 (c) =2 -va(by, * + -, ba).

Proof. We establish a sequence of shorter propositions which together
will form the proof of the theorem.

(d) If ¢>pqa(by, by, - -+, b,), then cCRS (by, - - -, ba).

If n=2, (b1, b2) =1, s;=d. The relation ¢ —xby=c —x{ by (mod b,) implies
xe=x4 (mod by). It follows that ¢ —2b,=0 (mod b;) for some integer z; such
that 1 £2, <5y If ¢ >pa(by, by) =dbib,, it follows that ¢ — (z247b1)bs is a positive
multiple of &, for r=0, 1, 2, - - -, d—1. On the other hand, if ¢ =y1b;+¥:b,

is a proper combination of b, by, y2=2-+rb; for some r=0, 1, . - ., d—1.
Hence c€ Ry*(by, bs).

We proceed by induction. Since (b1/kp—, * * *, bp1/ke1) =1, we can ap-
ply induction to these #—1 integers. Observe also that s;(k;_1/kn_1)/(Ki/Kn_1)
=si(ki_1/ki), £=2, 3, - - -, n—1, so that the upper bounds on the coeffi-
cients of by/Kn_1, = - -, bn_1/Kkn_1 are the same as those of by, - - -, b,_y.

Let d’= []%54 s, so that d=d’s,. Since (kn_1, bs) =1, €— (Zn+7Kn1)bn
=0 (mod k,_4) for some z, such that1<2,<«,_; and forr=0,1, - - -, s,—1.
Let ¢,=(c— (2a+7Kn1)brn)/Kn-1, r=0,"1, - - -, s,—1. Now, by definition,
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Md(blv b2v R bﬂ) = Kn—1Ma’ (bl/Kn—ly oty bn—-l/xn—l)"l'sn'cn——lbn- It fOllOWS from
this equality that each ¢, > g (b1/kn—1, * + -, bn_1/Kn—1), since ¢ >uq(b1, b2, - + -,
b.). Hence by induction ¢,ERw(b1/kn, - -+, ba1/kn1), r=0, 1, .-,

sp—1. Thus ¢ER,(by, by, - - -, b,) with a=s.d"=d. On the other hand, if
¢—¥.b,=0 (mod k,—;) with 0 <y, L suKn_1, Yo =2nF7ky_1 for somer=0,1, - - -,
s»—1. We conclude that ¢c& R} (by, bs, - -+, by).

(e) IfC%Vd(bl, bz, L b,.),then CeRd(bl, bz, s, bn)

In fact, if c=va(by, bay -+ - bn)y €+ 2ty bi>pa(by, by, - - -, by), whence,
by (d), ¢+ D71 b:ERF (by, by, - -+, by). Thus cERy(by, bs, - - -, by).

(f) ”’d(bly b2y Y bn) ER;—l(blr b2, MR bﬂ)'

For the case n=2, pa(b1, bs) =dbibs. The representations of db;b, are all of
the form dbib; = (dby—1b2)by+ (rb1)bs, whence the propert representations of
dbib; occur forr=1,2, - - - ,d—1.

We use induction once again. Since (b1, s, -+ +, b,)=0 (mod «.—1)

and since (k,_1, b,) =1, every propert representation of wg(bi, bs, - -, bs)
is of the form Y. 7% zbi+rknabs, r=1, 2, -, s, Furthermore e,
=(ua(by, + + + ) bn) —7Knabn)/Kny=par (b1/Kn1, - - - , bna/Kkn1) + (sn—17)ba,
r=1,2,---,5,. By (d), e;=R}(b1, b3, - + -, b,),2=1,2, - - -, s,—1. By our
induction hypothesis e, ERS'_1(b1/Kkn1, * + + , ba1/Kn1). Consequently
#d(blr be Tty bn) ER;—I(bly b21 T bn)

(g) Vd(bl, bay - - -, bn)—leRa_l(bl, by, ¢ - ¢, bn)-

This follows at once from (f) and the fact that wma(by, be, -« -, ba)
=V4(b1, bz, L b,.)—l-l- ZL! b,‘. '

(h) For any ¢, if cER,(b1, bs, - - -, bs), then a =d.

The statement: for any m, if mER} (by, by, - - -, b,), then a =d, is proved

in the same manner as (d). Applying this remark to m=c+ Y 7., b; will
prove (h).

1) If c=Zva(by, by, -+ -, ba)—1 and ¢ER(by, by, - -+, b,), then
Vd(bl, bz, ety b")—l—CERd_u(bl, bz, Tty b,.)

Consider first the case n=2. If c¢&ER4(b;, b2), we can find an integer z,,
0 < 2, <by, such that ¢ =2b:+2b,. All the representations of ¢ are then of the
form c¢=(z1—rbs)bi+ (z2+rb1)bs, and the proper representations occur
for »r=0, 1,---, a—1. Hence (a—1)b:=<z<abs. Since »s(b, by)—1
= [(d—l)bz—l]b1+(b1—1)b2, it fOllOWS that Vd—l —C=y1b1+y2b2 Wlth
y1=(d—1)bs—1—z, whence (d—1—a)b; =y <(d—a)b;, and with y,=b,—1
—2, whence 0=y,<b;—1. We conclude that (y;—7b2)bi+ (y2+7b1)b. are
proper representations of »4—1—c¢ if and only if r=0, 1, .-..,d—a—1.
Hence va—1—cERy_,(b1, b2).

We proceed by induction. Assume ¢ERy(by, by, + * -, ba). If ¢— 2.0,
=0 (mod k,_;) with 0=z, <k., let, as above, ¢,=(¢c— (2:+7Kn1)bn)/Kn-1,
r=0,1, - - -, s,—1. It is clear that distinct representations of ¢. as a proper
combination of by/kn1, © -+ +, ba1/Ks Will yield distinct representations of
¢ as a proper combination of by, bz, - - -, bs, and will, in fact, give all possible
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proper representations of ¢. If then ¢,ER,)(b1/Kn—1, - * +, bue1/Kn1), it fol-
lows that a= D> "3! a(r).
By induction, v —1 —¢, ERy—a(ry (b1/Kn—1, * * * ) Bn-1/Kna), r=0, 1,

—1. We have va—1=«, 4(var — 1)+ (s,,K,._l —1)b,. Therefore, if vy —1—c,
= Z‘=1 2:(bi/kn1), then va—1—c= D ¥7! 2bit (Sukn1—1— (8n+7Kn1))bs.
This shows that every proper representation of vy —1 —¢, gives rise to a rep-
resentation of ¢ as a proper combination of &y, by, - - -, b, and hence there
are at least »_o! (d’—a(r)) =d—a proper representations of r¢4—1—c.
On the other hand, ifv,—1—c= Zt=1 y:bi, then y, =5,k _1— 1 — (8a+7K0_1)

for some r=0, 1, -+ -, s5,—1, and s0 veo—1—c,= D> {7} ¥:(b:/kn1). Thus
every representation of y4—1 —¢ arises from one of vy — 1 —¢, for some integer
7=’0, 1, ree, Sn—l. Hence Vd—l—CERd_a(bl, bz, L b,,)

(3). Proof of (c).

It follows from (i) that for every integer ¢ <wq, x(c)+x(pa—1—c) =d. We
consider the pairs of integers: ¢, v4—1—c¢. If v4 is an even integer, we have
exactly 2-1; distinct pairs, and hence 2 %! x(c) =d(2~W,). If vs is odd,
there are 2-1(y;— 1) distinct pairs in addition to the single integer 2— 1(v.g— 1)
which is paired with itself. Since (i) implies that 2—(ya—1) € Ry/a(b1,bs, + * +, bn),
we conclude that D 223" x(c) =d(2-1(va—1))+2-1d = 2-1dp,. This completes
the proof of the theorem.

We conclude with two arithmetic results which we shall need in the next

section.
LeEMMA 1. Assume b,~>s.-_1b,-_1(x,~_2/ Ki1), 1=3, 4, - - -, n. Then there exist
non-negative integers v, j=1, 2, c,n—1;i=j+1, - - -, n, such that
(a) (Ki—l/K)b—Zj 1711111—2 3, ,m ] o
(b) 0=y:;— m=J+1 Ymi(sm—1) <(K2/k7), =2, -, n—=1; i=j41,
M (3
(© 0=va— 20l Ymlsm—1),7=2,3, - -, m.
Proof. We first prove the assertion:
(d) Let ¢ be an arbitrary integer divisible by &, and let a, a3, - - -, @. be
given integers. Then we can write ¢= ZLI z:b; with a;Zz;<a;+(ki_1/xs),
1=2,3,:--,mn.

Since (Kn_1/Kn, bn/Kkn) =1, (¢/Kn) —2.(bn/K2) =0 (mod k,_/k,) for some z,
such that a,=<2z,<a»,~+ (k._1/k,). Hence ¢—2,0,=0 (mod «,_;), and (d) fol-
lows by induction.

As for the lemma itself, if #=2 we have (b1/k2)bs=(bs/x2)b1. Thus
ya1=(b2/k2). We proceed by induction. Applied to the integers by, b2, + « -, by,
we may assume the existence of integers v, j=1, 2, ::,n—2; 1=j
+1, - - ., n—1 which satisfy (a), (b), and (c¢).

Let aj= ) o1 Ymi(Sm—1), j=1, 2, - - -, n—2, and let a,_;=0. Since
(Kn-1/%n)by 1s divisible by k,—;, we can apply (d) to it and to the integers
@z, a3, -+ *, @y, as just defined. We conclude that there exist integers
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Yrly Ya2y * * s Vnn-1 such that (K,‘_l/Kn)bn= Z;‘:ll 'Ynjbj and Oé'Ynj—dj
<(Kkj-1/k;), 7=2, 3, - - -, n—1. Hence the integers v.;, j=1,2, - - -, n—1,
satisfy (a) and (b). The proof will be completed by showing that v, satisfies
(c)—that is, v, = a1

n—1 n—-1
'Ynlbl = (Kn—l/Kn)bn - Z "/nibi = (Kn—I/Kn)bn et E (dj + (Ki—l/Ki) - l)bir
i=2 =2
whence it will suffice to prove that (Ka_i/kn)bn— D 1=a (@;j+ (kj—1/x;) —1)b;
Z a:b;. Using the definition of the integers a; and condition (a), this last
inequality can be rewritten, as follows:
(e) bn— 2.175 (si(kia/x) —1)b; 2 0.
Since by hypothesis &;>s;1b;1(ki_2/kin), 1=3, - + -, n, it follows that

bn > Sn—lbn—l(Kn—Z/Kn—l) = [sn—l(Kn—Z/Kn—l) - 1]bn—1 + bn—ly

and (e) follows by induction. Q.E.D.
Let R(by, - - -, bs) denote the set of integers which may be written as a
linear combination of by, - - -, b, with arbitrary non-negative integers.

LEMMA 2. Assume bi>Si_1b,'_1(Ki_2/K,;_.1), 'I«=3, ct o, R Then

(a) If cER(by, by -+ + , by), then ¢ERy(by, bsy - - -, b,) with a=1.

(b) If ¢ > (Ba/kn) (Kn—1/Kz), knC ER(by, - - -, ba).

(c) Define t;=t;15i1(Kki—a/ki1), =3, - - -, n, with {, an arbitrary positive
integer. Then (Kn_1/k)tnZte+ D oo (si(kiy/Ks) —1)ts.

Proof. If cER(by, » + -, ba), c= D oy Yibs, ¥:=0. Write y,=7n(Kns/Kz)
420, 022, <(Kn-1/Kx), 7220. Since (Kn_1/kn)bn= D -1 Ynibj and v,;=0,
i=1,2, -« =, itfollows that c= D> =i y!b;42,b, with y/ =0,7=1,2, - - -,
n—1. Thus by induction we conclude that that ¢c= Y 1, 2.0, 2:20, i=1, 2,

-, n, and 3;<(ki_1/ki), =2, + - -, n. Thus ¢ may be written as a proper
combination of b, by, ---, b, in at least one way, and hence ¢
ERa(by, by, - -+, b,) witha=1.

Take n=2, and suppose ¢>(by/x2)(b1/k2). As in Theorem 4, (d),
c=y1(b1/K2) +y2(bo/2), y:=0, i=1, 2; whence kecER(by, bs). We use induc-
tion. If ¢> (bn/kn)(Kn—1/Kx), there exists an integer z, with 0 =<z, <(kn._1/K.)
such that ¢ —2,(b,/k,) =0 (mod (k._1/k»)). Denote the integer (k.c —2.b.)/Kkn
by ¢’. Since ¢>(bn/kn)(kn1/kx) and z,=<(kn_1/k,)—1, it follows that ¢’
> [(ann—l/Kn) - ((Kn—l/Kn) - l)bn]/Kn—l = (bn/Kn)- bn >sn—1bn—1(Kn—2/Kn—l) by
hypothesis, and s, 421, so that ¢’ > (bn1/Kn-1)(Kn—2/kn—1). By induction,
k1’ ER(D1, + -+, ba_i). Since Kkn_16’ = Kn€—3,b,, (b) is proved.

(c) is established in the same way as part (e) of Lemma 1.

4. A generalization of a theorem of Seidenberg. Seidenberg [7] has given
a detailed analysis of the valuation ideals in a polynomial ring in two inde-
pendent variables over an algebraically closed ground field. As a special
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case of his theory one can obtain the corresponding analysis for the valua-
tion ideals in a nonhomogeneous coordinate ring of a plane algebraic curve
(over an algebraically closed ground field). The main tool in his work is the
construction, for a given valuation, of a special set of polynomials intrin-
sically associated with the valuation (Theorem 6).

We shall generalize this construction for valuations of an algebraic func-
tion field of one variable over an arbitrary ground field and for discrete
valuations of an algebraic number field.

Denote by 7 the irreducible monic polynomial in X with coefficients in
k or the rational prime integer which generates the prime ideal p, in 0. Let
w1, m2 be a basis for the prime ideal p in 0. If we assume that 7 is a monic
polynomial in y whose coefficients are, in the one case, in 2[X] of degree less
than degx 7, or, in the other case, non-negative integers less than =, then
w2 is uniquely determined. Clearly every element of o is congruent modulo p
to a polynomial in y of degree less than deg, 7. Let 5, 4=1, 2, - - -, dy, be
elements of o which form a basis for 0 modulo p and such that deg, 5: <deg, ;.

THEOREM 5. Let v be a valuation of K with center p in 0. It is possible to
construct a set of elements ms, wq, - -+ -, W, In 0 Which together with m, ms satisfy
all the following conditions: '

(a) w; may be wrilten as a monic polynomial in y with coefficients in 0y,

1=3, - -, n. If degy wi=t;, =2, - - -, n, and of v(w;)=b;, 1=1,2, - - -, n,
while k;=(by, - - -, b;), Lthere exist positive integers sq, Sz, + + * , S Such that

(b) te=s1and ti=t;y5i 1{Ki—2/Ki1), 1=3, - - -, n;

(C) bi>S.;_1b.'_1(K,'__2/K,'_1), ’i=3, LR (

(d) If d=the degree of v, then d=dy [ [}, s:; moreover,

(e) (bl, bg, c oty bn)=1;

(f) If ¢ED, V(¢)€R(blr b27 t bn);

(g) If {qj} denotes the sequence of v-ideals in o, them the monomials
m [ 78 with h=1,2, - - -, dy and a; <s(ki1/k:),1=2,3, - - -, n, of value

v(q;) form an independent basis for q; modulo q;1.

Proof. For brevity, we call a monomial 77;.H§,17r?" with a;<s;(k;_1/k;),

1=2,3, - - -, r,acanonical product of m, - - -, m. If $€0 can be expressed
as a linear combination (with coefficients in k or in I, as the case may be) of
canonical products my, + « -, m,, we shall write &ER(my, - - -, m)).

It will be convenient to add the statement:

(h) if deg, ¢<t; for some 7, then ¢ER(m, + -+, mia) and v(e)
ER(y, - - -, bia). )

If deg, ¢ <y, it is clear that ¢ = ZZ’;, cemy, a; =0, and ¢;Ek or ¢; €1,
1=1, 2, - - -, m, whence (h) holds in this case. Assume that w3, - - -, 7,
have been constructed satisfying (a), (b), (c¢), and (h). Then by, - - -, b,

{—

satisfy the hypothesis of Lemmas 1 and 2. Let ;= H,=} 1r,(“""'), 1=2,3,---,7,
where the v,; are the integers whose existence is asserted in Lemma 1. Also let
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Y= (@l [g), §=2, 3, - - -, r. By the definition of v:j, v(6:)=(Ki_1/K:)b;
and v({;)=0,2=2,3,-- -, 7.

As part of our induction hypothesis, we shall assume: if az=9 and a
=y, 1=2,3, -+, r ( denotes the residue, modulo the ideal of nonunits,
of an element of the valuation ring of v), then

(1) si=[kolaz, - + -, @sp1)ikola, + - -, @3], i=2, 3, -, r—1

We define s, by (i) and proceed to construct an element 7r41i0 0 satisfying
(a), (b), (c) and (h). There exists a unique polynomial g.(as, - - -, ar, Z)
with coefficients in kg, monic in Z of degree s,, whose degree in a;<s;,
1=2,3, - - -, r, and which is zero for Z=a,41. Let g/ (3, ¢z, - -+, ¥r1, Z) be
a monic polynomlal obtained from g, by replacing a2 by ¥, ai1 by ¢, ©
=2, —1, and each coefficient by a representative m oo

It follows directly from part (b) of Lemma 1 that [[iZ} 0§~ ! divides o,
in o; and hence by the construction of g/ and the definition of ¥,
o7 gl (0, Y2, - - - ) 0.

We define m,41 to be a7 -g/ (v, ¥2, -+ + +, ¥:). By construction

V(gf’ (yv ‘P2r et »"PT)) >0,

whence v(m,1) >v{07) =s.(kr—1/k,)b,. Hence (c) holds for 1.

The proof of (a) and (b) depends upon the following assertion:

G) deg, o;<deg, T = (k;_1/k)t;, 1=2, 3, -+, r. For i=2, 05 is a
power of 1 whence deg, g:=0. Assume (j) for gy, - - -, 6,. By definition,
degy 0:= Z, 2 Yiiti, 4=3, - - -, r. Combining these relations with the in-
equalities v,; < (k;—1/%;) —1+ Ze 1 Ye;(se—1), j=2, 3, - - -, r—1, a direct
computation yields deg, o, < 2 773 [(s, 1)deg, o:+ (ki_1/x;) —1)t;]. Applying
() for i <r, we obtain degy ¢, < X_1=3 (si(Kki_1/K:) —1)t; < (kr_1/k,)t, by Lemma
2.

The conclusion to be drawn from (j) is the following: the term of
highest degree in y in .41 is either less than or equal to the degree in y of
01=y’1—1¢7§’H§=2 51 or is equal to the degree in y of 0y =¥ r1/%) since
deg, 6i=deg, o,— 2123 [(si—1) degy oi]4si—14 22025 (si— 1) (xia/Ki)s.
It follows from Lemma 1 that

r—1 r—1
degy o, — 2_ (s — 1) degy 0s < 2 ((ki-a/x) — Vs
=2 =2
whence deg, 01 <s;1—1+ 2 =3 (si(ki_1/k:) —1)t;. Since s;=4 and s, 21, it
follows from Lemma 2 that deg, 01 <s,(k,—1/k-)t, =degy 0s.

Thus 7,41 is indeed monic in y of degree t,.1=s.(kr_1/Ks)Er.

Suppose ¢ <o and deg, ¢ <t,.1. Since w, is monic in y we may write
d=¢ot+P1r - - - Pl e<s.(k._1/k,), and deg, ¢;<t. (by (b)). Hence by in-
duction ¢;&ER(my, -+ -, 7rey) and ¢ER(my, ¢ - +, 7). The proof that v(¢)
ER(by, + + -, b,) depends upon a portion of (g), namely:
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(k) The canonical products of #y, * - -, 7, of value v(q;) are linearly
independent modulo g;41.
For we already know that ¢ is a linear combination of canonical products

of m, - - -, mr, and (k) shows that v(¢) is equal to the minimum value of the
canonical products which occur in the expression for ¢. Hence v(¢)
ER(bly R br)o

To prove (k), proceed inductively, observing that (k) certainly holds for
the canonical products of m; (if any) of value v(g;). Assume (k) for canonical”
products of my, - - -, my, and let {= ZZ’LI ¢:{; be a linear combination of
canonical products {; of w1, + - -, @, in which v(q;) =v({{), ¢=1, 2, - - -, m.
We must prove that {&q;.1.

We first prove:

() A power product x = [];-, 7% with a;>0, =0, or <0, and with v(x)
=0 may be expressed in the form H§=2 ¥i¢, m:>0, =0, or <0. In fact,
>y ab;=0, whence a, = m,(k,_1/k,) for some integer m, >0, =0, or <0. Thus
x=y¥e™ [[i2i#%. Since a;"’Hg;i 7 is a power product of my, -+ - -, W
and since v(¥,) =0, (1) follows readily by induction. An immediate corollary
of (1) is that ({:/{r) Ckolas, - - -, arp) forall s, k=1,2, - - -, m.

If e;=exp w, in {;, we may assume that max (e, - - -, es) >0 and, for
definiteness, that e;=min (e, - - -, em). It follows at once from the preced-
ing remark that ({/{1) is a polynomial P(a,4;) in a4 with coefficients in
kolas, - + -, &), Since e; <s,(k,1/x,) for each 7, degz P(Z)<s,. But if {
Eqjp1, v{§)>v() whence (§/f1) =0=P(ar41), in contradiction to the fact
that «,,.; satisfies no polynomial of degree <s, with coefficients in
ko(az, ey a,.).

We have thus succeeded in constructing an element m,;; which satisfies
(a), (b), (c), and (h). The remainder of the proof consists in showing that after
a finite number of such constructions (d), (e), (f), (g) can also be made to
hold.

It may happen first of all, at some step in this process that 7 4ym+1=0.
In this case, we assert 1, - - + , Tr4m satisfy all the conditions of the theorem.
Indeed every ¢&o can then be expressed as a polynomial in y with coeffi-
cients in oy of degree<toimu(®). By (h), v(¢)ER(by, - - -, brym) and ¢
&ER(my, - - -, Trem) which proves (f) and, in view of (k), also proves (g).
Moreover, if EK, v(¢) = D r1a:bd;, a;>0, =0, or <0, and since K contains
an element of value 1, it follows that (by, bs, + - - , b,1m) =1. Finally (e) implies
that Bo(as, * + * , @rymy1) is the entire residue field of v, whence d=d, | [i27 s,
proving (d).

Suppose now that x,=1. If $E€o, and v(¢) >s.(k,_1/%:)b,, it follows from
Lemma 2 that v(¢)ER(b;, - - -, b,). On the other hand, if $Eo, and v{¢)
S 5. (Ke_1/ K )by, @ =1+ Pomri1, $:€0, =1, 2, and deg, ¢ <try1. Since v(wri1)
> $pKy_1br, V(@) =v(91) ER(by, - - -, by) by (h). Therefore (e) implies (f).

(®) tr4m41 denotes the formal degree of 7rym41 as a polynomial in y.
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To prove (e) suppose k.,>1. Then there exists ¢ o such that v(¢)
&R(by, - - -, by). Suppose wrys, 1=1, 2, - - -, ¢, have been constructed and
that b, ;=v(mm ;) ER(My, - - -, b,), =1, 2, - - -, e. Assume b,.;>v(¢) for
some 1. As above, ¢=¢1+domrri, degy I1<itry;. Hence v(g)=v($1)
ER(by, - - -, bppsa) =R(by, - - -, b;), contrary to the choice of ¢. Thus if
brpiER(b1, - - -, by), brpi <v(P). Since bypiy1 > brys, there exists an integer m
such that b,im=v(7rym) ER(by, - + -, b,). We shall show that ., <k,. Since
certainly bypm>b:(k,—1/Kr), (Brim/Krwm) > (0r/ ko) (Komt/Krim). I Krpm=Kr, we
conclude immediately from Lemma 2 that b, nER(by, - - -, b,), a contra-
diction; whence k,4m <x,. Consequently a finite number of constructions of
elements m;, 1=1, 2, - - -, n, will be sufficient to insure that (b, b, + -+, bs)
=1.

Assume that the residue field of v contains an element o’ not in
kolas, - - -, ary). If ¢1/¢s is a representative of o’ in K, ¢;&o, 1=1, 2, let
b =v(p)) =v(gs). Construct mpys, 2=1,2, - - -, m+1, so that b’ <b,imi1. As
above, write ¢;:=¢! +¢!' Trimy1, degy ¢/ <trimp, 1=1, 2. Then &' =v(p}),
2=1, 2, and by (1) the residue of ¢1 /@4 is in ko, - - - , Arym+1). But clearly
this residue is a/, whence o Ekolas, - + -, Arymy1). We conclude from the
definition of s; and the preceding results that we can construct elements
Ty, My » * +, T, in 0 which satisfy (a)—(f).

To complete the proof we need only verify that the canonical products
of my, me, -+ -, o of value v(q;) span g; modulo q;41. This will establish (g)
since the independence of these canonical products has already been proved.
If v(q;) £suku1bs and if ¢&q;, write ¢ =¢1+domr,, with deg, ¢1<?¢,. Then
d=¢: (mOd qj-H) andv by (h)r ¢1€R(7I'1, T2, © * "y 7rﬂ—1)'

Suppose that v(q;) > suk,_1b,. Using equation (e) of Lemma 1, we have

SnKn1bn > [Z (siki-1/ks — l)bi] — (by— 1) = va(by, by - - -, bu),
=2

where d'=]]i, s:. It follows then from Theorem 4 that v(q;)

eRd’(bly b2v T Ty bn)- Let V(qj)= Z;;l aimbiv m=11 2) T dly be the dis-
tinct representations of v(q;) as a proper combination of by, b, - - -, by,
Then the d monomials nhHLﬂrf”‘m), h=1,2,--.,dy;ym=1,2,-..,d, are

distinct canonical products of value v(q;), which are linearly independent mod-
ulo g;41 by (k). We conclude that dim q;/q;41=d and that these d canonical
products span q; modulo g;41. Q.E.D.

5. The main theorem.
THEOREM 6. d(§,) =268(C,), or equivalently dim 5,/Cp =2 dim 0,/GC,.

Proof. Because of the one-one correspondence between complete p-ideals
in oy and o0, we need only prove d(Gg*) =258(G;*). Since d(G*) = D i, div¥(G¥),
and since §* = Y ;_, €*w, this is equivalent to the assertion
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1 r
(@) (&) = Y 2 dw(€Fe),

te=1

which we proceed to verify.
Let o*= Y i_, 0w Then clearly

(8) 5(6;%) = dim o5*/o* + 2_ 5(EX).
=1
(7) follows at once from (8) and from the following two statements:
1 T
(9) dim Dp*/D* = "2— Z d,‘Vi*(wi*),
=1
1
(10) 88 = —- dwH(EP), i=1,2,r
For each j, 2<j<r, define &= H{,,ﬂ,,,,#, F.* 1=1,2,--.,7, and let
w; be the residue of Qf in 0*. Also denote by Q* the ideal (Qf), &, - - -, @)

in Og*. We shall prove
1
(9 dim OF/Q F = < 2 dwFwi).
=1

Since O =0%*, (9’) implies (9).

We shall prove (9') by induction on ». Let f¥* be the residue of F¥* in
D;k, 1/=1, 2, .- y 7. If 1’=2, gz*=(F1*, Fz*), w’f2=f2*, w§2=f1’-", and (9,) is a
direct result of the following lemma:

LemMMA 3. dim O3/(F¥*, F5*) =dvi*(f5¥) =dovs*(f).

Proof. It suffices to prove the first equality. Since F;* is a nonunit in
0%, f»* is a nonunit in o*. Hence o* contains the ring T*, which is defined,
according as K is an algebraic number field or an algebraic function field, as
the completion of I[fs*] or of k[f*] with respect to the principal ideal (f*).
o* is, in fact, a finite 7*module (Chevalley [1, Proposition 5, p. 699]):
o= ZLI T*u;, u;&o*, 1=1, 2, - - -, 5. If L* denotes the quotient field of
T*, it follows that [Z*:L*]=s. On the other hand, [Z*:L*]=dvi*(f)
(Chevalley [2, Theorem 5, p. 61]), whence s=dv*(fs*). Since clearly
dim O3/ (F¥*, F*) =dim o*/0*/5*, we have only to verify that dim o0*/o*f* =s.

If €0 z= D i, t¥*u; t*ET*. There exist constants ¢; in & (or I) such
that t*—c,&ET*f*, =1, 2, - - -, 5. It follows at once that g— D i, cau;
Eo*f*, and hence that u;, #s, - - -, %, span o* modulo o,*/;*. On the other
hand, if D 3., cau;=2zf* with ¢;Ek (or I) and zEo*, we may write
z= D ¢ t*u;, t*CT* whence Y i, [ci—f#*]u;=0. Since the u; are linearly
independent modulo T*, we conclude that ¢;=0, =1, 2, - - -, 5, and so the
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u; are linearly independent modulo o*fy*. This completes the proof of the
lemma.

Now assume (9') for j<r. To prove the assertion for j=r, write
dim OF/Q*=dim O3/Q] ,+dim Q} ,/Q.*, apply the induction hypothesis
for j=7—1, and use the equality

(1) dim (D2,/08) = . (12,

to be verified in the next paragraph. A direct computation will yield (9’) at
once.

Define the ideals & in Og, £=0, 1,---, r—1, as follows: &¢*
=200 (@) & =200y W (FX FH4 200 (-0, k=1,2,- -+,
r—1. Clearly &¢ =0 |, & ,=Q.* Since &;_, DS;*, we prove (11) by show-
ing that dim (S#/&;_,) =dv*(i¥*), k=1, 2, -.,r—1. In fact, if A5,
i=1,2, - - -, doX({f¥), form a basis for O modulo (F¥, F}*), it follows from
the definition of &F that the elements 4*Q¥_, span &), modulo &.
Moreover, if A*€O§ and A*Q_,EG&*, it follows easily that A*Qy_,
=B*Q}_F¥ (mod F¥), B*&Dgy. Since Q5_, and F;* are relatively prime,
we have A*E (F*, F*), which implies that the elements 4 *Q,_, are linearly
independent modulo &*. Hence dim (&;_,/&#*) =dv*(fi*), as asserted.

To prove (10), let B; be the valuation ideal in o defined by v.i(8))
=v¥€¥*). In view of the natural correspondence of the v*-ideals in o7

with v;-ideals in o, we have only to prove §(8B;) =2"dvi(B,),1=1,2, - - -, r.

Theorem 1 implies that B; is the largest regular v,-ideal in 0. For definite-
ness, take =1, and let {q,-} be the sequence of vi-ideals ino. Letwy, « + -, 7
be the set of elements, constructed in Theorem 5 for vy, and let d' = HLz Si.
Let g be the vi-ideal in the sequence of value vg (b1, - - -, b,). Theorem
4 (a) implies that, for all j= %, and for all m20, vi(qj4m) ERy (b1, - - -, ba),
and hence that there exist d; =d,d’ distinct canonical products of my, - -+, 7

of value vi(qj+m). Since these canonical products are linearly independent
modulo gjymy1, we conclude that g; is a regular vi-ideal for all j= 5.

On the other hand, va(by, - - -, b)) —1ERy_4(by, - - -, bs), by The-
orem 4 (b), whence there exist only dy(d’—1) <d, canonical products of
m, - -+, T, of value vi(qs_1) which are linearly independent modulo gx. It
follows that neither is qs—1 nor any q; Dqs— a regular v;-ideal. We conclude
that g =9, and consequently vi(B1) =var (b1, - - -, bs).

Since 8(By) = 2 -3 dim (q;/q;+1), where qo=0, and since dim (q;/q;4+1)
=dx(v1(1;)), it follows that 8(B:) =dyx D 1= (vi(q;)). Furthermore by Theo-
rem 4 (c) we have 2 '3 x(vi(q;)) =2"'d'var(by, - - -, ba), whence 6(B,)
= 2_ld1V1(%1) .

COROLLARY. If D 4s the integral closure of v in K, and € is the conductor
between d and o, then dim (5/€) =2 dim (o/C).
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Proof. Let p be a prime ideal in p. Clearly 0,8 CGE,. Since 5y is a finite
op-module (compare Chevalley [2, Theorem 3, chap. 4] or Zariski [12, p.
507]), we have By= D_p, 08, B:EK,5=1,2, - - -, m. If 3EG,, then 28:E 0y,
for all 2=1, 2, - - -, m. Write 28.=(n:/10), mEK, =0, 1, - - -, m, and
70€Ep. Then (502)B:=7:E0o for each 7, whence 7,:2EE€. Hence 2&0,€, and
it follows that 0,&=¢,.

Let €=0j_,q: be a representation of € as the intersection of primary
ideals, and let p; be the associated prime ideal of g;. The preceding equality
implies that q;=6,,No, 1=1, 2, - + -, s, and, since €, is a complete p;-ideal
in 0p,, that each g; is a complete p;-ideal in 0. Hence € is a complete ideal in
o, and d(€) =dim (5/6) = Y _:_, d(G,,). Moreover, it is readily verified that
8(€) =dim (0/€) = D i_, 8(Gy,). The corollary now follows at once from the
theorem.

Part I1. THE GEOMETRY IN THE LARGE

6. Geometric preliminaries. Throughout part 11, we consider a fixed ir-
reducible plane curve I': F(X,, X1, X»)=0 of degree m, defined over an
arbitrary ground field %, with function field K. We denote by (xo, %1, x2) the
set of homogeneous coordinates of I'. For our purposes, it will be convenient
to define a point of T’ to be a complete set of conjugate points in the ordinary
sense. It will also help to make a few minor changes in the notation of part I.
If P is a point of I', we denote by op (rather than o,) the local ring of P on T
If v;,2=1,2, - - -, r, are the valuations of K whose valuation rings contain
op, we say that each v; has center P on I', and call the intersection of v;-ideals,
=1, 2,---,r, in 0p a complete P-ideal. Because of the identification of
conjugate points, every valuation of K has a uniquely determined center
onT.

By definition, a prime divisor of K is a complete set of conjugate places of
K. To each prime divisor p is associated a unique valuation v, of K, and con-
versely. By the center of p on I' is meant the center of the corresponding
valuation v,, and by the degree d(p) of p is meant d(v,). A divisor of K is
any formal power product B=pji'py® - - - pi* of prime divisors p1, - -+, pPs
with arbitrary integral exponents ui, « - -, u.. Its degree d(B) is defined to be
d(B) = ZL: k:d(ps).

LetTV: G(X,, X;, Xs) =0 be a curve not containing I" as a component, and
let p be a prime divisor of K. If P is the center of ponI', X550 at P for some
A=0, 1, or 2. We define the intersection of I' and IV at p to be the divisor
p* where u=v,(G((xo/x2), (x1/%2), (¥2/x1))), and define the intersection multi-
plicity i(p;T’, I’) of T and I at p to be d(p*). If p1=p, P2, - - + , pr are all the
prime divisors of center P on I', we define the intersection multiplicity
i(P;I', TY) to be Z§=1 i(p;; T, TV). Thus the complete intersection of I' and
I' is a divisor (', T) whose degree i(T, I')= > pcyr i(P;T, I"). Bézout's
theorem asserts that if I is of degree =, (T, I'') =m - n.

It will be convenient to denote by g(n) the linear series cut out on I' by
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the system of all curves of order #, and by g(B; ) the system of all curves
of order n whose complete intersection with I' contains the integral divisor B
as a fixed component. The quantity dim g(z) —dim g(B; n) is a constant for
all » sufficiently large. We define 6(B) =dim g(n) —dim g(B; ») for large n.
0(B) designates the number of conditions which the divisor B imposes on
the curves of sufficiently high degree.

Let B;, 2=1, 2, - - -, h, be integral divisors, and assume that each prime
factor of B; has its center at a given point P; of I', P;P;, i#j. Then the
theorem on the independence of conditions asserts that, if B= [[}., B,
then

h
(12) 3(B) = 2_ 6(B.).

=1

Let P be a point of I" and let py, - + +, p- be the prime divisors of K of

center P, with vy, - + +, v, the corresponding valuations. There is a natural
one-one correspondence between the integral divisors of the form A
=pi. ... P! and complete P-ideals q in op: A<>q if and only if u;=v.(q),
t=1, 2, - - -,r. For corresponding pairs A, q, the
(13) basic equalities 6(4) = §(q), d(4) = d(q)

are easily verified.

7. Adjoint curves. Let P be a point of I". The conductor €r between
op and Dp is, by Theorem 3, a complete P-ideal. The divisor corresponding to
€p is designated by Cp and is called the adjoint divisor at P.

If P is a simple point of I', Cp is the unit divisor. Since I" has only a finite
number of singular points, the divisor C= Hpep Cpr is well-defined and is
called the adjoint divisor of T'.

DEFINITION. An adjoint curve to I' is any curve which cuts out on I" a
multiple of the adjoint divisor C.

LeEMmMA 4. If A is any integral divisor, we have 6(AC) = §(C) + d(A).

Proof. Let AC= []i., Ap,Cp, where Ap,, Cp, are the factors of A and C
respectively which contain those prime divisors of center P, on I'. Let g; be
the complete P;-ideal in op; which corresponds to 4p,Cp,, 7=1, 2, - - -, ¢
It follows at once from equations (12) and (13) that 8(C)= 2 i ; 8(Cp,)
= 2761 8(Cp), and 8(AC)= 2., 8(4p,Cr,)= 2 i.: 8(q:), Whence 8(AC)
=8(C)+ D>t [6(q:)—8(Cp,)]. Since each Gp, is a regular ideal(*),

(% In the case in which £ is infinite a simple proof of the regularity of €p, for any point P
of T, can be given. For then there exists an element 3¢ € such that v;(z) =v;(€p), 7=1,2, - - -, 7,
where v, v, + « -, v, are valuations of K of center P on T. Let ¢ &p be a complete P-ideal.
Define the ideal g’ in 5p by the relations: v;(¢’) =v;(q) —v;(€p), j=1,2, - - +, r. Then dim 0p/q’
=d(q)—d(Cp). If w;, i=1, 2, -, d(q) —d(Cp), form an independent basis for 5» mod ¢’,
the elements zw; form an independent basis for €» mod q. Thus dim €»/q=d(q) —d(€r) and
so @p is a regular ideal.
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0(q:) —8(€p,) =d(a:) —d(€p,) =d(Ap)).
Hence 6(AC) =08(C)+d(A), as asserted.

THEOREM 7 (THE NOETHER FUNDAMENTALSATZ). Let TV:G(X)=0 be a
curve not containing U as a component, and let A= (U, T). Then if T : H(X) =0
cuts out a multiple of AC on T, there exist forms A(X), B(X) with coefficients in
k such that H(X)=A(X)F(X)+B(X)G(X).

Proof(5). We treat first the case in which the degree n of I’ is sufficiently
high so that 8(AC)=dim g(n)—dim (AC; =), and also that n=m-e,
where ¢ is the degree of I'. In this case,

dim g(AC;n)=(mn+1)(n+2)/2—(n—m+1)(n—m+2)/2—-8(AC).
Since 8( AC) =6(C)+d(A) by Lemma 4 and since d(A) =m ¢, it follows that
(14) dim g(AC;n) = nm — em — (1/2)m(m — 3)/2 — 8(C).

On the other hand, let g’ denote the linear series cut out on I' by the sys-
tem of all curves of the form A(X)F(X)+B(X)G(X)=0 of degree n for
which B(X)=0 is an adjoint curve. Clearly g’ Cg(AC; =), and
dim g'=dim g(C; n—m) =nm—em(m?—3m)/2—8(C). It follows from (14)
that g’ =g(AC; n).

If the degree n of I'’’ is arbitrary, let P, - - -, P, be the points of inter-
section of I' and I". There exists an irreducible curve ¢(X) =0 which does not
pass through any P;,¢=1, 2, - - -, 5. By the first part of the theorem, we have,
for o sufficiently large,

(15) ¢(X)’H(X) = A(X)F(X) + B(X)G(X),

for suitable forms 4(X), B(X). Let X =(X1/X,), Y=(X3/X,), and let &, &,
be the residues of X, Y respectively modulo ¢(1, X, V). Let (G(1, &, &))
=MN}_, q; be the decomposition of this ideal into primary components in the
ring k[gl’ gz]‘ Since A(lv Elv EZ)F(I! Slr £2) = _B(lr Elr 22)G(lr glr EZ)r
AQ, &, E)F(, &, &)Eq; for all j=1,2, .. -,k If, for some j, F(1, &, &)
E€rad gj, it would imply that the three curves T, IV, and ¢(X)=0 have a
point in common, contrary to the construction of ¢(X). Hence A(1, &, &)
ENy.19;=(G(, &1, £)). It follows easily that 4 (X) =4 (X)G(X) +A4:(X)(X),
B(X)=—Ay(X0)GX)+Bi1(X)p(X) for suitable forms A,X), 4:(X), and
Bi(X).

Substituting these relations in (15), we conclude that ¢(X)"'H(X)
=A,(X)F(X)+B:(X)G(X). By o repetitions of this argument, we com-
plete the proof of the theorem.

The completeness of the adjoint series is an immediate corollary of the

(%) Compare the proof in Severi [9].
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Noether Fundamentalsatz, as is well known(®).

THEOREM 8. The adjoint curves of any order cut out complete linear series
onT.

8. Adjoint curves of order m — 3 and the canonical series(?). Our present
object is to derive the following basic properties of the adjoint curves:

THEOREM 9. The adjoint curves of order m—3 cut out on I' outside of the
JSixed component C the complete canonical series.

THEOREM 10. d(C) =26(C).

As a direct corollary of these two results, we shall also obtain:

THEOREM 11. If the genus(®) of I' is denoted by g, then
g=(m—1)(m—2)/2—-8(C).

We shall give two independent proofs of Theorems 9 and 10. In fact, we
shall prove first that these two theorems are equivalent to each other. We
shall then show that Theorem 10 is a direct consequence of Theorem 6, the
main theorem of part I. Finally we shall give a proof of Theorem 9, in the
case in which the function field K of I' is separably generated over &, based
upon a representation theorem for the differentials of the first kind of K.

Assume first that d(C) =26(C). Take n so large that dim g(n) —dim g(C; n)
=§(C) and that g(C; ») is a nonspecial series(®). Then, as in (14), dim g(C; »n)
=mn—(m?—3m)/2—8(C). On the other hand, since g(C; #n) is a complete
series of degree mn—d(C), it follows by the Riemann-Roch theorem
(Chevalley [2, Theorem 7, p. 33]) that dim g(C; n)=mn—d(C)—g+1,
whence

(16) (m — 1)(m — 2)/2 4+ 8(C) — d(C) = g.
Since d(C) =28§(C), we conclude that

(%) B. L. van der Waerden [10, p. 216].

(7) For the definitions of the various concepts concerning algebraic curves which we shall
need in this section, we refer the reader to Chapters I and II of Chevalley [2]. We point out,
however, that there exists a direct connection between the notion of a divisor class of K as
defined by Chevalley on p. 19 and the concept of a complete linear series on I': namely, the
integral divisors in a divisor class of K form a complete linear series, which can be cut out on I’
by a linear system of plane curves. In particular, the integral divisors in the canonical divisor
class (Chevalley p. 32) form the canonical series. Furthermore the degree and dimension of a
divisor class is equal respectively to the degree and dimension of the corresponding complete
linear series. Hence the canonical series is of dimension g and of degree 2g—2, where g is the
genus of K (Chevalley, chapter 11, Theorems 4 and 6).

(%) By the genus of ' we mean the genus of the function field X of T.

(®) A linear series is called special if it is a subseries of the canonical series; otherwise it is
called nonspecial. A series of degree greater than 2g—2 is necessarily nonspecial (Chevalley
[2, p. 32, corollary]).
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(17) m(m — 3) — d(C) = 2g — 2,
and
(18) (m — 1)(m — 2)/2 — 6(C) = ¢

(which establishes Theorem 11).

(17) implies that deg g(C; m—3)=2g—2, while (18) implies that
dim g(C; m—3) 2 g. Since g(C; m — 3) is complete, it follows at once from the
Riemann-Roch theorem that g(C; m—3) is a special series. In fact,
dim g(C; m—3)—deg g(C; m—3)+g—1=g—(2g—2)4+g—1=1, whence
g(C; m—3) is a subseries of the canonical series. Since its degree, 2g—2, is
equal to the degree of the canonical series, it follows that g(C; m —3) is itself
the complete canonical series.

Conversely, if we assume Theorem 9, then

deg g(C; m—3) =m(m—3)—d(C)=2g—2.
Combining this equality with equation (16) gives at once d(C) =25(C).

To prove Theorem 10, let Py, P,, - - -, P, be the singular points of T'.
Since d(€p,) =26(Cp,), 1=1, 2, --.,s, by Theorem 6, we have d(Cp)
=26(Cp,), +=1, 2, - - -, 5, in view of (13). Since C= HLI Cp,, it follows

immediately that d(C)=26(C).

Finally let (X, Y) be a set of nonhomogeneous plane coordinates. For
simplicity, denote by F(X, Y)=0 the nonhomogeneous equation of T, of
degree m, and let (x, ¥) be corresponding nonhomogeneous coordinates of the
general point of I'. Assume that the function field X =k(x, ) of I is separably
generated over k. Then either x or y is a separating variable. We assume, for
definiteness, that «x is a separating variable, and that y is an integral element
over k(x)(19).

IfI:¢(X,, X1, X2) =01is an adjoint curve to T, we shall write ¢(X, ¥) =0
for the nonhomogeneous equation of IV, and shall say that ¢(X, ¥) =0 is an
adjoint curve of order # if deg ¢(X, ¥) <n.

Since the differentials of K(*!) form one complete divisor class—the
canonical class—Theorem 9 is a direct corollary of the following representa-
tion theorem.

THEOREM 12. 4 differential & of K is of the first kind if and only if it can
be written in the form (¢(x, v)/ Fy (x, v))dx, where T':¢(X, Y) =0 is an adjoint
curve of order m—3. If & 1s of the first kind, the divisor of @=(I', T")/C.

(1) If k is infinite, this is no restriction; for then ax-by =1y will be integral over k(x) for
suitable a, b& k, and the curve I'; whose general point is ¥, y1 will be projectively equivalent to I'.

(1Y) For the definitions of a differential of K, the order of a differential, the divisor of a
differential, a differential of the first kind, etc., see Chevalley [2, chapter II, §§5 and 6]. Since
% is a separating variable for K, every differential of K is of the form Adx, A& K (Chevalley
chapter VI, Theorem 4).
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Proof. If @ is any differential of K, we can write &= (¢(x, y)/F, (x, ¥))dx,
where ¢(x, y) €K. Let 0=Fk[x, y], and let € be the conductor between 5 and
0. The following results are well known:

oF) (x, ¥)=CD where D is the different of K with respect to k(x)
(Hecke[6, p. 145]).

vp(D) =v,(dx) for any prime divisor p of K whose center onT is at finite
distance in the (X, ¥)-plane (Chevalley [2, Theorem 7, p. 110]).

Together these results imply that v,(®)=0 if and only if v,(¢(x, ¥))
Zv,(€). Thus & is of the first kind at finite distance if and only if v,(¢(x, ¥))
=v,(€) for all prime divisors of center at finite distance on I'. Since € is a
complete ideal, this last condition is equivalent to the assertion ¢(x, ¥)
€€, which in turn is equivalent to the statements: ¢(x, y) is a polynomial
in x, ¥ and ¢{(x, ¥)EC€p for every point P of ' at finite distance (compare
proof of corollary to Theorem 6).

Consider now the nonhomogeneous plane coordinates: X'=X,/X;,
V'=X,/X;; and X=X,/X,, Y=X,/X,. Every point P of T' at infinity in
the (X, Y)-plane (at least one such point exists) is at finite distance in either
the (X', Y")- or (X, 7)-plane.

If x’,  are nonhomogeneous (X’, Y')-coordinates of T, then x'=1/x,
y'=y/x. Write F(X, V)=F(X', V)/X'™ and ¢(X, V)=¢'(X, V)/X*,
where % is the degree of ¢(X, V). We have Fy (x, y)=F, (x', ¥')/x'™! and
also, since x is a separating variable, dx= —(1/x'%)dx’. It follows that
o=—(@'(x', y)x'm=/F'y(a, y'))dx’.

In the second case, write F(X, ¥V)=F(X, ¥)/V™ ¢(X, V)=¢(X, V)/T*,
and let # 7 be nonhomogeneous (X, ¥)-coordinates of I'. Then &=x/y,
$=1/y. If v is also a separating variable, then dx/F; (x, y) = —dy/F/ (x, ¥),
and it follows that &= —(é(x, ¥)3™3*/F] (%, ))d%. If, however, ¥ is not a
separating variable, we find directly that F/ (x, y) =FJ (&, 3)/97 2% Let D,
be the unique derivation of K for which D ,(x)} =1. We have then by Chevalley -
[2, Chap. 6, Theorem 9] d&=D (&)dx=(1/y—(x/y2)D.(y))dx=(1/y)dx
since D,(y) =0. We conclude in this case that &= (¢(&, §)9**/F/ (%, §))d%.

For & to be of the first kind at every point of T, it follows from the first
part of the proof that we must have (in addition to the conditions already
obtained) that ¢’(x’, ¥")x'™3~* and @(%, §)3™3~* are polynomials in x’, y’
and %, § respectively, which belong to €p for every point P of I' at finite
distance in the (X’, ¥’)- or (X, ¥)-plane, as the case may be; and conversely.
Since ¢’(x, ¥') and &(&, ) are not divisible by x’ or 7 respectively, these
conditions imply that k<m —3.

There exists then a form ®(X,, X1, X») of degree m — 3 such that (1, x, y)
=¢(x) 3’)1 (I)(xlv 1, y’)=¢’(x’, y')x""_a_h, and q)(xr Yy 1)‘_“5(3—51 5,)5,";—3—}:. It
follows that & is of the first kind if and only if ®(X,, X1, X2) =0 is an adjoint
curve to I' of order m —3.

The final assertion of the theorem follows directly from the proof.
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