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Abstract: This paper proposes a novel hybrid arithmetic–trigonometric optimization algorithm
(ATOA) using different trigonometric functions for complex and continuously evolving real-time
problems. The proposed algorithm adopts different trigonometric functions, namely sin, cos, and tan,
with the conventional sine cosine algorithm (SCA) and arithmetic optimization algorithm (AOA) to
improve the convergence rate and optimal search area in the exploration and exploitation phases. The
proposed algorithm is simulated with 33 distinct optimization test problems consisting of multiple
dimensions to showcase the effectiveness of ATOA. Furthermore, the different variants of the ATOA
optimization technique are used to obtain the controller parameters for the real-time pressure process
plant to investigate its performance. The obtained results have shown a remarkable performance
improvement compared with the existing algorithms.

Keywords: arithmetic–trigonometric optimization; benchmark functions; dead-time processes;
fractional-order controller; PID control; process control; trigonometric functions

1. Introduction

In the era of advanced technological development, the complexity of implementing
real-time processes and applications requires effective metaheuristic optimization tuning
techniques to meet the global demands with more reliability [1]. The traditional optimiza-
tion techniques determine the local minima based on the analytical calculations using
the relevant processes models, which generally produce a single optimal solution at each
run [2,3]. On the other hand, the metaheuristic techniques overcome the conventional meth-
ods due to the effective gradient-free mechanisms and the excellent handling of local optima
of the respective functions [4,5]. In most metaheuristic algorithms, the optimal solution is
found by increasing or decreasing the desired objective function [6,7]. Every optimization
algorithm has its challenges in facing the real-time applications that are diverse in nature,
multimodal system structure, complexity in implementation, bounded space limitations,
longer processing time, flexibility in parameter modifications, and application-specific
requirements [8–10].

In general, there are different categories of metaheuristic optimization algorithms
available. The categorization is based on inspiration: nature-based, swarm and evolu-
tionary intelligence, physics-based, and human activities-based techniques [4,11]. Most
metaheuristic optimization techniques identify the optimum solution area by incorporating
the two critical search phases: exploration and exploitation [12]. The exploration stage
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performs the function of finding the desired local optimal solution in the global search
area. On the other hand, the exploitation phase will serve the different possible solutions in
the desired search area [13]. This process improves the effective search area selection and
local optima improvement. These two search phases must be in an apt balance to ensure
the efficient performance of the optimization [14]. In the early optimization techniques,
only a single optimal solution is possible for each algorithm run. Later developments are
motivated by the natural phenomena to solve the multi-objective processes using three
realistic procedures: select, recombine, and mutate [15,16].

Among the different optimization techniques, the SCA forms the base research idea
for this article [17]. Compared with the other metaheuristic techniques, SCA has a simple
structure and is flexible towards selecting the parameters concerning the application needs.
The SCA uses the analytical model of the trigonometric functions (i.e., sin and cos) to find
the initial arbitrary search to identify the best solutions. Population and local searches are
the two critical strategies adopted by the SCA to yield the best solution possible in both
search phases (exploration and exploitation). The SCA faces the problem of premature
convergence in both stages, and this issue is solved by combining the chaotic-based search
area mechanism and the cultural algorithm technique termed chaotic cultural SCA [18].
Additionally, some hybrid optimization techniques were developed by combining SCA
with other algorithms to improve the local search problems. Researchers developed such
an improved algorithm by combining the flower pollination algorithm [19]. Here, the SCA
performs the internal search operation to solve the algorithm’s local optimal search area
problem. Similarly, the authors in [20] combined SCA and the genetic algorithm, resulting
in a new hybrid steady-state genetic algorithm to solve the early convergence issues
encountered by the many engineering applications. Tawhid and Savsani proposed the
optimization for multiple objective functions by using the crowd-distance method to obtain
the different optimal search areas for retaining the presence of diversity among those
optimal solutions [21].

Abualigah et al. in [1] proposed the AOA by using the arithmetic operators such as
multiplication, division, addition, and subtraction to solve the single-objective problems.
Later, Premkumar et al. improvised this technique for the multiple-objective applications
and termed it real-world constrained multi-objective optimization problems [22]. An im-
proved version of the AOA is proposed by Panga et al. in [23] by applying the square and
cubic functions to the bounded values in the exploration and exploitation phases. They
obtained performance improvement only in the lower dimension functions whose global
minima values are close to zero. Zheng et al., in [24], proposed another modification for the
AOA technique by forcefully switching the optimization function based on a new random
probability parameter. All the above techniques improved the ability of AOA to reach
the best position; however, the search agents cannot relocate their position to identify the
best local minima due to their small step-changing capability. In recent years, the appli-
cation of SCA and AOA techniques has extended to various engineering fields such as
image processing [25], engineering design problems [26,27], feature selection [28,29], fault
diagnosis [30], text categorization [31], power systems [32,33], parameter estimation [34],
cruise control [35], scheduling applications [36], object tracking [37], energy production [38],
controller parameters optimization [39], and benchmark functions [40].

The above literature studies conclude that using higher population groups to find an
optimal solution does not assure the desired optimal value because of the increased number
of random optimal solutions and continuously increasing real-world problems [41,42].
Nevertheless, the search mechanism is common for all metaheuristic algorithms, i.e., ex-
ploration and exploitation [43]. The No Free Lunch theorem also states that no such
metaheuristic optimization algorithm is available to solve all types of optimization prob-
lems in simulation and real-time environments [44]. Hence, there is always an opportunity
for improving the design of the existing optimization algorithms. Thus, using the SCA’s
faster local search mechanism and best position identification ability of the AOA, a new
hybridized arithmetic-trigonometric optimization algorithm (ATOA) is designed to faster
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attain the convergence rate and achieve better optimal zone finding in the exploration and
exploitation phases.

Some of the significant contributions in this research article can be listed as follows:

1. The proposed ATOA technique avoids premature convergence and accelerates the
search mechanism using the trigonometric functions (i.e., sin, cos, and tan).

2. The different combinations of the proposed trigonometric function quickly relocate
its position from one local minimum to another without getting stuck and reducing
the computational complexity.

3. The proposed optimization is simulated and validated with 33 different benchmark
functions to determine its rate of convergence and optimal solution zone identification
performance.

4. The ATOA optimized controller is implemented on the real-time pressure process
plant to validate the proposed optimization technique.

The paper’s organization is given as follows: A comprehensive design procedure of
the proposed ATOA technique is discussed in Section 2. The performance analysis of the
proposed ATOA and conventional algorithms on different benchmark functions is given
in Section 3. The experimental results of ATOA optimized controller parameters on the
real-time pressure process plant are compared to the conventional techniques in Section 4.
Summary, concluding remarks, and future directions of the proposed work are provided in
Section 5.

2. The Arithmetic–Trigonometric Optimization Algorithm

This section gives the development of the proposed ATOA based on the inspirations
from the SCA and AOA algorithms. Selecting these two specific algorithms is due to
their flexibility in modifying the design structure and parameters based on the system
requirements. In addition, their simple and easy implementable structure allows it to be
used for different engineering problems.

2.1. Sine Cosine Algorithm

The SCA algorithm is also a population-based metaheuristic optimization technique.
The optimization will be initiated using a group of populations with random solutions.
This random set needs a continuous evaluation to reach the optimal solution based on the
desired objective function. The probability of finding the best optimal solution in the single
run of this metaheuristic algorithm is very low. Still, the chances will be increased if there
are a sufficient number of iterations and random set solutions available. The SCA also
consists of the exploration and exploitation phases to reach the global minima by locating
the optimal search regions. The position update equation during this exploration phase is
given as [17]

Xt+1
i = Xt

i + r1 × sin(r2) ×
∣∣r3Pt

i − Xt
i
∣∣. (1)

Once the area is located by exploration, the fluctuations that occur in the random
solutions will be reduced in the exploitation phase. The position update equation during
this exploitation phase is given as Equation (2):

Xt+1
i = Xt

i + r1 × cos(r2) ×
∣∣r3Pt

i − Xt
i
∣∣. (2)

In Equations (1) and (2),

• Xt
i and Xt+1

i are the positions of ith solution at tth and (t + 1)th iterations.
• Pt

i is the point of destination of ith solution at tth iteration.
• r1, r2, r3, and r4 are the random variables.
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The parameter r1 guides the direction of movement. This direction is the next position
towards the region between the solution and the destination. The guiding principle of r1 is
defined as

r1 = 2− t
(

2
T

)
, (3)

where t and T are the number of current and maximum iterations, respectively.
The parameter r2 determines how far the movement of the particles has to go either

towards or away from the destination. Similarly, the parameter r3 specifies the goal to
define the distance movement using the random weights to emphasize or de-emphasize
them. The equations for generating these r2 and r3 values are given as

r2 = 2π · rand(),

r3 = 2 · rand().
(4)

Furthermore, the choice of emphasizing or de-emphasizing effect based on the value
of r3 is as follows:

Effect =

{
Emphasize, if r3 > 1,
De-emphasize, if r3 ≤ 1.

(5)

Finally, the parameter r4 helps switch between the sin and cos functions during the
exploration and exploitation. The range of r4 lies in [0, 1], and this switching will be
performed as follows:

Xt+1
i =

{
Xt

i + r1 × sin(r2) ×
∣∣r3Pt

i − Xt
i

∣∣, if r4 < 0.5,
Xt

i + r1 × cos(r2) ×
∣∣r3Pt

i − Xt
i

∣∣, if r4 ≥ 0.5.
(6)

The pictorial representation of switching conditions of the SCA is given in Figure 1.
Here, the random variable r1 movement towards the destination is based on the current
solution and position.

Destination 

(P)

Solution (X)

Next position

r1 1

Next position

r1>1

Figure 1. Position update mechanism in SCA algorithm.
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2.2. Arithmetic Optimization Algorithm

The design of the AOA starts with the usage of four arithmetic operators as per the
order given as follows: division (÷), multiplication ( × ), subtraction (−), and addition
(+), as shown in Figure 2. The conditions for selecting the exploration and exploitation
phases of the algorithm are depicted in Figure 2a. The hierarchical order of these four
mathematical operators is illustrated in Figure 2b. In contrast, the mechanism of searching
for the optimal solution area is shown in Figure 2c [1]. In AOA, three phases are involved in
finding the best optimal solution, and they are given as follows: initialization, exploration,
and exploitation. Comparing Figure 1 with Figure 2 clearly shows that the AOA follows
the footsteps of the SCA in finding the optimal solution.

(a) (b)

Subtraction

Addition

Multiplication

Division

Optimum Solution Area

Exploitation

Exploration

r3

Division

Addition

Multiplication

Subtraction

r2

r2

r3

µ
µ

µ

µ

(c)

Figure 2. Illustration of AOA algorithm; (a) search phases of the AOA; (b) hierarchy of the arithmetic
operators; (c) position update towards the optimum area.

2.2.1. Initialization

The optimization commences with the randomly generated initial candidate solutions
X, which are obtained using Equation (7) with the order of n × d. Here, n is the number of
solutions, and d is the number of variables. The best variable obtained from each iteration
of the matrix X is considered the best optimal solution, which is given as

X =




x1,1 · · · x1,j x1,n−1 x1,n
x2,1 · · · x2,j · · · x2,n
. . . · · · · · · · · · · · ·
...

...
...

...
...

xN−1,1 · · · xN−1,j · · · xN−1,n
xN,1 · · · xN,j xN,n−1 xN,n




. (7)

The math optimizer accelerated (MOA) function determines the next search phase (i.e.,
exploration or exploitation) of the algorithm with the help of division and multiplication
operators. The equation to find the MOA coefficient is given as

MOA(t) = min+t
(

max−min
T

)
, (8)

where “min” is the minimum value of MOA, “max” is the maximum value of MOA, t is
the current iteration, and T is the maximum number of iterations.
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The next operation in the AOA is categorized into two phases based on the MOA
function value. The phase search operation is used to commence the next phase of AOA,
which is decided based on the MOA value using the equation as follows:

Search operation =

{
Exploration, if r1 ≤ MOA,
Exploitation, if r1 > MOA.

(9)

2.2.2. Exploration

In the exploration operation, division and multiplication operators produce practical
search operation values or results, which lead to the identification of near-optimal values
for the next phase (exploitation). Here, the exploration is started based on the condition
given by MOA in (9). The first operator, ÷, will initiate the searching performance task if
the value of r2 ≤ 0.5. The adjoining operator × will be ignored during this process until
the current job is completed. Otherwise, the second operator × will start the first task if
r2 > 0.5 instead of the ÷ operator. The position update of the exploration phase is obtained
using the equation, as given as follows.

In the exploration operation, division and multiplication operators produce effective
search operation values or results, which lead to the identification of near-optimal values
for the next phase (exploitation). Here, the exploration is started based on the condition
given by MOA (r1 ≤ MOA). The first operator, ÷, will initiate the searching performance
task at the beginning if r2 ≤ 0.5. In the meantime, the adjoining operator, × , will be
ignored during this process until the current job is completed. Otherwise, the second
operator, × , will start the first task (r2 > 0.5) instead of the ÷ operator. The position
update of the exploration phase is obtained using the following equation:

xi,j(t + 1) =

{
best

(
xj
)
÷ (MOP + ε) ×

(
(UBj − LBj) × µ + (LBj)

)
, r2 ≤ 0.5,

best
(
xj
)
× MOP × ((UBj − LBj) × µ + (LBj)), r2 > 0.5.

(10)

where MOP is the math optimizer probability coefficient, which is calculated using

MOP(t) = 1−
(

t
T

)1/α

(11)

In Equation (11),

• α is a sensitive parameter that defines the exploitation accuracy.
• t and T are the current and maximum number of iterations, respectively.

2.2.3. Exploitation

The operators used in exploitation are subtraction and addition, which have a low
dispersion rate, leading to a faster and more accessible approach to reach the target value,
which yields a lower number of iterations in the optimization process of the exploration
phase. Here, these exploitation operators have enhanced communication which allows
better coordination between them. The exploitation search phase is conditioned with the
help of the MOA value, as given in Equation (9).

In this stage, the subtraction operator will start performing the searching task if
r3 ≤ 0.5. The addition operator will be ignored during this searching period until the
current job is completed. Otherwise, the addition operator will start the task instead if
r3 > 0.5 (see Figure 2c). Furthermore, exploitation search operators will search deeper in
the denser regions to find a better optimal solution. It is worth mentioning that, due to the
low dispersion rate of the addition and subtraction operators, the probability of getting
stuck in the same search region is very minimal. If it happens, they will recover faster than
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other operators from that local search region. The position update in the exploitation phase
is obtained using the following equation:

xi,j(t + 1) =

{
best

(
xj
)
−MOP ×

(
(UBj − LBj) × µ + (LBj)

)
, r3 ≤ 0.5,

best
(
xj
)
+ MOP × ((UBj − LBj) × µ + (LBj)), r3 > 0.5.

(12)

2.3. Arithmetic–Trigonometric Optimization Algorithm

The above two metaheuristic techniques inspired us to hybridize them to create this
new ATOA technique. Unlike SCA, the proposed ATOA uses four arithmetic operators
instead of the random variables. The ATOA also maintains the same structure and posi-
tion update mechanism as the existing AOA. On top of that, the proposed method uses
trigonometric functions (i.e., sin, cos, and tan) to reposition the solution around the desired
solution. This condition ensures the exploration and exploitation search spaces remain
around the desired destination area. By combining all these techniques, the design of the
proposed ATOA algorithm is explained underneath.

The cyclic and infinite vertical patterns of sin, cos, and tan functions allow the discov-
ered solution to readjust around the nearby solution. This approach guarantees the desired
space needs during the exploitation phase in between the two adjacent solutions. During the
exploration phase, by adjusting the range of the trigonometric functions, the solutions
yield the capability to search outside the space between their corresponding optimum
solution zone. A position update is achieved by changing ranges of the sin, cos, and tan
functions. Here, the solution repositions inside or outside their search space between itself
and the adjacent key. The position update, either inside or outside, is determined by the
random number r2 used in the ATOA. Hence, a balance between switching exploration
and exploitation is essential, and it is regulated based on MOA. In addition, the range
of the trigonometric function is controlled by using MOP. The diverse patterns of the
trigonometric functions in the range of [0, 3π] are illustrated in Figure 3.

0 2 4 6 8

Time(s)

-1.5

-1

-0.5

0

0.5

1

1.5
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sin(t)
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Time(s)

-1.5

-1

-0.5
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Time(s)
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p
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tan(t)

Figure 3. Different trigonometric functions plot in the range of [0, 3π].

The random numbers r1 and r2 determine the algorithm phase and operators switching
based on its value. During the standalone implementation of sin, cos, and tan functions in
the proposed ATOA technique, only one trigonometric function is used in all the phases
(i.e., exploration and exploitation) in between the bounded values. Thus, the position
update of the standalone sin function in the exploration and exploitation phases of ATOA
is obtained using the following Equations (13) and (14), respectively. Similarly, for the
following trigonometric function, i.e., cos, the existing sin is replaced with cos during both
phases, and the same procedure is repeated for tan.

xi,j(t + 1) =





best
(

xj

)
÷ (MOP + ε) ×

(
sin(UBj − LBj) × µ + sin(LBj)

)
, r2 ≤ 0.5,

best
(

xj

)
× MOP × (sin(UBj − LBj) × µ + sin(LBj)), r2 > 0.5,

(13)
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xi,j(t + 1) =

{
best

(
xj
)
−MOP ×

(
sin(UBj − LBj) × µ + sin(LBj)

)
, r3 ≤ 0.5,

best
(
xj
)
+ MOP × (sin(UBj − LBj) × µ + sin(LBj)), r3 > 0.5.

(14)

The different combinations of the trigonometric functions used during the exploration and
exploitation phase are determined based on the MOA coefficient. The motivation to select the
various trigonometric functions combinations is to address the lead-lag characteristics sin and
cos. In addition, it is worth mentioning that the non-synchronous nature of the tan function
will produce asymmetric values when it combines with the sin or cos. Thus, this article has
experimented with the standalone usage of the tan in the exploration and exploitation phases.
The range variations in the trigonometric functions are carried out using the MOP coefficient.

The term ATOAsc represents that the sin function is used in the exploration phase and the
cos function during the exploitation phase. Thus, the position update of the ATOAsc algorithm
during exploration and exploitation phases is given as follows:

xi,j(t + 1) =





best
(

xj

)
÷ (MOP + ε) ×

(
sin(UBj − LBj) × µ + sin(LBj)

)
, r2 ≤ 0.5,

best
(

xj

)
× MOP × (sin(UBj − LBj) × µ + sin(LBj)), r2 > 0.5,

(15)

xi,j(t + 1) =

{
best

(
xj
)
−MOP ×

(
cos(UBj − LBj) × µ + cos(LBj)

)
, r3 ≤ 0.5,

best
(
xj
)
+ MOP × (cos(UBj − LBj) × µ + cos(LBj)), r3 > 0.5.

(16)

Similarly, in ATOAcs, the cos function will be automatically assigned as the initial
function during the exploration phase and the sin operation in the exploitation phase. Thus,
the position update of this ATOAcs algorithm is given as follows:

xi,j(t + 1) =





best
(

xj

)
÷ (MOP + ε) ×

(
cos(UBj − LBj) × µ + cos(LBj)

)
, r2 ≤ 0.5,

best
(

xj

)
× MOP × (cos(UBj − LBj) × µ + cos(LBj)), r2 > 0.5,

(17)

xi,j(t + 1) =

{
best

(
xj
)
−MOP ×

(
sin(UBj − LBj) × µ + sin(LBj)

)
, r3 ≤ 0.5,

best
(
xj
)
+ MOP × (sin(UBj − LBj) × µ + sin(LBj)), r3 > 0.5.

(18)

In Equations (13) to (18),

• xi,j(t + 1) represents the ith solution in the (t + 1)th iteration at the jth position.
• best(xj) is best solution obtained at jth position.
• UBj and LBj are the upper and lower boundaries at jth position.
• ε is the constant integer.
• µ is the search control parameter.

Table 1 gives the list of developed algorithms and the functions used during the
exploration and exploitation phases. The implementation of all the developed algorithms is
the same, and only the functions in the corresponding position update equation will change.
For an example case, the pseudocode for the implementation of the proposed ATOAcs
algorithm is described in Algorithm 1. In this case, the exploration phase uses the cos
function, and the exploitation phase uses the sin function. On the other hand, during the
standalone implementation of ATOAs, the sin function will be used in the exploration and
exploitation phases.

Table 1. List of developed algorithms with functions used in exploration and exploitation phases.

Algorithm Exploration Function Exploitation Function

ATOAs sin sin
ATOAc cos cos
ATOAt tan tan
ATOAsc sin cos
ATOAcs cos sin
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Algorithm 1 Pseudocode of ATOAcs

1: Initialize X, N, t, T, min, max, α, µ, and ε.
2: while t < T do
3: Calculate the best(xj), MOA(t) and MOP(t).
4: for i = 1 : size(X, 1) do
5: for j = 1 : size(X, 2) do
6: Generate r1 ∈ [0, 1]
7: if r1 ≤MOA then
8: Generate r2 ∈ [0, 1].
9: if r2 ≤ 0.5 then

10: Compute the xi,j(t + 1) using the first case in (17).
11: else
12: Compute the xi,j(t + 1) using the second case in (17).
13: end if
14: else
15: Generate r3 ∈ [0, 1].
16: if r3 ≤ 0.5 then
17: Compute the xi,j(t + 1) using the first case in (18).
18: else
19: Compute the xi,j(t + 1) using the second case in (18).
20: end if
21: end if
22: end for
23: end for
24: t = t + 1
25: end while
26: return best(xj)

3. Performance Analysis on Benchmark Functions

This section discusses the simulation and comparative analysis of the proposed ATOA
algorithm with conventional AOA. Simulations over 33 different benchmark functions
are carried out to validate the proposed ATOA efficiency. The corresponding benchmark
functions and their equations and the desired range limits are given in Table 2. Here,
the abbreviated terms cat. and func. represents the category and benchmark function,
respectively. In all the cases, the different variants of the proposed ATOA algorithm and the
existing AOA algorithm are compared to prove the effectiveness of the proposed algorithm.
Furthermore, all the simulations are performed in MATLAB/Simulink software (2021a)
using the 3.10 GHz Intel(R) Xeon PC with 16.00 GB of RAM.

3.1. Selection of Benchmark Functions

For effective comparison analysis, the benchmark functions are selected based on the
independence of one another in multiple dimensions, different local minima, and diverse
boundary values. The number of iterations and the population size of the search solutions
are also kept constant, respectively, at 300 and 30. During the simulation analysis, the opti-
mization parameters used in all the compared algorithms are min = 0.2, max = 1.0, α = 5,
µ = 0.499, and ε = 2.2204 × 10−16. A single global minima value function is known as
the unimodal function. Therefore, they are employed to test the exploitation precision
capabilities of the optimization algorithm. Such unimodal benchmark functions used for
the simulation are F1–F6, as given in Table 2.
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Table 2. Considered benchmark functions for the performance analysis.

Cat. Func. Description Range

U
ni

m
od

al

F1 F(x) =
n

∑
i=1

x2
i [−100, 100]

F2 F(x) =
n

∑
i=0
|xi|+

n

∏
i=0
|xi| [−10, 10]

F3 F(x) =
d

∑
i=1

(
i

∑
j=1

xj

)2

[−100, 100]

F4 F(x) =
n−1

∑
i=1

[
100
(

x2
i − xi+1

)2
+ (1− xi)

2
]

[−30, 30]

F5 F(x) =
n

∑
i=1

([xi + 0.5])2 [−100, 100]

F6 F(x) =
n

∑
i=0

ix4
i + random(0, 1) [−128, 128]

M
ul

ti
m

od
al

F7 F(x) =
n

∑
i=1

(
−xi sin

(√
|xi|
))

[−500, 500]

F8 F(x) = −20 exp

(
−0.2

√
1
n

n

∑
i=1

x2
i

)
− exp

(
1
n

n

∑
i=1

cos(2πxi)

)
+ 20 + e [−32, 32]

F9

F(x) =
π

n
{10 sin(πy1)}+

n−1

∑
i=1

(yi − 1)2[1 + 10 sin2(πyi+1) +
n

∑
i=1

u(xi, 10, 100, 4),

where yi = 1 +
xi + 1

4
, u(xi, a, k, m)





K(xi − a)m xi > a
0 −a ≤ xi ≥ a
K(−xi − a)m −a ≤ xi

[−50, 50]

F10
F(x) =0.1

(
sin2(3πx1) +

n

∑
i=1

(xi − 1)2
[
1 + sin2(3πxi + 1)

]
+ (xn − 1)2

[
1 + sin2(2πxn)

])

+
n

∑
i=1

u(xi, 5, 100, 4)

[−50, 50]

F11 F(x) =

(
1

500 +
25

∑
j=1

1
j + ∑2

i=1

(
xi − aij

)
)−1

[−65,65]

F12 F(x) =
11

∑
i=1

[
ai −

x1
(
b2

i + bix2
)

b2
i + bix3 + x4

]2

[−5, 5]

F13 F(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 [−5, 5]

F14 F(x) =
(

x2 −
5.1
4π2 x2

1 +
5
π

x1 − 6
)2

+ 10
(

1− 1
8π

)
cos x1 + 10 [−5, 5]

F15 F(x) =
d/4

∑
i=1

[
(x4i−3 + 10x4i−2)

2 + 5(x4i−1 − x4i)
2 + (x4i−2 − 2x4i−1)

4 + 10(x4i−3 − x4i)
4
]

[−4, 5]

F16 F(x) = −
4

∑
i=1

ci exp

(
−

3

∑
i=1

aij
(

xj − pij
)2
)

[−1, 2]

F17 F(x) = −
4

∑
i=1

ci exp

(
−

6

∑
i=1

aij
(

xj − pij
)2
)

[0, 1]

F18 F(x) = −
5

∑
i=1

[
(X− ai)(X− ai)

T + ci

]−1
[0, 1]
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Table 2. Cont.

Cat. Func. Description Range

H
yb

ri
d F19

F(x) = −(x2 + 47) sin
(√∣∣∣x2 +

x1

2
+ 47

∣∣∣
)

−x1 sin
(√
|x1 − (x2 + 47)|

) [−512, 512]

F20 F(x) = −
∣∣∣∣sin(x1) cos(x2) exp

(∣∣∣∣1−
√

x2
1+x2

2
π

∣∣∣∣
)∣∣∣∣ [−10, 10]

H
yb

ri
d

F21 F(x) =

(
5

∑
i=1

i cos((i + 1)x1 + i)

)
×
(

5

∑
i=1

i cos((i + 1)x2 + i)

)
[−5.12, 5.12]

F22 F(x) = sin(x1 + x2) + (x1 − x2)
2 − 1.5x1 + 2.5x2 + 1 [−1.5, 4]

F23 F(x) =
(

4− 2.1x2
1 +

x4
1

3

)
x2

1 + x1x2 +
(
−4 + 4x2

2
)

x2
2 [−3, 3]

F24 F(x) = − cos(x1) cos(x2) exp
(
−(x1 − π)2 − (x2 − π)2

)
[−100, 100]

F25 F(x) = a
(

x2 − bx2
1 + cx1 − r

)2
+ s(1− t) cos(x1) + s [−5, 10]

F26
F(x) =

[
1 + (x1 + x2 + 1)2

(
19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)]

×
[
30 + (2x1 − 3x2)

2
(

18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2

)] [−2, 2]

F27 F(x) = 1
2

d

∑
i=1

(
x4

i − 16x2
i + 5xi

)
[−5, 5]

F28
F(x) = sin2(πw1) +

d−1

∑
i=1

(wi − 1)2
[
1 + 10 sin2(πwi + 1)

]
+ (wd − 1)2

[
1 + sin2(2πwd)

]
,

where wi = 1 +
xi − 1

4
, for all i = 1, . . . , d

[−10, 10]

F29
F(x) =100

(
x2

1 − x2

)2
+ (x1 − 1)2 + (x3 − 1)2 + 90

(
x2

3 − x4

)2

+ 10.1
(
(x2 − 1)2 + (x4 − 1)2

)
+ 19.8(x2 − 1)(x4 − 1)

[−10, 10]

F30

F(x) =−
4

∑
i=1

αi exp

(
−

3

∑
j=1

Aij
(

xj − Pij
)2
)

, where α = (1.0, 1.2, 3.0, 3.2)T ,

A =




3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35


, P = 10−4




3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828


.

[0, 1]

F31

F(x) =−
m

∑
i=1

(
4

∑
j=1

(
xj − Cji

)2
+ βi

)−1

, where m = 10, β =
1
10

(1, 2, 2, 4, 4, 6, 3, 7, 5, 5)T ,

C =




4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6
4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6


.

[0, 10]
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Table 2. Cont.

Cat. Func. Description Range

F32

F(x) =−
4

∑
i=1

αi exp

(
−

6

∑
j=1

Aij
(
xj − Pij

)2
)

, where α = (1.0, 1.2, 3.0, 3.2)T ,

A =




10 3 17 3.50 1.7 8
0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14


,

P = 10−4




1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381


.

[0, 1]

F33 F(x) = −
d

∑
i=1

sin(xi) sin2m

(
ix2

i
π

)
[0, π]

The proposed method is also validated using the multimodal and hybrid composition
functions in single and multidimension. The multimodal functions have multiple local
minima points used to test the algorithms’ exploration ability, i.e., to check the ability to
switch from the local minima to the global minima without getting caught in the same
position. F7–F10 are the multimodal benchmark functions, and their equations are given in
Table 2. In addition, the functions F11–F18 shown in Table 2 have multiple local minima
but with fixed dimensions. These functions will help to test the stability of the algorithm. It
is worth mentioning that the first 13 benchmark functions use higher dimension values of
(30/100/500/1000) to evaluate the proposed ATOA. Other considered benchmark functions
F19–F33 are hybrid, as given in Table 2. In the unimodal functions, the probability of
getting caught in the same search space is minimal, as the optimal search solutions have a
much clearer position update to move from their current position to the desired position.
Additionally, in the case of hybrid functions from F19–F33, the search space identification
and the next position movement are more challenging due to multiple local minima values.

The surface plots of all the considered functions are shown in Figure 4. These plots will
help to visualize required search space requirements for the single and multi global minima
functions. In these functions, many categories were present based on their surface search
area and shape. The classifications are bowl-shaped, plate-shaped, valley-shaped, single,
and multiple-local minima functions. These functions have multiple local minima values
with an ample search space, wide range, numerous layers, and multidimensional characters.

3.2. Numerical Analysis on Benchmark Functions

In this section, the different variants of the proposed ATOA algorithm are numerically
compared with the conventional AOA technique. The comparison results of the various
benchmark functions (F1–F33) are given in Table 3. Here, the abbreviated terms refer to the
different combinations of the trigonometric functions as mentioned in the methodology
section. They are ATOAs, ATOAc, ATOAt, ATOAsc, and ATOAcs, which refer to ATOAsine,
ATOAcos, ATOAtan, ATOAsinecos, and ATOAcossine, respectively. The performance of all
the algorithms is evaluated in terms of mean value, the best solution, worst value, and the
standard deviation (std. dev.).
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Figure 4. Search space plots of the benchmark functions.

The obtained results have shown a tough competition between the proposed ATOAcs
and the AOA in the unimodal benchmark functions (F1–F6) in the mean, best, and worst
value. During this performance, the proposed ATOAcs obtained significantly closer conver-
gence to the global minima. While noticing the standard deviation results of the unimodal
function, both the ATOAcs and AOA had the balanced solution-attaining ability. Among the
different proposed variants, the ATOAcs had better performance than AOA due to the lead-
ing characteristics of the cos function. The other proposed combinations had a performance
setback while compared with the AOA in the unimodal functions. In the multimodal
and the fixed-dimension benchmark functions (F7–F18), all the proposed ATOA variants
outperformed the conventional AOA in all the parameters, and among these, ATOAcs
took the first position. This performance shows the efficiency of the proposed ATOA in
the exploration and exploitation capabilities, which resulted in converging very closely
or strictly at global minima value. It is worth mentioning that in the performance in the
hybrid benchmark functions, the proposed ATOA variants produced the same results as
the previous stage with a higher and faster convergence rate.
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Table 3. Comparisons of the statistical results obtained from the different variants of the ATOA
algorithms on various benchmark functions.

Function Global
Minima Measure AOA ATOAs ATOAc ATOAt ATOAsc ATOAcs

F1 0

Mean 0.0000 4.46 × 10−33 9.89 × 10−28 0.0000 0.0000 0.0000
Best 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Worst 0.0000 2.10 × 10−31 4.95 × 10−26 0.0000 0.0000 0.0000
Std. Dev 0.0000 2.97 × 10−32 7.00 × 10−27 0.0000 0.0000 0.0000

F2 0

Mean 0.0000 8.65 × 10−139 4.13 × 10−86 1.67 × 10−241 5.95 × 10−55 0.0000
Best 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Worst 0.0000 4.32 × 10−137 2.06 × 10−84 8.36 × 10−240 2.97 × 10−53 0.0000
Std. Dev 0.0000 6.11 × 10−138 2.92 × 10−85 0.0000 4.21 × 10−54 0.0000

F3 0

Mean 0.0000 2.03 × 10−19 1.07 × 10−10 0.0000 0.0000 0.0000
Best 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Worst 0.0000 1.02 × 10−17 5.35 × 10−9 0.0000 0.0000 0.0000
Std. Dev 0.0000 1.44 × 10−18 7.57 × 10−10 0.0000 0.0000 0.0000

F4 0

Mean 5.1652 7.7668 6.9754 23.2905 6.8636 7.8511
Best 4.6129 6.9030 5.2892 8.2527 5.2644 6.6216

Worst 5.8078 8.1612 7.9103 547.483 8.4399 8.6583
Std. Dev 0.2658 0.3346 0.499 79.9482 0.7056 0.4639

F5 0

Mean 0.0143 0.0018 0.3024 0.032 0.0726 0.0014
Best 0.0054 0.0004 0.1694 0.0161 0.0279 0.0007

Worst 0.0232 0.003 0.4172 0.0531 0.1604 0.0027
Std. Dev 0.0041 5.23 × 10−4 0.056 0.0105 0.0318 0.0005

F6 0

Mean 0.0000 3.69 × 10−4 7.94 × 10−5 0.0211 6.11 × 10−4 0.0022
Best 0.0000 2.91 × 10−5 3.22 × 10−6 7.45 × 10−4 5.37 × 10−5 0.0000

Worst 0.0001 0.0018 2.29 × 10−4 0.0926 0.0018 0.0173
Std. Dev 0.0000 3.83 × 10−4 5.79 × 10−5 0.0204 4.12 × 10−4 0.0029

F7 −418.9829 × n

Mean −3475.0000 −3.22 × 103 −3069.4000 −2.18 × 103 −3.08 × 103 −3178.2000
Best −4071.3000 −4.00 × 103 −3670.2000 −3.04 × 103 −3.58 × 103 −3794.9000

Worst −2914.5000 −2.44 × 103 −2341.0000 −1.36 × 103 −2.52 × 103 −2620.2000
Std. Dev 252.5026 262.4675 284.0105 368.5892 228.423 311.1536

F8 0

Mean 0.0000 6.32 × 10−12 1.98 × 10−9 8.88 × 10−16 8.88 × 10−16 0.0000
Best 0.0000 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 0.0000

Worst 0.0000 3.16 × 10−10 9.91 × 10−8 8.88 × 10−16 8.88 × 10−16 0.0000
Std. Dev 0.0000 4.47 × 10−11 1.40 × 10−8 0.0000 0.0000 0.0000

F9 0

Mean 0.5947 8.85 × 106 5.88 × 106 0.9595 0.4228 1.0271
Best 0.4953 1.0361 3.2475 0.8689 0.3078 0.9451

Worst 0.6443 1.67 × 108 9.76 × 107 1.0228 0.523 1.0944
Std. Dev 0.0337 2.94 × 107 1.52 × 107 0.0315 0.0453 0.0317

F10 0

Mean 0.7823 0.1646 0.1116 0.9423 0.1327 0.8997
Best 0.3881 0.0294 0.0554 0.5441 0.059 0.6860

Worst 0.9948 0.4447 0.1734 0.9907 0.2184 0.9868
Std. Dev 0.1563 0.1028 0.0245 0.0795 0.0376 0.0639
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Table 3. Cont.

Function Global
Minima Measure AOA ATOAs ATOAc ATOAt ATOAsc ATOAcs

F11 1

Mean 8.8855 5.9519 5.5608 8.666 6.1167 5.6534
Best 0.9980 0.998 0.998 0.998 0.998 0.9980

Worst 12.6705 11.7187 12.6705 12.6705 12.6705 11.7187
Std. Dev 3.9075 3.3638 3.1317 3.7149 3.6442 3.2853

F12 0.0003

Mean 0.0104 0.0016 0.0043 0.008 0.0111 0.0078
Best 0.0003 4.02 × 10−4 3.92 × 10−4 6.66 × 10−4 3.13 × 10−4 0.0004

Worst 0.0863 0.0245 0.0234 0.0569 0.0566 0.0572
Std. Dev 0.0153 0.0037 0.0062 0.011 0.0133 0.0111

F13 −1.0316

Mean −1.0316 −1.0313 −1.0316 −1.0238 −1.0316 −1.0313
Best −1.0316 −1.0316 −1.0316 −1.0311 −1.0316 −1.0316

Worst −1.0316 −1.0303 −1.0316 −1.0063 −1.0316 −1.0301
Std. Dev 0.0000 3.27 × 10−4 9.91 × 10−6 0.0066 8.16 × 10−6 0.0003

F14 0.398

Mean 1.1631 0.4233 0.3979 0.4025 0.3979 0.4088
Best 0.4123 0.3979 0.3979 0.398 0.3979 0.3979

Worst 2.8698 0.7824 0.398 0.4356 0.3981 0.5690
Std. Dev 0.5939 0.0758 2.16 × 10−5 0.0067 3.86 × 10−5 0.0259

F15 3

Mean 6.2400 3.0005 3.0002 8.3111 6.253 3.0005
Best 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000

Worst 30.0000 3.0028 3.0006 91.5641 84.6034 3.0027
Std. Dev 8.8630 6.54 × 10−4 1.50 × 10−4 21.2206 16.0971 0.0006

F16 −3.86

Mean −3.8544 −3.8563 −3.8261 −3.8502 −3.8445 −3.8559
Best −3.8608 −3.8625 −3.854 −3.8616 −3.8548 −3.8614

Worst −3.8498 −3.8515 −3.0119 −3.8324 −3.8202 −3.8503
Std. Dev 0.0023 0.0026 0.1181 0.0052 0.009 0.0024

F17 −0.32

Mean −3.1259 −3.1647 −2.9368 −3.0409 −2.8466 −3.1710
Best −3.2643 −3.2551 −3.2132 −3.1812 −3.117 −3.2631

Worst −2.9339 −2.9039 −2.2038 −2.4088 −2.3154 −3.0584
Std. Dev 0.0650 0.0595 0.1899 0.1378 0.2263 0.0473

F18 −10.1532

Mean −4.1529 −8.2176 −7.7996 −6.5441 −5.3207 −4.7763
Best −8.0049 −10.1471 −10.0933 −10.1441 −10.1435 −10.1413

Worst −1.9980 −2.6275 −2.6046 −2.6249 −2.6102 −2.6253
Std. Dev 1.2108 3.251 3.1242 3.2365 2.9748 2.7482

F19 −959.6407

Mean −800.3974 −863.6167 −850.7201 −706.1923 −859.4495 −856.7580
Best −941.2958 −959.6407 −959.6407 −932.4704 −959.6406 −959.6407

Worst −644.2784 −559.7869 −559.7868 −474.3529 −545.6967 −575.2190
Std. Dev 89.8151 97.5246 114.0678 116.7106 112.0762 86.4870

F20 −19.2085

Mean −18.7179 −18.8544 −18.9728 −18.7377 −18.9140 −18.9721
Best −19.2083 −19.2084 −19.2085 −19.2085 −19.2085 −19.2084

Worst −15.8160 −16.2678 −16.2678 −16.2678 −16.2678 −16.2678
Std. Dev 0.7836 0.9649 0.8057 1.0889 0.8910 0.8055

F21 −186.7309

Mean −116.2292 −176.7813 −178.8541 −186.6622 −176.8742 −181.4309
Best −184.3297 −186.7222 −186.7259 −186.7258 −186.7211 −186.7294

Worst −50.6600 −79.3989 −123.4528 −186.5087 −64.6800 −123.0804
Std. Dev 38.0811 25.0093 20.6675 0.0496 29.1740 17.3085

F22 −1.9133

Mean −1.8773 −1.9132 −1.9132 −1.8676 −1.9132 −1.9131
Best −1.9132 −1.9132 −1.9132 −1.9128 −1.9132 −1.9132

Worst −1.4783 −1.9131 −1.9132 −1.6836 −1.9131 −1.9127
Std. Dev 0.1158 3.84 × 10−6 3.64 × 10−7 0.0507 7.44 × 10−6 9.84 × 10−5

F23 −1.0316

Mean −1.0091 −1.0316 −1.0314 −1.0316 −1.0314 −1.0316
Best −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316

Worst −0.9990 −1.0314 −1.0310 −1.0316 −1.0309 −1.0314
Std. Dev 0.0135 4.68 × 10−5 1.50 × 10−4 3.78 × 10−9 1.65 × 10−4 4.25 × 10−5
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Table 3. Cont.

Function Global
Minima Measure AOA ATOAs ATOAc ATOAt ATOAsc ATOAcs

F24 −1

Mean −0.0532 −0.9400 −0.8598 −0.1601 −0.9998 −0.9638
Best −0.9963 −1.0000 −1.0000 −1.0000 −1.0000 −1.0000

Worst −2.92 × 10−9 −8.11 × 10−5 −8.09 × 10−5 −8.11 × 10−5 −0.9994 −0.9265
Std. Dev 0.1934 0.2399 0.3504 0.3703 1.46 × 10−4 0.0169

F25 0.3978

Mean 0.7698 0.3989 0.3980 0.4073 0.3981 0.3993
Best 0.3985 0.3979 0.3979 0.3982 0.3979 0.3979

Worst 1.8135 0.4045 0.3984 0.4645 0.4000 0.4142
Std. Dev 0.3683 0.0011 9.50 × 10−5 0.0103 4.03 × 10−4 0.0027

F26 3

Mean 21.7513 3.0005 3.0002 6.2811 3.0002 3.0004
Best 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000

Worst 156.2760 3.0035 3.0010 85.6932 3.0008 3.0016
Std. Dev 27.7673 7.45 × 10−4 2.02 × 10−4 16.2291 1.71 × 10−4 4.55 × 10−4

F27 −39.1659

Mean −72.2967 −78.3312 −78.3323 −76.3317 −76.3532 −76.9175
Best −78.3276 −78.3323 −78.3323 −78.3312 −78.3323 −78.3323

Worst −61.4160 −78.3283 −78.3322 −64.1633 −64.1956 −64.1936
Std. Dev 5.2366 8.32 × 10−4 2.35 × 10−5 4.9494 4.9551 4.2841

F28 0

Mean 1.4327 0.1547 0.1249 0.0135 0.0647 0.0955
Best 0.2886 0.0016 6.65 × 10−5 2.44 × 10−5 3.00 × 10−5 3.75 × 10−4

Worst 2.0000 0.6345 0.4463 0.1169 0.1157 0.1469
Std. Dev 0.5954 0.1213 0.1332 0.0335 0.0548 0.0438

F29 0

Mean 38.8803 8.2303 5.4673 3.7098 3.2438 3.5159
Best 6.4751 0.4230 0.1357 0.0792 0.2594 0.1630

Worst 42.0000 35.4304 28.2788 8.2784 8.2392 8.8946
Std. Dev 9.3207 8.8018 6.1918 3.0627 2.6992 2.6469

F30 −3.8627

Mean −3.8545 −3.8560 −3.8128 −3.8366 −3.8257 −3.8558
Best −3.8603 −3.8621 −3.8576 −3.8616 −3.8562 −3.8612

Worst −3.8482 −3.8491 −3.0234 −3.0861 −3.0025 −3.8497
Std. Dev 0.0029 0.0029 0.1620 0.1084 0.1194 0.0027

F31 −10.5364

Mean −4.6271 −5.8656 −4.6245 −5.9376 −4.7527 −6.3397
Best −8.3487 −10.5298 −10.4165 −10.5222 −10.4922 −10.5194

Worst −2.1589 −1.8533 −1.8495 −1.8526 −1.6908 −1.8526
Std. Dev 1.3407 3.6248 2.9955 3.2566 2.8037 2.4718

F32 −3.3223

Mean −2.9401 −2.9589 −2.8212 −2.9047 −2.7873 −2.9603
Best −3.0060 −3.0201 −2.9447 −2.9750 −2.9337 −3.0257

Worst −2.8450 −2.8800 −2.5712 −2.7635 −2.5398 −2.8884
Std. Dev 0.0292 0.0268 0.1079 0.0431 0.1204 0.0249

F33 −9.6601

Mean −3.3874 −3.7494 −2.9064 −3.3626 −2.9680 −3.5913
Best −4.1525 −4.5626 −3.3311 −3.8498 −3.3714 −4.2671

Worst −2.6242 −2.6367 −2.3804 −2.3524 −2.5597 −2.7726
Std. Dev 0.3532 0.4382 0.2460 0.3167 0.2131 0.3409

Additionally, in order to compare the performance of the different techniques quan-
titatively, the Friedman ranking test is used [45]. This method ranks the functions based
on the nonparametric analysis of variance produced in one complete run of the algorithm.
The Friedman ranking test for the different compared algorithms for all the benchmark
functions is given in Table 4. The ranking is based on the best mean value obtained by each
algorithm in the respective function. For instance, rank 1 denotes the closest value to the
global minima, and rank 6 denotes the farthest convergence value.

In the initial benchmark functions, the existing AOA had dominance, but in the latter,
the proposed ATOA variants showed outstanding search space identification, position
update, and convergence performance. Regarding the final mean values, the ATOAcs had
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the least mean value of 2.454 and secured the first rank. The conventional AOA had a mean
value of 3.696 that was 1.242 times higher than ATOAcs. ATOAs took second place by
obtaining the value of 2.636. The respective values of ATOAsc and ATOAc were 3.242 and
2.878. The proposed ATOAt had a value of 3.484, which is almost close to the conventional
AOA. Thus, the proposed technique validates their abilities to attain the best mean value for
the numerical analysis, and the same results are reflected in the convergence performance.

Table 4. Friedman ranking test for the optimization algorithms using the various benchmark functions.

Function F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

AOA 1 1 1 1 3 1 1 1 2 4 1 6
AOAs 2 3 2 4 2 3 2 2 6 3 4 1

ATOAc 3 4 3 3 6 2 5 3 5 1 6 2
ATOAt 1 2 1 6 4 6 6 1 3 6 2 4

ATOAsc 1 5 1 2 5 4 4 1 1 2 3 5
ATOAcs 1 1 1 5 1 5 3 1 4 5 5 3

Function F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24

AOA 1 5 4 5 3 6 5 6 6 3 3 6
AOAs 2 4 2 1 2 1 1 4 5 1 1 3
AOAc 1 1 1 6 5 2 4 1 3 1 2 4
ATOAt 3 2 5 3 4 3 6 5 1 4 1 5

ATOAsc 1 1 3 4 6 4 2 3 4 1 2 1
ATOAcs 2 3 2 2 1 5 3 2 2 2 1 2

Function F25 F26 F27 F28 F29 F30 F31 F32 F33 Final Mean Final Rank

AOA 6 5 6 6 6 3 5 3 6 3.696 6
ATOAs 3 3 2 5 5 1 3 2 2 2.636 2
ATOAc 1 1 1 4 4 6 6 5 5 3.242 4
ATOAt 5 4 5 1 3 4 2 4 3 3.484 5

ATOAsc 2 1 4 2 1 5 4 6 4 2.878 3
ATOAcs 4 2 3 3 2 2 1 1 1 2.454 1

3.3. Convergence Analysis

The convergence speed plot of the different algorithms in the benchmark functions are
shown in Figure 5. In the initial benchmark functions (F1–F6), the ATOA had a slow search
rate due to the distribution of the obtained solutions to the different search regions instead
of aggregating them in the current search area. However, the proposed ATOA overcomes
those issues in the benchmark functions F7–F10 and shows faster convergence at the global
minima with fewer iterations. In addition, in functions F11–F18, the proposed ATOA
variants can converge all over the iterations continuously. This indicates that the proposed
combinations of the trigonometric functions in this research enhance the exploration and
exploitation search space of the original AOA.

The proposed trigonometric combinations assisted the existing AOA to tackle all
issues by making the ATOA search mechanism faster, using every iteration’s current best
optimal value. These made the proposed ATOA algorithms find those global minima
values in lower iterations than the existing AOA algorithm in most benchmark functions.
It is worth mentioning that, in the hybrid benchmark functions F19–F29, ATOA found
the optimal positions quickly even though these functions contain multiple local minima.
The benchmark functions results of F20, F21, and F30–F33 show that the proposed ATOA
experienced multiple local minima positions. However, the ATOA recovered quickly from
those local minima positions and found the desired global minima with few iterations
using the proposed trigonometric functions. The proposed ATOA accomplished better
accuracy in most of the benchmark functions as opposed to the compared algorithms.
Finally, sometimes the AOA is more effective than the ATOA in some of the initial functions.
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The overall ranking and the performance of the proposed ATOA combinations produced a
better optimal solution.
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Figure 5. Convergence plots obtained from the different variants of the ATOA algorithms on various
benchmark functions.
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4. Performance Analysis on Control of Real-time Pressure Process Plant

In the first part of this section, detailed information about the real-time pressure process
plant, including its schematics and P&I diagram, is given, along with its mathematical
modeling design procedure. Then, the selection of the controller and its implementation
along with their optimized controller parameters are given. Finally, the performance
analysis on the process plant is discussed.

4.1. Industrial-Scale Setup of Real-Time Pressure Process Plant

Figure 6a shows the experimental setup of the pressure process plant with its peripher-
als. The tank VL 202 is the main process tank supplied with a maximum pressure of 10 bar
from the centralized air compressor. The hand valve HV 202 acts as the primary input
pressure control for the process plant. Once this hand valve is opened, the input pressure
to the buffer tank is controlled using the process control valve PCV 202. The pressure
inside the VL 202 is measured using the digital pressure transmitter PT 202 attached to
the process tank. The PT 202 measures the pressure values and converts them to digital
voltage signals in the range of 0 to 5 V. The pressure-indicating controller PIC 202 receives
these voltage signals and feeds them to the host PC via I/O interface boards to generate
the control signal for the PCV 202. Additionally, an analog pressure gauge is available to
indicate the real-time pressure changes inside the tank.

The process tank contains a pressure-release hand valve attached at the bottom to
release the pressure during an emergency. This hand valve provides a safer way to discharge
the pressurized air from the VL 202 in case of a pneumatic process control valve (PCV 202)
failure. The pressure inside the buffer tank is regulated by releasing the excess air via a gas
outlet available on top of the process tank. This outlet gas pipe is connected with another
process control valve, PCV 203. The PCV 303 is maintained at 50% opening during the
experimentation to avoid excessive pressure build-up inside the VL 202. The PCV 202 and
PCV 203 receive their control signals from the host PC via the I/O interface boards.

The piping and instrumentation diagram of the pressure process plant is illustrated in
Figure 6b. The pressure process plant is controlled using “Remote Desktop Connection”
mode from the central control room for safety. The host PC in the process plant uses
the MATLAB/Simulink software to generate control signals based on the input set-point
and the actual process variable. Data transmission and communication between the host
PC and the process field devices (i.e., control valve actuator and pressure transmitter)
happens via the peripheral component interconnect (PCI) cards. The PCI card contains
three separate modules, namely 1713U, 1720U, and 1751. PCI-1720U performs the function
of sending the control signals to the host PC using its 12-bit, 4-channel analog output port.
In addition, all the interfacing cards are provided with isolation protection of 2500 V DC
between the outputs of the PCI bus. The analog input from the process plant is received
via a 12-bit, 32-channel analog input card PCI-1713U with a sampling rate of 100 k samples.
The PCI-1751 card carries out the digital signals’ data transmission from the PT 202 to the
host PC and vice versa. It contains 48 bits of parallel digital input/output, enabling the
process plant to be controlled remotely.

The mathematical modeling of the process plant is obtained using the open-loop
step response characteristics. This response contains all the behavioral data and process
dynamics such as process gain K, process dead-time Lp, and process time constant T. Thus
an open-loop step response of the pressure process is carried out, and the plant dynamics
are obtained as follows: K = 0.866, Lp = 1, and T = 1.365. Based on the first-order plus
dead-time system characteristic equation, the process model of the pressure process plant is
constructed using the obtained plant dynamics. Thus, the transfer function of the pressure
process plant is given as follows:

Gp(s) =
K

1 + Ts
e−sLp =

0.866
1 + 1.365s

e−s. (19)



Sensors 2022, 22, 617 20 of 26

Process Control 

Valve

PCV 202

Pressure Transmitter

PT 202

Hand Valve

HV 202

Buffer Tank

VL 202

MATLAB Server 

(HOST PC)

I/O Interface

Board

Inlet gas from 

centralized 

compressor

Excess gas 

outlet connected 
to Process 

Control Valve
PCV 203

AI Card

PCI-1713U

AO Card

PCI-1720U

Digital I/O Card

PCI-1751

(a) Experimental set-up of the pressure process plant

Access through 

 Remote Desktop Connection 

Host PC Panel

PCI Bus

Host PC

Workstation at 

control room

PCI-1720U

PCI-1713U

PCI-1751

VL 202

PT 

202

PIC 

202

PCV 202

Inlet gas from 

centralized compressor

HV 202

0
-5

V

Excess gas outlet 

R/L

0-5V

0-5V

TCP/IP (Ethernet)

(b) P&I diagram of the pressure process plant

Figure 6. Schematic representation of the pressure process plant [46].

4.2. ATOA-Based Fractional-Order Predictive PI Control of Pressure Process Plant

PI controllers are the most well-known and widely adopted controllers in most in-
dustries. However, they perform poorly in an environment having delay, noise, network-
induced delay, and high-frequency noise [47,48]. On the other hand, advanced control
strategies, such as model predictive controller and generalized predictive controller, are
computationally and structurally complex for implementation. Thus, the controllers need a
simple design, effective dead-time compensation, and high disturbance-rejection character-
istics to overcome the above issues. Such a type of controller is proposed by Arun et al. [46],
which has the dead-time compensating capability of the Smith predictor and robustness na-
ture of the fractional-order controllers. Therefore, in this article, such an efficient fractional-
order predictive PI (FOPPI) controller designed by them is utilized. The selection of
pressure process application for this research is due to its nonlinearity and sensitivity [49].
The FOPPI controller generates an effective control signal which is free from load variations
and plant uncertainties. However, their controller parameters are obtained analytically,
and those values are insufficient to mitigate the real-time process disturbances [50]. Thus,
the proposed ATOA and conventional AOA techniques are utilized in this research to
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obtain effective controller parameters. The adequately tuned parameters are used for
experimentation on the real-time pressure process plant.

The control signal u(s) of the adopted FOPPI controller is given as

u(s) = Kp

(
1 +

1
Tisλ

)
e(s)− 1

Tisλ
(1− e−sLp)u(s), (20)

where Kp = 1
K , and Ti = T. In addition, u(s) and e(s) are the control and error signals, Kp

is the proportional gain, Ti is the integral time, λ is the fractional-order integrator, and Lp is
the process dead-time.

For the optimization algorithms, the objective is to obtain the effective controller
parameters (i.e., Kp, Ki, and λ), the Ki is the integral gain of the controller, and it is obtained

by Ki =
Kp
Ti

. In the analytical design technique, the FOPPI controller parameters are
obtained directly from its design. The closed-loop system containing the FOPPI controller
and the obtained pressure process model Gp(s) in the presence of the ATOA is shown
in Figure 7. The proposed ATOA is used to tune the FOPPI controller parameters using
the integral time absolute error (ITAE) value. The ITAE value is assigned as the objective
function for the proposed ATOA and AOA. The calculation of the ITAE value is obtained as

ITAE =
∫ ∞

0
t|e(t)|dt. (21)

+
-

Kp

(
1 + 1

Tisλ

)
+

-

1
Tisλ

+
- e−sLp

+
+ K

1+Tse
−sLp
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+
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Figure 7. Closed-loop control system with the FOPPI controller in presence of ATOA.

4.3. Performance Analysis

The performance analysis of the FOPPI under various types of ATOA and AOA
optimizations are compared in terms of process rise time (tr), settling time before (ts1) and
(ts2), overshoot (%OS), and disturbance rejection. A 30% disturbance is injected at 150 s
in the process feedback loop to investigate the set-point tracking capability of the FOPPI
controller. In the analytical design, the controller parameters are obtained based on the
FOPPI design structure itself. The different optimized FOPPI controllers using the various
optimization algorithms and their numerical performance analysis are given in Table 5.

While observing the numerical analysis results given in Table 5, the proposed ATOA
algorithm variants performed better than the AOA and the analytical design. Among all
the compared algorithms, the existing analytical method had the faster rise time of 0.7665,
followed by AOA, ATOASC, ATOAt, ATOAs, ATOAc, and ATOAcs, respectively. In this,
the first-ranked ATOAcs had the slowest rise time, of 2.4432 s, compared to other methods.
The proposed ATOAcs settled faster than all at 61.3744 s before the disturbance injection,
even with the slowest rise time. Second place is secured by ATOAs with the settling time at
65.8043 s, followed by ATOAsc at 69.5402 s, ATOAc at 72.1039 s, AOA at 75.8397 s, ATOAt
at 77.8114s, and analytical design last with 83.0137s. In this performance, the Friedman
ranking order of the algorithms is also reflected, except for ATOAt.
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Table 5. Performance comparison of the different algorithms in presence of FOPPI controller.

Algorithm Kp Ki λ tr ts1 ts2 %OS ITAE

Analytical
Design 1.150 0.842 0.98 0.7665 83.0137 280.4273 22.2290 3.7159

AOA 2.167 1.197 0.97 0.8543 75.8397 276.7360 18.0314 2.8243
ATOAs 1.987 1.056 0.99 1.0638 65.8043 261.9294 3.3561 1.7391
ATOAc 1.793 0.692 0.99 2.1729 72.1039 268.9153 2.8020 2.2007
ATOAt 1.983 0.592 0.98 0.9579 77.8114 274.0171 3.1546 2.6376

ATOAsc 2.321 1.025 0.99 0.8301 69.5402 264.9950 3.6644 2.0154
ATOAcs 1.321 0.897 0.98 2.4432 61.3744 257.7074 5.4593 1.4224

After the disturbance injection, the AOA and analytical design managed to track
the set-point, but both of them settled slower than the proposed ATOA at 276.7360 s and
280.4273 s, respectively. Here, the ATOAt managed to settle faster than the AOA and
analytical design with a difference of 2.7189 s and 6.4102 s, respectively. In this case,
the ATOAcs recovered effectively from the disturbance and settled 22.7199 s faster than
the analytical design. The controller parameters obtained by the proposed algorithms
significantly reduced the peak overshoot values, which indicates the excellent objective
function-finding capability of the ATOA techniques. In the peak overshoot performance,
ATOAc produced the most negligible value of 2.8020%, which is 19.427% less than the
analytical design. ATOAt had the second-least value of 3.1546%, followed by ATOAs,
ATOAsc, ATOACS, AOA, and analytical technique.

The disturbance rejection, peak overshoot, and set-point tracking performance of the
compared algorithms are shown in Figure 8. The obtained results indicate the excellent
tracking and faster recovering ability of the proposed ATOA optimized controller param-
eters. Zoomed regions of Figure 8 during the before and after disturbance are given in
Figure 9. Regarding the results in region A, the AOA and analytical method produced more
oscillations, which will significantly deteriorate the lifetime and performance of the control
valve actuator. The same trend is repeated during the performance after the disturbance
injection (see region B). It is worth mentioning that the control signals generated from
the ATOA optimized values are less aggressive, and smooth compared with AOA and
analytical design (see regions C and D). Once again, a similar pattern of Friedman ranking
results is obtained in the ITAE performance, and the ATOAcs had the minimal value of
1.4224. Then, ATOAs had the second-least value of 1.7391, followed by ATOAsc with 2.0154.
Here, the conventional AOA almost had a comparable value to the proposed ATOAt. Lastly,
the analytical design had a value of 3.7159, 2.2935 higher than the proposed ATOAcs.
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Figure 8. Disturbance rejection and set-point tracking performance of the FOPPI controller.
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Figure 9. Zoomed regions of Figure 8 showing the process output (A,B) and control action (C,D).

5. Summary and Conclusions

In the initial part of this section, the contributions of the proposed research are summa-
rized. Then, the concluding remarks and the future directions of the research are provided.

5.1. Summary

The different combinations of the proposed ATOA, AOA, and the conventional analyt-
ical design algorithms helped us to investigate their performance on various benchmark
functions and the real-time pressure process. The usage of the basic arithmetic and trigono-
metric functions of the ATOA provides a straightforward design and easy implementation.
However, the advanced functions such as modulus, cubic, and sigmoid may catch up with
the proposed technique’s performance. At the same time, even after the addition of the
new functions, the proposed ATOA maintains the simple structure of the conventional SCA
and AOA. All the above claims are validated based on the obtained results, which shows
the faster convergence ability of ATOA in lesser iterations. Furthermore, the Friedman
ranking of the compared algorithms given in Table 4 validates the effectiveness of using the
trigonometric functions in the existing algorithms. In addition, the ATOA technique dra-
matically improves the search mechanism, which leads to the identification of the efficient,
optimized FOPPI controller parameters shown in Table 5. The following points highlight
some of the essential contributions of this article:

1. The proposed ATOA outperformed all the compared algorithms in most of the bench-
mark functions in terms of mean, best, and standard deviation.

2. The proposed ATOA variants produced the best global minima in fewer number of
iterations. Among them, ATOAcs achieved phenomenal results in all the comparative
research analysis.

3. The proposed ATOAcs and ATOAs had an efficient global optima search mechanism
and yielded better performance, and it is proven by the Friedman ranking test given
in Table 4.

4. The ATOA-optimized FOPPI controller parameters performed effectively by reducing
the peak overshoot, actively tracking the set-point, and efficiently minimizing the
disturbance impacts on the process.
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5. The control signals of the optimized FOPPI controller greatly smooth the control
actions by filtering out the undesired stochastic disturbances.

5.2. Conclusions

This paper develops an enhanced arithmetic–trigonometric optimization algorithm by
incorporating different trigonometric functions, namely sin, cos, and tan. The performance
of the proposed metaheuristic ATOA algorithm was validated on thirty-three different
optimization benchmark functions. Furthermore, the ATOAs were compared for the mean,
global best, worst, and standard deviation performance to validate their effectiveness.
The convergence performance results showed the proposed ATOA to achieve faster global
minima in fewer iterations. Friedman ranking of the comparison of the different algorithms
showed the improvements obtained by the proposed ATOA algorithm. Finally, experimen-
tation on the real-time pressure process was carried out to prove the dynamic abilities of
the proposed algorithm in obtaining the best optimal solution. In future, newer evolution-
ary and additional arithmetic operators will be considered. Furthermore, an attempt to
hybridize the proposed ATOA with the other population-based metaheuristic optimization
algorithms will be made.
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