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Abstract.

We consider the problem of computing PageRank. The matrix involved is large and
cannot be factored, and hence techniques based on matrix-vector products must be
applied. A variant of the restarted refined Arnoldi method is proposed, which does not
involve Ritz value computations. Numerical examples illustrate the performance and
convergence behavior of the algorithm.
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1 Introduction.

The iterative computation of Google’s PageRank has been receiving a lot of
attention in the last few years. The problem falls in the category of computing
the stationary distribution vector of a finite Markov chain, defined as follows:
compute a row vector πT that satisfies πT = πTAT and ‖π‖1 = 1, where AT is
a row-stochastic matrix, i.e. a matrix whose entries are all between 0 and 1 and
whose row-sums are all 1. For notational convenience, we will refer throughout to
the equivalent problem of computing a column vector π for which Aπ = π. By the
Perron–Frobenius theorem [2], if A is an irreducible nonnegative matrix then it
has a positive real simple eigenvalue equal to its spectral radius, associated with
a right nonnegative eigenvector. Furthermore, if A is strictly positive, then so is
the eigenvector, and this is relevant to PageRank computations; see Section 2.
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A comprehensive survey of numerical methods for Markov chains is provided
in [28]. The computation of PageRank (see [19, 20, 21] and references therein) is
a specific instance of the computation of a stationary distribution vector, with
two distinct features. First, the matrices involved are so large that only a small
set of computational tools can be applied. In particular, decomposition tech-
niques cannot be considered, and algorithms based on matrix-vector products
must be used. Secondly, the model incorporates a damping factor that defines
a convex combination of the original matrix (after modifying zero-sum rows) and
a rank-1 matrix. This effectively determines the magnitude of the second largest
eigenvalue, and consequently the level of difficulty of the computation of the
stationary vector, or the PageRank vector. The damping factor is a real positive
number sufficiently close to (and always smaller than) 1. The smaller it is, the
easier it is to compute the solution by simple means like the power method, and
within a modest number of iterations. On the other hand, the closer the damping
factor is to 1 the closer the matrix is to the original web link graph. If the largest
eigenvalue (which is equal to 1) is not well separated from other eigenvalues, it
is necessary to employ techniques that are more sophisticated than the power
method.

The technique we discuss in this paper is based on the Arnoldi method [1].
Since the size of the problem restricts the scope of computational means, we
consider a basic restarted approach. Our proposed algorithm is a variant of the
refined Arnoldi method [15], with the feature that since the largest eigenvalue
of the matrix is known, we use it as a shift and do not compute the largest Ritz
value. As we show, the algorithm works well for a large range of values of the
damping factor, and in particular values that are close to 1.

The remainder of this paper is organized as follows. In Section 2 we provide
general background. In Section 3 we present the algorithm, discuss the computa-
tional work involved, and comment on the sensitivity of the PageRank problem.
In Section 4 we provide experimental evidence of the effectiveness of our ap-
proach and in Section 5 we draw some conclusions.

2 Background.

2.1 Computing PageRank.

A detailed explanation of how the web link graph is formed can be found, for
example, in [21]. The mathematical model for computing PageRank is based on
the assumption that the importance of a webpage is determined by the impor-
tance of webpages that link to it.

Let wi signify the importance (or weight) of page i. Then wi =
∑
j∈Bi

wj
Nj
,

where Bi is the set of pages that link to page i and Nj is the number of outlinks
from page j. Determining wi is done iteratively. The initial guess is based on
assuming that all pages are equally ranked, and in each iteration the importance
of a page is re-calculated by taking into account the most recently assigned

weights that the pages linking to it have. In mathematical terms, we set w
(0)
i =

1
n
,
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and apply the iteration

w
(k+1)
i =

∑

j∈Bi

w
(k)
j

Nj
.

This iterative procedure amounts to applying the power method. The original
PageRank algorithm was based on this approach, but was applied to a modified
matrix rather than the original one. The modification addresses a few potential
difficulties. One is the existence of dangling nodes : not all pages have outlinks.
A second potential problem is the existence of cyclic paths : some pages might
form a ‘closed loop’. Indeed, any realistic web link graph is almost certainly
reducible. This results in a reducible matrix that contains zero rows and has
a non-unique stationary distribution vector.
Remedying the above difficulties is done as follows. First, all the zero rows of
the matrix are modified so as to have a row-sum of 1 (see, e.g., [19] for details).
Suppose the resulting matrix is PT ; then it is further modified to be

A(c) = cP + (1− c)E,(2.1)

where E is a certain rank-1 matrix and c, the damping factor, is a positive
parameter smaller than 1. In terms of the model, 1−c represents the probability
that a surfer visiting a certain webpage will jump to a random page that is not
an outlink of that page. The original choice of the damping factor was c = 0.85
[25, p. 11]. A possible choice of the n× n rank-1 matrix E is

E = e vT ; e = [1, . . . , 1]T ; v =
e

n
.(2.2)

The vector v is called the personalization or the teleportation vector and plays
an important role in the model. A uniform v means that a random jump (not
based on the available outlinks) is done to any available page with a uniform
probability distribution. In our numerical experiments in this paper we take
a uniform v, as in (2.2).
Notice that A(c) (with c < 1) is a strictly positive matrix, and as such the
stationary distribution vector is strictly positive. The actual PageRank vector is
thus the positive stationary distribution vector of A(c). The modification (2.1)
makes it easier numerically to solve the problem, because while P ≡ A(1) may
have several eigenvalues on the unit circle, for A(c), c < 1, it is guaranteed that
the second largest eigenvalue is equal to c [11]. A closed form characterization of
A(c) with identification of poles, the Jordan and the Schur canonical forms, are
given in [12, 27]. The following useful result is proved in different ways in [27]
and [6].

Theorem 2.1. Let P be a stochastic matrix with eigenvalues {1,λ2,λ3, . . . ,λn}.
Then the eigenvalues of cP +(1−c)euT , where 0 < c < 1 and u is a nonnegative
vector with eTu = 1 (i.e. a probability vector), are {1, cλ2, cλ3, . . . , cλn}.

The question what value of c is the ‘correct’ value and what gives a meaningful
ranking is subject to ongoing investigation; see, e.g., [4] for a recent analysis. It
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may therefore make sense to consider a large range of values. There are certain
problems in which undamped web graphs are studied, see e.g. [30]. From a com-
putational point of view, if c is sufficiently far from 1, as is the case for c = 0.85,
then the separation of eigenvalues allows for an effective application of a simple
technique like the power method. When the parameter is close to 1, the power
method will perform poorly. It could then be accelerated; an effective technique
of quadratic extrapolation has been derived in [19]. Further acceleration can be
accomplished by adaptive techniques by which only components of the vector
for which convergence has not yet been achieved are updated [18]. A variety of
other effective methods can be found in the literature; see [13, 21] and references
therein. The technique considered in this paper forms another possible approach
of accelerating the computation of PageRank, and we will focus our attention
on high values of c.

2.2 The Arnoldi algorithm.

We now briefly provide the essential details of the Arnoldi method for partial
reduction to Hessenberg form. The algorithm is given in Figure 2.1. (See [5,
p. 303].) It is a procedure of forming a truncated orthogonal similarity trans-
formation. The input for the algorithm is a matrix A, an initial vector q and
the number of steps k. (The matrix does not necessarily have to be provided
explicitly; it is sufficient to have a routine that generates a matrix-vector prod-
uct, for any given vector.) Upon exit, we have an n× (k + 1) matrix Qk+1 with
orthonormal columns and a (k + 1) × k upper Hessenberg matrix Hk+1,k, that
satisfy the relation AQk = Qk+1Hk+1,k, where Qk is the n× k matrix that con-
tains the first k columns of Qk+1. The columns of Qk form an orthogonal basis
for the Krylov subspace Kk(A, q) = span{q,Aq,A2q, . . . , Ak−1q}. Many modern
methods in numerical linear algebra rely on the Arnoldi algorithm for computing
approximate solutions within Krylov subspaces. For more details on the Arnoldi
method, see [5, 9, 26].

1 : q1 = q/‖q‖2
2 : for j = 1 to k
3 : z = A qj
4 : for i = 1 to j
5 : hi,j = q

T
i z

6 : z = z − hi,jqi
7 : end for
8 : hj+1,j = ‖z‖2
9 : if hj+1,j = 0, quit
10 : qj+1 = z/hj+1,j
11 : end for

Figure 2.1: Arnoldi(A, q, k).
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3 Arnoldi and refined Arnoldi algorithms for computing PageRank.

We first discuss two obvious applications of the restarted Arnoldi method that
may give rise to certain difficulties when applied in the PageRank setting. We
then introduce the algorithm we propose, which does not seem to have those
problems.
A straightforward application of an explicitly restarted Arnoldi method is
presented in Figure 3.1, where we pick a small dimension k, and repeatedly feed
the Arnoldi algorithm the approximation computed in the previous truncated k-
step procedure. Let us denote the eigenvalues of Hk,k, which are the Ritz values,
by {θi}ki=1. We need for our computation the dominant eigenpair, {θM , vM},
where θM = maxi |θi|. A second possible approach is based on the refined Arnoldi
algorithm [15, Section 3.2, Algorithm 1] and is presented in Figure 3.2. (See that
paper and [16] for discussion and convergence analysis.) The approximations of
the eigenvectors are not obtained by computing the eigenvectors of Hk,k (the
Ritz vectors). Rather, the singular vectors associated with the smallest singular
values of A− θiI are refined Ritz vectors.
For computing PageRank, the two algorithms we have discussed so far may
have the following potential difficulties. First, the largest Ritz value may be
complex, and for such a large-scale problem it is undesirable to use complex

Set initial guess q and Arnoldi steps number k
Repeat
[Qk+1,Hk+1,k] = Arnoldi(A, q, k)
Compute Hk,kvM = θMvM
Set q = QkvM

Until ‖Aq − q‖2 < ε

Figure 3.1: A restarted Arnoldi algorithm for computing PageRank. The matrix Hk,k
is the square k × k matrix obtained by excluding the last row from Hk+1,k, and θM is
the dominant eigenvalue of Hk,k, with associated eigenvector vM .

Set initial guess q and Arnoldi steps number k
Repeat
[Qk+1,Hk+1,k] = Arnoldi(A, q, k)
Compute Hk,kvM = θMvM
Compute Hk+1,k − θM Ĩ = UΣV T

Set v = V∗k
Set q = Qkv

Until σmin(Hk+1,k − θM Ĩ) < ε

Figure 3.2: A restarted refined Arnoldi algorithm for computing PageRank. Ĩ stands
for an identity matrix augmented by a row of zeros. V∗k denotes the kth column of V .
The matrix Hk,k is the square k × k matrix obtained by excluding the last row from
Hk+1,k, and θM is the dominant eigenvalue of Hk,k, with associated eigenvector vM .
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arithmetic if it can be avoided. Secondly, when the eigenvalues are not well
separated (i.e. when c is close to 1), the largest Ritz value may converge slowly
or irregularly to 1. The algorithm that we propose, presented in Figure 3.3,
attempts to avoid these difficulties by incorporating a simple modification to
the refined Arnoldi algorithm. We use the fact that the largest eigenvalue of A
is known, and instead of computing the largest Ritz value we force the shift to
be 1. Note that the smallest singular value of the shifted Hessenberg matrix is
not equal to 0; rather, it converges to it throughout the iteration. Numerically
we have observed that for our particular algorithm the smallest singular value
converges to 0 more smoothly than the largest Ritz value converges to 1. Finally,
since our algorithm does not entail Ritz value computations it is slightly faster
than the refined Arnoldi algorithm. (Note though that the matrices involved are
tiny and thus the savings are marginal.)

Set initial guess q and Arnoldi steps number k
Repeat
[Qk+1,Hk+1,k] = Arnoldi(A, q, k)

Compute Hk+1,k − Ĩ = UΣV T

Set v = V∗k
Set q = Qkv

Until σmin(Hk+1,k − Ĩ) < ε

Figure 3.3: Computation of PageRank using a variant of the refined Arnoldi algorithm
that involves no Ritz values. Ĩ stands for an identity matrix augmented by a row of
zeros. V∗k denotes the kth column of V .

For variants of the Arnoldi algorithm it is natural to use the 2-norm as a mea-
sure of convergence. The stopping criterion for the algorithm (see Figure 3.3)
does not entail any computational overhead, since the following holds.

Proposition 3.1. Consider the algorithm given in Figure 3.3. The stopping
criterion σmin(Hk+1,k − Ĩ) < ε is equivalent to ‖Aq − q‖2 < ε.

The proof follows from [15, Theorem 3], with minor modifications, since

min
‖z‖2=1

‖(A− I)Qkz‖2 = min
‖z‖2=1

‖Qk+1(Hk+1,k − Ĩ)z‖2

= min
‖z‖2=1

‖(Hk+1,k − Ĩ)z‖2

= σmin(Hk+1,k − Ĩ).

Next, we consider the computational cost of the algorithm. Generally, the
most computationally costly component of the algorithm are the matrix-vector
products, which are applied k times in a k-step Arnoldi procedure. The cost
largely depends on the number of nonzeros of the matrix. Inner products and
other BLAS-1 operations are also performed in each iteration; see Table 3.1.
In addition, we compute the singular value decomposition for the upper Hes-
senberg matrix, which is O(k3) and is negligible, and the product q = Qkv
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(see Figure 3.3) which is approximately 2nk flops. (We note that the overall
computational time depends on vectorization and parallelization in the partic-
ular computing environment and hence the table can only provide an indica-
tion of performance.) Storage is approximately n × (k + 1) real entries. Thus,
applying a certain number of steps of the proposed algorithm is more compu-
tationally intense than applying the same number of iterations of the power
method, and we must keep k small. Note that some of the operations (e.g. inner
products) are easily parallelizable and vectorizable. The hope is, then, that an
Arnoldi-based algorithm will converge within fewer iterations than the power
method in cases of a high damping factor, in which the power method converges
slowly.

Table 3.1: Computational cost of the Arnoldi procedure. The first column refers to the
line numbers in Figure 2.1. k is the number of Arnoldi steps taken, and � is the average
number of nonzeros per row in the matrix.

line operation times applied cost (flops)

3 mat-vec products k ≈ 2nk�

5 inner products k(k + 1)/2 ≈ nk(k + 1)

6 saxpy: x+ αy k(k + 1)/2 ≈ nk(k + 1)

8 2-norm computation k ≈ 2nk

10 vector scaling k ≈ nk

We end this section with a short discussion of the sensitivity of PageRank
to the choice of the parameter c. Eigenvalue sensitivity analysis [23, 29], and
in particular analysis for Markov chains [7, 10, 22] can be performed to assess
how sensitive the stationary distribution eigenvector is to changes in the matrix.
An investigation of the sensitivity of PageRank to the removal, addition, and
change of pages can be found, for example, in [24]. An analysis of issues related
to stability of PageRank is provided in [3], where a bound is given on the change
in the 1-norm of the PageRank vector in relation to the change in the underlying
web link graph. More observations on sensitivity can be found in [21, Section 7]
and in [14].
Recall the definitions of A(c), P, E, v and e in Equations (2.1) and (2.2). We
know that A(c) has an eigenvalue equal to 1: A(c)x(c) = x(c), with x(c) denoting
PageRank. Differentiation with respect to c of the eigenvector equation gives
A′x + A x′ = x′, which is equivalent to (I − A)x′ = A′x. By (2.1) we have
A′ = P −E = 1

c
(A−E). It thus follows that (I −A)x′ = 1

c
(A−E)x, which for

E as in (2.2) and ‖x‖1 = eTx = 1 can be further simplified to

(I −A)x′ =
1

c
(x− v).(3.1)

From (3.1) it is evident that the matrix involved is the same matrix that we are
dealing with for computing the PageRank vector x. The linear system is singular
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and consistent, and the right hand side contains the PageRank vector. Hence,
accurately computing the sensitivity vector relies on accurate computation of
PageRank. Notice also that since the PageRank vector x forms the null-space
of I − A, a solution for x′ may contain a component in the direction of x.
The dependence of the sensitivity vector x′ on the PageRank vector can be
eliminated by projecting the vector onto the subspace orthogonal to x, applying
a Gram-Schmidt step. Alternatively, imposing a condition such as eTx′ = 1
yields a nonsingular linear system whose associated matrix is I−cP . This matrix
arises in linear system formulations of the PageRank problem, and its condition
number is given in [17].

Computing x′ may be meaningful since it is useful to know whether a small
change of the parameter c will significantly affect the rank of a particular compo-
nent of the PageRank vector. However, the computation of the sensitivity vector
entails as much computational effort as the computation of PageRank.

4 Numerical experiments.

We have experimented with a few web matrices, and provide results for a rep-
resentative subset; see Table 4.1. Since the 1-norm is a natural choice for the
power method, in our comparisons we changed the stopping criterion given in
Figure 3.3 and used the 1-norm instead, so as to perform a fair comparison.

Table 4.2 shows matrix-vector products for the Stanford matrix. Given the
number of nonzeros of the matrix, k should be kept small, but we let it grow
large just to illustrate the convergence behavior of the algorithm. For a fixed high
value of c, as k increases there is a decrease in the iteration count, while storage
requirements increase. Note that each Arnoldi iteration with k steps requires
as many matrix-vector products, and hence the numbers in the table appear in
integer multiples of k.

For c small (c = 0.85) it is evident that there is no improvement over the power
method. This is consistent with similar observations about the effectiveness of
the power method for low values of c in [19] for the quadratic extrapolation
method and in [8] for approaches based on linear system formulations. On the
other hand, for values of c close to 1 our algorithm proves much superior to the
power method. For c = 0.99 we have approximately 66%, 130% and 230% more
iterations for the power method compared to the algorithm with k = 4, 8, 16.

Table 4.1: Dimensions and number of nonzeros of some test matrices.

name size nz avg nz per row

Stanford 281,903 2,312,497 8.2

Stanford-Berkeley 683,446 7,583,376 11.1

wikipedia2005 1,104,857 18,265,794 16.5

edu 2,024,716 14,056,641 6.9
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Table 4.2: Matrix-vector products for various values of the damping factor c, for the
281,903×281,903 Stanford matrix. The stopping criterion was ‖x(k)−Ax(k)‖1 < 10

−7.

c Power k = 4 k = 8 k = 16

0.85 77 80 64 64

0.90 117 112 96 80

0.95 236 192 136 114

0.99 1165 700 504 352

Table 4.3: Matrix-vector products for various values of the damping factor c, for the
2,024,716× 2,024,716 edu matrix. The stopping criterion was ‖x(k) −Ax(k)‖1 < 10

−7.

c Power k = 8

0.85 84 64

0.90 128 104

0.95 262 200

0.99 1331 920

Similar results were obtained for the Stanford-Berkeley matrix.

Table 4.3 shows the iteration counts for the larger edu matrix. In Figure 4.1
we take the value of the damping factor even further, to c = 0.999, and show
for k = 4 that the algorithm yields substantial acceleration of convergence. The
power method takes 7000 iterations to converge to a residual of approximately
5.7 × 10−5. The algorithm with k = 4 takes 432 iterations, or 1728 matrix-

Figure 4.1: Convergence behavior for the 2,024,716 × 2,024,716 edu matrix, with
c = 0.999.
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Figure 4.2: Extremal eigenvalues and singular values for the edu matrix, with c = 0.99
and k = 4. (Most of the Ritz values corresponding to the first 21 iterations were not
within the bounds of the graph and are not shown.).

vector products, to converge to the same tolerance. In Figure 4.2 we show that
while the smallest singular value converges smoothly to 0, the largest Ritz values
throughout the iteration are typically complex. Their convergence in terms of
magnitude is less smooth than the convergence of the minimal singular value. In
the figure, the left graph shows the minimal singular values, using the algorithm.
The right graph zooms on a neighborhood of 1 in the complex plane and shows
the largest Ritz value of the refined Arnoldi algorithm throughout the iterative
process.

Finally, we address the issue of the ranking as a function of the damping fac-
tor c, illustrating the potential importance of sensitivity analysis and of exploring
robust algorithms (such as the Arnoldi approach) for various values of c. For the
wikipedia2005matrix, we have looked at a few top ranked entries and how they

Table 4.4: Rankings of a few entries in wikipedia2005 as a function of c. These rankings
are for a particular test matrix, and do not necessarily reflect true rankings of Wikipedia
pages..

Entry c = 0.85 c = 0.90 c = 0.95 c = 0.99

United States 1 1 1 1

Race (U.S. Census) 2 2 4 20

United Kingdom 3 3 2 2

France 4 4 5 7

2005 5 5 11 10

Category: politics 13 7 6 5

Category: wikiportals 18 8 3 3
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change with the damping factor. Table 4.4 illustrates this. Certain entries have
their rank decrease as c grows whereas other entries have their rank go higher
as c increases. Even close the top the sensitivity could be high. For example,
while the top ranked entry stays at the top throughout, the second ranked entry
for c = 0.85 has a much lower rank for c = 0.99, and on the other hand the entry
ranked 18th for c = 0.85 is ranked third for c = 0.99.

5 Conclusions and future work.

We have introduced and explored the performance of an algorithm based on the
Arnoldi method for computing PageRank. It is a variant of the refined Arnoldi
method which computes PageRank without using Ritz values. The strength of
Arnoldi-type methods lies in obtaining orthogonal vectors. It allows for effective
separation of the PageRank vector from other approximate eigenvectors. The
algorithm shows robust performance for PageRank computations that holds for
a large variety of values of c.
For c = 0.85 our algorithm converges quickly but the separation of the second
eigenvalue from the first is sufficiently good for the power method to perform
extremely well. On the other hand, for high values of the damping factor the
method we propose yields substantial computational savings (at the price of
higher memory requirements). It should also be noted that the algorithm is
applicable to any Markov chain, not only to the PageRank problem.
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