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An array of WO3 and CTO heterojunction semiconducting metal oxide 

gas sensors used as a tool for explosive detection. 

Lauren. A. Horsfall,a,b David. C. Pugh,a,b Christopher. S. Blackman,b and Ivan. P. Parkin*b 

Terrorists frequently use explosives and they represent an imminent threat to national and global security. Recent events 

highlight the necessity of explosive detection, demonstrating the need for developing and applying new sensors for explosive 

gas detection. Semiconducting metal oxide gas sensors can be incorporated into electronic noses, which provide a cheap, 

portable and highly sensitive device. Using unmodified, admixed and 2-layered sensors consisting of WO3 and chromium 

titanium oxide (CTO), an array of seven heterojunction semiconducting metal oxide sensors was produced. All seven sensors 

were tested against four gases associated with explosive materials. The sensitivity was improved by using 2-layered sensors 

in response to ethanol, ammonia and nitromethane, whereas the admixed sensors showed high sensitivity when exposed to 

nitrogen dioxide. The selectivity of the array of sensors was tested using machine-learning techniques with a support vector 

machine. The technique produced good data classification when classifying the gases used within the study.  

Introduction 

 

Terrorism is a threat to public safety throughout the world, with its 

most common form using explosives to coerce and intimidate, which 

has taken the lives of more people than biological, chemical and 

radioactive threat substances combined1. With the increasing use of 

explosives by terrorist groups, detection of the hidden explosives 

within luggage, mail, vehicles, aircraft, or even on travellers is 

becoming a serious problem2. The widespread availability and 

accessibility of precursors, has led to terrorists using homemade 

explosives, rather than military or commercial explosives3. 

Therefore, making prevention and detection of explosives an 

increased challenge.  

Many methods exist for the detection of explosives, such as 

magnetic metal detectors4, X-ray5 and thermal neutron analysis6. 

However, these techniques are currently lacking the sensitivity rates 

necessary for explosive detection7. Chemical detection of explosives, 

such as vapour detection, is therefore becoming the preferred 

method of explosive detection.  

Metal oxide semiconducting (MOS) gas sensors are a reliable 

form of vapour detection8, which have been found to be successful 

in detecting solvents associated with illicit drug manufacture9. The 

MOS sensors are small and easily produced, therefore making them 

a dependable method when gas sensing explosives10. MOS gas 

sensors are conductance-based sensors which function based upon 

the redox reactions occurring on the surface of the metal oxide when 

heated. The number of charge carriers on the metal oxide surface 

changes when in contact with test gases, which in turn alters the 

conductivity. MOS gas sensors are robust and inexpensive, however 

they currently lack the sensitivity and selectivity to detect low vapour 

pressure explosives. 

Heterojunctions can increase semiconducting metal oxide 

sensitivity11. They are the combination of two different metal oxides 

admixed or layered together, which are essentially p–n, n-n and p-p 

diodes made from two pellets, a p and n type semiconductor12. 

Typically, the current is measured in the presence of gases by 

applying a forward bias voltage to the p–n contact13. The resistance 

of the sensing layer varies based on the recognition and transducer 

functions. If a single oxide is used within gas sensing these two 

functions cannot be optimised independently. Therefore, by 

introducing another metal oxide, which is sensitive to the test gas, 

both functions may be optimised simultaneously allowing the sensor 

to become more sensitive to gases at lower concentration14. P–n 

heterojunction systems have been studied for gas and humidity 

sensing, such as metal oxides SnO2
15 and ZnO16. This technique 

shows promising results for potential enhancement of gas sensing 

properties when combined within an electronic nose.  

 Electronic noses, or e-noses, are defined as devices composed of 

an array of independently semi-selective and reversible gas sensors, 

such as conducting polymers 17,18. Currently no single gas sensor is 

completely selective to a single chemical gas19, therefore using a gas 

sensor array to detect different gases is a highly significant focus of 

research within gas sensing. The potential applications of the 

electronic nose are vast, such as explosive gas detection20, use within 

the food industry21 and pollutant gas detection within the 

environment22. Once the data is collected it can be processed with 

multivariate clustering techniques, such as support vector machines 

(SVM), where an algorithm, which treats the data as a series of binary 

class problems, separates multiclass data. A SVM will be used within 

this study to classify the multiclass data collected from the test gas 

exposed sensors, in order to establish a unique gas fingerprint and 
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allow the different test gases to be easily distinguished and thus 

improve selectivity.  
Here we investigate the use of semiconducting metal oxide gas 

sensors as a tool to detect a range of gases associated with 

explosives. In order to investigate sensitivity and selectivity of metal 

oxides, an array of unmodified, admixed and 2-layered sensors of 

WO3 and chromium titanium oxide (CTO) were produced. The metal 

oxides were selected on the basis of their efficacy in detecting NO2 

and NO in cases for WO3
23, and ethanol in cases of CTO24. All sensors 

produced were tested against four gases associated with explosives, 

nitrogen dioxide, ammonia, ethanol and nitromethane.  

The materials used within military propellants and explosives are 

mostly organic compounds containing nitro (NO2) groups25. 

Consequently, the sensor responses to NO2 for explosive detection 

are highly significant. Ethanol is a colourless, volatile liquid used 

within the production of explosives, and therefore is an important 

gas to be sensed26. Ammonia is a colourless gas with a pungent 

odour, which is extensively used within the production of 

explosives27, fertilizers28, and as an industrial coolant29. Ammonia is 

a reducing gas and a potential indicator of homemade explosives30. 

Nitromethane is regularly used within motor sport1 and thus as a 

readily acquired liquid, it has also been used within the preparation 

of homemade explosives31. Nitromethane is more energetically 

explosive than TNT; therefore, the detection of nitromethane within 

gas sensing is essential1. There is limited research currently being 

conducted on the MOS gas sensing of MeNO2. 

The data collected were processed against a support vector machine 

in order to comprehend the sensors application into an electronic 

nose. This is the first instance, to our knowledge, of admixing of CTO 

and WO3 for gas sensing purposes. The abbreviations used within the 

study can be seen within table 1.  

 

Experimental  
 

 The synthesis of CTO, with target stoichiometry Cr1.65Ti0.35O3, was 

carried out by ball milling stoichiometric amounts of TiO2 powder 

(Sigma Aldrich) and Cr2O3 powder (Sentury Reagents, 99.9%) in 32 

mL of Iso-Propyl-Alcohol (IPA) (Emplura, Merck). The mixture of 

metal oxides, together with 6 mm alumina grinding balls, were ball 

milled in a Nannetti Speedy 1 ball-milling machine for 5 minutes. This 

process was repeated three times in order to produce a viscous 

mixture. Once the solvent had evaporated, the powder was placed 

within a furnace (Elite Thermal Systems Limited) for 5 hours in order 

to dry the powder and to establish the evaporation of IPA. 

 

Table 1. The abbreviations used within the study  

An agate pestle and mortar was used to grind the dried powder, 

which was thereafter sieved through a 150 μm sieve. In order for the 

final product to form, the powder was then placed into the furnace 

at 900°C for 12 hours. The sensors were produced by firstly mixing 

the selected metal oxide(s) with an organic vehicle ESL-400 (Agmet, 

Ltd), in a pestle and mortar for 20 minutes to create a homogenous 

ink. The metal oxide paste was then screen-printed onto the gold 

interdigitated patterned electrodes on the 3 mm by 3 mm alumina 

substrates (Dynamic microcircuits) using a DEK 1202 screen-printer. 

When screen-printed the ink was allowed to dry under an infrared 

lamp for approximately 10 minutes. Once dry the substrates were 

allowed to cool prior to subsequent layers being printed. The alumina 

substrates were layered four times with the appropriate metal oxide 

using this method.  

After screen-printing, the individual sensor chips were placed in 

the Elite thermal systems BRF14/5-2416-2116 furnace for an hour at 

600°C, allowing the organic vehicle to be burnt off and to strengthen 

the metal oxide film to fully bind to the gold electrodes.  Using a 

Macgregor DC601 parallel gap resistance welder, platinum wire, (Alfa 

Aesar, 0.0508 mm diameter and 99.95% metals basis), was spot-

welded onto the gold contacts at the end of the platinum heater 

track on the base of the substrate and the gold electrode contacts on 

the top of the substrate. Following this the substrates were welded 

onto the metal pins of the sensor housings, from which the sensor 

could be suspended, therefore allowing the sensor to be placed into 

the rig. Once welded the completed sensors were then exposed to a 

1000 cm3 min-1 flow of dry air (BOC) at 500°C for 2 hours on the rig 

to remove any residual gases.  

All gas-sensing experiments were carried out using an in-house 

testing rig, located within UCL. The rig was comprised of 12 glass 

chamber ports, which connected to the gas supplies. The sensor 

resistance measurements were collected through the use of 

potential divider circuits, coupled to an analogue-to-digital converter 

and a PC. The gas flow through to the sensor chambers was regulated 

by Tylan Gerneral Mass Flow Controllers (MFC’s) (model FC-260) and 

Bürkert 2/2-way Solenoid Valves (SV’s) (model 0124). A Wheatstone 
bridge circuit and a platinum heater track found on the back of each 

sensor produced were used to accomplish sensor heating. The 

sensors were exposed to four test gases associated with explosives 

at temperatures 300°C, 400°C and 500°C. The concentration of the 

gases used were 10, 20, 40, 80, 100% of their source concentration, 

which were 100 ppm for ethanol, 50 ppm for ammonia and 7200 

ppm for nitromethane. However, the concentration of nitrogen 

dioxide used was 5, 10, 20, 40 and 50% of its source concentration at 

200 ppm. Before any exposure to the test gases, all sensors were 

exposed to dry air for 30 minutes, allowing the baseline resistance to 

be established. Pulse lengths of the test gases were set to 600 

seconds in order to gain a maximum response. 

 

Figure 1. The morphology of a 2-layered sensor (left) showing 2 layers of one 

metal oxide layered on top of another 2 layers of another metal oxide. A 
50/50 admixed sensor (right) is shown where the metal oxides are admixed 
before being screen-printed.  

Sensor Abbreviation 
Metal Oxide (4 layers) 

WO3 WO3 (100%) 

CTO Chromium titanium oxide (100%) 

2L WO3 2 layers of WO3 over 2 layers of CTO 

2L CTO 2 layers of CTO over 2 layers of WO3 

75% WO3 75% WO3, 25% CTO 

75% CTO 75% CTO, 25% WO3 

50/50 50% CTO, 50% WO3 
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Between each test gas pulse 2000 seconds of dry air was exposed to 

the sensors, to allow the sensors to regain their baseline resistance. 

Once a test gas exposure was completed, dry air was exposed to the 

sensors for 2 hours, in order to remove any test gas from the sensor 

chamber, therefore allowing no contamination for the subsequent 

test gas exposures. In order to show repeatability at least 2 repeat 

measurements were carried out. 

 

Results and Discussion 

 

Characterisation 

 

The syntheses of seven semiconducting metal oxides, specifically 

chosen based on their sensitivity to gases associated with explosives, 

were produced using a thick film screen-printing technique. All seven 

sensors were exposed to four gases and to temperatures, 300°C, 

400°C and 500°C. All sensors produced underwent several 

characterisation techniques, both before and after being exposed to 

the test gases, including Scanning Electron Microscopy (SEM), X-Ray 

Diffraction (XRD), Energy-Dispersive X-ray Spectroscopy (EDX) and 

Raman spectroscopy.  

The micrographs produced using the Hitachi S-3400N microscope 

with a 20 kV SEM probe show the porous nature of the metal oxide 

sensors both unmodified and admixed. All sensors show spherical 

particles ranging in size. The measurements of the particles were 

taken from the x2000 zoom using a length measuring tool within the 

Hitachi S3400N software. The unmodified WO3 showed the larger 

particles with an average size of 9.4 μm. The unmodified CTO particle 

size on average was 7.7 μm. Figure 2 shows the micrographs 

produced for unmodified WO3 and CTO sensors. 
The EDX analysis was preformed to determine the composition 

of the array of sensors. The weight percentages produced from the 

EDX with 20 kV SEM probe coupled with Oxford Instruments’ INCA X-

Sight system for each sensor before exposure to test gases, showed 

the resulting atom types for all sensors as expected. The weight 

percentages of the sensors can be seen within table 2.  

 The Brucker GADDS D8 diffractometer XRD with 2θ range 21
◦ 

to 

64
◦
, produced diffraction patterns of the array before analysis can be 

seen within figure 3, which confirm the chemical make-up of the 

unmodified metal oxides, the 2-layered and admixed sensors. The 

unmodified CTO eskoalite structure had strong peaks at 2θ = 24.5◦
, 

34
◦
, 36.0

◦
, 42

◦
 and 55

◦
, which has been identified by observation as 

CrTiO3 within the Joint Committee on Powder Diffraction Standards 

Figure 2. SEM micrographs of unmodified WO3 (top) and CTO (bottom) at 

magnifications x40, x900 and x2000. 

  

Table 2. EDX weight percentages produced from the array of sensors.  

  

(JCPDS pattern 33-408). WO3 displays a monoclinic system, with 

characteristic peaks at 2θ = 23.1◦
, 23.6

◦
, 24.4

◦ 
and 34.2

◦
, which are 

apparent in all WO3 containing samples. The WO3 monoclinic 

structure can be matched with the JCPDS (number: 71-1465). The 2-

layered CTO sensor (2 layers of CTO over 2 layers of WO3) shows WO3 

peaks, as tungsten is a larger atom than either titanium or chromium 

and thus scatters the X-rays much more strongly, whereas no 

titanium or chromium can be seen within the 2L WO3 sensor (2 layers 

of WO3 over 2 layers of CTO).  

Raman spectroscopy was performed using a Renshaw inVia 

Raman Microscope using 514 nm laser and wavenumbers ranging 

from 200 cm-1 to 2000 cm-1; above 1000 cm-1 there were no 

noticeable peaks. The major vibrational modes seen within the WO3 

containing samples were 270 cm-1 (a), 718 cm-1 (b) and 808 cm-1 (c). 

These modes correlate to the stretching of O-W-O, the stretching of 

O-W and the bending of O-W-O respectively, and thus confirm the 

Figure 3. XRD diffraction patterns of an array of seven sensors, (top) WO3, 

CTO, 2L WO3, 2L CTO, 75% WO3 75% CTO, and 50/50.  
 

Sensor O W Cr Ti Total 

WO3 21 79 - - 100 

CTO 34 - 55 11 100 

2L WO3 21 79 - - 100 

2L CTO 34 - 56 10 100 

75% WO3 25 52 19 4 100 

75% CTO 30 21 41 8 100 

50/50 26 42 28 4 100 

2θ 

(001) (200) (201) 

(002) 

(400) 

(018) (110) (113) (024) (300) 
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Figure 4. Raman spectra of an array of seven sensors (top) WO3, CTO, 2L WO3, 

2L CTO, 75% WO3, 75% CTO and 50/50. 

 

compound as monoclinic tungsten trioxide32,33. However, the 

unmodified CTO sensor produced its dominant peak at 550 cm-1 (d), 

which is characteristic of crystalline α-Cr2O3
34,35. All characterisations 

were repeated after exposure to the tests gases and high 

temperatures. No changes within the structure of the metal oxides 

were detected. 
 

Gas Sensing Results 

 

The sensitivity of the sensor was calculated by comparing the 

baseline resistance of the sensor when within air (R0) and the 

resistance when exposed to the test gas (R). The response magnitude 

for an n-type material when exposed to an oxidising gas creates an 

increase in resistance, otherwise known as a resistive response R/R0, 

whereas when exposed to a reducing gas, a decrease in resistance 

and thus a conductive response R0/R would be produced. For a p-

type material the opposite effect can be seen. Both resistive and 

conductive responses were seen within the results. The magnitude 

of response, S, was calculated as S = Rmax – R0 for the gas pulses of 

NO2, NH3, EtOH and MeNO2, where Rmax was the maximum sensitivity 

produced. As established within the study the magnitude of response 

increases with analyte concentration. This process can be seen 

within figure 5, where the admixed sensors showed greater 

sensitivity to 10, 20, 40, 80 and 100 ppm of nitrogen dioxide at 300°C  

than the 2-layered sensors. The sensitivity of the sensors generally 

decreased with operating temperature. However, ammonia gas 

produced its most sensitive results at the highest temperature.  

The conductivity of the metal oxide is altered due to the 

interactions between temperature dependent absorbed oxygen 

species on the surface of the metal oxide, which produce a depletion 

region. This interaction changes the resistivity of the metal oxide, as 

the conductivity of the material is dependent on the size of the 

depletion region. Hence when within air an increase in conduction is 

seen and a baseline resistance established (eqn 1).  

O2 (g) + 2ē  2O-                                           (1) 

 

 
Figure 5. An array of sensors tested with NO2 at concentrations 10, 20, 40, 80 

and 100 ppm at 300°C. 
 

Results on the reducing gases 

 

An n-type semiconductor when exposed with a reducing gas, such as 

ethanol, creates an oxidation reaction with the oxygen species on the 

surface of the oxide, which in turn form CO2 molecules. The CO2 

molecules disperse from the metal oxide and electrons are released 

into the depletion layer, producing a decrease in resistivity (eqn 2).   

C2H5OH (g) + O-  CO2 (g) + H2O (g) + ē         (2) 

                                            CO2 (g) + ē  CO2-                       (2.1) 

CO2- + O- + 2ē  CO (g) + 2O2-              (2.2) 

Oxygen species are formed on the surface of the p-type metal oxide, 

which in turn forms a hole accumulation layer (HAL). Therefore, 

when a reducing gas, such as ethanol, is exposed to a p-type material 

it interacts with the oxygen species, which release electrons into the  

metal oxide. The electrons consequently interact with the positive 

holes within the HAL, thus increasing the resistance.  

 The response produced from the unmodified tungsten trioxide 

sensor when tested against ethanol is considerably lower than those 

reported in previous literature36,37. The reaction pathway shown 

within eqn 2 could explain the low response produced with the 

unmodified WO3 sensor of R/R0 1.75, when exposed to ethanol at 10,  

 

Figure 6. The magnitude of response for an array of sensors exposed to EtOH 
at 300°C, 400°C and 500°C.   
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Figure 7. The magnitude of response for an array of sensors exposed to NH3 

at 300°C, 400°C and 500°C.  

 

20, 40, 80 and 100 ppm. WO3 has previously shown low sensitivity 

when exposed to CO and thus this reaction may in turn reduce the 

sensitivity38 (eqn 2.2). As seen within figure 6, at 300°C unmodified 

CTO produced the highest sensitivity of 19 R/R0, whereas at 400°C 

both the 2-layered sensors exhibited the highest sensitivity at 3 R/R0, 

therefore showing CTO as being selective towards ethanol compared 

to the remaining sensors within the array. Although less research is 

available on the gas sensing properties of CTO, previous research 

concludes equivalent responses produced with an unmodified CTO 

sensor exposed to ethanol at the same temperatures and 

concentrations39. 

 Within the ammonia testing, the highest sensitivity could be seen 

at 500°C for unmodified WO3 and 2L CTO (2 layers of CTO over 2 

layers of WO3) at R0/R 8.5 and R/R0 10.7 respectively. All sensors 

were exposed to concentrations 5, 10, 20, 40 and 50 ppm of 

ammonia. This result proved surprising as unmodified CTO produced 

one of the lowest resistive responses, showing 2-layered sensors to 

increase sensitivity. Previous research on gas sensing in advance of 

100 ppm of ammonia using tungsten trioxide has produced low 

responses of 2.5 R0/R when carried out at 300oC40. As seen within 

figure 7, the study conducted produced an increased conductive 

response of the unmodified WO3 to 50 ppm of ammonia at R0/R at 

300oC, with the 2L CTO sensor (2layers of CTO over 2 layers of WO3) 

producing a resistive response of 3.8 R/R0. Therefore, the sensitivity  

Figure 8. The magnitude of response for an array of sensors exposed to 
MeNO2 at 300°C, 400°C and 500°C.  

has significantly improved using the array of sensors when tested 

against ammonia.  

A fall in resistance could be seen when exposed to the reducing 

test gases due to the oxidation of oxygen species on the surface of 

the sensor. The CTO containing sensors produced the highest 

resistive response, as seen within figure 8, with unmodified CTO 

producing an R/R0 of 167 when tested at 300°C. Consequently, 

showing the unmodified CTO as being highly sensitive when tested 

against nitromethane. Literature on the gas sensing properties of 

nitromethane are limited, therefore these results prove promising 

for establishing the successful responses produced when exposed to 

a p-type material.   

 

Results on the oxidising gas  

 

The array of sensors was exposed to five concentrations ranging 

between 10 and 100 ppm of nitrogen dioxide. Exposing an oxidising 

in resistance, and thus a resistive response (R/R0), as electrons leave 

the metal oxide surface. The outcome produces a decrease in the 

charge carrier concentration results and an increase within the 

depletion layer (eqn 3). 

NO2 (g) + ē  NO2
-        (3) 

 

The sensors sensitivity gradually increased with gas concentration 

and decreasing temperature, accordingly displaying maximum 

responses at 300°C, as seen within figure 9. Tungsten trioxide 

produced an extremely high resistive response of 512 R/R0, when 

exposed to NO2. Previous studies have shown a resistive response of 

WO3 to 100 ppm NO2 at 200 R/R0
41, where a resistive response of 215 

R/R0 at 40 ppm of NO2 can be seen within this study; therefore, 

establishing an increase within sensitivity.  

As seen within the results, when exposed to an oxidising gas the 

p-type metal oxide surface rapidly decreases its concentration of 

electrons, consequently decreasing the metal oxides resistivity and 

producing a conductive response. Conversely, all CTO based sensors 

produced a conductive response significantly lower than unmodified 

WO3. However, the CTO modified sensors showed a substantial 

response when compared to the unmodified CTO sensor. A 

conductive response of 261 R0/R was produced by 75% CTO (75% 

CTO and 25% WO3) which is 37.2-fold increase than the unmodified 

CTO. The 50/50 (50% CTO and 50% WO3) sensor also produced an 

elevated conductive response of R0/R 152, indicating that the doping 

of p-type CTO with n-type WO3 can successfully increase sensitivity 

against gases associated with explosives. The admixed sensors 

 
Figure 9. The magnitude of response for an array of sensors exposed to NO2 
at 300°C, 400°C and 500°C. 
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demonstrated a significant improvement within sensitivity when 

tested against NO2 and when compared against the 2-layered 

sensors. The highest of the 2-layered sensors 2L WO3 (2 layers of WO3 

over 2 layers of CTO) produced a resistive response of 86 R/R0. 

 

Overview of gas sensing results 

  

Overall, the highest sensitivity for an oxidising gas was unmodified 

WO3, and the three admixture sensors, 75% CTO (75% CTO and 25% 

WO3), 50/50 (50% CTO and 50% WO3) and 75% WO3 (75% WO3 and 

25% CTO) suggesting n-type semiconductors to be more sensitive 

towards NO2. Previous research has yielded evidence of admixed 

sensors producing more sensitive results than the unmodified metal 

oxides42. WO3 has been investigated and used within metal oxide 

admixtures and has produced a higher sensitivity than its unmodified 

version43. Suchorska-Woźniak et al, states WO3 has been previously 

used within a hetero-contact gas sensor, which modified the 

parameters of the sensor and thus increased its sensitivity44.  It is 

thought that the admixed sensors improve sensitivity due to the 

change within pore structure as seen from the SEM results. 75% CTO 

(75% CTO and 25% WO3) produced a response of 261 R0/R, this 

potentially may be due to CTO having a smaller range of pore size 

compared to WO3 and thus may create a larger surface area when 

admixed. Therefore, further investigation of WO3 within a hetero-

junction, in particularly admixed with a p-type material, should be 

conducted. 

The highest sensitive sensors for a reducing gas were unmodified 

CTO, 2L CTO, (2 layers of CTO over 2 layers of WO3), 2L WO3 (2 layers 

of WO3 over 2 layers of CTO) and 75% CTO (75% CTO and 25% WO3). 

Therefore, it is clear that CTO containing sensors produces a high 

response against all three reducing gases. However, within the 

ammonia testing unmodified WO3 also produced a sensitive result of 

8.5 R0/R at 50 ppm, whereas Stivastava et al, found a poor sensitivity 

response of 1 R0/R produced when sensing WO3 to 1000 ppm of 

ammonia45.  

Both 2-layered sensors also provided high responses when 

exposed to the reducing gases, such as 2L CTO (2 layers of CTO over 

2 layers of WO3) producing a R/R0 value of 21 when exposed to 

nitromethane at 400°C. Research has shown 2-layered sensors, such 

as WO3 and SnO2 to produce high sensitivities when exposed to 

hydrogen sulphide46. Multiple layers of different metal oxides 

hetero-junctions have been investigated, although 2-layered 

semiconducting gas sensors may improve sensitivity, it may also 

decrease it47, as seen within the gas sensing of nitromethane and 

ethanol. However, 2-layered sensors can be characterised by 

producing better selectivity when exposed to the test gases. 

The characterisation techniques used within the study, validate  

Table 3. Confusion matrix for the SMO, True class is defined vertically with the 
output classification horizontally, classification accuracy was 71.4%. 

that the gas sensors are able to retain their structures and thus not 

be physically changed due to gas exposure or calcination, after over 

40 experimental cycles, therefore suggesting long term 

microstructural stability. The response values produced also 

remained consistent throughout the 40 experimental cycles, 

consequently also signifying response stability. Each experiment was 

conducted a minimum of three times, in order to investigate the 

consistency of the array. Given the experiments produced little 

variation between each experiment, the authors suggest the array of 

sensors to be reliable in producing a dependable technique for gas 

sensing. The array is easily reproducible through the screen-printing 

method, with a low cost associated with the production.   

 

Results of the Support Vector Machines 

 

A support vector machine training algorithm was used within this 

study to build a model to classify the data produced from the gases 

tested. This model aims to demonstrate the selectivity of the sensors 

if implemented into an electronic nose. The data obtained was 

analysed in order to classify nitrogen dioxide, ethanol, ammonia and 

nitromethane when tested against the heterojunction array of 

sensors. Performed on WEKA and designed by Platt, the tool used 

was sequential minimal optimization (SMO), which applied a one 

against one technique to separate the multiple classes of data48, 49. 

The cost and Kernel parameters were adjusted in order to refine the 

values. 

A data set of 840 vectors was produced, containing an array of 

seven sensors tested against four test gases over a range of 

temperatures. The data set used included the maximum responses 

found within each gas pulse at given concentrations for exposure to 

600 seconds gas pulses of NO
2
, NH

3, EtOH and MeNO2. Also included 

was the first 50 seconds of conductive and resistive responses 

produced, therefore showing the change in resistivity was also 

included within the data set. The final variable included was data on 

the sensor temperature. The optimum results were found when the 

parameters were increased, operating the cost parameter at 6000 

and with a percentage split of 65%. The algorithm produced 71.4% 

accuracy for classification of the gases, which describes the models 

ability to identify the test gases based upon the resistive and 

conductive responses produced within the data set implemented. As 

seen within table 3, NO2
 
was readily identified due to its oxidising 

response and MeNO2 due to its concentration. However, as NH3 and 

EtOH are both reducing gases they proved to be the most confused 

and thus produced similar results. 

A high level of selectivity can be achieved using an array of 

sensors, combined with machine learning techniques such as SMO. 

Currently no single sensor produces absolute selectivity; 

nevertheless, the results produced within this study have shown a 

high level of selectivity to a variety of associated explosive gases. 

Overall WO3 and CTO unmodified, admixed and 2-layered sensors 

produced a good sensitive array of sensors with potential to be 

incorporated within an electronic nose system for the detection of 

explosive vapours.   

 

Conclusion 
 

Seven sensors were produced, characterised and tested against the 

chosen gases. The results produced show MOS sensors are capable 

of detecting gases associated with explosives. A heterojunction array 

of gas sensors has not previously been used for the detection of 

gases associated with explosives. Heterojunction arrays used for gas 

sensing properties have previously been researched, however the 

  Classification   

Class NO2 NH3 EtOH MeNO2 

NO2 58 4 14 0 

NH3 16 23 39 0 

EtOH 5 6 58 0 

MeNO2 0 0 0 71 
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combination of an n-type and a p-type are far less well-known. The 

array produced within this study has to the authors knowledge, 

never been published before, therefore demonstrating its novelty by 

conducting an experiment aimed at the detection of gases associated 

with explosives, through the use of a heterojunction array of gas 

sensors.   

Generally, admixtures of n-type and p-type semiconductors have 

increased responses to be oxidising and reducing gases. Whereas the 

2-layered sensors produced, proved highly successful when 

detecting ethanol. Currently a single sensor does not have the 

selectivity required for the detection of explosives, however using an 

array of the seven sensors produced and tested here has shown 

selectivity between ranges of associated explosive vapours. It is 

suggested that potentially further increase of selectivity within MOS 

sensors to test gases could be achieved through the use of hetero-

junctions.  Both admixtures of metal oxides and 2-layered metal 

oxides have been shown to enhance sensor response.  

All classification tests of the sensors after being exposed to the 

test gases and high temperatures showed no structural change to the 

materials indicating that the unmodified, 2-layered and admixed 

WO3 and CTO sensors would present strong repeatability and 

reproducibility.  

The results produced are very encouraging and thus further 

study should be commenced on hetero-junctions used within gas 

sensing. A portable device produced in order to reduce the number 

of explosives using this technology could be achieved, due to the 

improving sensitivity to associated explosive gases, the ease of the 

production of the sensors and the low cost of the electronics 

required.  
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