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An ART-Based Fuzzy Controller for the Adaptive
Navigation of a Quadruped Robot
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Abstract—An adaptive-resonance theory (ART)-based fuzzy
controller is presented for the adaptive navigation of a quadruped
robot in cluttered environments, by incorporating the capability
of ART in stable category recognition into fuzzy-logic control for
selecting the adequate rule base. The environment category and
the navigation mechanism are first described for the quadruped
robot. The ART-based fuzzy controller, including an ART-based
environment recognizer, a comparer, combined rule bases, and
a fuzzy inferring mechanism, is next introduced for the pur-
pose of the adaptive navigation of the quadruped robot. Unlike
classical/conventional adaptive-fuzzy controllers, the present
adaptive-control scheme is implemented by the adaptive selection
of fuzzy-rule base in response to changes of the robot environ-
ment, which can be categorized and recognized by the proposed
environment recognizer. The results of simulation and experiment
show that the adaptive-fuzzy controller is effective.

Index Terms—Adaptive control, adaptive-resonance theory
(ART), fuzzy controller, navigation, obstacle avoidance, quadruped
robot.

I. INTRODUCTION

A S ONE TYPE of legged vehicles, quadruped robots can
perform some tasks in the work space with a rough ter-

rain, e.g., mapping building on the uneven ground, searching
and removing landmine, collecting volcano data, etc. The au-
tonomous walking of a quadruped robot depends on not only the
gait implementation but also the navigation control. Although
there are a lot of works published on gait generation and control
for quadruped robots [1]–[17], to the best of our knowledge,
few papers are found addressing the adaptive navigation of a
quadruped robot in cluttered environments up to now. For ex-
ample, Lee and Song [1] described the gait generation method
for a quadruped robot to follow a planned trajectory in a known
obstacle-strewn environment. Itoet al. [17] discussed the adap-
tive gait pattern of a quadruped robot to a treadmill environment
(ground profile) rather than an adaptive navigation in a walking
space. Furthermore, it is very difficult or complicated to esti-
mate robot position in a complex environment for the navigation
control by means of the existing algorithms of gait generation.
On the other hand, many researchers investigated navigation
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and path planning of mobile robots [18]–[27], [42]–[45]. For in-
stance, Taylor and Kriegman [22] provided exploration and nav-
igation algorithms that would enable a mobile robot equipped
with a vision-based recognition system to carry out an explo-
ration of its environment in search of one or more recognizable
objects. Yamamotoet al. [43] developed a sensor-based navi-
gation system using a target direction sensor for mobile robots.
Okadaet al. [42] described a human–robot cooperation system
which could realize robust behaviors of mobile robots in a real
world by combining human ability of recognition, inference
and decision with robot’s autonomy. In addition, Kubotaet al.
[18] introduced behavior learning of human-friendly robots by
human symbolic teaching for navigation of the mobile robots.

In this paper, we attempt to develop an adaptive-fuzzy con-
troller to navigate a quadruped robot based on classification and
recognition of environment. Unlike mobile robots, quadruped
robots are able to walk on extremely irregular ground profile
and to step on/over some convex/concave objects which are re-
garded as the obstacles mobile robots have to avoid. Although
there have been some creative outcomes of vision system which
could be used to observe environment for navigation of mobile
robots [22], [44], [45], it is still difficult to classify and recognize
field environments by means of the existing vision/sensor sys-
tems for navigation of quadruped robots to perform hazardous
tasks. In particular, there is a lack of a widely practical and reli-
able vision system to identify various terrains and obstacles that
quadruped robots cannot step on/over. As a result, conventional
sensors cannot give full play to measure distances between a
robot and these terrains/obstacles. Therefore, human involve-
ment is necessary to describe the complex environment for the
navigation of the robot. In order to lighten human load, to de-
velop the robot’s autonomy, and finally to implement the com-
pletely autonomous navigation by means of a sophisticated vi-
sion/sensor system, the adaptive-fuzzy controller is designed in
such a way that it can obtain the inputs from fuzzy language or
environment database provided by a human operator in a far-
away observation.

Classical fuzzy adaptive-control methods have two kinds ap-
proaches: one is the learning model (LMAC) and the other is
the model reference adaptive control (MRAC). It is well-known
that, unfortunately, real-time control is difficult due to the long
computational time and the design and implementation of these
controllers are difficult due to their complex mathematical struc-
ture. Conventional fuzzy-adaptive controllers are designed so
that membership functions are modified by some parametric
changes of the system. However, this method leads to an inef-
fectual robust property of the fuzzy controller [29]. Moreover,
it makes a lookup table method impossible and generates the
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Fig. 1. Human-coexistent quadruped robot system.

same problems as in classical adaptive-control methods [28].
Actually, such an adaptive control can be also implemented by
an adaptive selection of fuzzy rule. For example, Kimet al.[29]
presented a fuzzy controller constructed with parallel combina-
tion of robust controllers by using a multirule-base architecture,
and verified the robust stability of the fuzzy controller even in
a big parametric uncertainty. Nevertheless, an online identifi-
cation of the parametric variations of the controlled system is
a difficult and unavoidable problem. Clearly, classification and
recognition of environmental changes is a key technique to re-
alize the adaptive navigation of a quadruped robot.

Adaptive-resonance theory (ART) [30]–[33] is known to be
powerful in self-organization of stable category recognition.
The reason is that ART networks and algorithms maintain the
plasticity required learning new patterns, while preventing the
modification of patterns that have been learned previously.
Although many people have found the theory difficult to
understand, this capability has stimulated a great deal of
interest. For example, Linet al. [35], [36] performed an online
structure/parameter learning algorithm by combining the back-
propagation learning scheme for parameter learning with the
fuzzy ART algorithm for structure learning. We here propose
an ART-based fuzzy-adaptive controller by incorporating
the capability of ART in stable category recognition into the
fuzzy-logic control for selecting the adequate rule base. The
proposed approach is characterized by quickly recognizing the
current environment category using an ART-based neural net-
work, and by implementing an adaptive selection of fuzzy-rule
base in response to changes of environment.

The rest of the paper is organized as follows. The environment
category and the robot navigation are presented in Section II.
Section III motivates and describes the design of the adaptive
navigation controller. Section IV shows the simulation and ex-
perimental results. Finally, Section V discusses some of conclu-
sions drawn from this research.

II. ENVIRONMENT CATEGORY AND NAVIGATION MECHANISM

A. Environment Category

A human-coexistent quadruped robot system is schematically
shown in Fig. 1. The basic mechanism of the quadruped robot
named TITAN-VIII is drawn in Fig. 2, where and de-
note the size of robot body, while and represent the ini-
tial leg stretch in horizontal and vertical respectively. As shown
in Fig. 3, we define the environment of the quadruped robot to
be the area surrounding the robot with a radiuscentered at

Fig. 2. Schematical drawing of the quadruped robot TITAN-VIII.

Fig. 3. Environment definition and division, where the shaded areas denote
obstacles that the robot cannot step on/over.

the robot. The radius is an important parameter for the envi-
ronment cognition because the environment scope is relative to
walking specifications of robot, which leads to different envi-
ronment category. For example, if in Fig. 3, the envi-
ronment of the robot is the nonobstacle one; but if in
Fig. 3, then the environment of the robot is the obstacle-strewn
one. Actually, is naturally embodied in a changeable vari-
able if obstacle distances are provided in fuzzy language. On
the other hand, the environment category also depends on ob-
stacle distribution in the specified environment with respect to
the robot. Therefore, the environment category may vary with
the position of the robot in the environment. As a simple ex-
ample shown in Fig. 4, the obstacle is in the front of the robot
drawn in solid line, whereas it is in the right of the robot drawn in
dotted line, and clearly, the environment category of the former
should be different from that of the latter. Moreover, catego-
rizing the environment also depends on the division of the en-
vironment with respect to the robot [19]. As shown in Fig. 3,
we consider five subareas of the environment with respect to
the robot: front, left, right, left-front, and right-front, where,

, , , and denote the obstacle distances in the corre-
sponding subareas, respectively. Therefore, there exist 32 pos-
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Fig. 4. Robot is navigated to a specified target with the obstacle avoidance,
where the robot in solid line denotes the current posture and that in dotted line
represents the next posture after a gait cycle.

sible environment categories shown in Fig. 5 under the circum-
stances. The obstacle distances are evaluated according to the
current robot posture (position and orientation) and the environ-
ment database, or are directly provided in linguistic variables
such asVery Near, Near, Middle, Far, Very Far, etc.

B. Navigation Mechanism

The quadruped robot realizes its travel in stepping locomo-
tion mechanism. In our previous work [47], the control algo-
rithm of an omnidirectional crawl has been proposed and imple-
mented for the robot TITAN-VIII on the irregular ground. Based
on a prescribed walking requirements including robot stride and
turning angle in one step (a gait cycle), the quadruped robot can
be controlled to perform the gait cycle with a desired stride, de-
noted by , and a desired turning angle, represented by. In
other words, given a command on the desired stride and turning
angle in a gait cycle, the robot can be navigated. As shown in
Fig. 4, the robot crawls toward the specified target without col-
lision with the obstacle, where denotes the body
frame and represents the target-orientation angle. According
to the current environment, the robot performs a gait cycle to
reach the posture in dotted line for the obstacle-avoidance. Here,

denotes the body frame after the gait cycle,
and denote the components of the stridein - and -di-
rections of , for , and represent the current
footholds of the robot, and for , and represent
the next footholds of the robot. The generalized gait generation
is described as follows.

Drawing inspiration from the reptile crawl, we designed the
omnidirectional gait pattern for TITAN-VIII [47], which mainly
includes determination of the footholds and selection of the se-
quence of swing leg. A gait cycle is defined as a successive per-
formance (lift up–swing ahead–put down) for four legs of the

Fig. 5. Categories of environment for a quadruped robot, where the rectangles
denote the robot and the line segments denote obstacles.

quadruped robot, in which the robot is controlled to begin at
the initial posture and to end up at the next initial posture. The
so-called initial posture of the robot is given in Fig. 2, where
the initial leg stretch in horizontal is , whereas the actual leg
stretch in vertical is subject to the roughness of ground profile.
Therefore, once the robot performs a gait cycle, it returns to the
initial posture for the next gait cycle. The next footholds of the
robot with respect to the current body frame are expressed
by for , and . The orienta-
tion matrix of , with respect to , is denoted by , i.e.

(1)

Thus, we have

(2)

where denotes the stride vector of the robot in the gait cycle
with respect to the current body frame, and represents
the initial position of theth foot with respect to the body frame.
From Figs. 2 and 4, it follows that

(3)

(4)
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Fig. 6. Flow diagram of the navigation control for the quadruped robot.

where for or , for or ,
for or , and for or . Therefore, we can
finally obtain

(5)

Selection of the sequence of swing leg in a gait cycle must abide
by the following rules.

• Each leg only works as the swing leg once a gait cycle.
• The robot must be statically stable in any time.
• The leg stretch does not exceed its limit to reach the de-

sired foothold.
• The leg with smaller stretch should be selected as the

swing leg if there are two possible selections.
In fact, the quadruped robot can also realize an omnidirec-

tional walking through straight-going gait and standstill-turning
gait. The former is given with , and

; while the latter is given with and
. In other words, when the robot needs to take a turning

for an obstacle-avoidance or an adjustment in direction, it adopts
the standstill-turning gait; otherwise it makes the straight-going
gait with great strides toward a specified target. Therefore, the
robot navigation is concentrated on providing a command of
turning angle to the quadruped robot at a gait cycle. The fol-
lowing mission is to design an adaptive-fuzzy controller that it
can provide the navigation command to the robot gait genera-
tion/control system [47] based on the recognition of the current
environment category.

III. A DAPTIVE FUZZY CONTROLLER DESIGN

Fig. 6 presents the flow diagram of the navigation control of
the quadruped robot. A human operator can provide the envi-
ronment information to the fuzzy controller in either case: fuzzy
language and database. The former implies that the current ob-
stacle distances in five subareas are directly given in the fol-
lowing linguistic variables:Very Far (VF), Far (FA), Middle
(MI), Near (NE), andVery Near (VN). The latter means that
the human operator gives environment database to the fuzzy
controller from an observation or map of the environment, and
the obstacle distances are evaluated according to the database
and the current robot posture. In addition, the target-orientation
angle is also evaluated according to the current robot posture and
the specified target position. The output of the fuzzy controller
is a turning angle. As a result of the control, the robot performs
a standstill-turning gait with the desired turning angle, whereas
the robot takes a straight-going gait with a stable stride when
the control output is zero.

Fig. 7. Block diagram of the adaptive-fuzzy controller.

Owing to the complexity of environment, it is very difficult
to constitute such an adequate rule base that the fuzzy controller
possesses a wide robustness to various cases in the complex en-
vironment. In order to solve the problem, Wu [27] made an at-
tempt to propose a learning fuzzy algorithm similar to “simu-
lated annealing” method to implement fuzzy rules, which in-
creases the flexibility in determining the range parameters of
the fuzzy rules and tends to find a navigation path with global
minimum distance, but considerably increases the computation
burden and makes the choice of the nominal values of the range
parameters more difficult. Based on the above work in Sec-
tion II, in fact, any complex environments can be properly cate-
gorized to meet such needs that the adequate fuzzy rules can be
respectively designed for each environment category according
to expert knowledge. Each environment category corresponds
to an individual fuzzy-rule base, which enables the controller
to have a robust stability in the specified environment category.
Combining these individual rule bases in parallel, we propose a
fuzzy controller which implements its adaptive property by on-
line recognition of current environment category for the robot
then selection of the corresponding rule base to make a fuzzy in-
ference. The structure of the fuzzy controller is shown in Fig. 7,
which is composed of an environment recognizer, a comparer,
combined rule bases, fuzzifier, a fuzzy inferring mechanism,
and a defuzzifier. The comparer performs a comparison among
the obstacle distances for the minimum one, which is called the
critical obstacle distance . For the database case, the critical
obstacle distance is expressed by

(6)

whereas the critical obstacle distance is directly expressed in a
linguistic variable for the case of fuzzy language. The control
strategy is as follows: first, the current environment category is
recognized by the environment recognizer according to the en-
vironment radius and the obstacle distances; then, the fuzzy-rule
base is selected in response to the current environment category;
finally, the fuzzy inferring mechanism makes an inference from
the fuzzy inputs of the target-orientation angle and the critical
obstacle distance to obtain the crisp output of a turning angle
through defuzzification.

A. ART-Based Environment Recognizer

The environment recognition in the control loop is imple-
mented in the form of the ART-II neural network [31]. The
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Fig. 8. Network topology of ART-II.

ART-II is a member of the class of adaptive-resonance archi-
tectures that is designed to handle both binary and analog pat-
terns and is a modification over the first proposed ART archi-
tecture called ART-I [30]. Fig. 8 depicts the ART-II network
topology. This network includes the principal components of
all ART modules, namely an attentional subsystem, which con-
tains an input representation field and a category representa-
tion field , and an orienting subsystem, which interacts with
the attentional subsystem to carry out an internally controlled
search process. The two fields are linked by both a bottom-up

adaptive filter and a top-down adaptive
filter. A path from the th node to the th node contains a
long term memory (LTM) trace, or adaptive weight, a path
from the th node to the th node contains a weight .
These weights gate, or multiply, path signals between fields. See
the reference [31] for the ART-II system dynamics. The basic
mathematical relationships in Fig. 8 are listed as follows:

(7)

(8)

(9)

(10)

(11)

(12)

for and , where is the number
of input channels; is the number of nodes at stage;
the network parameters are such that , ,

, and ; the threshold is ; and ,
, and represent the norms of the vectors, , and ,

respectively. In addition, the thresholding function is adopted as
follows:

if
if .

(13)

TABLE I
SOME TYPICAL TRAINING DATA OF THE ENVIRONMENT CATEGORY,

WHERE I DENOTES THELINGUISTIC CASE AND II REPRESENTS

THE DATABASE CASE (IN METERS)

The ART-II network is implemented on a digital computer.
The network is used in the supervised learning mode and is
trained offline before its inclusion into the control loop. The
inputs of the network, , include

, and . The output of the network is the envi-
ronment category. Similarly, the input variables can be crisply
inputted to the network in the database case, that is

(14)

where

if
if

(15)

for , and . In addition, if there is no obstacle
in some subarea, then the corresponding obstacle distance is re-
garded as an infinite. On the other hand, if the obstacle distances
are given in the linguistic variables: , and

, these linguistic variables should be transformed into the
numerical symbols, which also coincides with the fuzzy mem-
bership to be presented in the following section, that is

Thus, the obstacle distances are inputted to the network in the
following analogs:

(16)

for , where represents the numerical symbol
of the corresponding obstacle distance. Note that, for the lin-
guistic case, the environment radiusis embodied in the ob-
stacle distances expressed by the linguistic variables, i.e., the
environment scope is naturally limited in theVery Far (VF), and
hence, as the input of under the circumstances.

The training data for the network is obtained from the real
environment categorizing as shown in Fig. 5, which can be the
analog quantity from (16) or the real physical quantity. The
former describes the relative degree of the distance between
robot and obstacle in nondimensional coefficient, and the latter
denotes the real distance between robot and obstacle in meter.
We adopt the typical-sample to establish the training data. For
example, Table I lists some of typical training data for the first,
third, ninth, 18th, and 27th categories, where I represents the
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linguistic case while II denotes the database case with the envi-
ronment radius m. In the concrete, 0.25, 0.5, 0.75, and 1
respectively denote theNear, Middle, Far, andVery Faras the
typical-samples to present the existence of obstacle for the lin-
guistic case (Case I), while the existence of obstacle within an
environment with m is typically expressed by physical
obstacle distances such as 0.5, 1.0, 1.5, and 2.0 m for the data-
base case (Case II).

Once the training data is available, the network is configured
such that the number of nodes in the feature representation
field , which corresponds to the dimension of the input
feature vector composed of the environment radius and five
obstacle distances in present application, is fixed. The number
of processing nodes in the category representation field, is
generally greater than the total number of input patterns in the
prototype set. Each pattern in the prototype set is sequentially
presented to the network once. A second cyclic presentation
of the prototype set may be made for a stable category con-
firmation. Subsequent presentations do not alter the resulting
category structure. The category structure represents the stable
space partitioning of the neural network depending on the
number of stable categories established during training and
the different feature vectors that were classified into these
categories. During training, the attentional vigilance parameter

is set at its highest value (0.99) to ensure a high resolution of
the resulting category structure.

When the network is presented with a feature vector for the
first time, it is encoded in the LTM through modification of the
LTM connection weights. A node is allocated in the network’s
category representation field to represent the pattern. The
parameters associated with the feature vector now get assigned
to this allocated node. On presentation of subsequent fea-
ture vectors, the network’s orienting subsystem first determines
closeness of match between the pattern currently imposed on the
network and any of the patterns that have previously been seen.
Since the vigilance parameter is set high, a new node is allo-
cated for the pattern. However, if the current pattern happens to
be closely matched to the one that the network has already seen,
it is clustered into the same category. It is, therefore, possible to
partition the network’s state space so that each partition serves
as an attractor for a particular type of response characterized
by its feature vector. The vigilance parameter helps to control
the coarseness or fineness of classification desired. After com-
pletion of training, the top-down and the bottom-up connection
weights of the network, along with the network parameters, are
saved into the computer memory. The above process is repeated
for different sets of values of the obstacle distances. After its in-
clusion into the control loop, the trained network can realize the
rapid recognition of the environment category shown in Fig. 5,
according to the obstacle distances evaluated from the environ-
ment database or directly provided in linguistic variables.

B. Fuzzy Reasoning

1) Fuzzification: The fuzzy inferring mechanism accepts
the fuzzy input. Before the data can be fuzzified, it should be
normalized to meet the range of the universe of discourse suit-
able for the controller input. In the proposed fuzzy controller,
the target-orientation angleand the turning angle also need

TABLE II
QUANTIZED d ,  , AND �

Fig. 9. Membership functions.

to be fuzzified in addition to the critical obstacle distances
for the database case. These variables are all quantized into
corresponding universe of discourse according to the robot’s
mechanism specifications and the designer’s experience.
Therefore, the design of the quantization of the variables may
be different from person to person. The turning angle and the
stride of a quadruped robot in a gait cycle are limited by its
mechanical constraints and the ground roughness [41]. For
example, when TITAN-VIII crawls on the ground with the
roughness less than 5 cm, its maximized turning angle of a
standstill-turning gait and maximized stride of a straightgoing
gait are rad and 22 cm, respectively [47]. Obviously, the
stable stride should be less than the maximized stride in a gait
cycle. The quantization of , , and is shown in Table II,
where , , and denote the quantization values of , ,
and , respectively.

Having made the quantizations of the system variables, the
quantized data are then converted into suitable linguistic vari-
ables which may be viewed as labels of fuzzy sets. For, the
following linguistic variables are used again:Very Near (VN),
Near (NE), Middle (MI), Far (FA), andVery Far (VF). For and

, the following linguistic variables are introduced:Right (RI),
Right-Front (RF), Front (FR), Left-Front (LF), andLeft (LE).
A fuzzy set is defined by assigning the grade of membership
values to each element of the universe of discourse. There are
many types of membership functions, e.g., the bell shaped, the
triangular shaped, and the trapezoidal shaped, etc. The choice of
membership function mainly depends on the user’s preference.
For simplicity, the triangular-shaped function shown in Fig. 9 is
used in this application.

2) Combined Rule Bases:Fuzzy inference is characterized
by the linguistic description in the form of fuzzy implication
rules. In this application, the fuzzy inference is based on
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TABLE III
LINGUISTIC RULE TABLE FOR THE THIRD AND NINTH CATEGORIES

OF ENVIRONMENT

the combined rule bases. The changes of environment of the
quadruped robot are observed by the environment recognizer.
After selecting the corresponding rule base which is adequate
for the observed environment, a feedback control is accom-
plished by the selected one. The recognizer observes the
environment at a gait cycle to determine whether the current
rule base can control the robot well and, if necessary, exchange
the rule base. If the observed environment belongs to theth
category, the fuzzy-rule base for the next control duration is
the th one. For example, some typical fuzzy rules belonging to
different environment categories are listed as follows:

IF category is 2 AND is NE AND is RF
THEN is RI

IF category is 3 AND is NE AND is RF
THEN is RF

IF category is 9 AND is NE AND is RF
THEN is RI

IF category is 16 AND is NE AND is RF
THEN is FR

IF category is 22 AND is NE AND is RF
THEN is LE.

The rule base changes with the environment category, e.g.,
Table III presents the rule bases for the third and ninth environ-
ment categories. All other fuzzy rule bases of this application
are not listed here due to the space limitation.

The inference mechanism employed in fuzzy logic con-
trollers is generally based on various reasoning schemes. The
inference result can be obtained by using several different
algorithms. Mamdani’s strategy—Mamdani’s fuzzy reasoning
method based on MAX–MIN inference operator is used to
perform fuzzy inference in this application.

3) Defuzzification: Defuzzification describes the mapping
from a space of fuzzy control action into a nonfuzzy control ac-
tion. The defuzzification produces a nonfuzzy action that best
represents the inferred fuzzy output. Many strategies can be
used for carrying out the defuzzification. The center-of-gravity
method is adopted in this paper, that is

(17)

where which is the number of the elements of the discrete
universe of discourse [4, 4], denotes theth element of the
universe of discourse, and represents the membership of
the fuzzy set as the output of the fuzzy inference. Based on the
linguistic control rules, the decision-lookup tables constructed

TABLE IV
DECISION LOOKUPTABLE FOR THETHIRD CATEGORY OFENVIRONMENT

TABLE V
DECISIONLOOKUP TABLE FOR THENINTH CATEGORY OFENVIRONMENT

using the center-of-gravity method are obtained for the corre-
sponding environment category. For instance, Tables IV and V
are the decision-lookup tables for the third and ninth environ-
ment categories, respectively.

By properly scaling, the real navigation information on the
turning angle can be generated according to the content of the
decision-lookup tables.

C. Navigation Control Algorithm

According to the above discussion, the navigation control al-
gorithm is induced as follows.

Step 1) Give the positions of the starting point and the spec-
ified target and, if necessary, input the environment
database including the desired environment radius.

Step 2) Evaluate the target orientation angleand the dis-
tance between the robot and the specified target.

Step 3) If the target distance is less than, then go to Step
12), otherwise continue.

Step 4) Evaluate the obstacle distances , and
according to the current robot posture and the

environment database; or input the linguistic de-
scription for the obstacle distances, which are then
transformed into the numerical symbols.

Step 5) Compare the obstacle distances to confirm the crit-
ical obstacle distance.

Step 6) According to the obstacle distances and the envi-
ronment radius, the current environment category is
recognized by the environment recognizer (ART-II
network).
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TABLE VI
CONNECTIONWEIGHTS OF THEART-II NETWORK, WHERE i DENOTES THEINPUT CHANNEL AND j REPRESENTS THECATEGORY

Step 7) Select the decision lookup table corresponding to
the current environment category.

Step 8) Transform the critical obstacle distance (for
the database case) and the target orientation angle

into corresponding quantization valuesand ,
respectively.

Step 9) According to and , look up the selected decision
table for .

Step 10) Determine the turning angle for a stand-
still-turning gait, then the robot performs the
standstill-turning gait, otherwise, the robot takes a
straight-going gait with the stable stride when

.
Step 11) Go to Step 2).
Step 12) End.

IV. SIMULATION AND EXPERIMENT

As shown in Fig. 2, the main specifications of TITAN-VIII
relative to the problem are: mm, mm,

mm, and mm. If the ground roughness is less
than 50 mm, TITAN-VIII can implement the maximized turning
angle of in a standstill-turning gait cycle or the maximized
stride of 220 mm in a straight-going gait cycle [47]. Therefore,
the stable stride of a straight-going gait is given as mm
under the circumstances. In addition, the environment radius
is defined as m according to the robot specifications.
Utilizing the training data provided in Section III-A, the ART-II
network is trained then included into the control loop as the
environment recognizer, whose connection weights between
and are obtained and listed in Table VI. Consequentially,
simulations and experiment can be conducted according to the
navigation control algorithm as above.

A. Simulation Results

In the following simulation examples, the ground roughness
was less than 50 mm, the positions of five convex obstacles and
three concave obstacles were, in meters: (2.0, 2.0), (1.5, 4.0),
(4.0, 4.0), (6.0, 3.0), (3.0, 6.0), (6.0, 6.0), (4.0, 1.0), and (5.0,

Fig. 10. Path of the quadruped robot fromA to T .

Fig. 11. Path of the quadruped robot fromA to T .

7.0), respectively. The starting and target positions were pro-
vided to the control system. Based on the environment data-
base, simulations were conducted three times. The environment
category was first recognized at a gait cycle, the command on
turning angle was then found and provided to the robot from
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 12. Experimental result avoiding obstacles in our laboratory.

the corresponding decision lookup table. If the turning angle
was zero the robot made a straight-going gait with the stable
stride, otherwise the robot took a standstill-turning gait with the
desired turning angle. Fig. 10 presents the walking path of the
quadruped robot from the starting point (0.8, 6.4: in meters)
to the target (7.5, 1.0: in meters), where each dot denotes a
stable stride of the robot. Here, we further give the navigation
result of the robot at the turning-point , and . The en-
vironment categories of the robot at these points were no. 8, no.
19 and no. 16, respectively. The turning angle of the robot at the
points were , and , respectively. Fig. 11 shows
the path of the quadruped robot walking from the starting point

(0.5, 0.4: in meters) to the target(7.5, 7.5: in meters). Simi-
larly, the navigation results of the robot at five turning-point,

, , , and were as follows: the environment categories
were recognized as no. 5, no. 5, no. 13, no. 3, and no. 3, respec-
tively, and the robot turning-angles at these points were,

, , , and , respectively.

B. Experimental Result

To further verify the effectiveness of the proposed algorithm,
a laboratory experiment has also been conducted to navigate
TITAN-VIII by the linguistic input. There was an obstacle the
robot cannot step on/over and three convex objects with height
of 30 mm the robot can step on/over on the experimental terrain.
The positions of the starting point and target were also inputted
to the control system. The obstacle distances were provided in
the fuzzy language by human–machine interface through the
keyboard in the numerical symbol. Fig. 12 shows the real ex-
perimental photograph of TITAN-VIII navigated to walk from
the starting point [Fig. 12(a)] to the target [Fig. 12(l)]. The nav-
igation results of the robot at some typical points are further
given as follows: At Fig. 12(a), five obstacle distances were pro-
vided to the controller inNE, VF, VF, VF, andVF, respectively,
then, the current environment category was recognized as no.
2, and hence, the robot obtained the navigation command of a
turning angle from the second decision lookup table.



CHEN et al.: ART-BASED FUZZY CONTROLLER FOR ADAPTIVE NAVIGATION OF QUADRUPED ROBOT 327

At Fig. 12(b), five obstacle distances wereVF, VF, VF, NE, and
VF, respectively, the current environment category was then rec-
ognized as no. 5 and the turning angle of the robot was
from the fifth decision lookup table, and hence, the robot per-
formed a straight-going gait cycle with the stable stride. At
Fig. 12(f), five obstacle distances wereVF, VN, VF, VF, and
VF, respectively, the current environment category was recog-
nized as no. 3, and the turning angle was , therefore, the
robot took a straight-going gait and stepped on a convex object.
And at Fig. 12(j), five obstacle distances were provided to the
controller inVF, VF, VF, VF, andVF, respectively, the current
environment category was recognized as no. 1, and the turning
angle was from the first decision lookup table.

V. CONCLUSION

When an environment where a quadruped robot walks is very
complex and uncertain, adaptive navigation control is necessary.
This paper has considerably extended the existing locomotion
control of quadruped robots by introducing the adaptive naviga-
tion into gait generation and implementation. The adaptive nav-
igation has been realized through online recognition of environ-
ment category, selection of an adequate rule base to the recog-
nized environment, and fuzzy inference based on the selected
fuzzy-rule base. Outperforming the existing applications of ART
basic principle, we have successfully used an ART-II network
to recognize the environment category after its offline learning.
Furthermore, this recognizer can be applied to other locomotion
machines including mobile robots and other legged robots.

Based on the online recognition of environment categories,
a fuzzy controller has been designed and implemented by the
adaptive selection of fuzzy-rule base in response to changes of
environment category. The robustness of the controller is guar-
anteed so long as each rule base is established properly to the
corresponding environment category. Therefore, the proposed
fuzzy control scheme is superior to classical/conventional ones
in robust stability and real-time operation due to the implemen-
tation of a lookup table. The feasibility and effectiveness of the
proposed controller has been demonstrated through the simula-
tion and experiment. It should be pointed out that, if a human op-
erator can be replaced by a sophisticated vision system to iden-
tify various obstacles and to measure the obstacle distances, the
full autonomous walking of a quadruped robot will be entirely
realized by means of the proposed control algorithm.
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