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Abstract

In this paper, we propose a new end-to-end articulated structure-aware network to regress
3D joint coordinates from the given 2D joint detections. The proposed method is capable of
dealing with hard joints well that usually fail existing methods. Specifically, our framework
cascades a refinement network with a basic network for two types of joints, and employs
a attention module to simulate a camera projection model. In addition, we propose to
use a random enhancement module to intensify the constraints between joints. Experi-
mental results on the Human3.6M and HumanEva databases demonstrate the effectiveness
and flexibility of the proposed network, and errors of hard joints and bone lengths are
significantly reduced, compared with state-of-the-art approaches.

Keywords: 3D human pose estimation, Articulated structure-aware network, Attention
module, Random enhancement module.

1. Introduction

3D human pose estimation (3D-HPE) is a fundamental problem of computer vision, which
has a broad spectrum of applications in entertainment, action recognition, and human
computer interaction (Tu et al. (2018); Luvizon et al. (2018); Sminchisescu (2008)). With
the great success of 2D human pose estimation (2D-HPE) (Newell et al. (2016); Wei et al.
(2016); Cao et al. (2017); de Bem et al. (2018)), a common strategy for 3D-HPE task is
lifting 2D joint detections into 3D space. However, most lifting based methods mainly focus
on reducing the overall joint errors and ignore the special topological structure of human,
which may induce in large errors for some joints with larger motion space. Here, we discuss
two categories of the most related works: camera based model and deep learning based
model.

Camera Based Model: This group of methods build a geometric model of camera,
and optimize the camera parameters by matching 2D poses with the corresponding 3D
poses (Wang et al. (2014); Zhou et al. (2015, 2017, 2018)). However, camera based methods
heavily depend on an ideal geometric model (Wang and Wu (2011)).
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Figure 1: Motion spaces of joints. The left image shows the motion locations of a hard
joint (left wrist) in a video, while the right image shows the motion locations of
a non-hard joint (left shoulder) in the same video. The length of the video is 27
seconds and it has in total of 1382 frames. Both the two screens in the images are
the first frame of the video. std x is the standard deviation of joint coordinates
in x-axis, while std y for the one in y-axis.

Deep Learning Based Model: Benefitting from the strong fitting power of deep
neural network, deep learning based methods achieve superior performance for 3D-HPE.
Considering the fact that distances of paired joints are usually distributed in a more compact
space, Moreno-Noguer (2017) regressed a 3D distance matrix of joints by using a fully
convolutional network. Martinez et al. (2017) designed a simple fully connected network
and further encouraged the exploration of the network architectures for lifting 2D to 3D.
Furthermore, Pavlakos et al. (2018) added the ordinal depth information as input for the
ambiguity of 3D-HPE, and Ronchi et al. (2018) introduced a ranking loss to relieve the
limited availability of annotations.

However, the methods mentioned above mainly focused on reducing the overall joint
errors and not fully considered the topological structure of human body. Those existing
approaches generally estimate the 3D human pose by holistic prediction, which suffer from
poor performance for locating challenging joints. We divide the joints in the human body
into hard joints (i.e., elbows, wrists, knees and feet) and non-hard joints (joints excluding
hard joints). The intuition behind such a division of body joints is based on the estima-
tion difficulty (i.e., the estimation error between the predicted coordinates and the real
coordinates).

There are two main reasons why the hard joints show much larger errors than the
non-hard ones in 3D-HPE: (1) the positions of hard joints can vary in a much lager space
than the non-hard joints, leading that the standard deviations of hard joint coordinates are
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Figure 2: Overall architecture of the proposed model. The proposed network con-
tains three parts: (a) a basic network with the proposed REM, (b) a refinement
network and (c) the proposed AM.

much lager than non-hard joint coordinates, as depicted in Fig.1; and (2) due to the mutual
inferences of joints, the errors of joints may be transferred and accumulated at hard joints.

Motivated by the above observations, in this paper, we propose a human structure-aware
fully connected network for the 3D-HPE task. We cascade a basic network with a refinement
network, where the former is used to regress a coarse 3D human pose and the latter is used
to relocate the hard joints. Additionally, we propose an attention module (AM) and a
random enhancement module (REM) to improve the ability of network fitting. The AM
reliefs the propagations of errors, and the REM promises a strong relations between joints.
We verified the effectiveness and flexibility of our network by a series of experiments on two
publicly available Human3.6M and HumanEva databases.

In general, our contributions can be summarized as follows:

• We propose a human structure-aware network to utilize the body structure informa-
tion for 3D-HPE, which outperforms most existing methods without any additional
input information on two commonly-used databases.

• We formulate an AM to filter the desired features for hard joints refinement, and it
enhances the learning of the fully connected network.

• We design a REM to augment the ability of the network the specific relationships
between joints.

2. Proposed Method

In this section, we present different modules of our proposed network for 3D-HPE, as shown
in Fig.2. The network consists of three parts, a basic network with the REM (in (a)), a
refinement network (in (b)) and an AM (in (c)). First, we lift a 2D human pose to a coarse
3D pose, relying on a simple basic network. Meanwhile, a REM is presented to explore
the constraints between joints for 3D human pose. Then, we formulate an AM to weight
features and filter the desired ones. Finally, we adjust the hard joint locations by proposing
a refinement network.
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2.1. Basic network

Our initial goal of the basic network is to regress a coarse 3D human pose. We choose
the network proposed by Martinez et al. (2017) for its efficiency in 3D-HPE. This network
consists of multiple stacked residual modules, where each module contains two linear fully
connected layers with the dimension of 1024. We use three black round solid dots to present
more residual modules in Fig.2 (a). Given n 2D joints x ∈ R

2n and their corresponding 3D
joints y ∈ R

3n, the basic network aims to learn a function fb : x
2n → y3n that regresses 3D

joint locations with the 2D inputs. The loss function is

L1 =
n
∑

i=1

L(fb(xi)− yi), (1)

where L is L2-Norm.
We follow the same settings of the original network and refer the interested reader to

literature Martinez et al. (2017), where those contributions have been demonstrated.

2.2. Refinement network

The basic network doesn’t work well for hard joints, since all joints share the same neurons
in the network. Moreover, the motion spaces of hard joints are much lager than those of
non-hard joints, hence more parameters are required to lift the 2D hard joints. One solution
is to deepen the network, however, it may result in overfitting for the non-hard joints.

Considering the structural characteristics of human body, we cascade a refinement net-
work with the basic network to refine the hard joints. The refinement network employs
multiple fully connected layers with the dimension of 1024. We first obtain a set of 3D
locations from the basic network, including coarse locations of hard joints and precise lo-
cations of non-hard joints. Then, we feature and propagate all the 3D joint locations to
our refinement network. Finally, we explicitly learn accurate locations for hard joints given
preliminary coarse joint coordinates.

By supervising the final layer of the basic network, the results of joints from the basic
network stay the same level with those of the network in literature Martinez et al. (2017).
In order to avoid overfitting caused by the refinement network and ensure an end-to-end
learning pattern, the refinement network only back propagates the loss of hard joints. Let q
denote the indication, the refinement network learns a function fr to refine the hard joints
with a loss function as follows:

L2 =

n
∑

i=1

qi × L(fr(fb(xi))− yi), (2)

where L is L2-Norm and

qi =

{

1, if the ith joint is a hard joint,

0, otherwise.

Finally, we formulate the ultimate objective function to minimize the regression error
as:

L = min(L1 + L2), (3)

where L is L2-Norm.
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Figure 3: The architecture of the AM. (a) and (e) are the 2D features. (c) is the original
3D feature. (b), (d) and (g) indicate respectively the calculation of Eq.(6), Eq.(7)
and Eq.(8). (f) represents the dot product operation. (h) is the final output
feature.

2.3. Attention module

In geometry, 3D pose reconstruction heavily requires the corresponding 2D information
(Wang and Wu (2011)). The camera pose estimation aims to estimate the extrinsic param-
eters i.e., the rotation matrix R and the translation vector t, and possibly all or a subset
of the intrinsic parameters K. K is expressed as

K =





αf s u

0 f v

0 0 1



 , (4)

where f denotes the focal length, (u, v) denotes the principal point, α is an aspect ratio,
and s is the skew. Given 2D and 3D point correspondences, X and Y , the relationships for
2D and 3D joints admit the following projection equation:

X = K[R, t]Y. (5)

For our refinement network, only utilizing the coarse 3D pose as input may result in a
serious weakening of geometrical relationship between 2D and 3D. This geometric relation-
ship can be reflected by matching 2D and 3D. Therefore, we propose to fuse features from
the basic network to the refinement network to enhance the geometry information for hard
joints, through a fully connection operation. This approach is similar to implicitly building
a camera projection model, which ensures the 2D information to be transfered to the refine-
ment network. However, directly connecting the 2D features and the 3D features may result
in information interference. To address this problem, we introduce an effective method for
feature fusion in the following paragraphs. Since the basic network inputs are only 2D joint
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locations, we named the features in the basic network as 2D features. Similarly we named
the features in the refinement network as 3D features.

One of the most key aspects of the human visual system is the presence of attention,
which allows the system to focus on salient regions. The attention mechanism can thus be
beneficial to the extraction of the informative features obtained from the basic network.
Though the utilization of attention has proved to be an effective solution toward image
understanding (Zhao et al. (2017); Wang et al. (2017)) or natural language processing (Yin
et al. (2016); Yang et al. (2016)) in previous works, there are no rigorous studies yet on
how to integrate the attention into 3D-HPE. Therefore, a principle way is needed to learn
a model that can attend to the desired 2D features when refines the hard joints.

In this paper, we develop an AM to model the attention on 2D features, as shown
in Fig.3. Technically, given 2D features Fi and a 3D feature F∗ from the last layer of
the refinement network, we feed them into the proposed AM to generate the attention
distribution. All the selected features are from the layers after dropout and have same
dimension of 1024. We don’t transform the inputs features when forward-propagate them
to the AM, so we represent the inputs procedures as dotted lines as shown in Fig.2 (c). The
process is formatted as follow:

simi = wi × L(Fi − F∗), (6)

atti = 1− sigmoid(simi), (7)

F∗ = F∗ +
m
∑

i=1

atti × Fi, (8)

wherewi is a parameter vector and L is L2-Norm. This AM is a differentiable expression.
The Eq. (6) is employed to weight the similarities between features, and the similarities are
normalized to [0, 1] as attentions in Eq. (7). The Eq. (8) assigns the 2D information to 3D
features according to different attention weights.

In general, our AM filters out the distracting information and enforces the geometry
relations of 2D and 3D. It improves the fitting ability of the whole network. If we directly
connect the final 2D feature and the final 3D feature, without the AM, the refinement net-
work unable to obtain optimal information and optimal 3D human pose (the AM* in Table
2). Importantly, our AM not only applies to the proposed network, it can be extended to
other fully connected network for desired information by modifying the similarities condi-
tions in the Eq. (6).

2.4. Random Enhancement Module

In the basic network, Dropout (Srivastava et al. (2014)) is employed after RELU (Glorot
et al. (2011)) to prevente co-adaptation of feature detectors, for significantly reducing over-
fitting (Hinton et al. (2012)). According to literature Goodfellow et al. (2016), the main
power of dropout comes from the fact that the making noise is applied to the hidden units.
This can be thought of as a form of highly intelligent and adaptive destruction of input
information. For example, in 3D-HPE, if the model learns a neuron hi that locating wrist
by elbow, then dropping hi is equal to erase the constraint information of the forearm. The
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Figure 4: The architecture of the REM. The REM connects a RELU layer with a
Dropout layer.

model must learn another neuron hj , that either redundantly encodes the presence of elbow,
or locates the wrist by other features. Hence, when we gradually adjust the Dropout from
0.5 to 1.0 with a step of 0.1, the structural relationships of body are preserved, and the
error of bone lengths decreases as the number of retained neurons increases. However, the
joint errors are increased due to overfitting (More detailed explanation is referred to the
Section 5.2 of Supplementary.).

To address this problem, we propose to introduce a REM to replenish the joint infor-
mation for bone length computation without parameter increasing, which may reduce the
impact of joint constraint vanish caused by dropout. The architecture of the REM simply
consists of RELU and Dropout, these two operations are wrapped in a residual connec-
tion, as shown in Fig.4. Such that, the randomness of Dropout is preserved for preventing
co-adaptation of feature detectors. And we keep the integrity of features for strong con-
straint relationship. Intuitively, the REM achieves the effect of random enhancement of
information. The REM is used only at the first layer of the basic network, where there is
the original source of information.

3. Experiments

This section concerns the empirical evaluations of the proposed approach. First, we present
some implementation details of the proposed network. Then, quantitative and qualitative
results are illustrated on the selected datasets.

3.1. Implementation Details

Dataset: We evaluate our proposed approach on two publicly available datasets: Hu-
man3.6M (Ionescu et al. (2014)) and HumanEva (Sigal et al. (2010)).

Human3.6M is a large-scale dataset captured in an indoor environment that contains
11 subjects performing 15 typical actions like eating, walking, making a phone call and
engaging in a discussion. We follow the standard protocol of Human3.6M, which is using
subjects 1, 5, 6, 7, and 8 for training, and subjects 9 and 11 for evaluation. We report
the average errors in millimetres between the ground truth and our predicted 3D locations
across all joints.

HumanEva is a small database that has been largely used in many benchmark works
over the last decade. The dataset contains 4 subjects performing a 6 common actions (e.g.
walking, jogging, gesturing, etc.).

2D detection: Unless stated otherwise, the Stacked Hourglass Network (Newell et al.
(2016)) is adopted to obtain 2D joint locations, which achieves sufficient accuracy for our
3D-HPE task, and pre-trains on the MPII dataset.
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Table 1: Results on the Human3.6M. Comparison of overall average errors (mm) for
different methods using the Human3.6M dataset. ‘-’ means that the result of
corresponding work is not reported.

Methods Direct Discuss Eat Greet Phone Pose Purchase Sit
Ionescu et al. (2014) 132.71 183.55 133.37 164.39 162.12 205.94 150.61 171.31
Li et al. (2015) - 138.88 96.94 124.74 - 168.08 - -
Tekin et al. (2016) - 129.06 91.43 121.68 - - - -
Zhou et al. (2016) 87.36 109.31 87.05 103.16 116.18 143.32 106.88 99.78
Moreno-Noguer (2017) 67.44 63.76 87.15 73.91 71.48 69.88 65.08 71.69

Sun et al. (2017) 90.20 95.50 82.30 85.00 87.10 87.90 93.40 100.30
Martinez et al. (2017) 52.99 60.55 62.08 62.72 86.10 57.96 58.89 81.70
Zhou et al. (2018) 68.70 74.80 67.80 76.40 76.30 84.00 70.20 88.00
Ours 51.77 59.38 59.55 60.33 84.15 56.22 57.36 79.73

Methods SitDown Smoke Photo Wait Walk WalkD WalkT Ave.
Ionescu et al. (2014) 151.57 243.03 162.14 170.69 177.13 96.6 127.88 162.1
Li et al. (2015) - - - - 132.17 69.97 - -
Tekin et al. (2016) - - 162.17 - 65.75 130.53 - -
Zhou et al. (2016) 124.52 199.23 107.42 118.09 114.23 79.39 97.7 112.91
Moreno-Noguer (2017) 98.63 81.33 93.25 74.62 76.51 77.72 74.63 76.47
Sun et al. (2017) 135.40 91.40 94.50 87.30 78.00 90.40 86.50 92.40
Martinez et al. (2017) 99.59 69.17 83.49 64.04 50.72 67.49 54.63 67.48
Zhou et al. (2018) 113.80 78.00 98.40 90.10 62.60 75.10 73.60 79.90
Ours 97.68 67.07 80.44 62.53 48.76 65.25 52.48 65.51

Training details: The basic network is realized by 2 residual modules total 5 fully
connected layer in dimension 1024, and the refinement network consists of 2 layers. We
initialize the parameters using Kaiming initialization and use Adam to optimize the network.
In the process of training, a mini-batch size is set to 64 for 300 epoches on Human3.6M (200
epoches on HumanEva). The learning rate is initialized as 1×10−3 with exponential decay,
and the Dropout is set to 0.5. The proposed network is trained on a server with dual physical
cores (Intel Xeon CPU E5-2690 v4 2.60GHz), one piece of GPU(Tesla P100-PCIE-16GB)
and 256GB main memory.

3.2. Quantitative Results on Human3.6M

Comparison with related work. First, we examine the quantitative results of our
human structure-aware network. Following previous works, the detailed results in terms
of the Root Mean Square Error (RMSE) are presented in Table 1. Our results are also
compared with those of related methods in Table 1. Unsurprisingly, making use of the
structural information of human body helps for 3D-HPE. Without any additional input
information, our human structure-aware network network achieves state-of-the-art results
across most of actions, that the absolute error reduces about 2mm on average comparing
with our baseline work Martinez et al. (2017). Since our work aims at reducing the errors
of hard joints, most of the improvement for our approach comes from adjusting the hard
joints, so improvements in all actions are similar , about 1.3mm to 2.5mm, comparing with
our baseline work Martinez et al. (2017). Specially, work Moreno-Noguer (2017) explicitly

55



Short Title

constraints distances between joints to normalize all actions to a compact space, and gets
smaller errors on poses with high complexity, i.e. Phone and Sitting. This illustrates the
importance to consider about the human structure for complex pose estimations. However,
the errors of other actions by work Moreno-Noguer (2017) are larger than those of our
method.

Table 2: Ablation studies of our network. ‘ref’ means that there are no 2D features
propagating to the refinement network. ‘AM*’ means that we connect the final
layer of the basic network with the refinement network (without the AM). ‘AM’
indicates the Attention Module , and ‘REM’ is the Random Enhancement Module.

module average error

basic 67.48

basic+ref 68.66
basic+ref+AM* 66.78

basic+ref+AM 66.15
basic+ref+AM+REM 65.51

Ablation studies of our network. Further, we present the ablation studies in Table
2, to demonstrate the significance of each module in the network. If we directly cascade the
refinement network with the basic network, the hard joints are equivalent to meaningless
search in a larger and challenge space without geometrical relationship between 2D and
3D. And our network is easier to get caught up in overfitting than the basic network.
Hence, the error of term ‘basic+ref’ (68.66mm) is worse than the term ‘basic’ (67.48mm).
After inducing 2D location cues by connecting the final layer of the basic network with the
refinement network, the refinement network relocates hard joints to geometrical relation
constrained positions. Therefore the error of term ‘basic+ref+AM*’ (66.78mm) reduces
the error by about 0.7mm comparing with the basic network. However, crudely introduce
the 2D information by a fully connection may result in interfering information, that is
should be avoided. Benefiting from the AM, the refinement network learns and selects more
effective features such that the hard joints relief from the propagation of error, and the
error is further reduced to 66.15mm. Finally, the REM enhances the collaboration ability
of neurons to intensify the constraints of joints, so the network achieves the best results,
with 65.51mm.

Errors of joins. To demonstrate the significant efficiency of our network, the errors
of hard joints are separately analyzed and compared in Fig.5 (a). Benefiting from multiple
modules in the proposed network, the errors of all hard joints are significantly reduced by
2.27mm to 7.45mm comparing with the errors of basic network. For some challenging joints
with largest motion spaces and strongest interferences, such as the wrists, the errors of them
are reduced more significantly (more than 6mm). This demonstrates the effectiveness of
our human structure-aware network on reducing errors of hard joints. However, the 3D
hard joints can be further optimized as they still have large errors. Note that, the error is
mainly due to the corresponding 2D hard joint detections. Moreover, we also report the
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Figure 5: Detailed results of joints. (a) and (b) respectively indicate the errors (in mm)
of hard joints and non-hard joints. The blue bars represent the joint errors of the
basic network, and the red bars correspond to results of the proposed network.
’r’ represents the joints on the right of human body, and ’l’ represents the joints
on the left of human body.

non-hard joint errors in Fig.5 (b), to show that our refinement network has little even no
effect on the non-hard joints.

Table 3: Errors of limb lengths. RMSE (mm) of the bone lengths. ‘lu-arm’ denotes the
upper left arm and ‘ll-arm’ for the lower left arm. Similarly, ‘ru’ denotes the upper
right ones and ‘rl’ for the lower right ones.

basic ours reduction rate (%)

lu arm 16.90 14.19 11.60
ll arm 28.29 20.64 27.00
lu leg 17.21 16.06 6.68
ll leg 27.15 23.40 13.81
ru arm 16.45 13.66 16.96
rl arm 29.99 21.27 29.08
ru leg 16.62 16.38 1.44
rl leg 26.98 22.70 15.86
avg 22.45 18.53 17.42

Analysis of bone length errors. Furthermore, the advantage of our method on
reducing the bone length errors is also analyzed, and the results are reported in Table 3.
Comparing with the basic network, our approach estimates a more reasonable 3D human
pose whose limbs length errors reduce significantly by 17%. This effect on reducing bone
length errors is a benefit from accurate coordinates of hard joints. On the other hand, we
retain more information about the structure of the human body in our network by using
the AM and REM. Therefore, our method gets more precise limb length.

Expending experiment about depth order. Finally, an expending experiment
result is shown in Table 4 to prove the potential of our network. Following the literature
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Table 4: Expending experiment. We use the gaussian noise to interfere depth values, ‘-’
means that the value of corresponding work is not reported.

module depth noise average error (mm)

Pavlakos et al. (2018) - 41.80
basic N (0,0.85) 41.51
ours N (0,0.85) 38.94

Pavlakos et al. (2018), we use accurate 2D joint locations and a noisy version of the depth
order of the joints as input, such that the majority of their ordinal relations are preserved.
After inducing ordinal relations of joints, all the three models in Table 4 release from serious
ambiguity of 3D-HPE. At the gaussian noise with average value of 0 and variance of 0.85,
the basic network achieves the same performance of average joint error with the literature
Pavlakos et al. (2018). However, both the literature Pavlakos et al. (2018) and the basic
network can not deal with the hard joints. Hence, we refine the hard joints by the proposed
network. After fully considering the structural characteristics of the human body, our
network further reduces the error to 38.94mm.

3.3. Quantitative Results on HumanEva

Table 5: Results on the HumanEva. Comparison of overall average errors (mm) for
different methods using the HumanEva dataset. ‘gt’ means that we use ground
truth of 2D pose as input for the network.

S1 S3
walking jogging walking jogging

Radwan et al. (2013) 75.1 79.2 93.8 99.4
Wang et al. (2014) 71.9 62.6 85.3 54.4

Simo-Serra et al. (2013) 65.1 74.2 73.5 32.2
Bo and Sminchisescu (2010) 46.4 64.5 64.9 38.2
Kostrikov and Gall (2014) 44.0 57.2 41.7 40.3

Yasin et al. (2016) 35.8 46.6 41.6 38.9
Moreno-Noguer (2017) 19.7 39.7 24.9 21.0
Pavlakos et al. (2017) 22.1 29.8 29.0 26.0

basic gt Martinez et al. (2017) 17.58 26.18 30.40 20.93

Ours gt 16.39 22.78 26.84 17.96

Comparison with related work. We report the RMSE (mm) on the HumanEva
dataset in Table 5. We use the 2D pose ground truth as input of the baseline Martinez
et al. (2017) and our model. Since HumanEva is a small dataset without complex 3d human
pose, most related works get rather small errors than those on Human3.6M. By refining the
locations of hard joints, our network significantly reduces the errors of relatively difficult
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actions (i.e., jogging in S1 and walking in S3). In this case, our network still achieves
the best performance in all subjects and actions. Our network shows strong stability and
generalization, even on different datasets.

Figure 6: Convergence analysis of networks. The horizontal axis represents the num-
bers of networks training iterations, and the vertical axis represents the RMSE
of the models in the test set. (a) and (b) respectively correspond to result on two
subjects S1 and S3.

Convergence analysis of networks. We further analyze the convergence effect of
our model. As shown in the Fig.6, the proposed method outperform the baseline in both
convergence speed and error. For action walking on S1 and action jogging on S3, due to the
low complexity of the pose, the RMSEs of both networks cross fluctuation in the first half
of the training, our model has no significant effect. However in the second half of training,
when the network of baseline converges to relatively large errors (yellow line in (a) and red
line in(b)), our deeper network continues to be optimized and gets small RMSEs (blue line
in (a) and green line in (b)). For action jogging on S1 and action walking on S3, our method
is remarkably effective in adjusting difficult pose which suffer from poor performance for
hard joints, and the RMSEs of our network (green line in (a) and blue line in (b)) are always
less than the baseline’s (red line in (a) and yellow line in (b)).

3.4. Qualitative Results

In Fig.7, we have collected a sample of 3D pose outputs in Human3.6M for our approach.
As shown in the first lines, our network regresses a precise 3D pose for the upright human
pose. For the complex pose like sitting on a chair as shown in the second line, even if
there is a small error at the hard joints (i.e., left wrists), our arms still extend to a relative
correct direction. In addition, results in the last column reveal some of the limitations of our
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approaches, where the wrists and knees get into big trouble because of self-occlusions. This
case prompts us to think more about the problem further, that how to utilize the structure
of human body and the depth information to deal with the self-occlusions of poses.

Figure 7: Examples of selected poses using Human3.6M dataset. The images from
left to right in each triplet correspond to the given 2D pose (in a image), the
grondtruth of 3D pose and the predicted 3D poses of our network, respectively.
In the 3D poses, green is for the left side of the human body and red is for the
right.

4. Conclusion

We have presented an effective solution for handling the hard joints in 3D-HPE, by con-
structing an articulated structure-aware network. Without any additional input informa-
tion, we cascaded a refinement network with a basic network to adjust the hard joints. We
formulate an AM to promise the propagation of the desired geometric information of 2D
and 3D in the network. And we also improved the co-adaptation of neurons to enhance
constraint relationships of joints, by proposing a REM. Extensive experimental results have
demonstrated the superior performance of the proposed method to various classical and
state-of-the-art ones, i.e., our proposed method can significantly reduce the errors of hard
joins and bone length of limbs. We will further investigate the specific relations between
joints to address the self-occlusion problem of 3D-HPE in future work.
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