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Abstract

3-D image registration, which involves aligning two or more
images, is a critical step in a variety of medical applications
from diagnosis to therapy. Image registration is commonly
performed by optimizing an image matching metric as a cost
function. However, this task is challenging due to the non-
convex nature of the matching metric over the plausible reg-
istration parameter space and insufficient approaches for a ro-
bust optimization. As a result, current approaches are often
customized to a specific problem and sensitive to image qual-
ity and artifacts. In this paper, we propose a completely dif-
ferent approach to image registration, inspired by how experts
perform the task. We first cast the image registration prob-
lem as a ”strategy learning” process, where the goal is to find
the best sequence of motion actions (e.g. up, down, etc.) that
yields image alignment. Within this approach, an artificial
agent is learned, modeled using deep convolutional neural
networks, with 3D raw image data as the input, and the next
optimal action as the output. To cope with the dimensional-
ity of the problem, we propose a greedy supervised approach
for an end-to-end training, coupled with attention-driven hi-
erarchical strategy. The resulting registration approach inher-
ently encodes both a data-driven matching metric and an opti-
mal registration strategy (policy). We demonstrate, on two 3-
D/3-D medical image registration examples with drastically
different nature of challenges, that the artificial agent outper-
forms several state-of-art registration methods by a large mar-
gin in terms of both accuracy and robustness.

Introduction

The goal of 3-D medical image registration is to recover cor-
respondences between two 3-D images acquired from 1) dif-
ferent patients, 2) the same patient at different time, and 3)
different modalities e.g. Computed Tomography (CT), Mag-
netic Resonance Imaging (MRI), Positron Emission Tomog-
raphy (PET) etc. The images are brought into the same coor-
dinate system via various transformation models, e.g. rigid,
affine, parametric splines, and dense motion fields (Oliveira
and Tavares 2014). The aligned images could then pro-
vide complimentary information for decision-making, en-
able longitudinal change analysis, or guide minimally inva-
sive therapy (James and Dasarathy 2014; Liao et al. 2013).
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While medical image registration has been an active re-
search area for more than two decades (Markelj et al. 2012;
Murphy et al. 2011), fully automatic and robust 3-D regis-
tration remains a challenging task that requires manual in-
tervention for possible corrections. Up-to-date image regis-
tration has been largely formulated as an optimization prob-
lem, where a generic matching metric is defined to measure
the similarity of the image pairs to be registered (Razlighi,
Kehtarnavaz, and Yousefi 2013). The transformation param-
eters between the image pairs are then estimated via maxi-
mization of the defined matching metric using an optimizer
(Rios and Sahinidis 2013). This formulation faces two chal-
lenges. First, a generic matching metric is often non-convex
over the plausible registration parameter space and generic
optimizers perform poorly on non-convex problems. For ex-
ample, the CT and cone-beam CT (CBCT) spine images in
Figure 1.a have very different field of views (FOVs), result-
ing in local maxima due to the repetitive nature of vertebra
(Figure 1.b). Second, a generic matching metric does not
guarantee a good alignment, e.g, when the data is noisy or
with drastically different appearance due to different imag-
ing physics. The cardiac case in Figure 1.c shows contrast
enhanced vessels in CT and severe streaking artifacts and
weak soft tissue contrast in CBCT.

In this paper, we reformulate the registration problem by
mimicking more closely how an expert performs image reg-
istration as a process of sequential actions of object recog-
nition and manipulation. Motivated by recent advances in
Deep Neural Networks (DNN) and Deep Reinforcement
Learning (DRL) (Mnih et al. 2015; Silver et al. 2016;
Caicedo and Lazebnik 2015; Hausknecht and Stone 2015;
Neumann et al. 2016), during training the agent learns a reg-
istration strategy (policy) via a DNN that maps the current
state to the optimal next action that best improves the align-
ment. During testing, the agent applies the learned policy
sequentially to align the images. As a result, the artificial
agent inherently learns both a data-driven matching metric
and a registration task-driven policy.

Our main technical contributions are: 1) Instead of one-
shot regression mapping the raw image data to the reg-
istration parameters, which is often a very hard problem
to learn, we decompose the registration task into a se-
quence of (often easier) classification problems, i.e. find-
ing the best action among a limited set of possible solu-
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Figure 1: (a) Overlay of spine CT (grey) and CBCT (yellow) volumes before (left) and after (right) registration, with large
differences in FOVs. (b) Correct overlay of CT and CBCT (left) versus wrong overlay by shift of one vertebra of CBCT (right).
The shift is shown by the movement of the dark object in CBCT, while the change in spine overlay is barely noticeable. (c)
Cardiac CT (left) and CBCT (right) volumes, with weak soft tissue contrasts and severe streaking artifacts in the CBCT.

tions to improve the alignment. Repeating this process can
result in a converging solution. 2) We train the intelligent
agent in a greedy supervised fashion, which is a magni-
tude more efficient with only a small fraction of the mem-
ory footprint than in standard DRL setup, where the agent
learns through repeated trial and errors (Mnih et al. 2015;
Silver et al. 2016); 3) we propose an effective data aug-
mentation and sampling strategy so that the agent could be
trained robustly using only a small number of labelled train-
ing pairs available from patients; 4) For a combined robust-
ness and accuracy, we propose a hierarchical registration
framework relying on the trained networks from the coarse
image layer to register successively the more refined (higher-
resolution) image layers.

Related Work

3-D Medical Image Registration The most common strat-
egy to reach robust intensity-based 2-D or 3-D image regis-
tration relies on multi-resolution strategy with local optimiz-
ers (Thévenaz and Unser 2000). However, multi-resolution
cannot cope with different FOVs or image artifacts. Global
exhaustive search has been primarily used with 2-D image
registration tasks due to its high computational complexity.
Heuristic semi-global optimization schemes were proposed,
e.g. simulated annealing (Matsopoulos et al. 1999) and ge-
netic algorithm (Rouet, Jacq, and Roux 2000), however their
computational cost for 3-D registration is still prohibitively
high. Other more efficient global optimization techniques
such as Bayesian optimization (Snoek, Larochelle, and
Adams 2012) and trust region algorithms (Yuan 2015) have
been investigated for other applications but not yet widely
adopted in medical image registration. Alternatively prior
knowledge about the specific anatomies and medical work-
flow have been incorporated for specific registration tasks
(Lu et al. 2014; Miao et al. 2013). Anatomical feature
based 3-D registration were also proposed where landmarks
(Brounstein et al. 2011) or surfaces (Chen et al. 2009) were
extracted from the images and then matched. The accuracy
thus heavily depends on the segmentation methods used.
More recently machine learning based hybrid method was
proposed (Neumann et al. 2015). However, the optimization
process was still standard, and thus prone to local optimum.

Image Registration and Pose Estimation via DNN A
DNN is an artificial neural network with multiple hidden

layers of units between the input and output layers, giving
the potential of modeling complex data with fewer units
than a similarly performing shallow network (Hinton and
Salakhutdinov 2006). Convolutional neural network (CNN)
is a feed-forward network in which the connectivity pattern
between its neurons is inspired by the organization of the
animal visual cortex and is observed to be most suitable for
image processing tasks (Krizhevsky, Sutskever, and Hin-
ton 2012). However while CNN has achieved state-of-the art
performance in image segmentation, image recognition, and
image classification, there are only a few work addressing
image registration using CNN. Unsupervised learning using
CNN was proposed in (Wu et al. 2015) to extract features for
deformable registration. These features however were ex-
tracted separately from the image pairs and therefore may
not be optimal for registration purpose. A CNN-based re-
gression approach was presented in (Miao, Wang, and Liao
2016) to solve 2-D/3-D registration for device tracking from
2-D X-ray images. Optical flow estimation between 2-D
RGB images has been proposed using CNN via supervised
learning in (Fischer et al. 2015). A descriptor learned via
CNN was described in (Wohlhart and Lepetit 2015) to en-
code both the identity and the pose of the 3-D object from
2-D RGB images. Their formulations however could not be
directly applied to 3-D medical image registration where the
displacement is large and there is no object model at hand. A
learnable module, called spatial transformer network (STN),
was introduced in (Jaderberg et al. 2015). The focus of STN
was not an accurate alignment of two images, but a rough
transformation of a single input image to a canonical form,
for the purpose of improved classification accuracy. More-
over its application has been demonstrated only on 2-D im-
ages, not 3-D volumes.

Deep Reinforcement Learning In Reinforcement Learn-
ing (RL), the agent learns to perform certain tasks through a
reward system, via successive trial and errors. While RL has
been widely studied in game theory, control, operations re-
search, robotics, etc., it is only with the recent breakthroughs
in DRL, which combine RL with DNN, that it could be ap-
plied to more complex problems, reaching human-level per-
formances (e.g. Atari game (Mnih et al. 2015) and Go (Sil-
ver et al. 2016)). In (Caicedo and Lazebnik 2015) an ac-
tive detection model for localizing objects in 2-D RGB im-
ages was trained using DRL. Similarly, an detection agent
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was trained using DRL for localizing landmarks in 3D CT
images in (Ghesu et al. 2016). However, one of the main
challenges in DRL is the training process, which can be
extremely time-consuming. Guided policy search (Levine
and Koltun 2013) and imitation learning (Kober and Peters
2010) were proposed for more efficient RL via improved
policy/data sampling, which however are not directly appli-
cable to the end-to-end trainable DRL framework. In this pa-
per, we follow DRL framework but train the agent via greedy
Deep Supervised Learning (DSL), and thus completely re-
moves the need of an exploration history of the agent as in
DRL, leading to drastically improved training efficiency.

A Framework to Train An Intelligent Agent

for Image Registration

Problem Formulation Let Ir : R
3 �→ R be a reference

image and If : R3 �→ R be the floating image to be reg-
istered to Ir. The goal of 3-D rigid-body image registration
is to estimate the rigid-body transformation Tg : R3 �→ R

3

for which the transformed floating image Tg ◦ If is aligned
with Ir . A 3-D rigid-body transformation T can be repre-
sented by a column-wise 4×4 homogeneous transformation
matrix, such that a point �p = [x, y, z, 1]⊤ (in homogeneous
coordinates) is transformed to T�p. Also T can be parame-
terized by 6 parameters with 3 translations [tx, ty, tz] and 3
rotations [θx, θy, θz] as:

T (tx, ty, tz, θx, θy, θz) =

⎡

⎢

⎣

1 0 0 tx
0 cθx −sθx ty
0 sθx cθx tz
0 0 0 1

⎤

⎥

⎦

×

⎡

⎢

⎣

cθy 0 sθy 0
0 0 0 0

−sθy 0 cθy 0
0 0 0 1

⎤

⎥

⎦
×

⎡

⎢

⎣

cθz −sθz 0 0
sθz cθz 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎦
(1)

where c denotes cos and s denotes sin.
We cast the problem of finding Tg as a Markov Deci-

sion Process (MDP) (Bellman 1957) defined by the tuple
{S,A, τ, r, γ}, where S are the set of states in which an ar-
tificial agent can be, A is the set of actions it can take, τ is
the stochastic transition function associated to a state-action-
state relationship, r is the reward the agent receives when
taking a specific action at a specific state, and γ is the dis-
count factor that controls the importance of future rewards
(equal to 0.9 in this work to favor long term rewards). In our
system, at each time point t, the state st is defined by the
current transformation Tt, and Tg ◦T

−1
t could be parameter-

ized as vt ∈ R6 using Eqn 1. The associated observation of
the system at time t is the difference image dt = Ir−Tt◦If .
Then, the agent chooses an action at ∈ A to alter the state to
improve image alignment by Tt+1 = at ◦Tt . The action set
A consists of 12 candidate transformations that lead to the
change of ±1 in one element of vt+1 compared to vt (i.e.
±1mm for translations or ±1◦ for rotations). The transition
function τ is defined by giving equal weights to all available
actions. The reward function r is described in more details
below. During training, the agent learns a registration pol-
icy (i.e. a strategy of sequential actions) that maps the cur-

Figure 2: A framework for the intelligent agent to perform
registration.

rent state st to the optimal action a∗t , defined as the action
that best improves the alignment. During testing, the agent
applies the learned policy in a sequence of N consecutive
actions, {a∗1, . . . , a

∗
N} to approach the correct alignment.

Target Q-Learning with A Supervised Registration
Path The core problem is to find a policy that guides the
decision process of the artificial agent. In (Mnih et al. 2015;
Silver et al. 2016), this policy learning process is formulated
as a RL problem, where the optimal action-value function
Qt(st, at) = maxτ E[rt + γrt+1 + γ2rt+2 + ...|st, at, τ ] is
approximated by a DNN and learned following the Bellman
equation as an iterative update. However, unguided explo-
ration of the agent and iterative update of Q can result in a
low training efficiency, as the agent has to try many combi-
nations before reaching an effective policy. Instead, we pro-
pose to supervise the training by instructing the agent to fol-
low a greedy registration path, mimicking how human reg-
ister two objects in a most efficient manner. Specifically, the
“optimal” action a∗t along the supervised registration path is
defined as the action that minimizes the “distance” between
the new transformation at ◦Tt and the ground truth transfor-
mation Tg:

a∗t = min
at∈A

D(Tg, at ◦ Tt). (2)

where D(Tg, T ), the distance between two transformations
T and Tg , is defined as the L2 norm of the 6-D parameters

of Tg ◦ T
−1, using the parameterization described in Eqn 1.

If more than one actions lead to the same minimal distance,
any of these actions could be taken with equal probability.
Without loss of generality, in this paper the agent is allowed
to explore the transformation parameter space only within
±30mm for tx, ty,±150mm for tz , and ±30◦ for θx, θy, θz ,
corresponding to the maximum possible mis-alignment of
the two volumes to be registered (more details are provided
in the Experiments section).

In this setup, the action-value Q-function can be calcu-
lated explicitly via a recursive function, assuming the agent
is allowed to run sufficient number of steps to reach the cor-
rect alignment following the supervised greedy path:

Q(st, at)

=

{

r(st, at) + γQ(st+1, a
∗
t+1) if D(Tg, at ◦ Tt) > ε

r(st, at) +R o.w.

(3)
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where the immediate reward r(st, at) for action at is:

r(st, at) = D(Tg, Tt)−D(Tg, at ◦ Tt). (4)

The agent is considered to reach the correct transformation
when its distance to Tg is within the tolerance ε = 0.5. When
this happens, the agent receives a bonus reward R = 10. In-
terestingly it can be shown (in Appendix A) that if the agent
is allowed to take continuous actions in the 6-D transforma-
tion parameter space with step size 1, i.e. the only constraint
is ‖vt+1 − vt‖2= 1, then Q(st, a

∗
t ) calculated by Equation

3 is the maximum of the action-value function Qt(st, at)
with respect to action at. This means the trained agent can
perform registration by simply choosing the action with the
largest Q in the testing phase.

Following (Mnih et al. 2015; Silver et al. 2016) we use
deep CNN to represent Q in Equation 3. The input to the
network is the current difference image dt, the output of the
network has 12 nodes, where each corresponds to one of the
12 actions in the action set A, and the loss function is:

Loss =

M
∑

k=1

∑

ai=1...12∈A,

‖yi(dk)−Q(sk, ai)‖2 (5)

where yi(dk) is the i-th (i = 1...12) output of the CNN
for the k-th sample among M training samples. Our CNN
training scheme, called Deep Supervise Learning (DSL), has
two major advantages compared to DRL. First, our target Q-
function is given analytically without iterative estimation so
that the network could be trained much more efficiently and
with a more stable convergence property. Second, our tar-
get Q calculation does not require the exploration history
of the agent, meaning that we could sample the data ran-
domly with little correlations and thus reduce memory re-
quirements. Both advantages are critical to make 3-D regis-
tration learning possible with large 3-D volumes as inputs.

Hierarchical Image Registration Since our inputs to the
network are two large 3-D medical images, which can be up
to 512× 512× 512 voxels for instance, the size of the input
is of critical importance for practical use. For a combined
robustness and accuracy, we propose a hierarchical strategy
based on attention. The idea is to train two separate CNNs,
both using 64×64×64 volumes as the input but with dif-
ferent resolutions and FOVs. The first CNN is trained for
coarse alignment using down-sampled volumes with a lower
resolution but larger FOV, helping the agent to gain global
anatomical understanding and thus able to perform robust
alignment of the object without being trapped into local op-
timum even when the initial displacement is large. The sec-
ond CNN uses a high-resolution volume with a limited FOV
and focuses on aligning the object as accurately as possible
despite the limited FOV. The registration task is then per-
formed as follows. First, the agent applies the first CNN to
roughly align the object using N1 (empirically set to 200)
sequential actions. Then, following a similar approach as
in (Simonyan, Vedaldi, and Zisserman 2013), we use single
back-propagation pass to compute the derivative of the sum
of the outputs of the first CNN with respect to the input im-
age to get a saliency map Ω. Ω determines the importance of
a given pixel in influencing the outcome of the CNN network

for the first step of coarse registration, and those most influ-
encing pixels (presumably corresponding to the spine) are
selected via thresholding using 95th percentile, and their ge-
ometrical mean weighted by their importance is calculated
as the center of the region of interest (marked by the blue
rectangle box in Figure 3) for the second step of refined reg-
istration. Finally, the region of interest is extracted from the
high-resolution volume, and starting from the final position
obtained in the first step, the agent applies the second CNN
with N2 (empirically set to100) sequential actions.

Data Augmentation and Sampling Strategy Training
the CNN requires labeled training pairs with known trans-
formations Tg . Unfortunately, such ground truth is not eas-
ily obtainable in the medical domain. We thus propose to
augment the available labeled data in two ways. First, each
aligned pairs are artificially de-aligned using randomly gen-
erated rigid-body motions. Denser sampling at the transfor-
mation parameter space close to the ground truth transfor-
mation Tg is also performed for finer training of the net-
work close to the solution. Second, each aligned pairs are
geometrically co-deformed by affine transformations TA,
where I is the 4x4 identity matrix and all the elements
in [cij ]i=1,2,3,j=1,2,3 for shearing are independently and
randomly generated from [-0.25, 0.25], to cover possible
anatomical variations among patients in sizes and shapes:

TA = I +

⎡

⎢

⎣

c11 c12 c13 0
c21 c22 c23 0
c31 c32 c33 0
0 0 0 1

⎤

⎥

⎦
(6)

Experiments

Experiment Setup We experimented on two 3-D medical
image registration data sets. E1: Abdominal spine CT and
CBCT, where the main challenging is that CT has a much
larger FOV than CBCT, leading to many local optima in the
registration space due to the repetitive nature of the spine.
Indeed offset by one vertebra could be relatively unnotice-
able even for human eyes (Figure 1.b). Registration accu-
racy was measured by 3-D target registration error (TRE),
defined as the average 3-D Euclidean distance between the
transformed landmarks and the corresponding ground truth
for 32 landmarks on the edge of the vertebrae. Success rate
was evaluated by TRE≤10 mm (Miao et al. 2013). E2: Car-
diac CT and CBCT, where the main challenge is the poor
quality of CBCT with severe streaking artifacts and weak
soft tissue contrast at the boundary of the object to be reg-
istered, i.e. the epicardium. Registration accuracy was mea-
sured by mesh-to-mesh error (MME). Point-to-triangle dis-
tances were calculated for all the vertices of the segmented
epicardium meshes and then averaged to get the final MME.
Success rate was evaluated by MME≤20 mm (Neumann
et al. 2015). Spine landmarks and epicardium segmentation
were performed by experts. Iterative closest point registra-
tion (Besl and McKay 1992) followed by visual inspection
and manual editing whenever necessary was performed to
provide the ground truth alignment.

The testing and training data were blindly separated and
guaranteed to be from different patients to minimize their
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correlations. Cross-validations were furthermore performed
by 5 different blind data-splits for both E1 and E2 (valida-
tion for one data-split took 4 days on a 24 core + GeForce
TitanX computer for data augmentation and training). For
each data-split, there were 82 pairs for training and 5 pairs
for testing for E1, and 92 pairs for training and 5 pairs
for testing for E2. Since the goal for registration is to esti-
mate the transformation between images, multiple test cases
could be generated from one test pair by perturbing their
initial alignment. Specifically, each test pair was randomly
de-aligned 10 times using rigid-body perturbation within the
same range as those used for generating the corresponding
training data, resulting in 5x10x5x2=500 test cases. Each of
the 500 test cases is unique and sufficiently different from
training data (details are given in the next section) because:
1) human anatomy naturally varies; 2) registration results of
medical images vary a lot for different initial alignment due
to its highly non-convex nature; 3) 6012 samples are needed
to fully cover this 6x2=12D parameter space spanned by
perturbations of ±30x30x30 degrees and ±30x30x30 mms
for both reference and floating images, and thus 5M training
data samples only an extremely small portion (≈ 1/5∗1014)
of this space.

Network Architecture and Training Details We used
the same network architecture and meta-parameters for both
applications and both coarse and fine registration. The net-
work consists of 5 convolutional layers followed by 3 fully
connected layers. The convolutional layers use 8, 32, 32,
128, 128 filters, all with 3x3x3 kernels. The first 2 convo-
lutional layers are each followed by a 2x2x2 max-pooling
layer. The 3 fully-connected layers have 512, 512, 64 acti-
vation neurons, and the output has 12 nodes corresponding
to the 12 possible actions in A. Each layer is followed by
a nonlinear rectified layer, and batch normalization is ap-
plied to each layer. During training, each training pair was
augmented 64000 times, leading to more than 5M training
data for each data-split. To train the CNN for coarse reg-
istration, rigid-body perturbation was randomly generated
within [±30mm,±30mm,±30mm,±30◦,±30◦,±30◦] for
E2, and [±30mm, ±30mm,±150mm,±30◦,±30◦,±30◦]
for E1 to cover the large FOV in the head-foot di-
rection in spine CT. To train the CNN for refinement
registration, rigid-body perturbation range was reduced
to [±5mm,±5mm,±5mm,±5◦,±5◦,±5◦]. We used RM-
Sprop update without momentum and a batch size of 32. The
learning rate was 0.00006 with a decay of 0.7 every 10000
mini-batch based back-propagations.

Comparison between DSL and DRL

We evaluated the efficiency of our proposed DSL in com-
parison with DRL (Mnih et al. 2015) on a modified 2-D
registration problem using the spine data as a demonstra-
tion (3-D registration could not be learned using DRL due
to the prohibitive memory requirement of memory replay,
i.e. ∼2T for 64x64x64 volumes and replay memory his-
tory of 1 million). In particular, 2000 2-D MPR image pairs
were extracted from 82 aligned CT and CBCT spine pairs
using various Multiplanar Reconstruction (MPR) cuttings.
For DSL, these 2-D images were artificially de-aligned by

Figure 3: Examples of saliency maps and attention of focus.

Figure 4: Plot of success rates versus the number of training
steps for DSL and DRL on 100 test samples.

a random perturbation within [±30mm,±30mm,±30◦] to
generate 2M image pairs for training. For DRL, 2M explo-
ration steps were performed by the agent using the imme-
diate reward in Equation 4. The network architecture was
modified slightly to take 128x128 2-D images as the input,
and the output has 6 nodes corresponding to 6 possible ac-
tions in changing [tx, ty, θ]. The network architecture and
training meta-parameters were the same for DSL and DRL.
It is clear from Figure 4. that the proposed DSL was much
more efficient than DRL and achieved significantly better
results when the same number of training steps were per-
formed using the same training time (i.e. 1 day).

Evaluation of the Proposed 3-D Image Registration

Baseline Methods and Human Registration Our frame-
work was quantitatively compared with three state-of-the-
art 3-D image registration methods as well as human man-
ual registration. M1: ITK registration (Ibanez et al. 2005),
a popular open source medical imaging library, where Mu-
tual Information (MI) computed based on 50 bins for the
histogram as proposed by (Mattes et al. 2001) were used
for the matching metric, and optimization was obtained us-
ing multi-resolution optimizer based on a variant of gra-
dient descent for rigid versor transformations. M2: Quasi-
global search (Miao et al. 2013), where 2-D anatomy tar-
geted projections were generated to surrogate the original
volume, allowing for a large number of matching metric
evaluations, approximating global-search. Implementation
details followed (Miao et al. 2013). M3: Semantic regis-
tration (Neumann et al. 2015), where spine or epicardium
was extracted from CT volumes and a probabilistic map was
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Table 1: Comparison of Registration Results (#1 and #2 results are marked in red and blue).

Spine (E1) (TRE mm) Heart (E2) (MME mm)

Methods Success 10th 50th 90th Success 10th 50th 90th
Ground Truth N/A 0.8 0.9 1.2 N/A 2.1 4.0 5.9
Initial Position N/A 35.5 73.9 116.2 N/A 9.2 22.8 30.5
ITK(Ibanez et al. 2005) 12% 1.9 77.3 130.4 14% 14.9 34.9 47.6
Quasi-global(Miao et al. 2013) 20% 1.6 60.9 136.2 14% 16.2 35.9 58.7
Semantic registration(Neumann et al. 2015) 24% 3.0 34.9 71.0 72% 7.6 15.3 30.6
Proposed method 92% 1.7 2.5 3.8 100% 3.2 4.8 6.9
Human registration 70% 0.8 1.6 15.8 96% 4.0 6.2 13.4

Figure 5: Registration examples shown as the difference between the reference and floating images, before (upper row) and
after (lower row) registration. The mesh overlay before and after registration is shown for the epicardium use case (E2) for
improved visualization.

calculated from CBCT volumes using probability boosting
tree (PBT) (Neumann et al. 2015), and were then aligned
via iterative optimization. 600 CT and 393 CBCT volumes
were used for training for epicardium detection, and 82 CT
and 82 CBCT volumes were used for training for spine de-
tection. Implementation details followed (Neumann et al.
2015). M4: Human registration by 5 different users. A tool
allowing 6 degree of freedom manipulation of the volume
with 3 MPR views and one volume view for the overlays
was used. Two manual annotations were performed for each
test pair using different initial perturbations by each user.

Evaluation of the Proposed Method Hierachical regis-
tration was applied for E1, and its effectiveness is demon-
strated in Figure 3. The median error was reduced from
3.4mm after applying the first CNN to 2.5mm after applying
the second CNN. For E2, the MME was noticeable even for
ground truth transformation due to the large, non-rigid de-
formation between CT and CBCT. Therefore the refinement
step was not necessary and was not applied. Quantitative re-
sults are summarized in Table 1. It is clear that the agent
could perform reliable 3-D registration and even surpass hu-
man performance when the cases were extremely challeng-
ing. Specifically, for E1, the agent could reliably overcome
local maxima and was not confused by the highly similar
appearance of the neighboring vertebrae. Furthermore, the
agent was robust to interfering objects and artifacts, as high-
lighted by the green arrows in Figure 5 (from left to right:
kidney, black background outside the image, and the de-
ployed stent grafts). For E2, the weak soft tissue contrast
and severe streaking artifacts makes reliable registration ex-

tremely challenging, even for human eyes. The agent, how-
ever, was able to learn the registration cues from raw high-
dimensional training data, despite the low signal-to-noise ra-
tio of the object to be registered. The results demonstrate
that while the action of the agent is limited to a set of lo-
cal movements for each step, thus making the training of
the network easier compared to one-shot decision (regres-
sion), the contextual understanding and overall strategy of
the agent is indeed global, helping the agent avoid local op-
timum and achieve robust registration.

Comparison with State-of-the-Art Methods Contrary
to the proposed method, M1 and M2 easily failed in the
challenging cases, leading to relatively low success rates.
It should be noted that M2 performed much worse com-
pared to the values reported in (Miao et al. 2013) due to
the large rotations in our data, invalidating the assumptions
made in (Miao et al. 2013). While M3 performed more re-
liably compared to M1 and M2, it required a significantly
larger number of training examples than our agent, and the
performance deteriorated significantly when the number of
training samples was limited as in E1. The limitation comes
from the fact that M3 does not inherently treat image regis-
tration as a problem of establishing the correspondence, but
rather segments the objects from the two volumes separately,
followed by a standard iterative optimization scheme that is
prone to local optimum.

Discussions and Conclusion

This paper presents a novel 3-D rigid-body registration
method based on artificial intelligence, where an agent is
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trained end-to-end to perform the registration task. The pro-
posed framework is generic and the same network hyper-
parameters were used for all the experiments (most param-
eters were determined by simply adopting the values pop-
ularly used in the literature such as the discount factor γ,
and some parameters were chosen given certain constraints,
such as the bonus reward R > γ

1−γ
). In addition the train-

ing scheme is very efficient and requires only a relatively
small number of labeled data. We demonstrated on challeng-
ing cases that our agent can outperform other state-of-the-
arts methods by a large margin and even beat human perfor-
mance when the difference in object appearance is subtle.
This significantly superior performance on multiple applica-
tions without any hand-engineering in the training pipeline
indicates that the propose method could potentially bring a
new paradigm in medical image registration, a very chal-
lenging problem in practice.

While there is no theoretical guarantee that the agent
could finally achieve correct registration, in practice the
agent is never observed to produce (large) cyclical move-
ments but always converges to one position (correct or
wrong). This is presumably due to the fact that our su-
pervised registration path is (approximately) a straight line
(thus far from a circle) in the registration parameter space.
Randomization is also introduced by allowing the agent to
take the best three actions with a given probability. The
next step is to train an additional action of stopping so
that the agent could stop early when correct registration is
achieved. Heuristically a denser sampling at the transforma-
tion parameter space close to the ground truth transforma-
tion is performed for finer training of the network because
the observation-action mapping close to the solution is more
complicated compared to other regions. There could be other
regions starting from where correct registration is more dif-
ficult to reach (accounting for 8% failed cases in spine). A
possible enhancement is to use more samples from those re-
gions for training (i.e. boosting).

Since the proposed DSL framework has exactly the same
network input and output as the DRL framework, combi-
nation of our DSL with DRL is straightforward, e.g. using
DRL to refine the policy learned by DSL, which potentially
allows the agent to learn a registration path that is more
suitable than the most greedy one for some tricky registra-
tion tasks. This combination is currently under investigation.
Other future works include in-depth analysis of the trained
networks, further evaluation on other use cases, and exten-
sion to higher dimensionality registration problems.

Disclaimer: This feature is based on research, and is not
commercially available. Due to regulatory reasons its future
availability cannot be guaranteed.

Appendix A Proposition. Q(st, a
∗
t ) (calculated in Equa-

tion 3) for the optimal action a∗t (defined in Equation 2) is
the maximum of the action-value function Qt(st, at) with
respect to action at, given the agent is allowed to take con-
tinuous actions with step size 1 in the 6-D transformation
parameter space (i.e. the only constraint on the action is
that ‖vt+1 − vt‖2= 1), and the agent receives a bonus
R > γ

1−γ
when reaching the ground truth transformation

(i.e. D(Tg, at ◦ Tt) < 0.5).

Lemma 1. For all the continuous actions with step size 1,
the maximum immediate reward r defined in Equation 4 is
1.

Proof. r(st, at) = D(Tg, Tt) − D(Tg, at ◦ Tt) =
‖vt‖−‖vt+1‖2� ‖vt − vt+1‖2= ‖vt+1 − vt‖2= 1.

Lemma 2. Q(st, a
∗
t ) → 1

1−γ
as D(Tg, Tt) →∞, with a

monotonic decrease.

Proof. Assume it takes the agent p+1 steps from the cur-
rent position to reach the correct transformation using the
optimal actions with step size 1, then Q(st, a

∗
t ) = F (p +

1) =
∑

i=0...p γ
l + γpR = 1−γp+1

1−γ
+ γpR > 1−γp+1

1−γ
+

γp+1

1−γ
= 1

1−γ
, and F (p+1)−F (p) = γp+(γp−γp−1)R <

γp+(γp−γp−1) γ
1−γ

= 0, ∀p > 0. In addition, by definition

γ < 1, so F (p+ 1) = 1−γp+1

1−γ
+ γpR → 1

1−γ
as p → ∞.

Lemma 3. Q(st, a
∗
t ) � Q(st, at), ∀at ∈ A.

Proof. Since D(Tg, a
∗
t ◦ Tt) ≤ D(Tg, at ◦ Tt), we get

r(st, a
∗
t ) � r(st, at) (Equation 4) and Q(s∗t+1, a

∗
t+1) �

Q(st+1, a
∗
t+1), where s∗t+1 is the resulting state at t + 1 by

taking the optimal action a∗t at time t (Lemma 2). There-
fore Q(st, a

∗
t ) = r(st, a

∗
t )+γQ(s∗t+1, a

∗
t+1) � Q(st, at) =

r(st, at) + γQ(st+1, a
∗
t+1).
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