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Abstract. Nodes that build a mobile ad-hoc network participate in a common

routing protocol in order to provide multi-hop radio communication. Routing de-

fines how control information is exchanged between nodes in order to find the

paths between communication pairs, and how data packets are relayed. Such net-

works are vulnerable to routing misbehavior, due to faulty, selfish or malicious

nodes. Misbehavior disrupts communication, or even makes it impossible in some

cases. Misbehavior detection systems aim at removing this vulnerability. For this

purpose, we use an Artificial Immune System (AIS) approach, i.e, an approach

inspired by the human immune system (HIS).

Our goal is to make an AIS that, analogously to its natural counterpart [16],

automatically learns and detects new misbehavior, but becomes tolerant to pre-

viously unseen normal behavior. We achieve this goal by adding some new AIS

concepts to those that already exist: (1) the “virtual thymus”, which provides a

dynamic description of normal behavior in the system; (2) “clustering” is a de-

cision making method that reduces the false-positive detection probability and

minimizes the time until detection; (3) we apply the “danger signal” approach,

that is recently proposed in AIS literature [5, 6] as a way to obtain feedback from

the protected system and use it for correct learning and final decisions making;

(4) we use “memory detectors”, a standard AIS solution to achieve fast secondary

response.

We implement our AIS in a network simulator and test it on two types of

misbehavior. Performance analysis shows the following effects on the detection

capabilities: (1) the virtual thymus enables the system to: (a) learn and detect mis-

behavior without use of the preliminary misbehavior-is-absent training phase, and

(b) have low false positive detections even if normal behavior changes over time;

(2) clustering and danger signal are useful for achieving low false positives; (3)

memory detectors significantly accelerate the secondary response of the system.
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Communication Systems (NCCR-MICS), a center supported by the Swiss National Science
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1 INTRODUCTION

1.1 Problem Statement: Detecting Misbehaving Nodes in DSR

Mobile ad-hoc networks are self organized networks without any infrastructure other

than end-user terminals equipped with radios. Communication beyond the transmis-

sion range is made possible by having all nodes act both as terminals and information

relays. This in turn requires that all nodes participate in a common routing protocol,

such as Dynamic Source Routing (DSR) [23]. For example, people having laptops with

standard wireless radio cards can form such a network. They only have to add appropri-

ate communication software that implements the routing protocol. The problem is that

routing works well only if all nodes execute the protocol correctly, which is difficult to

guarantee in an open ad-hoc environment.

A possible reason for node misbehavior is faulty software or hardware. In classical

(non ad-hoc) networks run by operators, equipment malfunction is known to be an im-

portant source of unavailability [24]. In an ad-hoc network, where routing is performed

by user provided equipment, we expect the problem to be exacerbated. Another rea-

son for misbehavior stems from the desire to save battery power: some nodes may run

a modified code that pretends to participate in routing but, for example, does not for-

ward packets. Finally, some nodes may also be truly malicious and attempt to bring the

network down, as do Internet viruses and worms.

If a misbehaving node can be detected by its neighbors, the neighbors can exclude

it from the network by not using it as a relay and by not offering the service to it. This

improves the quality of communication service and saves resources of well-behaving

nodes. Otherwise, the network might disappear, as well-behaving nodes might lose in-

centive to participate in building and using it.

For DSR, the routing protocol that we use as an example, an extensive list of misbe-

havior is given in [9]. The normal operation of the protocol is described in Section 2.2.

In our simulation, we implement misbehaving nodes that, from time to time: 1) do not

forward data or route requests, or 2) do not respond to route requests from their own

cache.

We chose DSR as a concrete example, because it is one of the protocols being con-

sidered for standardization for mobile ad-hoc networks. There are other routing proto-

cols, and there are parts of mobile ad-hoc networks other than routing that need mis-

behavior detection, for example, the medium access control protocol. We believe the

main elements of our method would also apply there, but a detailed analysis is for fur-

ther work.

1.2 Drawbacks of Traditional Misbehavior Detection Approaches

Traditional approaches to misbehavior detection [7, 10] use the knowledge of antici-

pated misbehavior patterns and detect them by looking for specific sequences of events.

This is very efficient against misbehavior that is known in advance (at system design)

and powerful statistical algorithms can be used [11]. The problem is that these ap-

proaches miss the ability to learn about and adapt to new misbehavior. Every targeted
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misbehavior has to be imagined in advance and explicitly addressed in the detection

system.

Another traditional approach is to use anomaly detection, i.e., to look at deviation

from normal behavior statistics [8]. The method is not appropriate for the problem of

routing misbehavior detection in mobile ad-hoc networks, because normal behavior

deviates much and changes with mobility and traffic patterns.

1.3 Our Approach: Adding An AIS to The Network

The Human Immune System (HIS) proved to be very successful in protection against

different viruses, bacteria and other pathogens that cause damage to the body. It pro-

duces immune cells and educates them to detect these damaging entities and to be tol-

erant to the body’s cells. There are different conceptual and algorithmic models that

try to explain how the HIS works [17, 18, 20, 21]. Artificial Immune System (AIS) ap-

proaches use these concepts and algorithms for solving analogous problems in artificial

systems [26].

We use an AIS approach, as it promises to overcome constraints of traditional mis-

behavior detection approaches (Section 1.2). We map concepts and algorithms of the

HIS to a mobile ad-hoc network and build a distributed AIS system for DSR misbehav-

ior detection. Every node runs the same detection algorithm based on its own observa-

tions. The nodes also exchange signals among each other (Figure 1).
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Fig. 1. From the human IS to an AIS: Making DSR immune to node misbehavior.

In order to introduce our specific AIS approach and solutions (Section 1.5), we first

explain existing AIS approaches and some problems that are not solved by these ap-

proaches (Section 1.4). We define the building blocks of our AIS for routing misbehav-

ior detection and explain how the system works in Section 3. The detailed description

of the building blocks and their components is given in Section 4.
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1.4 Existing AIS Approaches and Unsolved Problems That We Address Here

Existing AISs [25–28] are mainly based on what is called : self-nonself model of the

HIS, negative selection and clonal selection.

According to the self-nonself model of the HIS, the HIS cells are produced with

aim to not detect molecules and proteins that are predefined (in the thymus) to belong

to the body and body’s cells (self), and to detect all the other molecules and proteins

(nonself), including those on viruses, bacteria and other pathogens.

AIS analogs of the HIS cells are called detectors. A randomly produced detector can

recognize one or more elements from an observable universe. For example, a universe

is any possible behavior that can be observed for network nodes. A self-nonself-model-

based AIS predefines one part of the observable universe to be self (normal behavior of

network nodes, for example). Then it produces the detectors with aim to detect all other

elements of the universe, but to not detect those from the self part [3]. The detectors

are produced in the process of negative selection: they are generated at random, those

that can detect self examples are deleted, and the others are used for the detection. Such

detectors are more or less self tolerant, depending on how well self is described by the

predefined self examples and whether self is noisy and changing with time. Because

of their random nature, the detectors have good coverage of nonself, even if nonself is

unknown or changing with time.

Negative selection alone is in fact an anomaly detection method. The addition of

clonal selection and memory [12–14, 2] provides AISs with ability to adapt to the expe-

rienced nonself and to detect it faster and with lower false positives in the future. Clonal

selection multiplicates and refines (using random modifications) the detectors that are

useful in detections. Detectors that become very specific to the experienced nonself be-

come memory. Memory detectors are long lived and can more easily detect repeated

nonself for which they are specific (fast secondary response).

Recently, the use of the danger signal model of the HIS has been proposed in the AIS

literature [5, 6]. The main idea is to generate a Danger Signal (DS), which correlates the

damage experienced by the system to be protected with observed antigens (an antigen

is a part of a self or nonself element that can be observed and potentially matched by

a detector), and to use this signal as an additional control required by detectors for

detection and for clonal selection. This additional control is aimed at decreasing false

positive detections.

There are still some fundamental problems to be solved in AIS approaches:

Eliminating need for preliminary learning in protected environment. Most of

the AISs require a set of self examples to be collected in advance in order to start

producing detectors. To collect self examples, the system to be protected must be run

in a protected environment, in which nonself is not present. In most of the cases in

practice, such a protected environment is either inconvenient or impossible to provide.

Capability to learn changing self. Even if an initial set of self examples is avail-

able, but a dynamic updating of this set is not provided, AISs will not operate correctly

if self changes over time. The problem is that detectors produced in the process of neg-

ative selection will be self-reactive. False positives caused by these detectors can be

decreased by requiring the existence of a correlated danger signal in order to have de-

tection, but this makes AISs more sensitive to the wrong danger signals. Fully reliable
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danger signals are often difficult to find in concrete AIS applications, which is probably

the reason why the danger signal is only proposed but yet not used in the literature.

This would especially be the issue in distributed environments, for example in our mis-

behavior detection problem. For reliable low false-positives detection, both successful

dynamic description of self and danger signal should be used.

The problem of dynamic providing of self examples is not solved in the related

literature. The only known system that provides dynamic description of self is that

of Somayaji and Forrest [4]. Their system achieves tolerance to new normal behavior

in an autonomous way, but it works only under the assumption that new misbehavior

always shows new patterns that are more grouped in time than new patterns of normal

behavior; if the patterns of a new misbehavior are first sparsely introduced in the system,

the system will become tolerant to that misbehavior. For their concrete application, as

well as for many other AIS applications, such an assumption does not hold.

Kim and Bentley [12–14] define and investigate in detail the dynamic clonal se-

lection algorithm. They show that the algorithm enables an AIS to learn changing self

if the examples of the current self are provided, but they do not tackle the problem of

providing the self examples. We believe that adding a component to an AIS that solves

this problem would enable the AIS to autonomously learn about and defend a changing

protected system.

Mapping from matching to detection. Matching between an antigen and an an-

tibody is not enough to cause detection and reaction in the HIS [18, 19] (antigens are

proteins that cover the surface of self and nonself cells; antibodies are proteins produced

by the HIS, capable of chemically binding to nonself antigens). The clustering of the

matches on the surface of an immune cell and an additional danger signal are required

for detection. These additional requirements can be viewed as detection control mech-

anisms aimed at decreasing false positives. These mechanisms are still not appropriate

in existing AISs. The high false-positives detection rate is a common unsolved problem

of many AISs, although it seems not to be so with the HIS.

1.5 Our AIS Approach for Protecting Dynamic Self

Our goal is to make an AIS that, analogously to its natural counterpart [16], automati-

cally learns and detects both already encountered and new nonself, but becomes tolerant

to any previously unseen self.

Our AIS learns the dynamic self, produces the detectors and does the detection

using four AIS concepts: “virtual thymus”, “clustering”, “danger signal” and “memory

detectors”.

Virtual Thymus. “Virtual Thymus” (VT) is a novel concept that we introduce in

this paper. It uses observed antigens and generated DSs (the concept of the DS is defined

below) and continuously provides self antigen examples that represent the dynamic self

of the protected system. It solves the problem of learning a changing self and eliminates

the need for a preliminary training in a protected environment. Apart from the negative

selection, the way our VT works does not have analog in the existing theories of the

HIS. It is important to mention that it is not yet clear to the immunologists how the

repertoire of the antigens presented in the thymus during negative selection is formed

(see Section 2.1).
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Clustering. Clustering is also a novel concept that we introduce in this paper. It

maps matches between the detectors and antigens into the detection decisions in a

way that constrains false-positive detection probability and minimizes the time until

detection under this constraint. The term clustering comes from immunology, where

it denotes grouping of matches between antibodies and antigens that is required for

recognition of a pathogen.

Danger Signal. The Danger Signal (DS) is generated when there is a damage to

the protected system. It correlates the damage with the antigens that are in some sense

close to the damage, showing that these antigens might be the cause for the damage.

We use the DS as a control mechanism for the detection and clonal selection, with the

aim to decrease the false positives, which is already proposed but not implemented in

the existing AISs. This use of the DS, and the way how it is generated is analogous

to the DS and Antigen Presenting Cells (APC) in Matzinger’s model [16] of the HIS.

As mentioned above, we also use the DS to implement VT, which is a novel use of the

DS. We have to mention that this use of the DS doesn’t have its analog in the existing

theories and models of the HIS.

Memory Detectors. As already mentioned in Section 1.4, the detectors that prove

useful in the detection undergo the clonal selection process and become memory. They

provide a fast response to the already experienced nonself. Clonal selection and memory

detectors are well investigated in the related literature [12–15].

2 BACKGROUND.

2.1 Background on the Human Immune System

The main function of the HIS is to protect the body against different types of pathogens,

such as viruses, bacteria and parasites and to clear it from debris. It consists of a large

number of different innate and acquired immune cells, which interact in order to provide

detection and elimination of the pathogens [18]. We present a HIS overview based on

the self-nonself and the danger models [18, 17].

Functional architecture of the IS. The first line of defense of the body consists of phys-

ical barriers: skin and mucous membranes of digestive, respiratory and reproductive

tracts. It prevents the body from being entered easily by pathogens.

The innate immune system is the second line of defense. It protects the body against

common bacteria, worms and some viruses, and clears it from debris. It also interacts

with the adaptive immune system, signaling the presence of damage in self cells and

activating the adaptive IS.

The adaptive immune system educates its cells to be tolerant to the body’s cells,

but adapts them to better detect both experienced and previously unseen pathogens. It

provides an effective protection against viruses even after they enter the body cells. It

memorizes encountered viruses for more efficient and fast detection in the future.

The innate immune system consists of macrophages cells, complement proteins and

natural killer cells. Macrophages are big cells that are attracted by bacteria to engulf the

bacteria in the process called “phagocytosis”. Complement proteins can destroy some
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common bacteria. Natural killer cells can kill cells that do not do MHC presentation

properly. When there is an attack, the innate cells involved in the response emit signals

in order to recruit more immune system cells against the attack.

The adaptive immune system consists of two main types of lymphocyte cells. These

are B cells and T cells. Both B and T cells are covered with antibodies. Antibodies are

proteins capable of chemically binding to nonself antigens (in case of T cells, the anti-

bodies are usually called receptors, and they are never secreted from the cell). Antigens

are proteins that cover the surface of self and nonself cells.

Whether chemical binding takes place between an antibody and an antigen depends

on the complementarity of their three-dimensional chemical structures. If it does, the

antigen and the antibody are said to be “cognate”. Because this complementarity does

not have to be exact, an antibody may have several different cognate antigens. What

happens after binding depends on additional control signals exchanged between differ-

ent IS cells, as we explain next.

B cells repertoire. One B cell is covered by only one type of antibody, but two B cells

may have very different antibodies. As there are many B cells (about 1 billion fresh

cells are created daily by a healthy human), there is also a large number of different

antibodies at the same time. How is this diversity of antibodies created and why do

antibodies not match self antigens? The answer is in the process of creating B cells.

B cells are created from stem cells in the bone marrow by rearrangement of genes in

immature B cells. Stem cells are generic cells from which all immune cells derive.

Rearrangement of genes provides diversity of B cells. Before leaving bone marrow, B

cells have to survive negative selection in the bone marrow: if the antibodies of a B

cell match any self antigen present in the bone marrow during this phase, the cell dies.

The cells that survive are likely to be self tolerant.

T cells repertoire. B cells are not fully self tolerant, because not all self antigens are

presented in bone marrow. Self tolerance is provided by T cells that are created in the

same way as B cells, but in the thymus, the organ behind the breastbone. T cells have

good self tolerance, because almost all self antigens are presented to these cells during

negative selection in the thymus. There are two types of T cells, T helper cells (Th)

and T killer cells (CTL).

Humoral response. After some antibodies of a B cell match antigens of a pathogen or

self cell, that antigens are processed and presented on the surface of the B cell. The

presentation is done by Major-Histocompatibility-Complex molecules type II (MHC

II). If antibodies of some Th cell bind to these antigens and if the Th cell is activated,

it will give costimulation to the B cell and activate it. Some activated B cells start the

process of producing many new similar B cells, that will be able to match the pathogen

better. This process is called clonal selection. It is explained below. Another activated

B cells secret antibodies that opsonize the pathogens, marking them to be engulfed by

macrophages and eliminated. The process stops when pathogens are cleared from the

body. Some of the B cells produced in the humoral response become memory. They

are long lived and ready to react promptly to the same cognate pathogen in the future.
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If B cell did not receive the costimulation, it means that the detected antigens are

probably self antigens for which the T cells are tolerant. In this last case, the B cell will

die together with its self reactive antibodies. The costimulation to the B cells (and their

activation) can come from the innate cells as well.

B cells can secret antibodies or begin clonal selection without being costimulated,

but only in the case when matching between B cell antibodies and antigens is very

strong. This occurs with a high probability only for memory B cells. Whereas first time

encountered pathogens require a few weeks to be learned and cleared by the IS, the

secondary reaction by memory B cells takes usually only a few days.

Clonal Selection. In the clonal selection phase, a B cell divides into a number of clones

with similar but not strictly identical antibodies. Statistically, some clones will match

the pathogen that triggered the clonal selection better than the original B cells and some

will match it worse. If the pathogens whose antigens triggered clonal selection are still

present, they will continue to trigger cloning new B cells that match the pathogen well.

The process continues reproducing B cells more and more specific to present pathogens.

B cells that are specific enough become memory B cells and do not need costimulation.

This is a process with positive feedback and it produces a large number of B cells

specific to the presented pathogen.

Cellular Response. This is the response by CTL cells against pathogens that manage

to enter body’s cells, i.e. against viruses. MHC type I molecules of a body cell sample

and present antigens that are inside the cell. If these antigens are recognized by CTL

receptors, and if there is a Th cell that costimulates this antigen recognition, CTL is

activated and it governs the infected body cell to die. Activated CTLs proliferate and

respond to the viruses. Most of the CTL cells are programmed and die after doing their

job, but some of them become memory CTLs. Memory CTLs are long lived, do not

require costimulation by Th cells in order to be activated, and produce fast secondary

response to the reinfection by the same or similar virus.

Clustering. Recognition of a pathogen by a B or CTL cell requires that the antibodies

(receptors) of these cells bind not only one but more antigens from the pathogen si-

multaneously. This is called clustering. It provides some robustness to false antibody-

antigen binding.

The Danger Signal is a control used for activating Th cells, the cells that control ac-

tivation of non-memory B and CTL cells. The danger signal (DS) is generated when

there is some damage to self cells, which is usually due to pathogens. As an example,

the DS is generated when a cell dies before being old; the cell debris are different when

a cell dies of old age or when it is killed by a pathogen. DS is transported to Th by

antigen presenting cells (APC). An APC transports some information about antigens

found around the place of the damage (that potentiality belong to the pathogen). This

information instructs Th cells to costimulate those B or CTL cells that has recognized

similar antigens.
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Self Presented in The Thymus. The way how the self is provided that is presented during

negative selection in the thymus is still an open question in biological research ([18],

pages 85-87; [19]): (1) both self and non-self antigens are presented in the thymus;

the rules about how antigens can enter the thymus from the blood are unclear; (2) the

thymic dendritic cells that present antigens survive for only a few days in the thymus,

so they present current self antigens; if a non-self antigen is picked up for presentation

during an infection, it will be presented only temporarily; once the infection is cleared

from the body, freshly made antigens will no longer present the foreign antigen as self.

2.2 Background on DSR

The dynamic source routing protocol (DSR) is one of the candidate standards for rout-

ing in mobile ad-hoc networks [23]. A “source route” is a list of nodes that can be used

as intermediate relays to reach a destination. It is written in the data packet header at

the source; intermediate relays simply look it up to determine the next hop.

DSR specifies how sources discover, maintain and use source routes. To discover

a source route, a node broadcasts a route request packet. Nodes that receive a route

request add their own address in the source route collecting field of the packet, and then

broadcast the packet, except in two cases. The first case is if the same route request

was already received by a node; then the node discards the packet. Two received route

requests are considered to be the same if they belong to the same route discovery, which

is identified by the same value of the source, destination and sequence number fields

in the request packets. The second case is if the receiving node is the destination of

the route discovery, or if it already has a route to the destination in its cache; then

the node sends a route reply message that contains a completed source route. If links

in the network are bidirectional, the route replies are sent over the reversed collected

routes. If links are not bidirectional, the route replies are sent to the initiator of the route

discovery as included in a new route request generated by answering nodes. The source

of the initial route request is the destination of the new route requests. The node that

initiates original route request receives usually more route replies, each containing a

different route. The replies that arrive earlier than the others are expected to indicate

better routes, because for a node to send a route reply, it is required to wait first for a

time proportional to the number of hops in the route it has as answer. If a node hears

that some neighbor node answers during this waiting time, it supposes that the route it

has is worse than the neighbor’s route, and it does not answer. This avoids route reply

storms and unnecessary overhead.

After the initiator of route discovery receives the first route reply, it sends data over

the obtained route. While packets are sent over the route, the route is maintained, in

such a way that every node on the route is responsible for the link over which it sends

packets. If some link in the route breaks, the node that detects that it cannot send over

that link should send error messages to the source. Additionally it should salvage the

packets destined to the broken link, i.e., reroute them over alternate partial routes to the

destination.

The mechanisms just described are the basic operation of DSR. There are also some

additional mechanisms, such as gratuitous route replies, caching routes from forwarded

or overheard packets and DSR flow state extension [23].
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3 OVERVIEW OF OUR AIS

3.1 AIS Building Blocks

The four main AIS concepts that we use (Virtual Thymus, Clustering, Danger Signal

and Memory Detectors) are implemented within the six building blocks (Figure 2), at

every network node.
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Fig. 2. AIS building blocks in one network node. Note: DS(1), DS(2) and DS(3) are all the same

danger signal, indexing only emphasizes three different uses of it.

The Mapping and Danger Signal (DS) blocks are interfaces to the system to be

protected and to AISs in other nodes. The mapping block transforms observed routing

protocol events into internal AIS representation of the behavior (Antigens). The DS

block transforms the experienced degradation of the communication quality of this node

into the danger signal, and exchanges the signal with other nodes. The Virtual Thymus

(VT) uses danger signal to dynamically select self examples from the collected antigens.

It uses the selected self antigens for negative selection of the detectors produced by the

Bone Marrow block. The Clonal Selection block multiplies and refines useful detectors,

if they get costimulated by the danger signal. The Clustering block defines whether

matching between the detectors and the observed antigens results in the detection of

the corresponding node or not. The result depends on the numbers of observed and

matched antigens for that node, on the types of the detectors that matched (whether

they are memory or not), and on the presence of correlated danger signals.
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3.2 How The AIS Works.

Here we explain how the AIS works by putting a node equipped with the AIS in the

network scenarios typical for invocation of certain blocks or concepts. For the details,

please see the pseudo code of the six AIS building blocks (Appendix B) and the values

of the used parameters (Table 1 in Section 5).

Bootstrap. When a node joins the network for the first time, it does not have any

preloaded knowledge or data examples about normal behavior or misbehavior in the

network. It starts its AIS in the initial self learning phase. In this phase the node ob-

serves antigens and uses the VT to collect self examples. It uses the DS block to provide

DSs needed for correct functioning of the VT. In this phase Clonal Selection and Clus-

tering blocks are turned off. This is done in order to avoid initial false positives until

the number of the self antigen examples stabilizes. Once the number of self examples

reaches a threshold, the node turns on the Clonal Selection and Clustering blocks, i.e.,

it enters detection phase and stays in this phase all the time. During the detection phase

the node continues to observe antigens, produce DSs, and dynamically update self ex-

amples.

If the node leaves the network and joins it again, it may start with saved self exam-

ples and enter detection phase immediately.

It is important to notice that there are no assumptions on the behavior of the other

nodes during the initial learning phase (some of them may misbehave). Also, the node

starts to participate in routing and use the network to communicate already in the initial

learning phase.

Observing Antigens. The node continuously observes routing protocol events for all its

neighbors and temporarily records them within subsequent time intervals of predefined

length (a system parameter). Two nodes are neighbors if they are within radio range of

each other. Examples of protocol events are route request received, data packet received,

data packet forwarded. Protocol events collected for one neighbor within the last time

interval are compressed into a compact form, called antigen. The antigen represents the

behavior of the observed node in that time interval. The details of mapping from the

observed protocol events to the antigens are given in Section 4.1.

Generating, Transmitting and Receiving the DS. When a node communicates with

another node, it normally receives acknowledgments for its data packets, that are sent

by the destination. The danger signal is generated by a node when it experiences a

packet loss, i.e., when it does not receive the acknowledgment (packet loss is seen as a

damage to the protected system). The DS is then sent over the route on which the packet

loss took place, and received by all the nodes that can overhear it. A typical scenario is

shown on the Figure 3.

The DS contains the information about the (approximate) time of the packet loss,

and about the nodes on the route over which the lost packet was sent. So, the receivers

of the danger signal are able to correlate it with the collected antigens that are close in

time and space (on the same route) to the experienced damage (i.e. to the packet loss).

(There is a strong analogy with the HIS, regarding both the way the danger signal is

generated and the information it contains; see Section 2.1.)
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+
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Fig. 3. Generating, transmitting and receiving the danger signal (DS): node S is sending data

packets to D over an established route; there is a packet dropped by node B; the source S of the

packet does not receive the acknowledgment from the destination D; S generates and sends the

danger signal over the route on which the loss took place; the nodes that receive the danger signal

are A, B, C and E. In this scenario, node F moves away and do not receive the danger signal.

It is possible that the DS is generated even if there is no any misbehavior, because a

packet was lost due to a excessive collision of radio signals, or break of the used route

due to the mobility, which normally happens in mobile ad hoc networks. Our system is

robust to such false DSs, as explained in the next three paragraphs.

Use of the DS in The VT: Achieving The Dynamic Self. To define dynamic self in our

system, we extend the notion of self from the behavior specified by the routing protocol

(DSR, for example) to any interactive node behavior that does not have negative effects

on the normal network trafficking, i.e. does not cause packet losses. As a packet loss,

we count any case in which the packet does not arrive at the destination, or the acknowl-

edgment from the destination about receiving the packet does not reach the source, or

there is a high delay in any of these packets.

How the node learns the dynamic self is shown on the Figure 4.

Whenever the node observes a new antigen, it sends it towards the thymus with a

delay that is large enough to receive all the DSs that could be related to that antigen. If

none of potentiality received DSs correlates this antigen to a damage experienced in the

network, the antigen is considered as self and passed into the thymus if needed. Once

the number of self antigen examples reaches its stable value (it is the end of the initial

self learning phase), a new example is added only when an old one leaves the thymus.

Producing New Naive Detectors in VT. New naive detectors are produced in the VT

all the time in a process of dynamic negative selection.

In the initial self learning phase, new random detectors are generated by the Bone

Marrow and negatively selected with all collected self antigens. When new self antigen

is collected, all existing detectors are negatively selected only with that new self antigen.

The detectors are not used for the detection in this initial phase. Note that the method is
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Fig. 4. Virtual Thymus: Self to be used in the dynamic process of clonal selection is dynamically

collected from the observed antigens that are not correlated with any danger signal.

computationally more convenient and not more costly then collecting all self examples

and then creating and checking all the detectors.

After the initial learning phase, a new self antigen that enters the thymus is used

to negatively select only newly created immature detectors, but not those that already

passed the negative selection (and became naive).

The number of naive detectors stays approximately constant. A naive detector that

does not score enough matches to undergo clonal selection dies after a fixed life time

(a parameter). In parallel, if the number of naive detectors is smaller then a maximum

value (which is a parameter), new naive detectors are generated by the negative selection

in the VT. The naive detectors that score many matches and receive costimulations by

the DSs for that matches undergo clonal selection and become memory. The detector is

first duplicated. One copy becomes a memory detector, while another is hypermutated

and becomes new naive detector.

Finite-Time Antigen Presentation in The VT and Wrong DSs. A collected self-antigen

example is used in the VT for a finite time, then it leaves the VT and is replaced with

fresh one. This aging and continuous updating provides the VT with the current ver-

sion of the “dynamic self”, and makes AIS less sensitive to nonself antigens that are

mistakenly selected as self examples (because the DS was mistakenly absent). If a non-

self antigen is mistakenly picked up and used to represent self, new naive detectors that

match it will not be produced until this antigen leaves the VT. During this time period,

the detectors produced before the nonself antigen is picked up are still able to match

that and similar antigens.

Wrong DSs that are mistakenly or intentionally generated may prevent self antigen

to be used as an example. This is not a problem for the VT as there would be other

self examples that are collected. It is also possible to counteract misbehaving nodes

that try to maliciously generate many fake DSs and prevent other nodes from collecting

enough self examples (an attack to the AIS). In our case such a malicious node may

be detected because it sends too many DSs, though it should change a path that is not
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working for its data packets if it really has a reason to send danger signals (in current

AIS simulation this type of misbehavior is not implemented). In general, as this is a

known attack specific to VT, a specific predefined detector(s) may be designed for it in

a concrete AIS.

It is important to note that the joint use of the “dynamic self” and danger signal

brings new quality to the robustness of the AIS: false positive matches by detectors are

partially compensated by the absence of the danger signal; temporary presence of wrong

danger signal does not cause detection if there is no corresponding false positive match-

ing by current detectors whose production was indirectly controlled by danger signals

in the past; if the danger signal is currently mistakenly absent to costimulate detection

for a nonself antigen, memory detectors for which correct education was assisted by the

danger signal in the past can do detection.

Matching. Once the detection phase starts, every new observed antigen is checked with

the existing detectors for matching. Matches for the antigens observed for one node are

temporarily stored and used for clustering and detection (next paragraph).

Clustering And Use of The DS for Detection. In order to have detection of a node

as misbehaving, our AIS requires more antigens of that node to be matched by the

detectors. After every new antigen observed for a node, the matching information is

used together with the matching information previously collected for that node within

some time window, and a decision is made if there is detection or not (we call this

clustering; the term comes from immunology, see Section 2.1).

The method is time adaptive. If most of the observed antigens are matched, fewer

observations are required for detection. The method may also be tuned to achieve a

tradeoff between probability of false-positive detection and the time until detection.

The details of the method, including the clustering formula, are given in Section 4.2. In

practice, clustering is done for the matches from the finite time window. The size of the

window can always be chosen (experimentally) large enough to cover majority of the

detection cases. Then, intuitively, the clustering formula approximately holds.

The matches by the naive detectors are clustered separately from the matches by the

memory detectors. The parameters used for the clustering differ in the two cases as well.

As the memory detectors are better educated, they require smaller number of clustered

matches for the same false positive probability, and so provide a faster detection.

Additional control for decreasing false positives is to require a correlated danger

signal for observed antigen, in order to count the matching of that antigen for clustering.

Similar methods are used in the HIS, clustering of the matches on the surface of an

immune cell and an additional danger signal are required for detection ([18, 19]).

Use of The DS for Clonal Selection: Producing Memory Detectors. The detectors

that have many matches costimulated by the danger enter the process of clonal selec-

tion. They are cloned, i.e. multiplied and randomly modified. The clones that receive

costimulation many times (above a threshold) are promoted into memory.

Use of Memory Detectors. Analogously to the HIS, our memory detectors do not re-

quire the DS to verify their matches to the antigens. Less clustering is also required for
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the detection, comparing to the naive detectors and their clones that still did not become

memory.

Memory detectors are long lived, in order to provide fast response to the experienced

misbehavior. As the number of memory detectors is limited, we keep those that are

unique. From those that are not unique, we keep last used ones. Concretely, when a

new memory detector is created and the number of the existing memory detectors is

maximum possible, we choose an old memory detector to delete as follows. We find

existing memory detectors that are able to match certain number (that is a parameter)

of the latest antigens matched by the new detector before it became memory (these are

similar to the new memory detector), and from these we delete the one that is not used

for the longest time. If we do not find such similar ones, then we delete the one that is

not used for the longest time among all the old detectors.

DS is not needed for matches by memory detectors to be counted for the detection.

But a systematic absence of DSs for similar antigens matched by a memory detector

means that the memory detector is probably reactive to the new self, and it is deleted.

For the details of the testing see Appendix B.

3.3 Mapping of HIS Elements to Our AIS

The elements of the natural IS used in our detection system are mapped as follows:

– Body: the entire mobile ad-hoc network.

– Self Cells: well-behaving nodes.

– Non-self Cells: misbehaving nodes.

– Antigen: (AIS) antigen, which is a sequence of observed DSR protocol events rec-

ognized. In the sequence of packet headers and represented by binary strings as

explained in Section 3.2 and with the details given in Section 4 (representation is

adopted from [14]).

– Antibody: detector; detectors are binary strings produced in the continuous pro-

cesses of negative selection and clonal selection; ideally, they “match” non-self

antigens (produced by misbehaving nodes) and do not match self antigens.

– Chemical binding of antibodies to antigens: “matching function” between detectors

and antigens, defined in detail in Section 4.

– Detection: a node detects a neighbor as misbehaving if the node’s detectors match

relatively many of the antigens produced by that neighbor (clustering) and if it

receives danger signals related to those antigens.

– Clustering: clustering of matching antibodies on the immune system cell surface is

mapped to the clustering of matches between detectors and antigens in time for a

given observed node.

– Aging of the immune cells: finite life time of the detectors

– Necrosis and apoptosis: packet loss.

– Danger signal: the danger signal in our framework contains information about the

time and nodes correlated with a packet loss.

– Antigen presenting cell: transmission of the danger signal.

– Thymus: The virtual thymus is a set of mechanisms that provide (as explained in

Section 3.2) the presentation of the current self in the system during the continuous

negative selection process.
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– Memory cells: memory detectors; detectors become memory if they prove to be

useful in detection; they differ from normal detectors by longer lifetime and lower

clustering required for detection.

4 Detailed Description of Some Building Blocks

4.1 Mapping behavior to Antigens

The mapping used here was adopted from Kim and Bentley [14].

A node in our system monitors its neighbors and collects one protocol trace per

monitored neighbor. A protocol trace consists of a series of data sets, collected on non-

overlapping intervals during the activity time of a monitored neighbor. One data set

consists of events recorded during one time interval of duration ∆t (∆t = 10s by

default), with an additional constraint to maximum Ns events per a data set (Ns = 40
by default).

Data sets are then transformed as follows. First, protocol events are mapped to a

finite set of primitives, identified with labels. In the simulation, we use the following

list:

A= RREQ sent

B= RREP sent

C= RERR sent

D= DATA sent and IP source address

is not of monitored node

E= RREQ received

F= RREP received

G= RERR received

H= DATA received and IP destination address

is not of the monitored node

A data set is then represented as a sequence of labels from the alphabet defined

above, for example

l1 = (EAFBHHEDEBHDHDHHDHD,..)

Second, a number of “genes” are defined. A gene is an atomic pattern used for matching.

We use the following list:

Gene1= #E in sequence

Gene2= #(E*(A or B)) in sequence

Gene3= #H in sequence

Gene4= #(H*D) in sequence

where #(’sub-pattern’) is the number of the sub-patterns ’sub-pattern’ in a sequence,

with * representing one arbitrary label or no label at all. For example, #(E*(A or B)) is

the number of sub-patterns that are two or three labels long, and that begin with E and

end with A or B. The genes are used to map a sequence such as l1 to an intermediate
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representation that gives the values of the different genes in one data set. For example,

l1 is mapped to an antigen that consists of the following four genes:

l2 =
(

3 2 7 6
)

The genes are so defined that, in the case of normal behavior, the values of different

genes are correlated to each other for some pairs of the genes. Some of the pairs lose the

correlation if they represent misbehavior. This enables differentiation between normal

behavior and misbehavior in the space of all antigens, and enables the detectors that

cover misbehavior but not normal behavior to be created.

Finally, a gene value is encoded on 10 bits as follows. The range of a gene values

that are below some threshold value is uniformly divided on 10 intervals. The position

of the interval to which the gene value belongs gives the position of the bit that is set

to 1 for the gene in the final representation. The threshold is expected to be reached or

exceeded rarely. The values above the threshold are encoded as if they belong to the

last interval. Other bits are set to 0. For example, if the threshold value for all the four

defined genes is equal to 20, l2 is mapped to the final antigen format:

l3 =
(

0000000010 0000000010 0000001000 0000001000
)

There is one antigen such as l3 every ∆t seconds, for every monitored node, during the

activity time of the monitored node.

4.2 Clustering

Assume we have collected n antigens for the monitored node. Let Mn be the number of

antigens (among n) that are matched by detectors. Let θmax be a bound on the proba-

bility of false-positive matching (matching a self antigen) that we are willing to accept,

i.e. the antigens of well-behaving nodes are matched by detectors with a probability

that is less or equal than θmax. We determine a good value by pilot simulation runs

(θmax = 0.06). Let α (=0.001 by default) be the false-positive detection that we target.

We detect the monitored node (classify it as misbehaving) if

Mn

n
> θmax(1 +

ξ(α)√
n

√

1 − θmax

θmax

) (1)

where ξ(α) is the (1−α)-quantile of the normal distribution (for example, ξ(0.0001) =
3.72). As long as Equation (1) is not true, the node is classified as well-behaving. With

default parameter values, the condition is Mn

n
> 0.06 + 0.88

√

n
. The derivation of Equa-

tion (1) is given in the Appendix A.

5 Performance Analysis

5.1 Analyzed Factors and Experiments

We analyze the effects of turning on/off complete components of the system on its

performance metrics defined in the next section. Concretely, we analyze the effects of:
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(1) substitution of the preliminary learning phase in a protected environment by the

virtual thymus, in case of stationary normal behavior; protected environment means

that misbehavior is absent from the network; (2) use of the danger signal for detection

control; (3) use of memory detectors; (4) substitution of the preliminary learning phase

in the protected environment by the virtual thymus, in the case of normal behavior

that changes with time. The changing self is implemented by increasing the amount of

the data generated by the nodes at the middle of the simulation (after 30 minutes of

simulated time).

Clustering is used in all the experiments, as we already have shown its advantage

over simple matching in [2].

The values of the system parameters used in the simulation are given in Table 1. The

same default values are used in all the experiments. We have found the default values

by pilot runs. To learn about the parameters, study the pseudo code of the AIS building

blocks (Appendix B) and how the AIS works (Section 3.2).

Table 1. AIS Parameters

Parameter Default Value

AntigenCollectionTime 10 s

DelayBufferSizeMax 1200

AntigenTowardsVTMin 70 s

StoringTimeDS 11 s

AntigPresentTimeVT 250 s

MaxNumberOfAntigensVT 1200

MaxNumberNaive 1000

MaxNaiveTime 500 s

ThresholdCS 20

ProbaPerBit 0.08

MemoryGroupingParameter 1

MemoryTestTriger 15

NumberOfTestSetsMax 30

MemoryDetTestSize 20

MemoryConfidenceMax 0.5

DetByMemoryTimeWindow 18 s

DetByNaiveTimeWindow 40 s

ThetaMemory 0.01

AlphaMemory 0.0001

ThetaNaive 0.06

AlphaNaive 0.0001

5.2 Performance Metrics

The metrics we use are: (1) time until detection of a misbehaving node; (2) true-positive

detection, in form of the distribution of the number of nodes which detect a misbehaving

node; (3) false-positive detection, in form of the distribution of the number of nodes
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which detect a well-behaving node. The metrics are chosen from a reputation system

perspective; we see the use of a reputation system [9] as a way to add a reactive part to

our AIS.

5.3 Simulation: General Settings and Assumptions

The simulation is done in Glomosim network simulator [22]. There are 40 nodes in the

simulation, of which 5-20 nodes are misbehaving. Mobility is the random way point,

speed is 1m/s, without pauses. The simulation area is 800x1000 m, and the radio range

is 355 m. A misbehaving node exhibits both types of misbehavior: 1) it does not for-

ward data packets or 2) it does not answer or forward route request messages; when a

misbehaving node has a chance to misbehave, it does it with certain probability (0.6 by

default), that is also a parameter.

Note that the clustering rule given by Equation (1) holds for an infinite time simu-

lation, in which every misbehaving node is eventually detected after a long time (zero

false negatives) buy every other node in the network (because of the finite simulation

area and RWP mobility). When we stop the simulation, for every encountered and not

yet detected misbehaving node we count one false negative.

5.4 Simulation Results

All the results are average values of 20 runs, with 90 % confidence intervals for the

mean values.
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Fig. 5. Use of the preliminary learning phase: (a) time until detection, (b) correct detections and

(c) misdetections.
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Fig. 6. Use of the virtual thymus instead of the preliminary learning phase: (a) time until detec-

tion, (b) correct detections and (c) misdetections.
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Fig. 7. Use of the danger signal for detection decision making: (a) time until detection, (b) correct

detections and (c) misdetections.
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Fig. 8. Use of memory detectors: (a) time until detection, (b) correct detections and (c) misdetec-

tions.
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Fig. 9. Virtual thymus versus preliminary learning phase, the effect of change of normal behavior

during the use of the AIS: (a) time until detection, (b) misdetections: preliminary learning phase,

(c) misdetections: virtual thymus.

Virtual thymus versus preliminary learning phase in the protected environment:

From the Figures 5 and 6 we see that the preliminary learning phase can be substi-

tuted by the virtual thymus. Time until detection and the false positives are similar in

both cases, while the false negatives are slightly worse in the case with the virtual thy-

mus. This result proves that VT enables the system to learn the protected system self

instead of using provided self examples.

The danger signal used for detection control has a large impact in decreasing false

positives (Figures 7(c) and 8(c)).

The use of the memory detectors significantly decreases the time until detection

(Figure 8(a)), and also improves true-positive detection (Figures 7(b) and 8(b)). Such

impact of the memory is already shown in the related literature [13, 2]. In our case it

is the direct consequence of the lower value of the clustering parameter Θmax used for

memory detectors (compared to the naive detectors).
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Better response to evolving self: From Figure 9 we see that the VT outperforms the

solution with the preliminary learning phase in the case of self that has changed during

the simulation. For the preliminary learning phase solution, false positive probability

increased substantially and become larger then for the VT solution, when the stable

normal behavior is substituted by the normal behavior that changes in the middle of the

simulation. The reason is that with the preliminary learning phase the initial set of self

examples is continued to be used for the negative selection after the self has changed.

With VT, examples of new self are learned after the changing point, which directly

impacts the false positives.

6 Conclusions

From our results we conclude that the examined mechanisms: the virtual thymus, the

clustering, the danger signal and the use of memory detectors can be successfully ap-

plied to our problem.

The use of the “virtual thymus” brings two qualitative advantages compared to the

standard AIS: (1) it eliminates the need for the preliminary learning phase in the pro-

tected environment, i.e., enables use of the AIS in applications for which a protected

environment is not possible; (2) it provides the AIS with the ability to learn self that

can change with time; this provides smaller false positives comparing to the case with

preliminary training phase, as shown in our experiment (in which self changes in the

middle of the simulation).

Clustering achieves low false positives by increasing the time until detection, but

this price is paid only when a misbehavior is experienced for the first time. The later

encounters are solved faster by the memory detectors that require less clustering.

We find a simple danger signal in our system, and show how it is useful in control-

ling detection decisions (decrease of false positives). We also show the use of the DS to

implement the VT (the central component of our solution).

7 Discussion and Future Work

We expect that the combination of the four concepts bring some additional advantages

that have not been analyzed by the simulation.

As explained in Section 3.2, in cases of not previously seen self, the self-learning

ability of the virtual thymus should improve robustness of the self-tolerance to the

wrong danger signals, compared to the thymus with the predefined self examples col-

lected in the preliminary learning phase. This feature is especially important in appli-

cations in which a reliable danger signal is difficult to provide (this is the case with our

system, see Section 3.2). The effect of wrong danger signals caused by misbehaving

nodes and impact of the VT on this effect are not experimentally evaluated here, and

it remains as future work. But we should mention that even though wrong DSs (both

missing and incorrect) are inherently present (they are not intentionally generated) in

our system, the AIS still works well.

We have defined the genes manually, in the design phase. It is possible to automate

this process by calculating the correlations of automatically generated gene-candidate
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pairs on an observed self behavior. Gene candidates can also be formed automatically

from the set of observable protocol events. Our solution for collecting self behavior

examples in an unprotected environment makes this method more promising.

As future work, we also plan to implement the automatic generating of genes, and

to better analyze the impact of joint and separate uses of the concepts used in this paper.

More detailed experimental analysis is needed to evaluate separately the effects of aging

and DS used in the VT on the AIS learning ability and dynamics. We also plan to test

the set of algorithms used in our AIS on a standard data set, for example on the data

set used in [12–14], and especially evaluate impact of VT and its parameters on the

learning ability of the algorithms set.
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A Derivation of Equation (1)

We model the outcome of the behavior of a node as a random generator, such that with

unknown but fixed probability θ a data set is interpreted as suspicious. We assume the

outcome of this fictitious generator is iid. We use a classical hypothesis framework.

The null hypothesis is θ ≤ θmax, i.e., the node behaves well. The maximum likelihood

ratio test has a rejection region of the form {Mn > K(n)} for some function K(n). The

function K(n) is found by the type-I error probability condition: P{Mn > K(n)}|θ) ≤
α, for all θ ≤ θmax, thus the best K(n) is obtained by solving the equation

P({Mn > K(n)}|θmax) = α

The distribution of Mn is binomial, which is well approximated by a normal distribution

with mean µ = nθ and variance nθ(1 − θ). After some algebra this gives K(n) =√
nξ

√

θmax(1 − θmax) + nθmax, from which Equation (1) derives immediately.
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B Pseudo Code of The Six AIS Building Blocks

//All the blocks execute in parallel

//In our case, this is implemented using continues-time event based simulation

//Every Send() has a corresponding Receive() in another block(s)

// Mapping block

Initialize the variables;

set timerMB=0;

While (TRUE){

if (timerMB<AntigenCollectingTime){

Update list of the neighbors (i.e. the nodes within the radio range);

Collect observed protocol events for every neighbor separately;

}else{

Transform the collected events into antigens;

Send antigens towards Virtual Thymus,i.e. into the Delay Buffer;

Send antigens to Clustering Block;

timerMB=0;

}//end if else

}//end while

// Danger Signal (DS) block

Initialize the variables;

While (TRUE){

Receive DS from other nodes that you overhear and store it;

if (experienced own packet loss){

Generate a DS and store it;

Send the danger signal over the route on which the loss happen;

}//end if

Delete stored DSs older then StoringTimeDS;

}//end while

// Bone Marrow block

isThereProdced=0;

While (TRUE){

if (!isThereProduced){

Produce a new random detector;

isThereProduced=1;

}//end if

}//end while

// Virtual Thymus (VT) block

Initialize the constants;

phaseVT=Initial;

numberOfImmatureDetectors=0;

ReserveDelayBufferSpace(DelayBufferSizeMax);

While (TRUE){

Accept the antigen into the Delay Buffer if room, otherwise drop it(){

if (there is a free space in the buffer) accept the antigen;

else if (the oldest antigen is delayed>AntigenTowardsVTMin)replace the oldest one;

else drop the antigen;

}//end Accept...()

Drop antigens from the Buffer if delayed more then AntigPresentTimeVT;

Drop antigens from the buffer if correlated with currently stored DSs;

if (phaseVT==Stationary){

Delete the antigens from the VT that are presented longer then AntigPresentTimeVT(){

do not delete more then currentNumberOfAntigensInDelayBuffer;

delete the oldest ones;

}//end Delete...()

while (numberOfAntigensInVT<MaxNumberOfAntigensVT){

Take the youngest enough delayed antigen from the the Delay Buffer, if any;

if (the antigen is not correlated with stored DSs){

Put the antigen into VT.

}else{
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Delete the antigen;

}//end if else

}//end while

while (numberOfNaiveDetectorsCS<MaxNumberNaive){

Receive new immature detector;

Negatively select new immature detector into naive;

if (not deleted) move naive detector into Clonal Selection block;

}//end while

}else{

while(numberOfImmatureDetectors<MaxNumberNaive){

Receive new immature detector;

}//end while

while (numberOfAntigensInVT<MaxNumberOfAntigensVT){

Take the youngest enough delayed antigen from the the Delay Buffer, if any;

if (the antigen is not correlated with stored DSs){

Put the antigen into VT.

}else{

Delete the antigen;

}//end if else

Negatively select the immature detectors in the thymus by new antigen;

while(numberOfImmatureDetectors<MaxNumberNaive){

Receive new immature detector;

Negatively select new immature detector with antigens in VT if any;

}//end while

if (numberOfAntigensInVT==MaxNumberOfAntigensVT){

PhaseVT=stationary;

Change state of immature detectors into naive;

Move naive detectors into Clonal Selection block;

while (numberOfNaiveDetectorsCS<MaxNumberNaive){

Receive new immature detector;

Negatively select new immature detector into naive one;

if (not deleted) move naive detector into Clonal Selection block;

}//end while

}//end if

}//end while

}//end if else

}//end while

// Clonal Selection block

Initialize the variables;

numberOfNaiveDetectorsCS=0;

While (TRUE){

///create naive detectors, do clonal selection, promote naive to memory

Delete naive detectors older then MaxNaiveTime;

Receive next matching event info for innate detectors, from Clustering block;

if (matchingEventIsReceived){

if (the matching is costimulated by DS){

score(corresponding naive detector)++;

if (score(corresponding naive detector)>TresholdCS){

score(corresponding naive detector)=0;

Make a copy of the detector;

Promote the detector into a memory detector;

Decide which one of the old memory detectors to delete(){

find set S of those that can detect last MemoryGroupingParameter ...

... antigens detected by the new detector before it became memory

if (the set S is not empty) {

from the set S, choose the one that is not used for ...

... the longest time;

}else{

from all old detectors, choose one that is not used for ...

... the longest time;

}//end if else

}// end Decide...()

Delete the chosen old memory detector;

Do randomly-flip-bits hypermutation for the detector copy (ProbaPerBit);

}//end if

}//end if
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matchingEventIsReceived=0;

}//end if

///test memory detectors

Receive next matching event info for memory detectors, from Clustering block;

if (the detector is not under testing){

if (DS is missing for the matching){

increase missingDSsCounter(the detector);

if (missingDSsCounter(the detector)== MemoryTestTrigger){

put the detector under testing;

}//end if

}//end if

}else{

// the detector is under testing

//for this detector next matches, form sets of mutually similar antigens

//first element of a set has a missing DS, other elements are similar to the first one

if (the DS is missing and testing sets are not formed){

form a testing set and put this antigen in it as a first element;

}else if (the antigen is different from a set first element in not more then one bit){

add the antigen to the set;

}else if (number of the sets formed<NumberOfTestSetsMax){

form a new testing set and put this antigen in it as a first element;

}//end if else

//testing a set corresponds to testing of the detector if it is probably self reactive

if (a test set length==MemoryDetTestSize){

if (more then MemoryDetConfidence \% of the set elements is missing DS){

delete this detector and all its test sets;

}//end if

}//end if

if (number of tested sets==NumberOfTestSetsMax/2){

stop testing this detector and delete all its testing sets;

}//end if

}//end if else

}//end while

// Clustering block

Initialize the variables;

While (TRUE){

Receive new antigen from the Mapping block;

Match antigen by memory detectors;

Store the matches within the time window DetByMemoryTimeWindow;

Apply clustering for matches by memory detectors(TetaMemory, AlfaMemory);

Match antigen by naive detectors;

Evaluate is there is a DS that costimulates the matching;

Store the matches within the time window DetByNaiveTimeWindow;

Apply clustering for costimulated matches by naive detectors(TetaNaive, AlfaNaive);

}//end while


