
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

An Artificial Immune System Heuristic for
Generating Short Addition Chains

Nareli Cruz-Cortés, Francisco Rodríguez-Henríquez, Member, IEEE, and
Carlos A. Coello Coello, Senior Member, IEEE

Abstract—This paper deals with the optimal computation of
finite field exponentiation, which is a well-studied problem with
many important applications in the areas of error-correcting codes
and cryptography. It has been shown that the optimal computation
of finite field exponentiation is a problem which is closely related to
finding a suitable addition chain with the shortest possible length.
However, it is also known that obtaining the shortest addition
chain for a given arbitrary exponent is an NP-hard problem. As
a consequence, heuristics are an obvious choice to compute field
exponentiation with a semi-optimal number of underlying arith-
metic operations. In this paper, we propose the use of an artificial
immune system to tackle this problem. Particularly, we study the
problem of finding both the shortest addition chains for exponents

with moderate size (i.e., with a length of less than 20 bits),
and for the huge exponents typically adopted in cryptographic
applications, (i.e., in the range from 128 to 2048 bits).

Index Terms—Artificial immune systems (AIS), cryptography,
heuristics, shortest addition chains.

I. INTRODUCTION

F
IELD OR MODULAR exponentiation is heavily utilized
in several major public-key cryptosystems such as RSA,

Diffie–Hellman and DSA [4], [24]. For instance, the RSA
encryption/decryption scheme is based on the computation of

, where is a fixed number, is an arbitrarily
chosen numeric message and is the product of two
large primes , . Additionally, modular exponentiation is also
used in computational number theory including applications on
integer prime testing, integer factorization, field multiplicative
inverse computation, etc.

A finite field or Galois field (so named after Evariste Galois)
is a set having finitely many elements in which the usual arith-
metic operations (addition, subtraction, multiplication, division
by nonzero elements) are well defined. Moreover, all usual al-
gebraic laws, namely, commutative, associative and distributive
laws, hold [24]. The order of a finite field is defined as the
number of elements that it contains. Typical modern crypto-
graphic applications utilize finite fields with a size of as much
as or more field elements [32].

Manuscript received April 22, 2005; revised October 15, 2005 and January 9,
2006. The work of N. Cruz-Cortés was supported by Project SIP-IPN 20072170.
The work of F. Rodríguez-Henríquez was supported in part by CONACyT under
Project 45306-Y. The work of C.A. Coello Coello was supported in part by
CONACyT under Project 45683-Y.

N. Cruz-Cortés is with the Center for Computing Research, National Poly-
technic Institute, México (e-mail: nareli@cic.ipn.mx).

F. Rodríguez-Henríquez and C. A. Coello Coello are with CINVESTAV-IPN,
Departamento de Computación, México (e-mail: francisco@cs.cinvestav.mx;
ccoello@cs.cinvestav.mx)

Digital Object Identifier 10.1109/TEVC.2007.906082

If , with a prime, then the set of integers modulo ,
form a prime finite field, denoted as . In a prime
finite field, any arbitrary element is simply an integer
in the range . In order to guarantee
that any arithmetic operation within this field will result in an
integer within that range, operations are computed by taking the
remainder on integer division by . As a simple example of a
prime finite field consider . That field has a total
of 17 elements corresponding to the integers in the range [0,
16]. For instance, given the field elements and ,
their addition and multiplication can be
computed as and

, respectively.
On the other hand, by setting with a positive integer,

a binary finite field denoted as is obtained. A binary fi-
nite field can be constructed by finding a monic irreducible poly-
nomial of degree

with coefficients for . The
elements of a binary finite field are the set of all polynomials

with degree such that,
with coefficients for .

In an analog way to prime finite fields, all arithmetic opera-
tions are computed by taking the remainder on polynomial di-
vision by . As a simple example consider the binary fi-
nite field constructed using the irreducible polynomial

. Then, the field elements are
. For instance, given

the field elements and , their addi-
tion and multiplication can be computed
as
and .

Since both prime and binary finite fields form a group with
respect to the addition and multiplication operations, the result
of adding or multiplying any two arbitrary field elements will
always be an element in the field.

Field exponentiation can be defined in terms of field multipli-
cation as follows. Let be an arbitrary element of a finite field

. Also, let be defined as an arbitrary positive in-
teger. Then, field exponentiation of an element raised to the
power is defined as the problem of finding an element
such that

(1)

where is either a large prime (in the case of prime finite fields)
or an irreducible polynomial (in the case of binary finite fields).

Taking advantage of the linearity property of the modular op-
eration, (1) can be evaluated by performing a reduction modulo

1089-778X/$25.00 © 2007 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

at each step of the exponentiation, thus guaranteeing that all

the partial results will not grow larger than twice the length of

the modulus . In the rest of this paper, we will consider that

every multiplication operation always includes a subsequent re-

duction step.

In general, one can follow two strategies in order to optimize

the computation of (1). One approach is to implement field mul-

tiplication, the main building block required for field exponen-

tiation, as efficiently as possible. The other is to reduce the total

number of multiplications needed to compute (1). In this paper,

we address the latter approach, assuming that arbitrary choices

of the base element are allowed but considering that the ex-

ponent has been previously fixed.

A large number of field exponentiation algorithms have been

reported. Known strategies include: binary, -ary, adaptive

-ary, power tree, and the factor method, to mention just a few

[5]–[7], [9], [20], [26]–[30], [32], [37], [40]. Those algorithms

all have in common the fact that they strive to keep the number

of required field multiplications as low as possible through the

usage of a particular heuristic. However, none of those strate-

gies can be considered to yield an optimal solution for every

possible field size. Obviously, the larger the size of the field

utilized the harder the problem of optimizing the computation

of the field exponentiation.

On the other hand, all the aforementioned methods can be

mathematically rephrased by using the concept of addition

chains. Indeed, taking advantage of the fact that the exponents

are additive, the problem of computing powers of the base

element , can be directly translated to an addition calculation.

The concept of an addition chain for a given exponent can be

informally defined as follows.

An addition chain for of length is a sequence of positive

integers, such that for each ,

for some and with .

An addition chain dictates the correct sequence of multiplica-

tions required for performing an exponentiation. Hence, if is

an addition chain that computes as mentioned above, then for

any , we can find by successively computing:

.

For instance, the addition chain (1,2,3,5,10,20,23,46,47)

leads to the following scheme for the computation of

An addition sequence is a generalization of an addition chain

where not just one but several positive integers

must be included in the given sequence.

Let be the shortest length of any valid addition chain

for a given positive integer . Then, the theoretical minimum

number of field multiplications required for computing the

field exponentiation of (1) is precisely . Unfortunately, the

problem of determining an addition chain for with the shortest

length is an NP-hard problem [32]. Therefore, we have no

option but to use some kind of heuristic strategy in order to

find an optimal addition chain when dealing with sufficiently

large exponents .

Generally speaking, a heuristic strategy tries to find in a

reasonable time near-optimal results for hard optimization

problems, i.e., those problems having huge search spaces. A

heuristic method offers no guarantee on the quality of the solu-

tions (if any) to be found. However, it can operate under nearly

every possible set of restrictions. Typically, a heuristic method

starts from a nonoptimal solution population and iteration after

iteration improves its findings until a reasonable and/or valid

solution can be achieved. The gradual improvement on the

partial results is done using either deterministic or probabilistic

search criteria. Given a fixed set of initial conditions, the

optimized solutions obtained by a deterministic heuristic will

remain unchanged from run to run. On the contrary, repeated

executions of a probabilistic heuristic may produce different

final solutions.

There has been an enormous amount of literature reporting

deterministic heuristics methods for finding short addition

chains on large exponents. Some examples are the aforemen-

tioned binary algorithm and its generalization, the window

method, the run-length and hybrid method, and so on [20],

[26], [27], [30], [37], [38].

On the other hand, relatively few probabilistic heuristics have

been reported so far for finding near-optimal addition chains

[6], [9], [33]. In [33], a genetic algorithm search engine was

proposed for solving this optimization problem but the authors’
strategy was only tested for exponents that are too small (9 bits

or less) to be considered practical in serious applications. In

[9], the use of an artificial immune system (AIS) was proposed

as a probabilistic heuristic for finding minimal-length addition

chains. Those optimal addition chains were then used for com-

puting multiplicative inverses on binary extension fields.

In [6], an algorithm for obtaining short addition chains on

512-bit exponents was presented. That algorithm was divided

into two parts: In the first phase, the computation of an addi-

tion chain for a large exponent was reduced to the compu-

tation of an addition sequence composed by a set of integers

(called windows), that are significantly smaller than . Then,

in the second phase, an addition sequence for those windows

is produced. Four different search criteria were used in order

to minimize the length of the addition sequences so produced.

Although authors in [6] reported good experimental results, the

exact method of deciding which search criterion should be used

was left open (in fact, the authors mentioned that they unsuc-

cessfully tried the simulated annealing technique).

In this paper, we propose the usage of a probabilistic heuristic

based on an AIS search engine for finding short addition chains

when dealing with very large exponents. We discuss the ratio-

nale behind the algorithm presented, and we compare its per-

formance against well-known deterministic strategies using rel-

atively small exponents, i.e., exponents with bit length less

than 12 bits. Since for those small exponents exact optimal addi-

tion chains are known (obtained by means of exhaustive search),

we can find out the precise quality of the solutions obtained by

our approach. Furthermore, we present a detailed description

of how our proposed strategy can be extended for larger expo-

nents (up to 30 bits) and for very large exponents with bit

length well in the range of cryptographic applications, i.e.,

.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CRUZ-CORTÉS et al.: AN ARTIFICIAL IMMUNE SYSTEM HEURISTIC FOR GENERATING SHORT ADDITION CHAINS 3

In the case of large exponents, we incorporate our AIS

strategy to both phases of the algorithm presented in [6]. First,

the combination of the sliding window strategy together with

an AIS heuristic is utilized for efficiently partitioning a given

large exponent into smaller windows. Afterwards, an AIS

search engine is utilized for grouping the obtained windows

into a single addition sequence. Although, in general, optimal

solutions on this range are unknown, we provide a comparison

of our experimental results against the ones reported by known

deterministic approaches.

The rest of this paper is organized as follows. In Section II, we

present a brief review of several relevant deterministic heuris-

tics proposed in the specialized literature for computing field

exponentiation. Section III describes the framework of the prob-

abilistic heuristic approach presented in this paper, which is

based on the concepts of window partitioning and addition se-

quences. In Section IV, the proposed AIS heuristic together

with its problem representation is explained. In Section V, we

describe the proposed algorithm including two design exam-

ples; one for a small exponent and another for a large 128-bit

exponent. Section VI presents several experiments and statis-

tical tests performed on the proposed AIS heuristic method. In

Section VII, two code-theory applications of the AIS method

are described. Finally, in Section VIII, some concluding remarks

and possible paths for future research are drawn.

II. DETERMINISTIC HEURISTICS FOR FIELD EXPONENTIATION

In this section, we include a brief review of the main deter-

ministic heuristic proposed in the literature for computing field

exponentiation.

A. Binary Strategies

Let be an arbitrary -bit positive integer , with a binary

expansion representation given as,

. Then

(2)

Binary strategies evaluate (2) by scanning the bits of the expo-

nent one by one, either from left to right (MSB-first binary

algorithm) or from right to left (LSB-first binary algorithm) ap-

plying the so-called Horner’s rule.1 Both strategies require a

total of iterations. At each iteration, a squaring opera-

tion is performed, and if the value of the scanned bit is one, a

subsequent field multiplication is performed. Therefore, the bi-

nary strategy requires a total of squarings and

field multiplications, where is the Hamming weight of the

binary representation of . The pseudocode of the MSB-first and

1Horner’s rule, named after W. G. Horner, ranks among the most efficient
algorithms for the computation of nth degree polynomials of the form, p(x) =
p x + p x � 1 + � � �+ p x+ u , p 6= 0, for fixed values of x.

Horner’s rule solves this problem by evaluating p(x) as, p(x) = (. . . (p x+
p)x + � � �)x + p .

This elegant algorithm was discovered independently by Isaac Newton 150
years earlier than Horner and by the Chinese mathematician C. C. Chao in the
13th century [26].

Fig. 1. MSB—first binary exponentiation.

Fig. 2. LSB—first binary exponentiation.

the LSB-first binary algorithms are shown in Figs. 1 and 2, re-

spectively. The computational complexity of the algorithm in

Fig. 1 is given as

(3)

An Example: Let us define .

Then, and . According to (3). the computa-

tional complexity of the binary algorithm is given as

After evaluating the algorithm of Fig. 1, the resulting binary

sequence is given as

B. Window Strategies

The binary method discussed in the preceding section can be

generalized by scanning more than one bit at a time. Hence,

the window method (first described in [26]) scans bits at a

time. The window method is based on a -ary expansion of

the exponent, where the bits of the exponent are divided into

-bit words or digits. The resulting words of are then scanned

performing consecutive squarings and a subsequent multi-

plication as needed. In the following, we describe the window

method in a more formal way.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Fig. 3. MSB—first 2 -ary exponentiation.

Let be an arbitrary -bit positive integer , with a binary

expansion representation given as

Let be a small divisor of . Then, this binary expansion of

can be partitioned into words of length , such that .

If does not divide , then the exponent must be padded with

at most zeros. Let us define as

(4)

Then, we can equivalently represent as, .

Using the above definition, we have

(5)

Equation (5) is the basis of the window MSB-first procedure

for exponentiation described in the pseudocode of Fig. 3. The

window method first precomputes the values of for

. Then, the exponent is scanned bits at

a time from the most significant word to the least sig-

nificant word . At each iteration, the current partial result

is raised to the power and multiplied with , where is

the current nonzero word being processed. Referring to Fig. 3,

it can be seen that:

• The first part of the algorithm consists of the precomputa-

tion of the first powers of at a cost of prepro-

cessing multiplications.

• At each iteration of the main loop, the power can

be computed by performing consecutive squarings. The

total number of squarings is given by .

• At each iteration, one multiplication is performed when-

ever the th word is different than zero. Since all but

one of the different values of are nonzero, the av-

erage number of required multiplications is given as

Thus, the average number of multiplications needed by the

window method in order to compute an -bit field exponenti-

ation is given as

(6)

For , 2, 3, 4, the window method sketched at Fig. 3 is

called, respectively, binary, quaternary, octary, and hexa MSB-

first exponentiation method. In particular, note that by evalu-

ating (6) for , the average number of multiplications for

the binary algorithm can be found as field oper-

ations on average.

One obvious improvement of the strategy just outlined is that

instead of calculating and storing all the first powers of , one

can just precompute the windows needed for a given exponent

, thus saving some operations. This last idea is illustrated in the

examples below.

Example: Once again, let us consider the exponent

with . Then, the

window method computational complexity and resulting se-

quence using , 3, 4 can be found as follows.

Quaternary:

.

Precomp. sequence: .

Main sequence:

Octal:

.

Precomp. sequence: .

Main sequence:

Hexa:

.

Precomp. sequence:

.

Main sequence:

However, none of the above deterministic methods is able to

find the shortest addition chain for . In Section V-A,

we will retake this example showing that the exponentiation for

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CRUZ-CORTÉS et al.: AN ARTIFICIAL IMMUNE SYSTEM HEURISTIC FOR GENERATING SHORT ADDITION CHAINS 5

Fig. 4. Partitioning algorithm.

this example can be done using a sequence consisting of only

15 multiplication steps.

C. Adaptive Window Strategy

The adaptive or sliding window strategy is quite useful for

exponentiations with extremely large exponents (i.e., exponents

with bit length greater than 128 bits) mainly because of its

ability to adjust its method of computation according to the spe-

cific form of the exponent at hand. This adjustment is done by

partitioning the input exponent into a series of variable-length

zero and nonzero words called windows. As opposed to the

traditional window method discussed in the previous section,

the sliding window algorithm provides a performance tradeoff

in the sense that allows the processing of variable-length zero

and nonzero digits. The main goal pursued by this strategy is

to try to maximize the number and length of zero words, while

using relatively large values of .

A sliding window exponentiation algorithm is typically di-

vided into two phases: exponent partitioning and the field expo-

nentiation computation itself. In the first phase, the exponent

is decomposed into zero and nonzero words (windows) of

length by using some partitioning strategy. Although, in

general, it is not required that the window’s lengths must

all be equal, all nonzero windows should have a length

smaller than a given number . Let be the number of zero

windows and be the number of nonzero windows, so that

their addition represents the total number of windows gener-

ated by the partitioning phase, i.e.,

(7)

It is useful to force the least significant bit of a nonzero

window to be equal to 1. In this way, when comparing with

the standard window method discussed in the previous section,

the number of preprocessing multiplications are at least nearly

halved, since must only be precomputed for odd.

Several sliding window partitioning approaches have been

proposed [6], [7], [20], [26], [27], [30]. Proposed techniques

differ in whether the length of a nonzero window has to have

a constant or a variable length. The partitioning algorithm in-

strumented in this work scans the exponent from the most sig-

nificant to the least significant bit according to the finite-state

machine shown in Fig. 4. Hence, at any moment, the algorithm

is either completing a zero window or a nonzero window. Zero

Fig. 5. Sliding window exponentiation.

windows are allowed to have an arbitrary length. However, the

maximum length of any given nonzero window should not ex-

ceed the value of bits.

Starting from the zero window state (ZWS), the exponent bits

are checked one by one. As long as the value of the current

scanned bit is zero, the algorithm stays in ZWS accumulating as

many consecutive zeros as possible. If the incoming bit is one,

the finite-state machine switches to the nonzero window state

(NZWS). The automaton will stay there as long as consecu-

tive zeros had not been collected. If this condition occurs, the

automaton switches to ZWS (usually, is chosen to be a small

number, namely,). Otherwise, if bits can been col-

lected, the partitioning algorithm stores the new formed nonzero

window and stays in NZWS in order to generate another NZ

window.

The pseudocode for the sliding window exponentiation algo-

rithm is shown in Fig. 5. From that figure, it can be seen that:

• The first part of the algorithm consists on the precomputa-

tion of at most the first odd powers of at a cost of no

more than preprocessing multiplications.

• At step 2, the exponent is partitioned using the strategy

described above and depicted in Fig. 4. As a consequence,

a total of zero windows and windows will be pro-

duced.

• At step 3, is initialized using the value of the most signif-

icant window (MSW) as . It is always assumed

that .

• At each iteration of the main loop, the power can

be computed by performing consecutive squarings.

The total number of squarings is given by .

• At each iteration, one multiplication is performed when-

ever the th word is different than zero. Recall that

represents the number of nonzero windows. Therefore, the

number of multiplications required at this step of this al-

gorithm is . Although the exact value of will

depend on the partitioning strategy instrumented, our ex-

periments show that an approximate value for using

, , is about 0.15 m.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Thus, we find that the average number of multiplications needed

to compute a field exponentiation for an -bit exponent is

given as

(8)

Due to the considerable high efficiency of the partitioning

strategy for collecting zero words, the sliding window method

significantly outperforms the standard window method when

sufficiently large exponents are computed [27]. However, notice

that the value of the parameter cannot be too large due to the

exponentially increasing cost of precomputing the first odd

powers of (step 1 of Fig. 5). In practice and depending on the

value of , is generally adopted.

III. ADDITION SEQUENCE HEURISTIC FOR

FIELD EXPONENTIATION

As previously mentioned, the major drawback of the sliding

window method outlined in the last section is the high com-

putational cost of increasing the value of . This difficulty

can be alleviated by using the concept of addition sequences,

which is the main subject to be addressed in this section. We

first give formal definitions and theoretical bounds for addition

sequences. Then, we discuss how to produce short addition

sequences. Finally, we introduce the sliding window method

using addition sequences which is the technique adopted in this

work for large exponents.

A. Mathematical Definitions

Definition: Let be an arbitrary positive integer whose binary

expansion is given as , where

. Let represent the Hamming weight of , i.e.,

is the number of ones in the binary expansion

of .

Definition: An addition chain for a positive integer of

length is a sequence of positive integers ,

and an associated sequence of pairs.

with , ,

such that:

• and ;

• for each , , .

The shortest length of any valid addition chain for a given posi-

tive integer is denoted as . Table I lists the set of exponents

which have an optimal addition chain of length , for

.

It is easy to get convinced that the search space for computing

optimal addition chains increments its size rapidly. In fact, there

exist different and valid addition chains with length . Obvi-

ously, the problem of finding the shortest ones becomes more

and more complicated as grows larger. Fig. 6 shows the first

eight levels of the optimal addition chain tree.

Each of the deterministic heuristics outlined in Section II for

the generation of addition chains clearly sets an upper bound on

the function . In particular, the theoretical cost of the binary

algorithm given in (3) implies that . A lower

TABLE I
SET OF EXPONENTS WHICH HAVE AN OPTIMAL ADDITION CHAIN OF LENGTH r

bound for was found in [1] as, .

Therefore, we can write

(9)

Let us suppose that we are interested in finding addition chains

for several exponents of a given fixed bit-length, say, . Then,

as it was shown in [30], is a function of the Hamming

weight . Indeed, one can expect that on average will

be smaller for both, closer to 0 and for closer to

. On the contrary, when is close to , i.e., for those

-bit exponents having a balanced number of zeros and ones,

happens to be maximal [30].

Definition: An addition sequence is a generalization of an

addition chain where not just one but several positive integers

must be included in the given sequence. It

has been shown that the minimal length of an

addition sequence for is upper bounded by [20]

(10)

where is a constant. For example, an addition sequence for

{23, 28, 40, 47} is

(11)

Little is known about addition sequences bounds. However, it

has been shown that finding a minimal length addition sequence

is an NP-hard problem [20]. Some heuristics for generating op-

timal addition sequences are discussed next.

1) Generating Short Addition Sequences: Few heuristic

methods able to generate reasonably short addition sequences

have been reported [6], [34], [39].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CRUZ-CORTÉS et al.: AN ARTIFICIAL IMMUNE SYSTEM HEURISTIC FOR GENERATING SHORT ADDITION CHAINS 7

Fig. 6. Eight-level optimal addition chain tree.

The Bos–Coster method presented in [6], starts by defining

a protosequence consisting of 1,2 together with the requested

integers, i.e.,

. It then transforms this to the required sequence by using a

heuristic composed by the following four methods.

1) Approximation. Let us suppose there are two elements al-

ready in the sequence such that , with

and positive and small. Then, insert .

2) Division. If is divisible by a small prime , then aggre-

gate , in the sequence.

3) Halving. Let us suppose there is a small number

already in the sequence such that, , where

, are both integers. Then, aggregate

in the sequence.

4) Lucas. Aggregate a Lucas sequence such that its last ele-

ment is .

The Bos–Coster method reports good experimental results when

applied to 512-bit exponents, with Hamming weight of about

two-thirds of 512. Nevertheless, the exact method of deciding

which method should be used was left open (in fact, the authors

in [6] mentioned that they unsuccessfully tried the simulated

annealing technique as an optional method).

In this work, we implemented the insertion method (similar to

the Bos–Coster Approximation method) shown in the algorithm

of Fig. 7.

Let us suppose that we want to produce an addition se-

quence for an ordered set of positive integers (windows),

. First, the sets , , and are initial-

ized as shown in steps 2–3 of algorithm in Fig. 7. Notice that Fig. 7. An algorithm for generating short addition sequences.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

TABLE II
AN EXAMPLE OF ADDITION SEQUENCE GENERATION

the set is initialized with the two

largest integers of the input set . Thereafter, the main loop

starts in step 4.

At each iteration, we compute the value in step 5.

Then, we insert into the sequence, thus guaranteeing that

the addition of two sequence elements can produce (namely,

). As a consequence, the integer is added to the output

set (step 6). The set is then updated with the two largest

values among the three candidates: , and (step 7). Fi-

nally, in steps 8–12, if is not already in and if ,

then that element is added to the set without distorting its as-

cending order (procedure Sort_Set in step 9). In the case that

, then the number of elements in kept in the variable

, is decreased by one.

These iterations are repeated until the input set is empty

and, consequently, the output set contains the required addi-

tion sequence.

An Example: Let us suppose that we want to produce an ad-

dition sequence for the following set of ten integers, {3, 5, 7, 11,

15, 23, 25, 43, 93, 147}. Table II describes how the sets , ,

are being updated as the algorithm in Fig. 7 executes. The

final addition sequence produced by our algorithm is then

(12)

The sequence in (12) is a valid addition sequence for the input

set given. Notice that the sequence has a length of 16 elements.

According to our experiments, we found that the length of the

sequences produced by the algorithm in Fig. 7 could be empir-

ically upper bounded as

(13)

which is a slightly better value than the bound given in [6].

B. Sliding Window Method Using Addition Sequences

The pseudocode for the sliding window method using addi-

tion sequences is shown in Fig. 8. We use the same partitioning

Fig. 8. Sliding window exponentiation using addition sequences.

algorithm described in the Section II-C, but taking advantage of

the addition sequence concept, we may now allow much larger

window sizes. Then, referring to Fig. 8, the following steps are

performed.

• At step 1, the exponent is partitioned using the strategy

described in Section II-C (see Fig. 4). As a consequence,

a total of zero windows and nonzero windows will

be produced.

• After having performed the partitioning phase, the next

task of the algorithm consists of the computation of the ad-

dition sequence needed to obtain all the nonzero win-

dows found in the previous phase. This task can be accom-

plished at a cost of preprocessing

multiplications.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CRUZ-CORTÉS et al.: AN ARTIFICIAL IMMUNE SYSTEM HEURISTIC FOR GENERATING SHORT ADDITION CHAINS 9

• At step 3, is initialized using the value of the MSW as

. Notice that it is always assumed that

.

• At each iteration of the main loop, the power can

be computed by performing consecutive squarings.

The total number of squarings is given as .

• At each iteration, one multiplication is performed when-

ever the th word is different than zero. Recall that

represents the number of nonzero windows. Therefore, the

number of multiplications required at this step of this al-

gorithm is precisely . Although the exact value of

will depend on the partitioning strategy instrumented,

our experiments show that an approximate value for

using , , is about 0.15 m.

Thus, we find that the average number of multiplications

needed to compute field exponentiation for an -bit exponent

is given as

(14)

From (14), it can be seen that one can optimize its computa-

tional cost by carefully selecting the most-significant-window

. This feature will be exploited by the AIS heuristic to be

explained in the next section.

Also, notice that the sliding window method requires, in gen-

eral, the precomputation of the first odd powers of (step 1 of

Fig. 5) at a cost of operations. In contrast, in the case

of (14) that step is substituted by the computation of an addi-

tion sequence at a cost of operations, whose

upper bound is given by (10) and (13).

Moreover, as we will see in the rest of this paper, the usage

of a probabilistic heuristic on the computation of short addition

sequences allows us to use much larger values of the parameter

implying a potential speedup on the computation of the field

exponentiation operation.

IV. ARTIFICIAL IMMUNE SYSTEM (AIS)

AND PROBLEM REPRESENTATION

In this section, we briefly discuss the main aspects that

characterize AISs in general. Furthermore, we explain how the

problem of finding short addition sequences for large exponents

can be represented using an AIS setting.

A. Artificial Immune System (AIS)

The AIS is a relatively new computational intelligence par-

adigm which borrows ideas from the natural immune system

(especially from the one corresponding to mammals) to solve

relatively complex problems. In recent years, AIS has been suc-

cessfully applied for solving problems in different areas such

as computer and network security [2], [17], [22], fault detection

[13], [19], scheduling [23], machine learning [16], [31] and opti-

mization. Reported optimization problems solved by using AIS

systems include multimodal [15], numerical [21], and combina-

torial optimization [10].

From a biological point of view, the human immune system

is a very complex system formed by a large number of cells and

molecules and diverse mechanisms.

Fig. 9. The clonal selection principle of the immune system. Antibody C (the
best affinity) is reproduced by cloning. The new clones will suffer a mutation
process.

Some immunologists argue that one of the main functions of

this system is to protect our bodies from the invasion of external

microorganisms. It is composed of two defense lines: innate

and adaptive immunity. Innate immunity is nonspecific which

means that it is independent of the foreign antigen. The adap-

tive immunity has memory and learning capabilities and it is

antigen-dependent, meaning that each different type of antigen

will provoke a different immune response. The main compo-

nents of the adaptive immunity are the cells called B lympho-

cytes or simply B cells. When B lymphocytes are stimulated by a

specific antigen, they will produce a large number of molecules

called antibodies, which play a major role in the adaptive im-

mune response.

From the information processing perspective, the immune

system is seen as a parallel and distributed adaptive system

[18]. It is capable of learning; it uses memory and it is able

of performing information associative retrieval. Particularly,

it learns how to recognize patterns; it remembers patterns that

have shown up in the past and its global behavior is an emergent

property of many local interactions [12].

As previously mentioned, the immune system is a very com-

plex system (probably its complexity is only comparable to that

of the brain). However, for the sake of simplicity, we will only

use two elements of the immune system in our model, namely,

antigens (foreign microorganisms) and the antibodies (the main

actors of the adaptive immune response).

The algorithm presented in this paper is based on a mecha-

nism called clonal selection principle [8] that explains the way

in which the antibodies eliminate a foreign antigen.2 Such prin-

ciple is explained in the next section.

B. Clonal Selection Principle

Fig. 9 depicts the clonal selection principle, which establishes

the idea that only those antibodies that best match the antigen

are stimulated. These stimulated antibodies are reproduced by

2Partially due to the fact that the immunology community has not yet entirely
understood how the immune system works, the validity of the clonal selection
principle is currently under debate (see, for example, [3] and [35]). However,
in this work, it is shown that designing a heuristic inspired on that immunology
principle appears to be the right choice for the optimization problem at hand.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

cloning and the new clones suffer a mutation process with high

rates (called hypermutation). After this process takes place,

some of the newly created antibodies may increase their affinity

to the foreign antigens. Those clones will increase the chances

of neutralizing and/or eliminating the antigens. Once the for-

eign antigens have been exterminated, the immune system

must return to its normal values, eliminating the exceeding

antibodies cells (auto regulation).

However, some of the best cells remain in the body as memory

cells. Then, in future encounters with the same kind of antigen

(or a similar one), the immune system response will likely be

more effective and efficient. This phenomenon is called sec-

ondary response.

Those antibodies showing lower affinity sometimes undergo

receptor editing: Their low affinity receptors are replaced by

new ones created randomly.

The processes of stimulation and cloning of the fittest anti-

bodies, hypermutation and auto regulation are called the clonal

selection principle. This is an oversimplification of what re-

ally happens in the natural immunity response. However, for

the goals followed by most of the immunity-based artificial sys-

tems, such a simplification seems to be appropriate [15].

Hence, the immune aspects to be taken into account for mod-

eling our algorithm are the following.

1) Stimulation of the higher affinity antibodies with respect to

the antigen.

2) Cloning of the stimulated antibodies.

3) Proliferation rate proportional to antibodies’ affinity.

4) Hypermutation rate inversely proportional to antibodies’
affinity.

5) Receptor editing.

6) Immune memory.

Even this subset of immune mechanisms is still considerably

complex as a large number of cells participate on them. There-

fore, we will emulate these immune mechanisms using a simpli-

fied model of them as described in the remainder of this section.

C. Problem Representation

According to de Castro and Timmis [14], in every AIS, as in

any other computational system with biological inspiration, the

following elements must be defined.

• A representation of the system components.

• Evaluation mechanisms of individuals’ interaction with

their environment and/or with each other. The environ-

ment is usually stimulated by a set of input stimuli, one or

more fitness functions, or by other means.

• Adaptation procedures that govern the dynamics of the

system, i.e., how the system’s behavior varies over time.

According to this framework, the elements of our algorithm

were defined using the following setting.

• A representation of the system components. For the mod-

ular exponentiation problem, we defined two main actors:

an antigen and an antibody population. A foreign antigen is

represented as the exponent that we wish to reach. Anti-

bodies, on the other hand, are represented by the pair ,

where is the addition chain sequence that contains the

arithmetic recipe required for computing the desired goal

(the antigen); and is a positive integer representing the

TABLE III
ANALOGY BETWEEN THE BIOLOGICAL AND THE

AIS DEFINED IN OUR ALGORITHM

length of , i.e., the number of steps needed to achieve the

desired goal. The antibody population represents potential

solutions for the problem in hand.

For instance, if we wish to reach the antigen ,

we may select the antibody composed by the

addition chain sequence

with length . represents a feasible problem solu-

tion, i.e., an antibody with affinity value 16 (although this

solution is not the best possible one, as it will be shown in

the next section).

• Evaluation mechanisms of individuals’ interaction with

their environment and/or with each other. The affinity of a

given antibody with respect to the antigen is, therefore,

equal to the length of its associated addition chain. The

shorter the antibody’s length is the better its associated

affinity.

• Procedures of adaptation that govern the dynamics of the

system: The dynamic of our system is based on the clonal

selection principle.

Table III shows an analogy between some biological immune

system elements on one side, and the way that those elements

were modeled by our algorithm on the other.

V. AIS HEURISTIC FOR FIELD EXPONENTIATION

In this section, we describe the AIS-based heuristic utilized

in this paper for computing the field exponentiation operation.

We first discuss the proposed AIS strategy algorithm. Then, two

design examples that illustrate the algorithm behavior are ex-

plained in detail.

A. The AIS Heuristic

Next, we describe the AIS heuristic adopted in this work,

considering the following aspects: antibody’s construction, the

hypermutation operator, the immune memory mechanism, and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CRUZ-CORTÉS et al.: AN ARTIFICIAL IMMUNE SYSTEM HEURISTIC FOR GENERATING SHORT ADDITION CHAINS 11

Fig. 10. Procedure for repairing a mutilated addition chain.

the clonal selection algorithm. Finally, we present a complexity

analysis of our algorithm.

1) Antibody’s Construction: As explained in the previous

section, in our system, an antibody is modeled by the pair ,

where is a valid addition chain of length for the antigen

. Therefore, we need to define a procedure able to build legal

addition chains so that the system’s antibody population can be

created and mutated.

In order to see how this can be done, consider first the

problem of completing a valid addition chain assuming that an

in-progress (mutilated) addition chain ,

with has been already built. Under this scenario,

one possibility for adding a new element in the chain would

be to use the so-called doubling step [26], which is merely

. Notice that would get the maximum possible

value that can be obtained from the in-progress addi-

tion chain, . However, it might be that

, making illegal the usage of a doubling step. In that

case, one can try instead , which

after the doubling step is the second maximum value that

can achieve from the given chain. However, even in this case, it

is still possible that . If that happens,

one can try , with a randomly chosen integer

such that .

Based on the above considerations,3 we designed the algo-

rithm shown in Fig. 10 as our main mechanism for producing

3That set of rules corresponds to a special class of addition chains known as
star chains [26], [37].

Fig. 11. Algorithm that produces a complete addition chain.

legal addition chains for a given antigen . Indeed, given

the antigen and an in-progress (mutilated) addition chain

, with , the procedure shown

in Fig. 10 produces a complete addition chain able to achieve

in a fixed number of steps. Notice that our procedure utilizes

a uniformly distributed random function .

accepts a parameter , and returns true with

probability or false in other case.

Using the algorithm of Fig. 10 as the main building block,

the procedure of Fig. 11 produces a complete addition chain

(antibody) for the antibody .

2) The Hypermutation Operator: In nature, the hypermuta-

tion operator is inversely proportional to the clones’ affinity, i.e.,

the higher the affinity of a clone, the lower its mutation rate and

vice versa.

Notice that delicate perturbations in an addition chain can

be introduced by placing a mutation point closer to the end of

the addition chain (upper half). On the contrary, if the mutation

point is placed closer to the beginning of the chain (lower half)

the perturbation will be much more noticeable.

Based on this observation, the mutation operator was acting

in a different section of the addition chain depending on the

clone’s affinity value. This way, clones showing high affinity

were mutated in the upper half of the chain only. By contrast,

those clones showing low affinity were mutated in the lower

half of their chains. The algorithm of Fig. 12 shows the strategy

followed for modeling the hypermutation operator.

3) Immune Memory: Previously found addition chains are

stored in memory for future reference. Those solutions could

be useful for future exponents. For instance, if the antigen is an

even exponent , then possibly the addition chain that had been

found for could be useful by aggregating a single doubling

step that doubles the last value of , thus producing (see

steps 19–22 of the algorithm in Fig. 13).

4) The Clonal Selection Algorithm: The clonal selection

algorithm for computing optimal addition chains is shown in

Fig. 13. The parameters introduced in that algorithm are as

follows.

• is the number of antibodies to be created.

• is the number of best antibodies which will be selected

for cloning.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Fig. 12. The hypermutation operator.

• is the quantity of low affinity antibodies that will be

substituted.

• is the total number of iterations.

The above parameters must be defined by the user. However,

based on a statistical study that we conducted, we suggest some

values for them in the next section.

Referring to Fig. 13, the algorithm’s dataflow can be sum-

marized as follows. First in step 1, an initial population of

antibodies for is created. The main loop

of the algorithm starts immediately after (in step 3). In step 4,

the antibodies just created are sorted in ascending order ac-

cording to their affinity values (i.e., their addition chain length).

In step 5, only the best antibodies are selected for cloning. The

surviving individuals are then ranked in ascending order ac-

cording to their chain length (i.e., individuals with shorter chain

lengths are ranked in the first place). The total number of clones

to be created in steps 7–12 was determined according to the cri-

terion suggested in [15]. This way, a total of clones are gen-

erated from those antibodies ranked as the fittest ones. Next, in-

dividuals ranked in second place are allowed to produce a total

of clones, those ranked in third place produce clones,

etc. Therefore, the total number of clones can be bounded as

(15)

where is the total number of clones, is the number of

antibodies in the population, are the selected antibodies (in

general with different lengths) and rounds up its ar-

gument toward the closest integer. Each term of that sum corre-

sponds to the number of clones to be generated for each selected

antibody. If two or more antibodies share the same length, then

the number of clones generated from them would be the same. In

Fig. 13. The clonal selection algorithm.

an extreme scenario, where all the antibody population has the

same length, a total of clones would be produced.

Notice that in step 11 a hypermutation operator is applied to

each clone. As explained, this operator was designed (see algo-

rithm in Fig. 12) so that the perturbation strength is inversely

proportional to the individual’s affinity.

After that, in step 13, the antibodies and clones just produced

are sorted in ascending order. From the ordered set of

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CRUZ-CORTÉS et al.: AN ARTIFICIAL IMMUNE SYSTEM HEURISTIC FOR GENERATING SHORT ADDITION CHAINS 13

original antibodies and modified clones, only the top individ-

uals are selected, while the rest are discarded. Moreover, the

worst antibodies are replaced by brand new ones created through

algorithm in Fig. 11. After updating individuals’ ranking in-

dexes, this process is repeated a predetermined number of iter-

ations. At the end of the main loop, the best individual obtained

is compared against previously computed and stored data (only

in the case that is an even integer).

5) Discussion: We summarize the rationale behind the algo-

rithm of Fig. 13 as follows.

• We start by creating an initial antibody population whose

members are seen as potential solutions. Because of the

stochastic manner in which that antibody population is cre-

ated (see algorithms in Figs. 10 and 11), it is expected that

the antibody population will show a rich diversity of addi-

tion chains.

• We adopt higher cloning rates for those antibodies showing

higher affinity.

• We carefully mutate the individuals assuring that those mu-

tations will produce valid addition chains. Also, the hyper-

mutation operator was designed in such a way that individ-

uals showing high affinity would get relatively small per-

turbations, whereas individuals with low affinity are mu-

tated much more aggressively.

• We favor higher affinity individuals by assuring the

transmission of their information to the next generation

(elitism).

• We periodically introduce brand new antibodies in order

to maintain diversity in the population (thus emulating the

receptor editing process).

• We use the algorithm’s accumulated knowledge by con-

sulting solutions previously found by the algorithm which

were stored in a memory. That memory emulates the im-

mune memory mechanism.

Although our clonal selection algorithm is clearly an over-

simplified version of the real immune system, the aforemen-

tioned immune mechanisms adopted attempt to mimic what ac-

cording to the clonal selection theory, is happening (at least

partially) in biological immune systems. Moreover, our exper-

imental results (to be discussed in the next section) suggest

that the hypermutation operator together with the elitist mech-

anism do have a positive impact in the overall algorithm’s per-

formance, thus supporting the notion that each individual in our

algorithm can be seen as a sort of “partial” recognizer able to

transmit/share valuable information to the next generation of

individuals.

Stepney et al. indicate in [35] that several approaches have

been taken in the context of AIS, including the so-called rea-

soning by metaphor. The clonal AIS model adopted in this work,

first proposed in [15], fits in that kind of AIS.

Moreover, notice that even though clonal AIS can be consid-

ered as very similar to the evolutionary algorithm (EA) model,

both paradigms have some significant differences. Perhaps the

most evident is the fact that in AIS there is no notion of the

crossover operator so typically found in EAs. Conversely, in

EAs, there is no cloning mechanism.

It is worth mentioning that often there exist quite a few op-

timal valid addition chains able to achieve the antigen , with

minimum length . Thus, at the end of a given experiment, our

clonal selection algorithm will typically produce several indi-

viduals tied in their affinity value.4 This characteristic seems to

be in synchrony with typical clonal AIS outputs, where the final

result is an entire population of detectors [35].

6) Computational Cost of the AIS Strategy: Referring to the

clonal selection algorithm of Fig. 13, we assess its computa-

tional cost as follows.

• The process of creating new antibodies (steps 1 and 17)

carried out by algorithms in Figs. 10 and 11 is quite ef-

ficient. The cost of the algorithm in Fig. 11 is negligible.

On the other hand, the computational cost of the algorithm

in Fig. 10 has a complexity per individual of ,

where is the length of the produced addition chain. Based

on (9), we can bound that length as

(16)

where is defined as the Hamming weight of the

antigen . A total of antibodies (steps 1 and 17) are

generated per generation.

• Similarly, the hypermutation operator of step 11 is carried

out by algorithms in Figs. 10 and 12. Notice that the hyper-

mutation is quite similar to the process of creating new an-

tibodies. The only difference is that the algorithm of Fig. 12

just needs to produce part of the addition chain. Therefore,

the computational cost of this operator per individual is

also . A total of clones [see (15)] are hypermutated

(step 11) per generation.

• The sorting process of antibodies (step 2), an-

tibodies and clones (step 13) and surviving antibodies

(step 18) per generation can be carried out at a computa-

tional cost of about .

Therefore, the total computation cost per iteration of the clonal

selection algorithm in Fig. 13 is given as

(17)

Incidentally, it is worth mentioning that the computational ef-

fort required for the computation of field exponentiation itself

is considerably more expensive than the above estimation for

the clonal selection algorithm. Field exponentiation has an esti-

mated complexity of bit operations [32].

B. A Design Example for a Small Exponent

The exponent is named the antigen or goal that the AIS is

trying to achieve. Starting with an initial population of anti-

bodies, the algorithm uses the cloning mechanism to generate

slightly different replicas that are then selected based on the fit-

ness of the individuals. As previously mentioned, clone fitness

is measured in terms of the length of its corresponding addition

chain. In order to illustrate how our algorithm computes its task,

let us consider the case when we want to obtain an optimal ad-

dition chain for our running example, the antigen .

4For the purposes of efficient field exponentiation computation, all addition
chains having a minimum length are, in general, equally valuable.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Example: Given the antigen , the algorithm of

Fig. 13 performs as follows.

1) An initial population of antibodies is constructed

using algorithms of Figs. 10 and 11. For instance, let us

suppose that the third antibody generated has

an addition chains given as, 1-2-4-8-16-24-48-49-98-196-

294-588-612-1224-1836-1844-1893-1901-1903; with an

associated affinity equal to 18.

2) Sort out the antibody population in ascending order ac-

cording to the affinity values.

3) Select the best antibodies (with different length values)

from the antibody population. Only the selected anti-

bodies will be cloned.

4) Using (15), determine the total number of clones to

be generated for selected antibodies. To give a concrete

example, consider , . Let us say that after

ranking the best clones, we observe that , and

are tied in the first place sharing the same shortest chain

length; , , and rank in the second, third, and

fourth places, respectively, and that and are tied

in the fifth (last) place. Therefore, the ranking indexes ,

for would be 1, 1, 2, 3, 4, 5, 5, respectively.

Thus, the total of clones to be created would be

5) Create the clones for the selected antibodies.

6) Apply the hypermutation operator to each clone (see the

algorithm in Fig. 12).

(a) For instance, a clone generated from the highest

affinity individual will get a mutation point se-

lected from the upper half of its chain. Let us say that

this point is (step 1, algorithm from Fig. 12).

(b) A random number is selected, , for

example, (step 2, the algorithm from Fig. 12)

(c) The new value of the clone’s addition chain at the

mutation point will be , then

we have , to this point our

chain is the following: 1-2-4-8-16-24-48-49-98-196-

294-588-612-1224-1836-1885

(d) Repair the upper part of the addition chain

with . Suppose the resulting addition chain

is: 1-2-4-8-16-24-48-49-98-196-294-588-612-1224-

1836-1885-1901-1903 with affinity .

7) Compute the associated affinity values for the mutated

clones.

8) From the set of original antibodies and modified clones,

select the top best and discard the rest.

9) Replace the antibodies showing less affinity by new ones.

For example, let us say that one of the brand new individ-

uals so produced is: 1-2-3-6-12-15-30-33-66--99-198-213-

426-852-885-1737-1836-1869-1902-1903

10) Compute the associated affinity values for the new indi-

viduals. Notice that the affinity value for our new antibody

is 19.

11) Go to step 3, a predetermined number of .

12) The best antibody is selected.

13) As is not even, then go to the next step.

14) Store in memory.

15) Report as the best solution found.

As a result of executing the above algorithm, our AIS-based

heuristic was able to find several addition chains of length

for the exponent . For example

(18)

(19)

Let us recall that in Sections II-A and II-B it was found that for

the binary, quaternary, octal, and hexa methods find

addition chains of length 18,17, 16, and 16, respectively. It is

worth to remark that the shortest addition chain for is

precisely [26].

C. AIS Heuristic for Large Exponents

It is not advisable to directly apply the AIS heuristic for

the computation of addition chains when dealing with large

exponents. This is due to the fact that as the exponent bit-length

grows larger, the addition chain length attained by our AIS

heuristic tends to significantly deviate from the optimal and/or

best-known values.

Fortunately, we can use instead the sliding window method

described in Section III-B. Under this scenario, the concept of

exponent partitioning described in Section II-C together with

the concept of addition sequences described in Section III-A1

will emerge as the most important tools for generating quasi-

optimal addition chains for large exponents.

In that regard, consider the algorithm shown in Fig. 14. Let

us recall that the strategy followed here for large exponents can

be divided into two main phases: exponent partitioning and ad-

dition sequence generation.

Referring to Fig. 14, the procedure

, takes as inputs an -bit exponent to be processed and

the parameter , which establishes the maximum

size that the MSW can take in the partition phase. By default, the

minimum size for MSW is 6. At each iteration, the most sig-

nificant bits of are assigned to the variable (see step 3).

In step 4, the least significant bits of the exponent are

assigned to the auxiliary variable . Then, in step 5, an op-

timal addition chain for is obtained through a call to

the AIS algorithm of Fig. 13 previously discussed.

In step 6, is partitioned using the strategy described

in Section II-C and depicted in Fig. 4. As a consequence, a

total of zero windows and nonzero windows will be

produced. After having sorted in step 7 all the nonzero

windows, a suitable element in the addition chain , greater

than is added. Then, an addition sequence for the set

is produced, by invoking the

procedure of Fig. 7.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CRUZ-CORTÉS et al.: AN ARTIFICIAL IMMUNE SYSTEM HEURISTIC FOR GENERATING SHORT ADDITION CHAINS 15

Fig. 14. Finding short addition sequences for large exponents.

At this point, the algorithm is able to estimate the expected

number of operations needed for computing the field ex-

ponentiation operation by applying (14). If the algorithm deter-

mines in step 12 that the sequences , have associated a

minimum number of operations it proceeds to store them. Oth-

erwise, it continues with the next iteration. After having exam-

ined all possible candidates for MSW in the range from 6 to

bits, the algorithm in Fig. 14 outputs the pair

of sequences that optimize field exponentiation. The

dataflow of this algorithm is illustrated with a design example

in the next section.

1) A Design Example: Let us consider the following

design example for the 128-bit exponent given as,

, with

, and a Hamming weight .

Partitioning: As discussed in Section III-B, the strategy fol-

lowed for the exponent partitioning consisted on allowing a

large MSW followed by relatively small windows, being the

main idea to try to minimize the second component of (14). We

consider all possible candidates for MSW in the range from 6

to , and at the same time, we fixed

the maximum size allowed for all the other nonzero windows to

. We also fixed the maximum value of consecutive zeros

to . Then, we invoked the algorithm in Fig. 14 in order to

find the best MSW.

As a result, our algorithm came out with a partitioning con-

sisting of a 17-bit MSW, namely followed by 15

nonzero windows distributed as shown below:

Notice that the nonzero windows obtained from the parti-

tioning phase are all odd and none of them (except for the very

first window) contains two or more consecutive zeros.

Addition Sequence: We must derive a short addition sequence

for all the nonzero window values found in the previous step.

Note that we only need to consider ten different values as some

windows appear several times in the partitioned exponent shown

above. Hence, we need to find a short addition sequence for the

following window values:

As explained previously, the algorithm of Fig. 14 finds first a

nearly optimal addition chain for MSW. The following 20-step

addition chain for was ob-

tained:

(20)

Notice that in the above addition chain, the target value

is obtained as .

Because of that, in step 7 of Fig. 14, the value is

chosen. Now, we need to find a short addition sequence for the

ordered set, {3, 5, 7, 11, 15, 23, 25, 43, 93, 147}.

However, this was the example analyzed earlier in

Section III-A1, where according to (12), the following 16-step

solution was found after using the algorithm from Fig. 7:

Further optimizations in the above solution combined with

the rest of the addition sequence for MSW yielded the following

26-step addition sequence:

(21)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

TABLE IV
NUMBER OF OPERATIONS USING SEVERAL METHODS FOR EXAMPLE 5.3.1

Number of Operations: Referring to the algorithm shown

in Fig. 8 and its complexity analysis summarized in (14), the

number of arithmetic operations required for computing the

field exponentiation is given as follows.

• A total of 26 multiplications needed to generate the addi-

tion sequence specified in step 2 of Fig. 8 and depicted by

(21).

• A total of squarings

corresponding to step 5 of the algorithm in Fig. 8.

• A total of 15 multiplications in order to combine all the

intermediate nonzero window values corre-

sponding to step 6 in Fig. 8.

Therefore, we conclude that the total number of arithmetic op-

erations for this example is given as

(22)

It is customary to use the ratio as a figure of

merit for field exponentiation [27], [30]. For our working ex-

ample, the achieved ratio is of about

(23)

We show in Table IV the number of operations obtained by

the binary, quaternary, octal, and hexa methods discussed in

Sections II-A and II-B. We also present the number of opera-

tions required by the sliding window method without AIS using

, 6 and as indicated in the Table. It can be seen

that for this specific example, the AIS sliding window technique

yields the lowest number of operations.

VI. EXPERIMENTS AND STATISTICAL TESTS

In this section, we present experimental results obtained from

several relevant statistical tests performed to our algorithm.

Then, we compare the AIS heuristic against some traditional de-

terministic strategies. At the same time, working with a family of

exponents particularly hard to optimize, we also report complete

solutions for their associated shortest addition chains.

A. Variance Analysis

In order to assess the algorithm’s sensitivity to its parameters,

we conducted an analysis of variance (ANOVA). The parame-

ters analyzed were as follows.

• : the number of antibodies to be created.

• : the number of best antibodies which will be selected for

cloning.

• : the quantity of low affinity antibodies that will be

substituted.

• : a random variable that selects which rule

to apply during the process of antibody’s construction (see

the algorithm in Fig. 10).

The above parameters were considered the independent vari-

ables, while the dependent variable was the length of the addi-

tion chain found by the algorithm.

We chose three different values (levels) for each of the men-

tioned parameters. The tested levels were as follows.

• : (15), (30), and (45).

• : (N/1), (N/2), and (N/4).

• : (0.0 of N), (0.1 of N), and (0.2 of N).

• : (0.5), (0.7), and (0.9).

The experiment consisted on executing 30 independent runs

of the algorithm with each different combination of the param-

eters levels. Therefore, we performed a total of 2430 runs of the

algorithm. With the aim of performing balanced comparisons,

we set the parameter such that the number of calls

to the function were the same for all the experiments.

From that variance analysis, we can conclude that:

• The probability that the effect of the parameter is due to

the random processes is less than 0.01.

• The probability that the effect of the parameter is due to

the random processes is less than 0.01.

• The parameter does not have any effect on the algorithm,

its effect is product of the random processes.

• The probability that the effect of the parameter is due to

the random processes is less than 0.01.

Therefore, the parameters , , and do have a real effect on

the algorithm’s performance.

1) Parameters Values Suggested: Based on the statistical

study performed, we can suggest the following values for the

parameters used in this algorithm:

• : Number of antibodies: Use .

• : selected antibodies: Use .

• : replaced antibodies: 0.1% of the total population.

• : Use .

B. Accumulated Addition Chain Lengths for Small Exponents

In [5], a method based upon continued fraction expansion

for computing short addition chains was presented. Using their

algorithm as a general framework, the authors tested the per-

formance obtained by several traditional addition-chain gener-

ator strategies, such as the binary and quaternary methods, di-

chotomic, dyadic, total, Fermat, and the factor methods. A de-

scription of those methods can be found in [5] and [26]. Then,

for each selected strategy, authors reported the total accumu-

lated addition chain lengths for all exponents .

As a preliminary test for our heuristic, we repeated the same

experiment reported in [5] but this time using our own strategy

as a search engine.

All the results obtained with the AIS approach reported in this

section were obtained applying the following parameter values.

• population size .

• selected antibodies .

• replaced antibodies .

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CRUZ-CORTÉS et al.: AN ARTIFICIAL IMMUNE SYSTEM HEURISTIC FOR GENERATING SHORT ADDITION CHAINS 17

TABLE V
ACCUMULATED ADDITION CHAIN LENGTHS FOR ALL EXPONENTS

e 2 [1; 1000] (COMPARISON AMONG DIFFERENT HEURISTICS)

• .

• iterations .

The statistical results were obtained from 30 independent runs

of the algorithm.

Table V compares the heuristics accumulative addition chain

reported in [5] against the one obtained by our AIS heuristic.

It can be seen that compared with all other featured strategies,

our algorithm was able to compute the best approximation to

the optimal value (which was obtained by enumeration), with a

percentage error rather negligible (less than 0.07%).

Furthermore, we expanded this experiment using larger

exponents. Tables VI and VII show accumulative addition

chain lengths obtained by our heuristic for exponents less than

512, 1024, 2000, 2048, and 4096, respectively. For compar-

ative purposes, we included the optimal value and the value

corresponding to the binary and quaternary method.

Once again, although the AIS strategy could not find all the

optimal values, its percentage error was less than 0.4% for all

cases considered. That low error rate implies that for any given

fixed exponent with , our strategy would be able to

find the requested shortest addition chain in at least 99.6% of

the cases.

Table VIII shows the AIS computational time for several ex-

ponent lengths. We used the gcc compiler running under i686-

linux operating system in a UltraSPARC II at 450 MHz. It is

noticed that our experimental results show a reasonable match

with the computational costs predicted by (17).

Additionally, we collected the associated uncertainty of our

results through the computation of the experiments’ confidence

intervals. This was done by applying a bootstrap resampling

statistical test. The average ranges for each set of experiments

are shown in Table IX with a confidence interval of 95% after

executing 30 independent runs using different random seeds.

TABLE VI
ACCUMULATED ADDITION CHAIN LENGTHS FOR ALL EXPONENTS

LESS THAN 512 (e 2 [1; 512]) AND 1024 (e 2 [1; 1024])

TABLE VII
ACCUMULATED ADDITION CHAIN LENGTHS FOR ALL EXPONENTS

e 2 [1; 2000], e 2 [1; 2048], AND e 2 [1; 4096]

TABLE VIII
AIS COMPUTATIONAL TIME FOR SEVERAL EXPONENT BIT LENGTHS

The importance of performing this type of test lies in the fact

that only by using statistical tests can one reasonably ensure that

the results yielded by a probabilistic heuristic are consistent and

independent of the random seed used. This way, Table IX pro-

vides statistical evidence that the experimental lower and upper

average values are very close to each other. Thus, it is fair to

say that the average algorithm behavior is quite similar from one

execution to the other, which is a desirable feature for a proba-

bilistic heuristic to exhibit.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

18 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

TABLE IX
AVERAGE WITH 95% CONFIDENCE FOR RESULTS OBTAINED

BY THE AIS (30 INDEPENDENT RUNS)

C. A Special Class of Exponents Hard to Optimize

Let be the smallest exponent that can be reached

using an addition chain of length . Solutions for that class of

exponents are known up to and a compilation of them

can be found in [11]. Interestingly enough, the computation dif-

ficulty of finding the shortest addition chains for those expo-

nents seems to be among the hardest if not the hardest ones of

studied exponent families [26].

In order to assess the actual power of the AIS strategy as a

search engine, we used it to generate all the shortest addition

chains of the exponents for .

In all cases considered, our AIS heuristic was able to gen-

erate a valid addition chain having the predicted optimal length.

Notice that the search space size for this special class of expo-

nents (considering both feasible and infeasible individuals) is .

Hence, in the case of , finding the shortest addition chain

for the exponent , implied to search over

a space whose approximate size is

VII. APPLICATIONS

Some practical applications of addition chains are described

in this section. First, in Section VII-A, the efficient computation

of multiplicative inverses based on optimal addition chains is

explained. The material included in that section closely follows

the discussion presented in [9]. Then, in Section VII-B, the com-

bination of the AIS heuristic together with the sliding window

method for computing large exponentiation is presented.

A. Optimal Addition Chains for Computing Multiplicative

Inverses

Among the basic field arithmetic operations, namely, addi-

tion, subtraction, multiplication, and inversion of nonzero el-

ements, the later is the most time-consuming one. The multi-

plicative inversion of an element consists on finding an

element such that . Sev-

eral algorithms for computing multiplicative inverses over bi-

nary extension fields have been proposed in the

specialized literature [25], [36], [41].

One well-known strategy is based on Fermat’s Little The-

orem (FLT) which establishes that for any nonzero element

TABLE X
SHORTEST ADDITION CHAINS FOR A SPECIAL CLASS

OF EXPONENTS (TABLE 1 OF 3)

, the identity holds. As surprising as it

may sound, this means that multiplicative field inversion can be

computed via an exponentiation operation.

Noticing that the exponent can equivalently be

expressed as , we can write

(24)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CRUZ-CORTÉS et al.: AN ARTIFICIAL IMMUNE SYSTEM HEURISTIC FOR GENERATING SHORT ADDITION CHAINS 19

TABLE XI
SHORTEST ADDITION CHAINS FOR A SPECIAL CLASS OF EXPONENTS

(TABLE 2 OF 3)

A straightforward, but rather expensive implementation of

(24) can be carried out using the binary exponentiation method,

requiring field squarings (S) and field multiplica-

tions (M), i.e.,

(25)

Nevertheless, using an ingenious rearrangement of the re-

quired field operations it was shown in [25] that this calculation

can be performed much more efficiently by using the so-called

Itoh–Tsujii multiplicative inverse algorithm (ITMIA).

TABLE XII
SHORTEST ADDITION CHAINS FOR A SPECIAL CLASS OF EXPONENTS

(TABLE 3 OF 3)

The ITMIA method is based on the observation that since

, Fermat’s little theorem identity can be

rewritten as

(26)

Thereafter, ITMIA computes the field element using

a recursive rearrangement of the finite field operations. It was

shown in [9] and [36] that this algorithm requires field

squarings plus only field multiplications, where

is the length of the addition chain used to reach the

number . Therefore, the cost is given as

(27)

Comparing with (24), it can be noticed that although the

number of field squarings required by the ITMIA method

remains the same, the total number of multiplications has

been greatly reduced. Notice also that the concept of addition

chains leads us to a natural way to generalize the Itoh–Tsujii

algorithm reducing the number even further.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

20 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

TABLE XIII
OPTIMAL ADDITION CHAINS FOR m = 32 k. AIS =

ARTIFICIAL IMMUNE SYSTEM (TABLE 1 OF 2)

Since the original ITMIA method used a binary strategy, the

number of field multiplications required by that algorithm is not

optimal. Applying (3), the overall cost is then given as

(28)

where is the Hamming weight of the binary representa-

tion of . Takagi et al. [36] utilized a heuristic partially based

TABLE XIV
OPTIMAL ADDITION CHAINS FOR m = 32 k. AIS =

ARTIFICIAL IMMUNE SYSTEM (TABLE 2 OF 2)

on the factor method. They obtained shorter addition chains for

than the ones generated by the ITMIA method, thus

reducing the number of required multiplications of (28).

We compare the results obtained by our algorithm against

the modified factor method presented by Takagi et al. [36] and

the ITMIA binary method [25]. Tables XIII and XIV show the

optimal addition chains for which is an important

class of exponents for error-correcting code applications. The

first column shows the target value, i.e., . The addition

chains found by the AIS algorithm and their respective lengths

are listed in the second and in the third column, respectively. On

a total of seven cases the AIS algorithm outperforms the method

of [36], and in all cases considered, both algorithms outperform

the ITMIA binary method.

As a second example, let us consider the family of exponents

, with a prime number. This class of exponents is

of special interest for elliptic curve cryptosystems defined over

binary extension fields. For security reasons [24], that applica-

tion utilizes the set of finite fields , with being a

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CRUZ-CORTÉS et al.: AN ARTIFICIAL IMMUNE SYSTEM HEURISTIC FOR GENERATING SHORT ADDITION CHAINS 21

TABLE XV
OPTIMAL ADDITION CHAINS FOR e = p� 1, p A PRIME

prime in the range [160, 521]. Table XV summarizes the results

obtained by the AIS heuristic and the binary method. In 12 out

of 20 of the cases considered, the AIS algorithm obtains better

results than the ITMIA binary method, and is no worse in the

other cases.

In order to quantify the solution’s quality obtained from the

addition-chain-based ITMIA method, let us consider the com-

putation of multiplicative inverses over the finite field

, by using Fermat’s identity, i.e., .

By consulting the second to last entry of Table XV, namely,

, we see that its corresponding shortest addition

chain (as it was found by the AIS heuristic), has length 12.

Therefore, according to (27), the required number of arithmetic

operations for this 509-bit exponent is given as

Using the ratio as a figure of merit, we get

(29)

which according with the lower bound (9), is about the best cost

that one can expect from an exponentiation computation.

B. AIS Heuristic Combined With the Sliding Window Method

Perhaps the single most important arithmetic operation for

public-key cryptography is exponentiation. The RSA encryp-

tion/decryption and signing/verification schemes are based

on the computation of an exponentiation operation, namely,

, where is a fixed number, is an arbitrarily

chosen numeric message, and the product of two large

primes . Additionally, the Diffie–Hellman key exchange

scheme the ElGamal signature scheme and the digital signa-

ture standard (DSS) also require the computation of modular

exponentiation [4], [27], [32].

The exponentiation methods described in this paper are all fo-

cused on the so-called fixed-exponent exponentiation problem,

i.e., the exponent is fixed and arbitrary choices of the base

are allowed. RSA encryption and decryption schemes are based

on these kind of algorithms.

Since is a fixed number, we can compute its addition chain

in an offline fashion. Therefore, under this scenario, the compu-

tational time needed for computing the optimal addition chain

becomes a noncritical design issue. Usually, we will precom-

pute that addition chain well before the beginning of the real

field exponentiation computation.

Fig. 15 shows the customary figure of merit

, i.e., the average number of opera-

tions divided by the total number of bits , for the -ary, and

the AIS sliding window algorithms as a function of ,

256, 512, 1024. Those exponent lengths are regularly used in

cryptographic applications.

Table XVI compares the performance of the traditional

sliding window method (as reported in [27]) against the sliding

window method combined with the AIS heuristic. Those two

methods were applied on exponents with relatively large

bit-length , namely, , 256, 512, 1024. The AIS

sliding window method was tested allowing arbitrarily large

MSWs candidates but fixing the maximum size allowed for all

the other nonzero windows to a value . We also fixed

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

22 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Fig. 15. AIS sliding window method against the sliding window method.

TABLE XVI
PERFORMANCE OF THE AIS METHOD FOR LARGE EXPONENTS

the maximum value of consecutive zeros to , except for

the case , where was used.

As it can be seen in Table XVI, our strategy outperforms the

window method for the first three cases, namely, , 256,

512. However, the AIS strategy tends to deteriorate its perfor-

mance as the bit length grows larger. In the case of ,

the traditional sliding window method shows a slightly better

performance than the AIS strategy.

VIII. CONCLUSION

In this paper, we presented an AIS heuristic applied to the

problem of finding optimal addition chains for field exponen-

tiation computations. We only emulated some immunological

actors and mechanisms, namely, antibodies and antigens, hy-

permutation, cloning, and secondary response. By doing so, we

believe that we were able to confection an algorithm that is con-

ceptually simple but at the same time effective and efficient.

The AIS heuristic proposed in this research work was capable

of finding almost all the optimal addition chains for any given

fixed exponent with , exhibiting a high success rate

of 99.6%. Furthermore, in order to assess the actual power of

the AIS strategy as a search engine, we used it for generating

the shortest addition chains of a class of exponents particularly

hard to optimize. In all cases considered, the AIS strategy was

able to find the optimal values.

Additionally, we collected the associated uncertainty of our

results through the computation of the experiments’ confidence

intervals. This was done by applying a bootstrap resampling sta-

tistical test. The importance of performing this type of test lies

in the fact that only by using statistical tests can one reasonably

ensure that the results yielded by a probabilistic heuristic are

consistent and independent of the random seed used. This way,

we provided statistical evidence that the experimental lower and

upper average values are very close to each other. Thus, it is fair

to say that the average algorithm behavior is quite similar from

one execution to the other, which is a desirable feature for a

probabilistic heuristic to exhibit.

As a means to show how the concept of a powerful heuristic

for finding addition chains could be applied in practice, we in-

cluded two code-theory applications.

The first application consisted on utilizing the AIS strategy

in the problem of finding optimal addition chains for field

exponentiation computations over binary extension fields. The

results obtained by our scheme yielded some of the shortest

reported lengths for exponents typically used when computing

field multiplicative inverses for error-correcting and elliptic

curve cryptographic applications.

The second application consisted of developing a strategy

that combined the sliding window method with the AIS-based

heuristic. While, in general, optimal solutions for exponents

with large bit lengths are unknown, we provided a compar-

ison of our experimental results against the ones obtained by

the traditional sliding window method. Our experiments show

that the AIS strategy tends to be better for moderated sizes of

. However, for larger sizes, the AIS strategy

is not as efficient as the traditional sliding window.

Future work includes improving the performance of our

strategy for both, exponents with moderated size (i.e., 32-bit

length or less); and when dealing with extremely large expo-

nents, as the ones typically used in RSA and DSA cryptosys-

tems. We are also planning to explore the performance of other

biologically inspired heuristics when applied to the optimal

addition chain problem.

ACKNOWLEDGMENT

The authors gratefully acknowledge the comments from the

anonymous reviewers, which greatly helped them to improve

the contents of the paper.

REFERENCES

[1] A. Schönhage, “A lower bound for the length of addition chains,”
Theor. Comput. Sci., vol. 1, pp. 1–12, 1975.

[2] U. Aickelin, J. Greensmith, and J. Twycross, “Immune system ap-

proaches to intrusion detection—A review,” in Proc. 3rd Int. Conf.

Artif. Immune Syst., ICARIS 2004, G. Nicosia, V. Cutello, P. J.

Bentley, and J. Timmis, Eds., Catania, Sicily, Italy, Sep. 2004, vol.

3239, Lecture Notes in Computer Science, pp. 316–329.

[3] P. S. Andrews and J. Timmis, “Inspiration for the next generation of

artificial immune systems,” in Proc. 4th Int. Conf. Artif. Immune Syst.,

ICARIS 2005, C. Jacob, M. L. Pilat, P. J. Bentley, and J. Timmis,

Eds., Aug. 2005, vol. 3627, Lecture Notes in Computer Science, pp.

126–138.

[4] National Standards for Financial Institution Key Management (Whole-

sale), ANSI X9.17 (Revised), American Bankers Assoc., Washington,

DC, 1986.

[5] F. Bergeron, J. Berstel, and S. Brlek, “Efficient computation of addition

chains,” J. de théorie des nombres de Bordeaux, vol. 6, pp. 21–38, 1994.

[6] J. Bos and M. Coster, “Addition chain heuristics,” in Proc. Adv. Cryp-

tology, CRYPTO 89, G. Brassard, Ed., 1989, vol. 435, Lecture Notes in

Computer Science, pp. 400–407.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CRUZ-CORTÉS et al.: AN ARTIFICIAL IMMUNE SYSTEM HEURISTIC FOR GENERATING SHORT ADDITION CHAINS 23

[7] E. F. Brickell, D. M. Gordon, K. S. McCurley, and D. B. Wilson, “Fast

exponentiation with precomputation,” in Proc. Adv. Cryptology, EU-

ROCRYPT 92, R. A. Rueppel, Ed., 1992, vol. 658, Lecture Notes in

Computer Science, pp. 200–207.

[8] F. M. Burnet, “Clonal selection and after,” in Theoretical Immunology,

G. I. Bell, A. S. Perelson, and G. H. Pimgley, Jr., Eds. New York:

Marcel Dekker, 1978, pp. 63–85.

[9] N. Cruz-Cortes, F. Rodriguez-Henriquez, and C. Coello Coello, “On

the optimal computation of finite field exponentiation,” in Proc. 9th

Ibero-Amer. Conf. AI Adv. Artif. Intell., IBERAMIA 2004, C. Lemaître,

C. Reyes, and J. González, Eds., Nov. 2004, vol. 3315, Lecture Notes

in Computer Science, pp. 747–756.

[10] V. Cutello and G. Nicosia, “An immunological approach to combina-

torial optimization problems,” in Proc. Adv. Artif. Intell., IBERAMIA

2002, Seville, Spain, Nov. 2002, vol. 2527, Lecture Notes in Artificial

Intelligence, pp. 361–370.

[11] D. Bleinchenbacher and A. Flammenkamp, “An efficient algorithm for

computing shortest addition chains,” 1997. [Online]. Available: http://

www.uni-bielefeld.de/~achim

[12] D. Dasgupta and N. Attoh-Okine, “Immunity-based systems: A

survey,” in Proc. IEEE Int. Conf. Syst., Man, Cybern., Orlando, FL,

Oct. 12–15, 1997, pp. 369 –374.

[13] D. Dasgupta, K. KrishnaKumar, D. Wong, and M. Berry, “Negative

selection algorithm for aircraft fault detection,” in Proc. 3rd Int. Conf.

Artif. Immune Syst., ICARIS 2004, G. Nicosia, V. Cutello, P. Bentley,

and J. Timmis, Eds., Sep. 2004, pp. 13–16.

[14] L. Nunes de Castro and J. Timmis, An Introduction to Artificial Im-

mune Systems: A New Computational Intelligence Paradigm. Berlin,

Germany: Springer-Verlag, 2002.

[15] L. Nunes de Castro and F. J. Von Zuben, “Learning and optimization

using the clonal selection principle,” IEEE Trans. Evol. Comput., vol.

6, no. 3, pp. 239–251, Jun. 2002.

[16] S. Forrest and S. A. Hofmeyr, “Immunology as information pro-

cessing,” in Design Principles for the Immune System and Other

Distributed Autonomous Systems, Santa Fe Institute Studies in the

Sciences of Complexity, L. A. Segel and I. Cohen, Eds. Oxford,

U.K.: Oxford Univ. Press, 2000, pp. 361–387.

[17] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense

of self for unix processes,” in Proc. IEEE Symp. Comput. Security Pri-

vacy, 1996, pp. 120–128.

[18] S. A. Frank, “The design of natural and artificial adaptive systems,” in

Adaptation, R. Michael and L. George, Eds. New York: Academic

Press, 1996, ch. 12, pp. 451–505.

[19] F. González and D. Dasgupta, “Anomaly detection using real-valued

negative selection,” Genetic Programming Evolv. Mach., vol. 4, no. 4,

pp. 383–403, Dec. 2003.

[20] D. M. Gordon, “A survey of fast exponentiation methods,” J. Algo-

rithms, vol. 27, no. 1, pp. 129–146, Apr. 1998.

[21] P. Hajela and J. Lee, “Constrained genetic search via schema adapta-

tion. An immune network solution,” in Proc. 1st World Congr. Stuc-

tural Multidisciplinary Opt., N. Olhoff and G. I. N. Rozvany, Eds.,

Goslar, Germany, 1995, pp. 915–920.

[22] P. K. Harmer, P. D. Williams, G. H. Gunsch, and G. B. Lamont, “An

artificial immune system architecture for computer security applica-

tions,” IEEE Trans. Evol. Comput., vol. 6, no. 3, pp. 252–280, Jun.

2002.

[23] E. Hart, “The evolution and analysis of a potential antibody library

for use in job-shop scheduling,” in New Ideas in Optimization, D.

C. Dorigo and F. Glover, Eds. New York: McGraw-Hill, 1999, pp.

185–202.

[24] Standard Specifications for Public-Key Cryptography, Draft Version

D18, IEEE P1363 (IEEE standards documents), Nov. 2004. [Online].

Available: http://grouper.ieee.org/groups/1363/

[25] T. Itoh and S. Tsujii, “A fast algorithm for computing multiplicative

inverses in GF(2) using normal basis,” Inf. Comput., vol. 78, pp.

171–177, 1988.

[26] D. E. Knuth, The Art of Computer Programming—3rd. ed. Reading,

MA: Addison-Wesley, 1997.

[27] Ç. K. Koç, High-speed RSA implementation RSA Laboratories, Red-

wood City, CA, Tech. Rep. TR 201, 1994, 71 pages.

[28] Ç. K. Koç, “Analysis of sliding window techniques for exponentia-

tion,” Computer and Mathematics With Applications, vol. 30, no. 10,

pp. 17–24, Oct. 1995.

[29] N. Kunihiro and H. Yamamoto, “Window and extended window

methods for addition chain and addition-subtraction chain,” IEICE

Trans. Fundamentals, vol. E81-A, no. 1, pp. 72–81, Jan. 1998.

[30] N. Kunihiro and H. Yamamoto, “New methods for generating short

addition chains,” IEICE Trans. Fundamentals, vol. E83-A, no. 1, pp.

60–67, Jan. 2000.

[31] G. B. Lamont, R. E. Marmelstein, and D. A. Van Veldhuizen, “A

distributed architechture for a self-adaptive computer virus immune

system,” in New Ideas in Optimization. New York: McGraw-Hill,

1999, pp. 167–183.

[32] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of

Applied Cryptography. Boca Raton, FL: CRC, 1996.

[33] N. Nedjah and L. D. Mourelle, “Efficient preprocessing for large

window-based modular exponentiation using genetic algorithms,”
Developments in Applied Artificial Intelligence, vol. 2718, Lecture

Notes in Artificial Intelligence, pp. 625–635, 2003.

[34] J. Olivos, “On vectorial addition chains,” J. Algorithms, vol. 2, no. 1,

pp. 13–21, 1981.

[35] S. Stepney, R. E. Smith, J. Timmis, and A. M. Tyrrell, “Towards a con-

ceptual framework for artificial immune systems,” in Proc. 3rd Int.

Conf. Artif. Immune Syst., ICARIS 2004, G. Nicosia, V. Cutello, P.

Bentley, and J. Timmis, Eds., Sep. 2004, vol. 3239, Lecture Notes in

Computer Science, pp. 53–64.

[36] N. Takagi, J. Yoshiki, and K. Tagaki, “A fast algorithm for multiplica-

tive inversion in GF(2) using normal basis,” IEEE Trans. Comput.,

vol. 50, no. 5, pp. 394–398, May 2001.

[37] J. von zur Gathen and M. Nöcker, “Computing special powers in finite

fields: Extended abstract,” in Proc. International Symp. Symbolic and

Algebraic Comput., 1999, pp. 83–90.

[38] Y. Lee, H. Kim, S. Hong, and H. Yoon, “Expansion of sliding window

method for finding shorter addition/subtraction-chains,” Int. J. Network

Security vol. 2, no. 1, pp. 34–40, Jan. 2006. [Online]. Available: http://

isrc.nchu.edu.tw/ijns/

[39] Y. Tsuruoka and K. Koyama, “Fast computation over elliptic curves

E(F) based on optimal addition sequences,” IEICE Trans. Funda-

mentals, vol. E84-A, no. 1, pp. 114–119, Jan. 2001.

[40] Y. Yacobi, “Exponentiating faster with addition chains,” in Proc. Adv.

Cryptology, EUROCRYPT 90, I. B. Damgard, Ed., 1990, vol. 473, Lec-

ture Notes in Computer Science, pp. 222–229.

[41] S. M. Yen, “Improved normal basis inversion in GF(2),” IEE Elec-

tronic Lett., vol. 33, no. 3, pp. 196–197, Jan. 1997.

Nareli Cruz-Cortés received the B.Sc. degree in
Computer Engineering from the Technological In-
stitute of Tepic, Nayarit, México, in 1995, the M.Sc.
degree in artificial intelligence from the University
of Veracruz and LANIA, Veracruz, México, in 2000,
and the Ph.D. degree in electrical and computer en-
gineering from CINVESTAV, México City, México,
in 2004.

Currently, she is a Lecturer at the Center for
Computing Research, National Polytechnic Institute,
México. Her major research interests are in com-

binatorial and multiobjective optimization, genetic algorithms, and artificial
immune systems.

Francisco Rodríguez-Henríquez (M’03) received
the B.Sc. degree in electrical engineering from the
University of Puebla, Puebla, México, in 1989, the
M.Sc. degree in electrical and computer engineering
from the National Institute of Astrophysics, Optics
and Electronics (INAOE), Puebla, in 1992, and the
Ph.D. degree in electrical and computer engineering
from Oregon State University, Corvallis, in 2000.

Currently, he is a Professor (CINVESTAV-3B Re-
searcher) with the Department of Computer Science,
CINVESTAV-IPN, Mexico City, México, which he

joined in 2002. He is an Alumni Member and Research Associate of the Infor-
mation Security Laboratory, Oregon State University. His major research inter-
ests are in data security, cryptography, finite fields, error correcting codes, and
mobile computing.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

24 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Carlos A. Coello Coello (M’89–SM’04) received
the B.Sc. degree in civil engineering from the Uni-
versidad Autónoma de Chiapas, México, in 1991,
and the M.Sc. and Ph.D. degrees in computer science
from Tulane University, New Orleans, LA, in 1993
and 1996, respectively.

He is currently a Professor (CINVESTAV-3D Re-
searcher) with the Department of Computer Science,
CINVESTAV-IPN, Mexico City, México. He has au-
thored and coauthored over 120 technical papers and
several book chapters. He has also coauthored the

book Evolutionary Algorithms for Solving Multi-Objective Problems (Kluwer,
2002) and has coedited the book Applications of Multi-Objective Evolutionary

Algorithms (World Scientific, 2004). His major research interests are: evolu-
tionary multiobjective optimization, constraint-handling techniques for evolu-
tionary algorithms, and evolvable hardware.

Dr. Coello is a member of the Association for Computing Machinery (ACM),
Sigma Xi, and the Mexican Academy of Sciences. He has served on the pro-
gram committees of over 40 international conferences and has been Technical
Reviewer for over 30 international journals including the IEEE TRANSACTIONS

ON EVOLUTIONARY COMPUTATION in which he also serves as Associate Editor.
He is a member of the editorial boards of the journals Evolutionary Computa-

tion, Engineering Optimization, and Soft Computing. He also chairs the Task

Force on Multi-Objective Evolutionary Algorithms of the IEEE Computational
Intelligence Society.

