This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

An Artificial Immune System Heuristic for
Generating Short Addition Chains

Nareli Cruz-Cortés, Francisco Rodriguez-Henriquez, Member, IEEE, and
Carlos A. Coello Coello, Senior Member, IEEE

Abstract—This paper deals with the optimal computation of
finite field exponentiation, which is a well-studied problem with
many important applications in the areas of error-correcting codes
and cryptography. It has been shown that the optimal computation
of finite field exponentiation is a problem which is closely related to
finding a suitable addition chain with the shortest possible length.
However, it is also known that obtaining the shortest addition
chain for a given arbitrary exponent is an NP-hard problem. As
a consequence, heuristics are an obvious choice to compute field
exponentiation with a semi-optimal number of underlying arith-
metic operations. In this paper, we propose the use of an artificial
immune system to tackle this problem. Particularly, we study the
problem of finding both the shortest addition chains for exponents
e with moderate size (i.e., with a length of less than 20 bits),
and for the huge exponents typically adopted in cryptographic
applications, (i.e., in the range from 128 to 2048 bits).

Index Terms—Artificial immune systems (AIS), cryptography,
heuristics, shortest addition chains.

I. INTRODUCTION

IELD OR MODULAR exponentiation is heavily utilized
F in several major public-key cryptosystems such as RSA,
Diffie-Hellman and DSA [4], [24]. For instance, the RSA
encryption/decryption scheme is based on the computation of
M* mod n, where e is a fixed number, M is an arbitrarily
chosen numeric message and n = pq is the product of two
large primes p, ¢. Additionally, modular exponentiation is also
used in computational number theory including applications on
integer prime testing, integer factorization, field multiplicative
inverse computation, etc.

A finite field or Galois field (so named after Evariste Galois)
is a set having finitely many elements in which the usual arith-
metic operations (addition, subtraction, multiplication, division
by nonzero elements) are well defined. Moreover, all usual al-
gebraic laws, namely, commutative, associative and distributive
laws, hold [24]. The order of a finite field is defined as the
number of elements ¢ that it contains. Typical modern crypto-
graphic applications utilize finite fields with a size ¢ of as much
as 21924 or more field elements [32].

Manuscript received April 22, 2005; revised October 15, 2005 and January 9,
2006. The work of N. Cruz-Cortés was supported by Project SIP-IPN 20072170.
The work of F. Rodriguez-Henriquez was supported in part by CONACyT under
Project 45306-Y. The work of C.A. Coello Coello was supported in part by
CONACYyT under Project 45683-Y.

N. Cruz-Cortés is with the Center for Computing Research, National Poly-
technic Institute, México (e-mail: nareli @cic.ipn.mx).

F. Rodriguez-Henriquez and C. A. Coello Coello are with CINVESTAV-IPN,
Departamento de Computacién, México (e-mail: francisco@cs.cinvestav.mx;
ccoello@cs.cinvestav.mx)

Digital Object Identifier 10.1109/TEVC.2007.906082

If ¢ = p, with p a prime, then the set of integers modulo p,
form a prime finite field, denoted as ' = GF(p). In a prime
finite field, any arbitrary element A € F' is simply an integer
in the range A € {0,1,2,---,p — 1}. In order to guarantee
that any arithmetic operation within this field will result in an
integer within that range, operations are computed by taking the
remainder on integer division by p. As a simple example of a
prime finite field consider GF(p = 17). That field has a total
of 17 elements corresponding to the integers in the range [0,
16]. For instance, given the field elements ¢ = 4 and b = 15,
their addition ¢ = a + b and multiplication d = a - b can be
computedasc=a+b=4+15mod 17=2andd =a-b =
4-15mod 17 = 9, respectively.

On the other hand, by setting ¢ = 2™ with n a positive integer,
a binary finite field denoted as GF(2") is obtained. A binary fi-
nite field can be constructed by finding a monic irreducible poly-
nomial P(z) = 2" +p,_12" 1+ -+ paa®+pra+1 of degree
n with coefficients p; € [0,1] fori =1,2,---,n— 1. The ¢ =
2" elements of a binary finite field are the set of all polynomials
with degree n — 1 such that, A(z) = ap_12" 1+ -+ ag2® +
a1z + ag with coefficients a; € [0,1] forz = 0,2,--- n — L.
In an analog way to prime finite fields, all arithmetic opera-
tions are computed by taking the remainder on polynomial di-
vision by P(z). As a simple example consider the binary fi-
nite field GF(2?) constructed using the irreducible polynomial
P(x) = 2% + z + 1. Then, the ¢ = 23 = 8 field elements are
10,1, 2, 2+1, 2%, 22+ 1, 2%+, 2%+ 2 +1}. For instance, given
the field elements A(x) = 22+ and B(x) = z + 1, their addi-
tion C' = A+ B and multiplication /> = A- B can be computed
asC =A+B=@*+z)+ @+ D) moda®+x+1=22+1
andD=A-B=(z>+2) - (x+1)modz® +z+1=1.

Since both prime and binary finite fields form a group with
respect to the addition and multiplication operations, the result
of adding or multiplying any two arbitrary field elements will
always be an element in the field.

Field exponentiation can be defined in terms of field multipli-
cation as follows. Let A be an arbitrary element of a finite field
F = GF(q). Also, let ¢ be defined as an arbitrary positive in-
teger. Then, field exponentiation of an element A raised to the
power e is defined as the problem of finding an element B € F'
such that

B = A® mod P @Y

where P is either a large prime (in the case of prime finite fields)
or an irreducible polynomial (in the case of binary finite fields).

Taking advantage of the linearity property of the modular op-
eration, (1) can be evaluated by performing a reduction modulo

1089-778X/$25.00 © 2007 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

P at each step of the exponentiation, thus guaranteeing that all
the partial results will not grow larger than twice the length of
the modulus P. In the rest of this paper, we will consider that
every multiplication operation always includes a subsequent re-
duction step.

In general, one can follow two strategies in order to optimize
the computation of (1). One approach is to implement field mul-
tiplication, the main building block required for field exponen-
tiation, as efficiently as possible. The other is to reduce the total
number of multiplications needed to compute (1). In this paper,
we address the latter approach, assuming that arbitrary choices
of the base element A are allowed but considering that the ex-
ponent e has been previously fixed.

A large number of field exponentiation algorithms have been
reported. Known strategies include: binary, m-ary, adaptive
m-ary, power tree, and the factor method, to mention just a few
[51-[71, [9], [20], [26]-[30], [32], [37], [40]. Those algorithms
all have in common the fact that they strive to keep the number
of required field multiplications as low as possible through the
usage of a particular heuristic. However, none of those strate-
gies can be considered to yield an optimal solution for every
possible field size. Obviously, the larger the size of the field
utilized the harder the problem of optimizing the computation
of the field exponentiation.

On the other hand, all the aforementioned methods can be
mathematically rephrased by using the concept of addition
chains. Indeed, taking advantage of the fact that the exponents
are additive, the problem of computing powers of the base
element A, can be directly translated to an addition calculation.
The concept of an addition chain for a given exponent e can be
informally defined as follows.

An addition chain for e of length [is a sequence U of positive
integers, ug = 1,u1...,u; = e such that for each 2 > 1,
u; = u;j + uy for some j and k with 0 < j < k < 4.

An addition chain dictates the correct sequence of multiplica-
tions required for performing an exponentiation. Hence, if U is
an addition chain that computes e as mentioned above, then for
any A € F, we can find B = A“ by successively computing:
A LAY L A AS

For instance, the addition chain (1,2,3,5,10,20,23,46,47)
leads to the following scheme for the computation of A*’

Al. A2:A1A1' A3:A2A1:
A5’: A3 A2 AL0 — A5Aé~ A20 — 410 410,
A23 — AZ()A:L A46 — A23Aé3. A47 — A46A1.’

An addition sequence is a generalization of an addition chain
where not just one but several positive integers eg < e ... < eg
must be included in the given sequence.

Let I(e) be the shortest length of any valid addition chain
for a given positive integer e. Then, the theoretical minimum
number of field multiplications required for computing the
field exponentiation of (1) is precisely I(e). Unfortunately, the
problem of determining an addition chain for e with the shortest
length I(e) is an NP-hard problem [32]. Therefore, we have no
option but to use some kind of heuristic strategy in order to
find an optimal addition chain when dealing with sufficiently
large exponents e.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Generally speaking, a heuristic strategy tries to find in a
reasonable time near-optimal results for hard optimization
problems, i.e., those problems having huge search spaces. A
heuristic method offers no guarantee on the quality of the solu-
tions (if any) to be found. However, it can operate under nearly
every possible set of restrictions. Typically, a heuristic method
starts from a nonoptimal solution population and iteration after
iteration improves its findings until a reasonable and/or valid
solution can be achieved. The gradual improvement on the
partial results is done using either deterministic or probabilistic
search criteria. Given a fixed set of initial conditions, the
optimized solutions obtained by a deterministic heuristic will
remain unchanged from run to run. On the contrary, repeated
executions of a probabilistic heuristic may produce different
final solutions.

There has been an enormous amount of literature reporting
deterministic heuristics methods for finding short addition
chains on large exponents. Some examples are the aforemen-
tioned binary algorithm and its generalization, the window
method, the run-length and hybrid method, and so on [20],
[26], [27], [30], [37], [38].

On the other hand, relatively few probabilistic heuristics have
been reported so far for finding near-optimal addition chains
[6], [9], [33]. In [33], a genetic algorithm search engine was
proposed for solving this optimization problem but the authors’
strategy was only tested for exponents that are too small (9 bits
or less) to be considered practical in serious applications. In
[9], the use of an artificial immune system (AIS) was proposed
as a probabilistic heuristic for finding minimal-length addition
chains. Those optimal addition chains were then used for com-
puting multiplicative inverses on binary extension fields.

In [6], an algorithm for obtaining short addition chains on
512-bit exponents was presented. That algorithm was divided
into two parts: In the first phase, the computation of an addi-
tion chain for a large exponent e was reduced to the compu-
tation of an addition sequence composed by a set of integers
(called windows), that are significantly smaller than e. Then,
in the second phase, an addition sequence for those windows
is produced. Four different search criteria were used in order
to minimize the length of the addition sequences so produced.
Although authors in [6] reported good experimental results, the
exact method of deciding which search criterion should be used
was left open (in fact, the authors mentioned that they unsuc-
cessfully tried the simulated annealing technique).

In this paper, we propose the usage of a probabilistic heuristic
based on an AIS search engine for finding short addition chains
when dealing with very large exponents. We discuss the ratio-
nale behind the algorithm presented, and we compare its per-
formance against well-known deterministic strategies using rel-
atively small exponents, i.e., exponents with bit length m less
than 12 bits. Since for those small exponents exact optimal addi-
tion chains are known (obtained by means of exhaustive search),
we can find out the precise quality of the solutions obtained by
our approach. Furthermore, we present a detailed description
of how our proposed strategy can be extended for larger expo-
nents e (up to 30 bits) and for very large exponents with bit
length . well in the range of cryptographic applications, i.e.,
m € [128,256,512, 768, 1024] bits.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CRUZ-CORTES et al.: AN ARTIFICIAL IMMUNE SYSTEM HEURISTIC FOR GENERATING SHORT ADDITION CHAINS 3

In the case of large exponents, we incorporate our AIS
strategy to both phases of the algorithm presented in [6]. First,
the combination of the sliding window strategy together with
an AIS heuristic is utilized for efficiently partitioning a given
large exponent into smaller windows. Afterwards, an AIS
search engine is utilized for grouping the obtained windows
into a single addition sequence. Although, in general, optimal
solutions on this range are unknown, we provide a comparison
of our experimental results against the ones reported by known
deterministic approaches.

The rest of this paper is organized as follows. In Section II, we
present a brief review of several relevant deterministic heuris-
tics proposed in the specialized literature for computing field
exponentiation. Section III describes the framework of the prob-
abilistic heuristic approach presented in this paper, which is
based on the concepts of window partitioning and addition se-
quences. In Section IV, the proposed AIS heuristic together
with its problem representation is explained. In Section V, we
describe the proposed algorithm including two design exam-
ples; one for a small exponent and another for a large 128-bit
exponent. Section VI presents several experiments and statis-
tical tests performed on the proposed AIS heuristic method. In
Section VII, two code-theory applications of the AIS method
are described. Finally, in Section VIII, some concluding remarks
and possible paths for future research are drawn.

II. DETERMINISTIC HEURISTICS FOR FIELD EXPONENTIATION

In this section, we include a brief review of the main deter-
ministic heuristic proposed in the literature for computing field
exponentiation.

A. Binary Strategies

Let e be an arbitrary m-bit positive integer e, with a binary
expansion representation given as, e = (ley_2...e1€0), =
2m=1 4 SV 2 2ic, Then

m—2
gm—1 m—2 2te, gm—1 o
y=x"=x 220 “l=x . Hx “i 2)
=0

Binary strategies evaluate (2) by scanning the bits of the expo-
nent e one by one, either from left to right (MSB-first binary
algorithm) or from right to left (LSB-first binary algorithm) ap-
plying the so-called Horner’s rule.! Both strategies require a
total of m — 1 iterations. At each iteration, a squaring opera-
tion is performed, and if the value of the scanned bit is one, a
subsequent field multiplication is performed. Therefore, the bi-
nary strategy requires a total of 7n — 1 squarings and H(e) — 1
field multiplications, where H (¢) is the Hamming weight of the
binary representation of e. The pseudocode of the MSB-first and

'Horner’s rule, named after W. G. Horner, ranks among the most efficient
algorithms for the computation of nth degree polynomials of the form, p(x) =
Pal™ 4 pn_qx™ — 14 -+ prx + ug, pn # 0, for fixed values of x.

Horner’s rule solves this problem by evaluating p(x) as, p(x) = (... (p.x+
Pr_1)T + -)x + pp.

This elegant algorithm was discovered independently by Isaac Newton 150
years earlier than Horner and by the Chinese mathematician C. C. Chao in the
13th century [26].

Input: x,n,e = (ep_1...€1€0)5

Output: y = x* mod n

1. y=x;

2. fori=m — 2 downto 0 do {
3. y=v,

4. ife;==1theny=y-x;}
5. outputy

Fig. I. MSB—first binary exponentiation.

Input: x,n,e = (ep—1...€1€0)y

Output: y = x* mod n

L p=x;y=1;

2. fori=0tom —1do

3. { ife==1theny=y-p;
4 p=p'}s

5. outputy

Fig. 2. LSB—first binary exponentiation.

the LSB-first binary algorithms are shown in Figs. 1 and 2, re-
spectively. The computational complexity of the algorithm in
Fig. 1 is given as

Ple,m)=m+ H(e) —2 = |logy(e)] + H(e) = 1. (3)

An Example: Let us define e = 1903 = (11101101111),.
Then, m = 11 and H (e) = 9. According to (3). the computa-
tional complexity of the binary algorithm is given as

Pley=m+H(e)—2=1149-2=18.

After evaluating the algorithm of Fig. 1, the resulting binary
sequence is given as

2 7 x
.’171 Y SN 5173 _ :176 JNSY SN 3714 _ .’1728 _ 3729 —

59—>£L’118—>LL’236—>37237—>37474—>37475—>37950

8

— T

N 37951 N 371902 N :131903.

B. Window Strategies

The binary method discussed in the preceding section can be
generalized by scanning more than one bit at a time. Hence,
the window method (first described in [26]) scans & bits at a
time. The window method is based on a k-ary expansion of
the exponent, where the bits of the exponent e are divided into
k-bit words or digits. The resulting words of e are then scanned
performing %k consecutive squarings and a subsequent multi-
plication as needed. In the following, we describe the window
method in a more formal way.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Input: x,n,¢ = (en_1...€1€)y, k divi-

sor of m such that &' = m/k.
Output: y = x° mod n.

1. Pre-compute and store 7 forall j = 1,2,3,4,...,2% — 1.
Divide e into k-bit words W fori = 0,1,2,...,¥ —1.
y = xWe1;
for i = ¥ — 2 downto 0 do {
y=v";
if W; # Otheny =y - x"i;
}

7. outputy

I I T

Fig. 3. MSB—first 2*-ary exponentiation.

Let e be an arbitrary m-bit positive integer e, with a binary
expansion representation given as

m—2

c = (lcm,g c. 6160)2 = 2m—1 + Z 2i(ii.
1=0

Let % be a small divisor of 7. Then, this binary expansion of e
can be partitioned into ¥ words of length k, such that k¥ = m.
If k£ does not divide r, then the exponent must be padded with
at most k — 1 zeros. Let us define W; € [[0,2% — 1]] as

k—1
W; = (6ik+(k—1)€ik+(k—2) cen 6ik+16ik)2 = Z 2je(ik+j)-
3=0
4)

Then, we can equivalently represent e as, Zf:_ol W, - 2i4,
Using the above definition, we have

-1
=1 5id id
y = x¢ = xz;ifo 2wy = H X2 VV.,,. (5)
=0

Equation (5) is the basis of the window MSB-first procedure
for exponentiation described in the pseudocode of Fig. 3. The
window method first precomputes the values of 27 for j =
1,2,3,...,2% — 1. Then, the exponent e is scanned k bits at
a time from the most significant word (Wy_1) to the least sig-
nificant word (Wj). At each iteration, the current partial result y
is raised to the 2¥ power and multiplied with 2"+, where W is
the current nonzero word being processed. Referring to Fig. 3,
it can be seen that:

* The first part of the algorithm consists of the precomputa-
tion of the first 2% powers of x at a cost of 2¥ — 2 prepro-
cessing multiplications.

e At each iteration of the main loop, the power y2k can
be computed by performing & consecutive squarings. The
total number of squarings is given by (V — 1)k = m — k.

* At each iteration, one multiplication is performed when-
ever the 7th word W; is different than zero. Since all but

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

one of the 2% different values of W; are nonzero, the av-
erage number of required multiplications is given as

)(1—2—’“).

™y

(v -1 -27) = (F

Thus, the average number of multiplications needed by the
window method in order to compute an r-bit field exponenti-
ation is given as

Pm,k) = (25 —2) + (m — k) + (% ~1)(1-27". ©

For k = 1, 2, 3, 4, the window method sketched at Fig. 3 is
called, respectively, binary, quaternary, octary, and hexa MSB-
first exponentiation method. In particular, note that by evalu-
ating (6) for £ = 1, the average number of multiplications for
the binary algorithm can be found as (3/2)(m — 1) field oper-
ations on average.

One obvious improvement of the strategy just outlined is that
instead of calculating and storing all the 2* first powers of z, one
can just precompute the windows needed for a given exponent
e, thus saving some operations. This last idea is illustrated in the
examples below.

Example: Once again, let us consider the exponent
1903 = (11101101111)9 with m = 11. Then, the
window method computational complexity and resulting se-
quence using k = 2, 3, 4 can be found as follows.

Quaternary: ¢ = 1903 = (01 11 01 10 11 11),
P(m, k) = 2 Precomp mults 4+ 10 Sqrs+5 mults =
17.
Precomp. sequence: x
Main sequence:

e =

1_. .772 N .713.

9 -
sl p? gt Tl 28 29

116 _, 37118 N 37236 N 37472 N 37475 N 37950

1900 N x1903.

8

— T

— T

Octal: ¢ = 1903 = (011 101 101 111),
P(m, k) = 4 Precomp mults + 9 Sqrs + 3 mults =
16.
Precomp. sequence: z* — 22 — 2% — z° — 7.
Main sequence:
e L e

37—>.T474H.77948

8 N :1;116 N :1;232

1896 _ :]71903)

2
— x” — T

Hexa: e = 1903 = (0111 0110 1111),
P(m, k) = 6 Precomp mults + 8 Sqrs + 2 mults =
16.

Precomp. sequence: x
L4 15

1 .772 _ .7]3 N .716 N ',]77 N

—

Main sequence:

A7 14 N 3728 N I56 N xllZ N 37118 N 37236

472 _ 517944 _ x1888 N .T1903.

— T

However, none of the above deterministic methods is able to
find the shortest addition chain for e = 1903. In Section V-A,
we will retake this example showing that the exponentiation for

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CRUZ-CORTES et al.: AN ARTIFICIAL IMMUNE SYSTEM HEURISTIC FOR GENERATING SHORT ADDITION CHAINS 5

less than q

consecutive
ZEros

scanned

bit zero

 seamned bitone

~_

q consecutive zeros
detected

Nonzero
window

Fig. 4. Partitioning algorithm.

this example can be done using a sequence consisting of only
15 multiplication steps.

C. Adaptive Window Strategy

The adaptive or sliding window strategy is quite useful for
exponentiations with extremely large exponents (i.e., exponents
with bit length greater than 128 bits) mainly because of its
ability to adjust its method of computation according to the spe-
cific form of the exponent at hand. This adjustment is done by
partitioning the input exponent into a series of variable-length
zero and nonzero words called windows. As opposed to the
traditional window method discussed in the previous section,
the sliding window algorithm provides a performance tradeoff
in the sense that allows the processing of variable-length zero
and nonzero digits. The main goal pursued by this strategy is
to try to maximize the number and length of zero words, while
using relatively large values of k.

A sliding window exponentiation algorithm is typically di-
vided into two phases: exponent partitioning and the field expo-
nentiation computation itself. In the first phase, the exponent e
is decomposed into zero and nonzero words (windows) W; of
length L(W;) by using some partitioning strategy. Although, in
general, it is not required that the window’s lengths L(W;) must
all be equal, all nonzero windows should have a length L(W;)
smaller than a given number k. Let Z be the number of zero
windows and N/ be the number of nonzero windows, so that
their addition W represents the total number of windows gener-
ated by the partitioning phase, i.e.,

U =2+NZ. 7

It is useful to force the least significant bit of a nonzero
window W; to be equal to 1. In this way, when comparing with
the standard window method discussed in the previous section,
the number of preprocessing multiplications are at least nearly
halved, since £ must only be precomputed for w odd.

Several sliding window partitioning approaches have been
proposed [6], [7], [20], [26], [27], [30]. Proposed techniques
differ in whether the length of a nonzero window has to have
a constant or a variable length. The partitioning algorithm in-
strumented in this work scans the exponent from the most sig-
nificant to the least significant bit according to the finite-state
machine shown in Fig. 4. Hence, at any moment, the algorithm
is either completing a zero window or a nonzero window. Zero

Input: x,n,e = (epm_1...€1€0)5

Output: y = x¢ mod n.
1. Pre-compute and store =7 for at mostall j = 1,3,5,...,2% — 1.

2. Divide e into zero and nonzero windows W; of length L(W;)

fori = 0,1,2,...,¥ —1.

3. y=xWe-1;

4. fori= T — 2 downto 0 do {

5 y = VQL(Wi) .

6. ifW; # 0theny =y -x"s;
¥

7. outputy

Fig. 5. Sliding window exponentiation.

windows are allowed to have an arbitrary length. However, the
maximum length of any given nonzero window should not ex-
ceed the value of £ bits.

Starting from the zero window state (ZWS), the exponent bits
are checked one by one. As long as the value of the current
scanned bit is zero, the algorithm stays in ZWS accumulating as
many consecutive zeros as possible. If the incoming bit is one,
the finite-state machine switches to the nonzero window state
(NZWS). The automaton will stay there as long as ¢ consecu-
tive zeros had not been collected. If this condition occurs, the
automaton switches to ZWS (usually, ¢ is chosen to be a small
number, namely, g € [2,5]). Otherwise, if k bits can been col-
lected, the partitioning algorithm stores the new formed nonzero
window and stays in NZWS in order to generate another NZ
window.

The pseudocode for the sliding window exponentiation algo-
rithm is shown in Fig. 5. From that figure, it can be seen that:

* The first part of the algorithm consists on the precomputa-
tion of at most the first 2% odd powers of x at a cost of no
more than 28~ — 1 preprocessing multiplications.

* At step 2, the exponent e is partitioned using the strategy
described above and depicted in Fig. 4. As a consequence,
a total of 7 zero windows and N7 windows will be pro-
duced.

* Atstep 3,y is initialized using the value of the most signif-
icant window (MSW)asy = 2% Itis always assumed
that Wyg_1 75 0.)

* At each iteration of the main loop, the power yzf'(w'r’) can
be computed by performing L.(W);) consecutive squarings.
The total number of squarings is given by m — L(Wyg_1).

* At each iteration, one multiplication is performed when-
ever the 7th word W; is different than zero. Recall that N 7
represents the number of nonzero windows. Therefore, the
number of multiplications required at this step of this al-
gorithm is N7 — 1. Although the exact value of N7 will
depend on the partitioning strategy instrumented, our ex-
periments show that an approximate value for N Z using
g =2,k =25,is about 0.15 m.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Thus, we find that the average number of multiplications needed
to compute a field exponentiation for an m-bit exponent e is
given as

Pm, k) =2 1)+ (m - LW,_1)) + NZ -1
~ 28t 14 1L15m — L(Wy_1). 8)

Due to the considerable high efficiency of the partitioning
strategy for collecting zero words, the sliding window method
significantly outperforms the standard window method when
sufficiently large exponents are computed [27]. However, notice
that the value of the parameter & cannot be too large due to the
exponentially increasing cost of precomputing the first 2% odd
powers of x (step 1 of Fig. 5). In practice and depending on the
value of m, k € [4, 8] is generally adopted.

III. ADDITION SEQUENCE HEURISTIC FOR
FIELD EXPONENTIATION

As previously mentioned, the major drawback of the sliding
window method outlined in the last section is the high com-
putational cost of increasing the value of k. This difficulty
can be alleviated by using the concept of addition sequences,
which is the main subject to be addressed in this section. We
first give formal definitions and theoretical bounds for addition
sequences. Then, we discuss how to produce short addition
sequences. Finally, we introduce the sliding window method
using addition sequences which is the technique adopted in this
work for large exponents.

A. Mathematical Definitions

Definition: Let e be an arbitrary positive integer whose binary
expansion is given as e = e,;,_1€,—2...€1€9, Where m =
|log,(e)]+1.Let H (e) represent the Hamming weight of e, i.e.,
H(e)= Z;n:_ol e; is the number of ones in the binary expansion
of e.

Definition: An addition chain U for a positive integer e of
length [is a sequence of positive integers U = {uq, w1, -+, 4},
and an associated sequence of r pairs.

V = {v1,ve--, 0} with v; = (i1,42), 0 < ip < 41 < 4,
such that:

e uy = land u; = ¢;

o for each u;,1 <4 < Lu; = uy, + uy,.

The shortest length of any valid addition chain for a given posi-
tive integer e is denoted as [(e). Table I lists the set of exponents
which have an optimal addition chain of length I(e) = r, for
r=1,2,...,9.

Itis easy to get convinced that the search space for computing
optimal addition chains increments its size rapidly. In fact, there
exist 7! different and valid addition chains with length r. Obvi-
ously, the problem of finding the shortest ones becomes more
and more complicated as r grows larger. Fig. 6 shows the first
eight levels of the optimal addition chain tree.

Each of the deterministic heuristics outlined in Section II for
the generation of addition chains clearly sets an upper bound on
the function [(e). In particular, the theoretical cost of the binary
algorithm given in (3) implies that{(e¢) < m+ H (e)—1. A lower

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

TABLE 1
SET OF EXPONENTS WHICH HAVE AN OPTIMAL ADDITION CHAIN OF LENGTH 7

length 7 Solutions

! {2}

{3.4}

{5,6.8}

{11, 13,14, 15, 17,18, 20, 24, 32}

{19, 21, 22,23, 25,26,27,28,30,33,34,36,40,48,64 }

2
3
4 {7.9,10, 12,16,}
5
6
7

{29, 31, 35,37, 38, 39, 41, 42, 43, 44,45,46,49,50,51,52,
54,56,60,65,66,68,72,80,96,128}

8 {47,53,55,57,58,59,61,62,63,67. 69,70,73,74,75,76,77,78,81,82,
83,84,85,86,88,90.92,97,98, 99,100,102,104,108,112,120,129,
130,132,136,144,160,192,256}

9 {71,79,87,89,91,93,94,95, 101,103,105,106,107,109,110,11 1,113,114,
115,116,117,118,119,121,122,123,124,125, 126,131,133,134,135,137,
138,140,145,146,147,148,149,150,152,153,154,156,161,162,163,164,
165,166,168,170,172,176,180,184,193,194,195,196,198,200,204,208,
216,224,240,257,258,260.264,272,288,320,384,512}

bound for {(e) was found in [1] as, log, e + log, H(e) — 2.13.
Therefore, we can write

logy e+log, H(e)—2.13 < l(e) < [logz(e)|+H(e)—1. (9)

Let us suppose that we are interested in finding addition chains
for several exponents of a given fixed bit-length, say, m. Then,
as it was shown in [30], I(e) is a function of the Hamming
weight H(e). Indeed, one can expect that on average [(e) will
be smaller for both, H(e) closer to 0 and for H(e) closer to
m. On the contrary, when H (e) is close to m/2, i.e., for those
m-bit exponents having a balanced number of zeros and ones,
[(e) happens to be maximal [30].

Definition: An addition sequence is a generalization of an
addition chain where not just one but several positive integers
e1 < ez... < es must be included in the given sequence. It
has been shown that the minimal length I(eg, e, ..., es) of an
addition sequence for ey, . .., e, is upper bounded by [20]

log e,

ves) <loges + (s + K) (10)

l(er,es,... —
(e, €2 loglog e

where K is a constant. For example, an addition sequence for
{23, 28, 40, 47} is

1,2,3,5,10,12,13,23, 28,40, 45, 47. (11)
Little is known about addition sequences bounds. However, it
has been shown that finding a minimal length addition sequence
is an NP-hard problem [20]. Some heuristics for generating op-
timal addition sequences are discussed next.
1) Generating Short Addition Sequences: Few heuristic

methods able to generate reasonably short addition sequences
have been reported [6], [34], [39].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CRUZ-CORTES et al.: AN ARTIFICIAL IMMUNE SYSTEM HEURISTIC FOR GENERATING SHORT ADDITION CHAINS

2
/// \\\\\\\
3 = 4
8
5 6
/\ \
7 10 12 9 16
14 11 20 15 24 13 17 18 32
A/ /N AN | VN
/\ Y y y ' Y Y
19 28 21 22 23 40 2\7 3/0 25 48 Zfi ;4 36 33 65\1
Al | A / / ‘ / \ I)
/\ Nl I\ N f JANVAN Ao I\
YNy v ¥\ 4 oy \ AT
38 29 56 3142 44 46 41 30 39 54 45 60 50 S5t 3 6 37 72 49 66 65 128

A NN A /// N y ANNATATA A

76 58 57 59 112 62 84 88 47 92 82 83 85 160 78 55 90 63 7510053 9799 192 120 10270 61 104 77 86 69 136 74 73 144 98 67 132 81 130 129 256

Fig. 6. Eight-level optimal addition chain tree.

The Bos—Coster method presented in [6], starts by defining
a protosequence consisting of 1,2 together with the requested Input: An ordered set of s integers
integers, i.e., {ug = L,u1 = 2,us = e1,u3 = €a, -+, Usp2 = U={e1,€2,...,€s—1,€s} such that if
e, +. It then transforms this to the required sequence by using a
heuristic composed by the following four methods.
1) Approximation. Let us suppose there are two elements al-
ready in the sequence such that u; + u; = ey — ¢, with
u; < u; and ¢ positive and small. Then, insert u; + €.
2) Division. If ey is divisible by a small prime p, then aggre-
gate {es/p,2es/p,...,(p — 1)es/p, es}, in the sequence. Lk=s5-2
3) Halving. Let us suppose there is a small number u; = ¢ 2. Set U := {u1 = e1,u2 = €2,...,ux = €5_2};
already in the sequence such that, e; — ¢ = 2V K, where 3.V = {u1 = es_1,v2 = es}; W = ;
v, K are both integers. Then, aggregate {es — ¢, (es — 4 while (U < 8)d
t)/2,...,(es —t)/2"} in the sequence. - while (7 7 0) do {
4) Lucas. Aggregate a Lucas sequence such that its last ele- 5 A= (n-wu)
ment is eg. W :=WuU{v}
The Bos—Coster method reports good experimental results when {v1,v2} = max_two_elements(ug, A, v1 };
applied to 512-bit exponents, with Hamming weight of about if (Delta < uy) && (A ¢ U) then {
two-thirds of 512. Nevertheless, the exact method of deciding U - SortSet(U U {A}):
which method should be used was left open (in fact, the authors ’ B ?
in [6] mentioned that they unsuccessfully tried the simulated 10 }elseif (A € U) then {

i< jthene; < e
Output: An addition sequence for

{e1,e2,...,5—1,€e5} with length L

Add_Seq_Generator(U, s)

Lo N

annealing technique as an optional method). 11, k=k-1;
In this work, we implemented the insertion method (similar to 12. 1}

the Bos—Coster Approximation method) shown in the algorithm 13.

of Fig. 7.

14. L= Length_Set(W);

Let us suppose that we want to produce an addition se-
15. output {W,L}

quence for an ordered set of s positive integers (windows),

{e1,ea,...,e5_1,€s}. First, the sets U, V', and W are initial-
ized as shown in steps 2-3 of algorithm in Fig. 7. Notice that Fig. 7. An algorithm for generating short addition sequences.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

TABLE II
AN EXAMPLE OF ADDITION SEQUENCE GENERATION

| iteration ’ k ’ U ‘ A ‘ \Y ‘ w
- 8 | U={3,5,7,11,15,23,25,43} | - | V:={93,147} wW=0
1 8 | U={3,5,7,11,15,23,25,43} | 54 | V:={54,93} W= {147}
2 8 | U={3,5,7,11,15,23,25,39} | 39 | V:={43,54} W:={93,147}
3 7 U={3,5,7,11,15,23,25} 11 | v:={39,43} W= {54,93, 147}
4 7 U:={3,4,5,7,11, 15,23} 4 | vi={25,39} W= {43,54, 93,147}
5 7 U={3,4,5,7,11, 14,15} 14 | vi={23,25} W= {39,43,54,93, 147}
6 7 U:={2,3,4,5,7,11, 14} 2 | vi={15,23} W= {25, 39,43,54,93, 147}
7 7 U:={2,3,4,5,7,8,11} 8 | vi={14,15} W= {23,25,39, 43,54, 93, 147}
8 7 U:={1,2,3,4,5,7,8} 1| vi={11,14} W= {15,23,25,39, 43, 54, 93, 147}
9 6 U:={1,2,3,4,5,7} 3 V={8,11} W= {14, 15,23, 25, 39,43, 54, 93, 147}
10 5 U:={1,2,3,4,5} 3 v:={7,8} W= {11, 14, 15,23, 25,39, 43, 54,93, 147}
16 W:={1,2,3,4,5,7,8,11, 14, 15,23, 25, 39, 43, 54, 93, 147}

the set V := {v1 = es_1,v2 = es} is initialized with the two
largest integers of the input set U. Thereafter, the main loop
starts in step 4.

Ateach iteration, we compute the value A = vo—wv; in step 5.
Then, we insert A into the sequence, thus guaranteeing that
the addition of two sequence elements can produce v (namely,
v1 + A). As a consequence, the integer v5 is added to the output
set W (step 6). The set V is then updated with the two largest
values among the three candidates: uj, A and vy (step 7). Fi-
nally, in steps 8-12, if A is not already in U and if A < wuy,
then that element is added to the set U without distorting its as-
cending order (procedure Sort_Set in step 9). In the case that
A € U, then the number of elements in U kept in the variable
k, is decreased by one.

These iterations are repeated until the input set U is empty
and, consequently, the output set W contains the required addi-
tion sequence.

An Example: Let us suppose that we want to produce an ad-
dition sequence for the following set of ten integers, {3, 5,7, 11,
15, 23, 25, 43, 93, 147}. Table II describes how the sets U, V,
W are being updated as the algorithm in Fig. 7 executes. The
final addition sequence produced by our algorithm is then

W .={1,2,3,4,5,7,8,11,14,15,23,25,39, 43, 54, 93, 147}.

12)

The sequence in (12) is a valid addition sequence for the input

set given. Notice that the sequence has a length of 16 elements.

According to our experiments, we found that the length of the

sequences produced by the algorithm in Fig. 7 could be empir-
ically upper bounded as

Lol W~

l(eg,e1,...,e5) < = [loga(es)| + s+ 1 (13)

which is a slightly better value than the bound given in [6].

B. Sliding Window Method Using Addition Sequences

The pseudocode for the sliding window method using addi-
tion sequences is shown in Fig. 8. We use the same partitioning

Input: x,n,e = (ep—1...€1€0)5

Output: y = x° mod n.

1. Decompose e into ¥ zero and nonzero windows W; of length
L(Wy), fori = 0,1,2,...,¥ - 1.

2. Compute and store the addition sequence corresponding to the
NZ nonzero windows found in the previous step, namely,

[Wo, Wl, ceey WNZ—I}

3. y= :cW‘I’-l;

4. fori =¥ — 2 downto 0 do {

5 y= yQL(W'L') .

6. if W; # 0 theny = y - xV%;
}

7. outputy

Fig. 8. Sliding window exponentiation using addition sequences.

algorithm described in the Section II-C, but taking advantage of
the addition sequence concept, we may now allow much larger
window sizes. Then, referring to Fig. 8, the following steps are
performed.

* At step 1, the exponent e is partitioned using the strategy
described in Section II-C (see Fig. 4). As a consequence,
a total of Z zero windows and N Z nonzero windows will
be produced.

» After having performed the partitioning phase, the next
task of the algorithm consists of the computation of the ad-
dition sequence needed to obtain all the N7 nonzero win-
dows found in the previous phase. This task can be accom-
plished at a cost of I(Wy, Wy, ..., Wxnz_1) preprocessing
multiplications.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CRUZ-CORTES et al.: AN ARTIFICIAL IMMUNE SYSTEM HEURISTIC FOR GENERATING SHORT ADDITION CHAINS 9

e At step 3, y is initialized using the value of the MSW as
y = 2"¥-1_ Notice that it is always assumed that Wy, _; #
0.
* At each iteration of the main loop, the power y an
be computed by performing I.(W;) consecutive squarings.
The total number of squarings is given as m — L(Wyg_1).
* At each iteration, one multiplication is performed when-
ever the 7th word W; is different than zero. Recall that N 7
represents the number of nonzero windows. Therefore, the
number of multiplications required at this step of this al-
gorithm is precisely NZ — 1. Although the exact value of
N Z will depend on the partitioning strategy instrumented,
our experiments show that an approximate value for N7
using ¢ = 2, k = 5, is about 0.15 m.
Thus, we find that the average number of multiplications
needed to compute field exponentiation for an m-bit exponent
e is given as

TL{W;)
2 C

P(m,k,q) =1(Wy,..
~1(W, .

. 7W\p,1)+m—L(W\p,1)—I—NZ—1
G We_1)+1L.15m—L(Wg_1). (14)

From (14), it can be seen that one can optimize its computa-
tional cost by carefully selecting the most-significant-window
Wy _1. This feature will be exploited by the AIS heuristic to be
explained in the next section.

Also, notice that the sliding window method requires, in gen-
eral, the precomputation of the first 2% odd powers of x (step 1 of
Fig. 5) at a cost of 2¢~1 — 1 operations. In contrast, in the case
of (14) that step is substituted by the computation of an addi-
tion sequence at a cost of [(W), ..., Wy_1) operations, whose
upper bound is given by (10) and (13).

Moreover, as we will see in the rest of this paper, the usage
of a probabilistic heuristic on the computation of short addition
sequences allows us to use much larger values of the parameter
k implying a potential speedup on the computation of the field
exponentiation operation.

IV. ARTIFICIAL IMMUNE SYSTEM (AIS)
AND PROBLEM REPRESENTATION

In this section, we briefly discuss the main aspects that
characterize AISs in general. Furthermore, we explain how the
problem of finding short addition sequences for large exponents
can be represented using an AIS setting.

A. Artificial Immune System (AIS)

The AIS is a relatively new computational intelligence par-
adigm which borrows ideas from the natural immune system
(especially from the one corresponding to mammals) to solve
relatively complex problems. In recent years, AIS has been suc-
cessfully applied for solving problems in different areas such
as computer and network security [2], [17], [22], fault detection
[13], [19], scheduling [23], machine learning [16], [31] and opti-
mization. Reported optimization problems solved by using AIS
systems include multimodal [15], numerical [21], and combina-
torial optimization [10].

From a biological point of view, the human immune system
is a very complex system formed by a large number of cells and
molecules and diverse mechanisms.

antibody A

: i

antibody C

antibody

o

clones from antibody C

=

Fig. 9. The clonal selection principle of the immune system. Antibody C (the
best affinity) is reproduced by cloning. The new clones will suffer a mutation
process.

A

Some immunologists argue that one of the main functions of
this system is to protect our bodies from the invasion of external
microorganisms. It is composed of two defense lines: innate
and adaptive immunity. Innate immunity is nonspecific which
means that it is independent of the foreign antigen. The adap-
tive immunity has memory and learning capabilities and it is
antigen-dependent, meaning that each different type of antigen
will provoke a different immune response. The main compo-
nents of the adaptive immunity are the cells called B lympho-
cytes or simply B cells. When B lymphocytes are stimulated by a
specific antigen, they will produce a large number of molecules
called antibodies, which play a major role in the adaptive im-
mune response.

From the information processing perspective, the immune
system is seen as a parallel and distributed adaptive system
[18]. It is capable of learning; it uses memory and it is able
of performing information associative retrieval. Particularly,
it learns how to recognize patterns; it remembers patterns that
have shown up in the past and its global behavior is an emergent
property of many local interactions [12].

As previously mentioned, the immune system is a very com-
plex system (probably its complexity is only comparable to that
of the brain). However, for the sake of simplicity, we will only
use two elements of the immune system in our model, namely,
antigens (foreign microorganisms) and the antibodies (the main
actors of the adaptive immune response).

The algorithm presented in this paper is based on a mecha-
nism called clonal selection principle [8] that explains the way
in which the antibodies eliminate a foreign antigen.2 Such prin-
ciple is explained in the next section.

B. Clonal Selection Principle

Fig. 9 depicts the clonal selection principle, which establishes
the idea that only those antibodies that best match the antigen
are stimulated. These stimulated antibodies are reproduced by

ZPartially due to the fact that the immunology community has not yet entirely
understood how the immune system works, the validity of the clonal selection
principle is currently under debate (see, for example, [3] and [35]). However,
in this work, it is shown that designing a heuristic inspired on that immunology
principle appears to be the right choice for the optimization problem at hand.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

cloning and the new clones suffer a mutation process with high
rates (called hypermutation). After this process takes place,
some of the newly created antibodies may increase their affinity
to the foreign antigens. Those clones will increase the chances
of neutralizing and/or eliminating the antigens. Once the for-
eign antigens have been exterminated, the immune system
must return to its normal values, eliminating the exceeding
antibodies cells (auto regulation).
However, some of the best cells remain in the body as memory
cells. Then, in future encounters with the same kind of antigen
(or a similar one), the immune system response will likely be
more effective and efficient. This phenomenon is called sec-
ondary response.
Those antibodies showing lower affinity sometimes undergo
receptor editing: Their low affinity receptors are replaced by
new ones created randomly.
The processes of stimulation and cloning of the fittest anti-
bodies, hypermutation and auto regulation are called the clonal
selection principle. This is an oversimplification of what re-
ally happens in the natural immunity response. However, for
the goals followed by most of the immunity-based artificial sys-
tems, such a simplification seems to be appropriate [15].
Hence, the immune aspects to be taken into account for mod-
eling our algorithm are the following.
1) Stimulation of the higher affinity antibodies with respect to
the antigen.

2) Cloning of the stimulated antibodies.

3) Proliferation rate proportional to antibodies’ affinity.

4) Hypermutation rate inversely proportional to antibodies’
affinity.

5) Receptor editing.

6) Immune memory.

Even this subset of immune mechanisms is still considerably
complex as a large number of cells participate on them. There-
fore, we will emulate these immune mechanisms using a simpli-
fied model of them as described in the remainder of this section.

C. Problem Representation

According to de Castro and Timmis [14], in every AIS, as in
any other computational system with biological inspiration, the
following elements must be defined.

* A representation of the system components.

¢ Evaluation mechanisms of individuals’ interaction with
their environment and/or with each other. The environ-
ment is usually stimulated by a set of input stimuli, one or
more fitness functions, or by other means.

* Adaptation procedures that govern the dynamics of the
system, i.e., how the system’s behavior varies over time.

According to this framework, the elements of our algorithm
were defined using the following setting.

* A representation of the system components. For the mod-
ular exponentiation problem, we defined two main actors:
an antigen and an antibody population. A foreign antigen is
represented as the exponent e that we wish to reach. Anti-
bodies, on the other hand, are represented by the pair (U,),
where U is the addition chain sequence that contains the
arithmetic recipe required for computing the desired goal
(the antigen); and [is a positive integer representing the

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

TABLE III
ANALOGY BETWEEN THE BIOLOGICAL AND THE
AIS DEFINED IN OUR ALGORITHM

Biological Immune System Artificial Immune System

antigen exponent ¢ (from B = A¢ mod P)

antibody pair (I, 1), where U is an addition chain of length
representing a potential solution that

must be reached

antibody’s affinity length of the addition chain represented by

the positive integer [(the shorter the better)

cloning antibody’s identical copies

hypermutation changes applied on the clones

receptor editing replacement of low affinity antibodies by new ones

immune memory and secondary accumulated knowledge consisting on

response solutions previously found and stored

for different values of e

length of U, i.e., the number of steps needed to achieve the
desired goal. The antibody population represents potential
solutions for the problem in hand.

For instance, if we wish to reach the antigen e = 1903,
we may select the antibody Ab = (U, 1) composed by the
addition chain sequence U

5171—>£L’2—>£L’3—>.’174—>.’177—>.’1714—>£L’28—>.T29—>.’1758—>37116

N LL'118 236 472 475 950%.’1;1900%.’1]1903

- =t st -y
with length [= 16. Ab represents a feasible problem solu-
tion, i.e., an antibody with affinity value 16 (although this
solution is not the best possible one, as it will be shown in
the next section).

* Evaluation mechanisms of individuals’ interaction with
their environment and/or with each other. The affinity of a
given antibody with respect to the antigen e is, therefore,
equal to the length of its associated addition chain. The
shorter the antibody’s length is the better its associated
affinity.

* Procedures of adaptation that govern the dynamics of the
system: The dynamic of our system is based on the clonal
selection principle.

Table III shows an analogy between some biological immune

system elements on one side, and the way that those elements

were modeled by our algorithm on the other.

V. AIS HEURISTIC FOR FIELD EXPONENTIATION

In this section, we describe the AIS-based heuristic utilized
in this paper for computing the field exponentiation operation.
We first discuss the proposed AIS strategy algorithm. Then, two
design examples that illustrate the algorithm behavior are ex-
plained in detail.

A. The AIS Heuristic

Next, we describe the AIS heuristic adopted in this work,
considering the following aspects: antibody’s construction, the
hypermutation operator, the immune memory mechanism, and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CRUZ-CORTES et al.: AN ARTIFICIAL IMMUNE SYSTEM HEURISTIC FOR GENERATING SHORT ADDITION CHAINS 11

Input: A mutilated addition chain (U = wug, uy," - ,u;—1), where g
is the next position to be assigned and; the antigen e that we

want to reach.
Output: A complete addition chain (') for e with length /.

Fill(T, i, e){
1. 7 =14
2. while (u; # e)do {
3. if (Flip(F)) then
use a doubling step if possible, i.e., u; = 2u; 1,
provided that u; < e. Ifu; > egoto4.
4. else if (Flip(0.5)) then
setu; = uj—1 + uj—2
provided that u; < e. Ifu; > egoto 5.
5. else do {
set u; = u;—1 + ug, where k is a randomly
selected integer such that 0 < k < j.
} while (u; > e)
6. j =it
7. }
8. output (U,5) }

Fig. 10. Procedure for repairing a mutilated addition chain.

the clonal selection algorithm. Finally, we present a complexity
analysis of our algorithm.

1) Antibody’s Construction: As explained in the previous
section, in our system, an antibody is modeled by the pair (U,),
where U is a valid addition chain of length [for the antigen
e. Therefore, we need to define a procedure able to build legal
addition chains so that the system’s antibody population can be
created and mutated.

In order to see how this can be done, consider first the
problem of completing a valid addition chain assuming that an
in-progress (mutilated) addition chain U = ug,uq, -+, 45-1,
with %;_1 < e has been already built. Under this scenario,
one possibility for adding a new element in the chain would
be to use the so-called doubling step [26], which is merely
u; = 2u;_1. Notice that u; would get the maximum possible
value 2u;_; that can be obtained from the in-progress addi-
tion chain, U = wg,u1,---,u;—1. However, it might be that
2u;_1 > e, making illegal the usage of a doubling step. In that
case, one can fry instead u; = wu;_1 + u;_2 < 2u;_1, which
after the doubling step is the second maximum value that u;
can achieve from the given chain. However, even in this case, it
is still possible that v; = u; 1 + u; 2 > e. If that happens,
one can try u; = u;—1 + ug, with k a randomly chosen integer
such that 0 < &k < j.

Based on the above considerations, we designed the algo-
rithm shown in Fig. 10 as our main mechanism for producing

3That set of rules corresponds to a special class of addition chains known as
star chains [26], [37].

Input: The antigen e that we want to reach.

Output: A complete addition chain (U = ug,u1,-+- ,u; =€) fore

with length .

Fresh_Ab(e){

1. Setug = 1and 1 = 2; (which implies 1 — 2)

2. Select 3 or 4 randomly and assign it to ug

3. Complete the addition sequence by calling the
procedure (U, 1) = FILL(U,3,¢)

4. output (U,1) }

Fig. 11. Algorithm that produces a complete addition chain.

legal addition chains for a given antigen e. Indeed, given
the antigen e and an in-progress (mutilated) addition chain
U = wug,uy, -, uj_1, with u;_; < e, the procedure shown
in Fig. 10 produces a complete addition chain able to achieve
e in a fixed number of steps. Notice that our procedure utilizes
a uniformly distributed random function Flip(F). Flip(F)
accepts a parameter /(0 < F < 1), and returns true with
probability F’ or false in other case.

Using the algorithm of Fig. 10 as the main building block,
the procedure of Fig. 11 produces a complete addition chain
(antibody) for the antibody e.

2) The Hypermutation Operator: In nature, the hypermuta-
tion operator is inversely proportional to the clones’ affinity, i.e.,
the higher the affinity of a clone, the lower its mutation rate and
vice versa.

Notice that delicate perturbations in an addition chain can
be introduced by placing a mutation point closer to the end of
the addition chain (upper half). On the contrary, if the mutation
point is placed closer to the beginning of the chain (lower half)
the perturbation will be much more noticeable.

Based on this observation, the mutation operator was acting
in a different section of the addition chain depending on the
clone’s affinity value. This way, clones showing high affinity
were mutated in the upper half of the chain only. By contrast,
those clones showing low affinity were mutated in the lower
half of their chains. The algorithm of Fig. 12 shows the strategy
followed for modeling the hypermutation operator.

3) Immune Memory: Previously found addition chains are
stored in memory for future reference. Those solutions could
be useful for future exponents. For instance, if the antigen is an
even exponent e, then possibly the addition chain that had been
found for e/2 could be useful by aggregating a single doubling
step that doubles the last value of e/2, thus producing e (see
steps 19-22 of the algorithm in Fig. 13).

4) The Clonal Selection Algorithm: The clonal selection
algorithm for computing optimal addition chains is shown in
Fig. 13. The parameters introduced in that algorithm are as
follows.

* N is the number of antibodies to be created.

* P is the number of best antibodies which will be selected

for cloning.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Input: A clone CI = (U, {) with affinity I, a region (either lower or

upper half of the chain)
Output: A hypermutated clone G = (U,).

hypermutation(C!, region){

1. The mutation point ¢ for each clone is selected randomly
within its region (either lower or upper half of the chain)
corresponding to the clone’s affinity.

2. Select a random number j such that 0 < j < i < e.

3. The new (mutated) value of the clone’s addition chain at
the mutation point w; 1 will be w41 = wu; +uy, ifitis
possible, otherwise decrease j until ©;41 is a valid value.

4. Repair the upper part of the addition chain {ugssq1}
by calling the function (I7,1) = FILL(U,i + 2,).

5. output (I7, 1)

6. }

Fig. 12. The hypermutation operator.

e d is the quantity of low affinity antibodies that will be

substituted.

* sterations is the total number of iterations.

The above parameters must be defined by the user. However,
based on a statistical study that we conducted, we suggest some
values for them in the next section.

Referring to Fig. 13, the algorithm’s dataflow can be sum-
marized as follows. First in step 1, an initial population of N
antibodies Ab; for ¢ = 0,---, N is created. The main loop
of the algorithm starts immediately after (in step 3). In step 4,
the N antibodies just created are sorted in ascending order ac-
cording to their affinity values (i.e., their addition chain length).
In step 5, only the best P antibodies are selected for cloning. The
surviving P individuals are then ranked in ascending order ac-
cording to their chain length (i.e., individuals with shorter chain
lengths are ranked in the first place). The total number of clones
to be created in steps 7—-12 was determined according to the cri-
terion suggested in [15]. This way, a total of N clones are gen-
erated from those antibodies ranked as the fittest ones. Next, in-
dividuals ranked in second place are allowed to produce a total
of N/2 clones, those ranked in third place produce N/3 clones,
etc. Therefore, the total number of clones 1" can be bounded as

15)

r)
N
Zround(—.) <T<L<P-N
7

=1

where 1" is the total number of clones, N is the number of
antibodies in the population, P are the selected antibodies (in
general with different lengths) and round() rounds up its ar-
gument toward the closest integer. Each term of that sum corre-
sponds to the number of clones to be generated for each selected
antibody. If two or more antibodies share the same length, then
the number of clones generated from them would be the same. In

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Input: An exponent (antigen) e

Output: A quasi optimal addition chain (antibody) U =

Ug, ULy - UL =€

AIS_Optimal _Addition_Chain(e){
1. for (i = 1to N) do { /*Creating an initial population of N antibodies */
Ab; = Fresh_Ab(e);

}

2. for (i = 1to iterations) { /* Beginning of the main loop */

3. Sort out the N Ab; antibodies in ascending order according to their
affinity values (i.e., chain lengths).

4. Select the best P antibodies (with different length values) from the
antibodies population. Only those selected P antibodies will be cloned.

5. Define C; € [1, P], for i = 0,-- - , P as the ranking index of each one of

the P antibodies.
6. k=0;
7. for (i = 1to N) do { /* Cloning */
8. if (C; above average) then region = upper half
9. else region = lower half
10. for (j = 1to round (cl)) do {
11. Cly, = hypermutation(Ab;, region);
12. k=k+1
}
}
13. Sort out the antibodies and newly created clones in ascending order.

14. From the ordered set of IV original antibodies and k& hypermutated clones,
select the N top best and discard the rest.

15, for (i = N — d+ 1to N) do { /* replacing the d worst antibodies */

16. Ab; = Fresh_Ab(e);
}

} 7* End main loop */

18. Select the antibody B showing best affinity (shortest chain length).

19.if (e is even && e/2 has already been computed) then {

20. Set M as the solution found for e /2.

21. if((length of (M)+1) < (length of B)) then {

22. set B = M adding one doubling step at the end of B.
}
}
23. Store B in memory.
24, output B
25.}

Fig. 13. The clonal selection algorithm.

an extreme scenario, where all the antibody population has the
same length, a total of 7' = P - N clones would be produced.

Notice that in step 11 a hypermutation operator is applied to
each clone. As explained, this operator was designed (see algo-
rithm in Fig. 12) so that the perturbation strength is inversely
proportional to the individual’s affinity.

After that, in step 13, the antibodies and clones just produced
(N + T are sorted in ascending order. From the ordered set of

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CRUZ-CORTES et al.: AN ARTIFICIAL IMMUNE SYSTEM HEURISTIC FOR GENERATING SHORT ADDITION CHAINS 13

original antibodies and modified clones, only the top NV individ-
uals are selected, while the rest are discarded. Moreover, the d
worst antibodies are replaced by brand new ones created through
algorithm in Fig. 11. After updating individuals’ ranking in-
dexes, this process is repeated a predetermined number of iter-
ations. At the end of the main loop, the best individual obtained
is compared against previously computed and stored data (only
in the case that e is an even integer).

5) Discussion: We summarize the rationale behind the algo-
rithm of Fig. 13 as follows.

e We start by creating an initial antibody population whose
members are seen as potential solutions. Because of the
stochastic manner in which that antibody population is cre-
ated (see algorithms in Figs. 10 and 11), it is expected that
the antibody population will show a rich diversity of addi-
tion chains.

* We adopt higher cloning rates for those antibodies showing
higher affinity.

* We carefully mutate the individuals assuring that those mu-
tations will produce valid addition chains. Also, the hyper-
mutation operator was designed in such a way that individ-
uals showing high affinity would get relatively small per-
turbations, whereas individuals with low affinity are mu-
tated much more aggressively.

* We favor higher affinity individuals by assuring the
transmission of their information to the next generation
(elitism).

e We periodically introduce brand new antibodies in order
to maintain diversity in the population (thus emulating the
receptor editing process).

* We use the algorithm’s accumulated knowledge by con-
sulting solutions previously found by the algorithm which
were stored in a memory. That memory emulates the im-
mune memory mechanism.

Although our clonal selection algorithm is clearly an over-
simplified version of the real immune system, the aforemen-
tioned immune mechanisms adopted attempt to mimic what ac-
cording to the clonal selection theory, is happening (at least
partially) in biological immune systems. Moreover, our exper-
imental results (to be discussed in the next section) suggest
that the hypermutation operator together with the elitist mech-
anism do have a positive impact in the overall algorithm’s per-
formance, thus supporting the notion that each individual in our
algorithm can be seen as a sort of “partial” recognizer able to
transmit/share valuable information to the next generation of
individuals.

Stepney et al. indicate in [35] that several approaches have
been taken in the context of AIS, including the so-called rea-
soning by metaphor. The clonal AIS model adopted in this work,
first proposed in [15], fits in that kind of AIS.

Moreover, notice that even though clonal AIS can be consid-
ered as very similar to the evolutionary algorithm (EA) model,
both paradigms have some significant differences. Perhaps the
most evident is the fact that in AIS there is no notion of the
crossover operator so typically found in EAs. Conversely, in
EAs, there is no cloning mechanism.

It is worth mentioning that often there exist quite a few op-
timal valid addition chains able to achieve the antigen e, with

minimum length /. Thus, at the end of a given experiment, our
clonal selection algorithm will typically produce several indi-
viduals tied in their affinity value.4 This characteristic seems to
be in synchrony with typical clonal AIS outputs, where the final
result is an entire population of detectors [35].

6) Computational Cost of the AIS Strategy: Referring to the
clonal selection algorithm of Fig. 13, we assess its computa-
tional cost as follows.

» The process of creating new antibodies (steps 1 and 17)
carried out by algorithms in Figs. 10 and 11 is quite ef-
ficient. The cost of the algorithm in Fig. 11 is negligible.
On the other hand, the computational cost of the algorithm
Fill(3) in Fig. 10 has a complexity per individual of O(1),
where [is the length of the produced addition chain. Based
on (9), we can bound that length as

logs e +logs H(e) — 4.13 <1 < |logy(e)| + H(e) — 3 (16)

where H(e) is defined as the Hamming weight of the
antigen e. A total of N + d antibodies (steps 1 and 17) are
generated per generation.

* Similarly, the hypermutation operator of step 11 is carried
out by algorithms in Figs. 10 and 12. Notice that the hyper-
mutation is quite similar to the process of creating new an-
tibodies. The only difference is that the algorithm of Fig. 12
just needs to produce part of the addition chain. Therefore,
the computational cost of this operator per individual is
also O(1). A total of 1’ clones [see (15)] are hypermutated
(step 11) per generation.

* The sorting process of N antibodies (step 2), N + T an-
tibodies and clones (step 13) and N surviving antibodies
(step 18) per generation can be carried out at a computa-
tional cost of about O((3N + 1")og(3N + 17)).

Therefore, the total computation cost per iteration of the clonal
selection algorithm in Fig. 13 is given as

Cost =0 (N +d+T))+O((BN +T)log(3N +T)).
a7

Incidentally, it is worth mentioning that the computational ef-
fort required for the computation of field exponentiation itself
is considerably more expensive than the above estimation for
the clonal selection algorithm. Field exponentiation has an esti-
mated complexity of O(n?) bit operations [32].

B. A Design Example for a Small Exponent

The exponent e is named the antigen or goal that the AIS is
trying to achieve. Starting with an initial population of N anti-
bodies, the algorithm uses the cloning mechanism to generate
slightly different replicas that are then selected based on the fit-
ness of the individuals. As previously mentioned, clone fitness
is measured in terms of the length of its corresponding addition
chain. In order to illustrate how our algorithm computes its task,
let us consider the case when we want to obtain an optimal ad-
dition chain for our running example, the antigen e = 1903.

4For the purposes of efficient field exponentiation computation, all addition
chains having a minimum length are, in general, equally valuable.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Example: Given the antigen e = 1903, the algorithm of
Fig. 13 performs as follows.

1) An initial population of N antibodies Ab is constructed
using algorithms of Figs. 10 and 11. For instance, let us
suppose that the third antibody generated Abs(U, 1) has
an addition chains given as, 1-2-4-8-16-24-48-49-98-196-
294-588-612-1224-1836-1844-1893-1901-1903; with an
associated affinity equal to 18.

2) Sort out the antibody population in ascending order ac-
cording to the affinity values.

3) Select the best I antibodies (with different length values)
from the antibody population. Only the P selected anti-
bodies will be cloned.

4) Using (15), determine the total number of clones (1') to
be generated for selected antibodies. To give a concrete
example, consider N = 30, P = 7. Let us say that after
ranking the P best clones, we observe that Abs, and Abag
are tied in the first place sharing the same shortest chain
length; Abs, Abos, and Ab;7 rank in the second, third, and
fourth places, respectively, and that Ab;; and Ab;3 are tied
in the fifth (last) place. Therefore, the ranking indexes C;,
fors = 0,---,7would be 1, 1, 2, 3, 4, 5, 5, respectively.
Thus, the total of clones to be created would be

7
30
T = E round (—) =30+4+304+15+104+74+6+6 = 104.
7
i=1

5) Create the clones for the selected antibodies.

6) Apply the hypermutation operator to each clone (see the
algorithm in Fig. 12).

(a) For instance, a clone generated from the highest
affinity individual Abs will get a mutation point se-
lected from the upper half of its chain. Let us say that
this point is 2 = 14 (step 1, algorithm from Fig. 12).

(b) A random number j is selected, 0 < j < 7 < e, for
example, j = 7 (step 2, the algorithm from Fig. 12)

(¢) The new value of the clone’s addition chain at the
mutation point w;4q will be w;11 = u; + u;, then
we have U5 = 1836 4+ 49 = 1885, to this point our
chain is the following: 1-2-4-8-16-24-48-49-98-196-
294-588-612-1224-1836-1885

(d) Repair the upper part of the addition chain {wug>;4+1}
with F'TLL(k). Suppose the resulting addition chain
is: 1-2-4-8-16-24-48-49-98-196-294-588-612-1224-
1836-1885-1901-1903 with affinity [= 17.

7) Compute the associated affinity values for the 7' mutated
clones.

8) From the set of original antibodies and modified clones,
select the N top best and discard the rest.

9) Replace the d antibodies showing less affinity by new ones.
For example, let us say that one of the brand new individ-
uals so produced is: 1-2-3-6-12-15-30-33-66--99-198-213-
426-852-885-1737-1836-1869-1902-1903

10) Compute the associated affinity values for the d new indi-
viduals. Notice that the affinity value for our new antibody
is 19.

11) Go to step 3, a predetermined number of ¢terations.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

12) The best antibody B is selected.
13) As e = 1903 is not even, then go to the next step.
14) Store B in memory.
15) Report B as the best solution found.

As a result of executing the above algorithm, our AIS-based
heuristic was able to find several addition chains of length [=
15 for the exponent e = 1903. For example

xlﬁxzﬁxd—wcb—w:
100 _, xzoo N 517300 N x600 N 517900

1900 _, LL‘1903

12 24 25

Y L 50

— I

1800

— X — X

—

.7]1—>.772—>.773—>.775—>.‘T}

78 N 37156 N 37312 N 37624

1898 _, 1:1903.

(18)
8 N mliﬂ N TZh N "T;:‘B.()

936 _, 371872

—x — T

— T (19)
Let us recall that in Sections II-A and II-B it was found that for
e = 1903 the binary, quaternary, octal, and hexa methods find
addition chains of length 18,17, 16, and 16, respectively. It is
worth to remark that the shortest addition chain for e = 1903 is
precisely l(e) = 15 [26].

C. AIS Heuristic for Large Exponents

It is not advisable to directly apply the AIS heuristic for
the computation of addition chains when dealing with large
exponents. This is due to the fact that as the exponent bit-length
grows larger, the addition chain length attained by our AIS
heuristic tends to significantly deviate from the optimal and/or
best-known values.

Fortunately, we can use instead the sliding window method
described in Section III-B. Under this scenario, the concept of
exponent partitioning described in Section II-C together with
the concept of addition sequences described in Section III-Al
will emerge as the most important tools for generating quasi-
optimal addition chains for large exponents.

In that regard, consider the algorithm shown in Fig. 14. Let
us recall that the strategy followed here for large exponents can
be divided into two main phases: exponent partitioning and ad-
dition sequence generation.

Referring to Fig. 14, the procedure AIS_Add_Seq_Large_
Exp, takes as inputs an m-bit exponent e to be processed and
the parameter M axW _M SW, which establishes the maximum
size that the MSW can take in the partition phase. By default, the
minimum size for MSW is 6. At each iteration, the ¢ most sig-
nificant bits of e are assigned to the variable M SW (see step 3).
In step 4, the m — ¢ least significant bits of the exponent e are
assigned to the auxiliary variable e_aua. Then, in step 5, an op-
timal addition chain A for M SW is obtained through a call to
the AIS algorithm of Fig. 13 previously discussed.

In step 6, e_aux is partitioned using the strategy described
in Section II-C and depicted in Fig. 4. As a consequence, a
total of Z zero windows and NZ nonzero windows will be
produced. After having sorted in step 7 all the N7 nonzero
windows, a suitable element ¢ in the addition chain A, greater
than Wy ,_1 is added. Then, an addition sequence for the set
U = {Wy, Wy,...,Wnz_1,a} is produced, by invoking the
procedure of Fig. 7.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CRUZ-CORTES et al.: AN ARTIFICIAL IMMUNE SYSTEM HEURISTIC FOR GENERATING SHORT ADDITION CHAINS 15

Input: e = (ep—1€m—2...€1€0)y, Maz_MSW

Output: Addition Sequence for e.

AIS_Add _Seq_Large_Exp(e, MazW _MSW)

1. N_Op=0; Minimum = co;

2. fori=6to MaxW_MSB do {

3 MSW = (em—16m—2€m—3. . €m—i)s;

4. e-auz = (Cm—(i41)Cm—(i42) - - €1€0)y

5 A = AIS_Optimal_Addition_Chain(M SW);

6 Decompose e_auz into a total of ¥ windows W,
fori = 0,1,2,...,¥ -1, with¥ = Z 4+ NZ.
A total of Z zero windows and NZ nonzero
windows are produced.

7. Sort all NZ nonzero windows so produced
in ascending order, U={Wy, W1,..., Wnz_1}

8. Select a suitable element in a € A such that
a>Wyz_1.

9. U={Wy,W1,...,Wnz_1,a};

10. {Segq, L} = Add_Seq_Generator(U,NZ + 1),

11. Compute the number of operations N_Op needed;

12. if (N_Op < Minimum) then {

13. Store the pair of sequences: (Seq, A);
14. Minimum = N _Op;

15}

16.}

output (Seq, A, Minimum)

Fig. 14. Finding short addition sequences for large exponents.

At this point, the algorithm is able to estimate the expected
number of operations N _Op needed for computing the field ex-
ponentiation operation by applying (14). If the algorithm deter-
mines in step 12 that the sequences Seq, A have associated a
minimum number of operations it proceeds to store them. Oth-
erwise, it continues with the next iteration. After having exam-
ined all possible candidates for MSW in the range from 6 to
MazW _MSW bits, the algorithm in Fig. 14 outputs the pair
of sequences {Seq, A} that optimize field exponentiation. The
dataflow of this algorithm is illustrated with a design example
in the next section.

1) A Design Example: Let us consider the following
design example for the 128-bit exponent given as, e=
(DCCI9E15F 158 F280B81583CC8CCHD2CF)14, with
. = 128 bits, and a Hamming weight H(e) = 62.

Fartitioning: As discussed in Section III-B, the strategy fol-
lowed for the exponent partitioning consisted on allowing a
large MSW followed by relatively small windows, being the
main idea to try to minimize the second component of (14). We
consider all possible candidates for MSW in the range from 6

to MaxW _MSW = 20 bits, and at the same time, we fixed
the maximum size allowed for all the other nonzero windows to
k = 6. We also fixed the maximum value of consecutive zeros
to ¢ = 2. Then, we invoked the algorithm in Fig. 14 in order to
find the best MSW.

As a result, our algorithm came out with a partitioning con-
sisting of a 17-bit MSW, namely (1B8993)4 followed by 15
nonzero windows distributed as shown below:

1101110011001001100 11110000 101011 111 000
~ ~~ e S~

18993 ¥ 2B 7
101011000 111100 101 0000000 10111 000000
S—— N S~

2B F 5 17
101011 000001111 0011001000 11 00_11 000
N—— Ve N~ =~

2B F 19 3 3
1011101001011 001111 .
—_— M~ =

5D B F

Notice that the nonzero windows obtained from the parti-
tioning phase are all odd and none of them (except for the very
first window) contains two or more consecutive zeros.

Addition Sequence: We must derive a short addition sequence
for all the nonzero window values found in the previous step.
Note that we only need to consider ten different values as some
windows appear several times in the partitioned exponent shown
above. Hence, we need to find a short addition sequence for the
following window values:

{3,5,7,B,F,17,19,2B,5D, 18993} 14
= {3,5,7,11,15, 23,25, 43, 93, 113043}.

As explained previously, the algorithm of Fig. 14 finds first a
nearly optimal addition chain for MSW. The following 20-step
addition chain for MSW = (1B993)14 = 113043 was ob-
tained:

1-2—-3—-6—-9— 18— 36 — 72 — 144 — 147
— 294 — 588 — 1176 — 2352 — 4704 — 9408 — 18816
— 37632 — 75264 — 112896 — 113043. (20)

Notice that in the above addition chain, the target value
MSW = 113043 is obtained as 112896 + 147 = 113043.
Because of that, in step 7 of Fig. 14, the value a = 147 is
chosen. Now, we need to find a short addition sequence for the
ordered set, {3, 5, 7, 11, 15, 23, 25, 43, 93, 147}.

However, this was the example analyzed earlier in
Section III-A1, where according to (12), the following 16-step
solution was found after using the algorithm from Fig. 7:

W :={1,2,3,4,5,7,8,11,14,15,23,25,39,43, 54,93, 147}.

Further optimizations in the above solution combined with
the rest of the addition sequence for MSW yielded the following
26-step addition sequence:

1-2-3-4-5—-7—-11—-15—18
— 23 — 25 — 43 — 54 — 86 — 93 — 147 — 294
— 588 — 1176 — 2352 — 4704 — 9408 — 18816
— 37632 — 75264 — 112896 — 113043. 21

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TABLE IV
NUMBER OF OPERATIONS USING SEVERAL METHODS FOR EXAMPLE 5.3.1
Strategy Number of Operations
Binary 188
Quaternary 171
Octal 170
Hexa 164
Sliding window (k = 5,¢ = 2) 155
Sliding window (k = 6,¢ = 2) 154
‘ AIS Sliding window (k = 6,9 = 2) 152

Number of Operations: Referring to the algorithm shown
in Fig. 8 and its complexity analysis summarized in (14), the
number of arithmetic operations required for computing the
field exponentiation is given as follows.

* A total of 26 multiplications needed to generate the addi-
tion sequence specified in step 2 of Fig. 8 and depicted by
210).

o Atotal of m — L(Wy_1) = 128 — 17 = 111 squarings
corresponding to step 5 of the algorithm in Fig. 8.

* A total of 15 multiplications in order to combine all the
NZ — 1 = 15 intermediate nonzero window values corre-
sponding to step 6 in Fig. 8.

Therefore, we conclude that the total number of arithmetic op-
erations for this example is given as

P(m,k,q) = 26+ 111 4+ 15 = 152. (22)

It is customary to use the ratio P(m, k, ¢)/m as a figure of
merit for field exponentiation [27], [30]. For our working ex-
ample, the achieved ratio is of about

P(m,k,q)

m

= 1.1875. (23)

We show in Table IV the number of operations obtained by
the binary, quaternary, octal, and hexa methods discussed in
Sections II-A and II-B. We also present the number of opera-
tions required by the sliding window method without AIS using
k = 5,6 and ¢ = 2 as indicated in the Table. It can be seen
that for this specific example, the AIS sliding window technique
yields the lowest number of operations.

VI. EXPERIMENTS AND STATISTICAL TESTS

In this section, we present experimental results obtained from
several relevant statistical tests performed to our algorithm.
Then, we compare the AIS heuristic against some traditional de-
terministic strategies. At the same time, working with a family of
exponents particularly hard to optimize, we also report complete
solutions for their associated shortest addition chains.

A. Variance Analysis

In order to assess the algorithm’s sensitivity to its parameters,
we conducted an analysis of variance (ANOVA). The parame-
ters analyzed were as follows.

e N: the number of antibodies to be created.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

P: the number of best antibodies which will be selected for
cloning.

e d: the quantity of low affinity antibodies that will be

substituted.

* F:arandom variable (0 < F' < 1) that selects which rule

to apply during the process of antibody’s construction (see
the algorithm in Fig. 10).

The above parameters were considered the independent vari-
ables, while the dependent variable was the length of the addi-
tion chain found by the algorithm.

We chose three different values (levels) for each of the men-
tioned parameters. The tested levels were as follows.

* N: (15), (30), and (45).

e P:(N/1), (N/2), and (N/4).

* d: (0.0 of N), (0.1 of N), and (0.2 of N).

* F:(0.5), (0.7), and (0.9).

The experiment consisted on executing 30 independent runs
of the algorithm with each different combination of the param-
eters levels. Therefore, we performed a total of 2430 runs of the
algorithm. With the aim of performing balanced comparisons,
we set the parameter iterations such that the number of calls
to the function F'7LT.() were the same for all the experiments.
From that variance analysis, we can conclude that:

* The probability that the effect of the parameter N is due to

the random processes is less than 0.01.
» The probability that the effect of the parameter P is due to
the random processes is less than 0.01.

¢ The parameter d does not have any effect on the algorithm,

its effect is product of the random processes.

» The probability that the effect of the parameter F’ is due to

the random processes is less than 0.01.
Therefore, the parameters N, P, and F' do have a real effect on
the algorithm’s performance.

1) Parameters Values Suggested: Based on the statistical
study performed, we can suggest the following values for the
parameters used in this algorithm:

* N:Number of antibodies: Use N € [30,45].

* P: selected antibodies: Use N/4.

 d: replaced antibodies: 0.1% of the total population.

e F:Use FF =0.7.

B. Accumulated Addition Chain Lengths for Small Exponents

In [5], a method based upon continued fraction expansion
for computing short addition chains was presented. Using their
algorithm as a general framework, the authors tested the per-
formance obtained by several traditional addition-chain gener-
ator strategies, such as the binary and quaternary methods, di-
chotomic, dyadic, total, Fermat, and the factor methods. A de-
scription of those methods can be found in [5] and [26]. Then,
for each selected strategy, authors reported the total accumu-
lated addition chain lengths for all exponents ¢ € [1, 1000].

As a preliminary test for our heuristic, we repeated the same
experiment reported in [S5] but this time using our own strategy
as a search engine.

All the results obtained with the AIS approach reported in this
section were obtained applying the following parameter values.

e population size N = 45.

 selected antibodies P = 0.25 x N.

* replaced antibodies d = 0.1 x N.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CRUZ-CORTES et al.: AN ARTIFICIAL IMMUNE SYSTEM HEURISTIC FOR GENERATING SHORT ADDITION CHAINS 17

TABLE V
ACCUMULATED ADDITION CHAIN LENGTHS FOR ALL EXPONENTS
e € [1,1000] (COMPARISON AMONG DIFFERENT HEURISTICS)

Optimal value=10808

Strategy Total length
Dyadic [5] 10837
Total [5] 10821
Fermat [5] 10927
Dichotomic [5] 11064
Factor [5] 11088
Binary 11925
Quaternary 11479

Artificial Immune System heuristic

Best 10813
Average 10818.5
Median 10818.5

Worst 10825
Std. Dev. 3.06

« F =107

* iterations= 23.

The statistical results were obtained from 30 independent runs
of the algorithm.

Table V compares the heuristics accumulative addition chain
reported in [5] against the one obtained by our AIS heuristic.
It can be seen that compared with all other featured strategies,
our algorithm was able to compute the best approximation to
the optimal value (which was obtained by enumeration), with a
percentage error rather negligible (less than 0.07%).

Furthermore, we expanded this experiment using larger
exponents. Tables VI and VII show accumulative addition
chain lengths obtained by our heuristic for exponents less than
512, 1024, 2000, 2048, and 4096, respectively. For compar-
ative purposes, we included the optimal value and the value
corresponding to the binary and quaternary method.

Once again, although the AIS strategy could not find all the
optimal values, its percentage error was less than 0.4% for all
cases considered. That low error rate implies that for any given
fixed exponent e with e < 4096, our strategy would be able to
find the requested shortest addition chain in at least 99.6% of
the cases.

Table VIII shows the AIS computational time for several ex-
ponent lengths. We used the gcc compiler running under 1686-
linux operating system in a UltraSPARC 1II at 450 MHz. It is
noticed that our experimental results show a reasonable match
with the computational costs predicted by (17).

Additionally, we collected the associated uncertainty of our
results through the computation of the experiments’ confidence
intervals. This was done by applying a bootstrap resampling
statistical test. The average ranges for each set of experiments
are shown in Table IX with a confidence interval of 95% after
executing 30 independent runs using different random seeds.

TABLE VI
ACCUMULATED ADDITION CHAIN LENGTHS FOR ALL EXPONENTS
LESSs THAN 512 (e € [1,512]) AND 1024 (e € [1,1024])

e: [1,512] | [1,1024]
Optimal: 4924 11115
Binary: 5388 12301
Quaternary 5226 11862

AITS results

Best 4924 11120
Average | 4925.03 | 11126.433
Median 4925 11126.00

Worst 4927 11132
Std. Dev. 0.89 3.014
TABLE VII

ACCUMULATED ADDITION CHAIN LENGTHS FOR ALL EXPONENTS
e € [1,2000], ¢ € [1,2048], AND e € [1,4096]

e: [1,2000] | [1,2048] | [1,4096]
Optimal: 24063 24731 54425
Binary: 26834 27662 61455
Quaternary | 25923 26664 58678
AIS results
Best 24108 24778 54617
Average | 24120.20 | 24792.2 | 54644.033
Median 24120.0 | 24791.5 54640
Worst 24133 24807 54674
Std. Dev. 5.88 6.094 12.053
TABLE VIII
AIS COMPUTATIONAL TIME FOR SEVERAL EXPONENT BIT LENGTHS
e length in bits | timing (in milliseconds)
12 145.8
14 150.6
16 156.0
18 161.7
20 166.8

The importance of performing this type of test lies in the fact
that only by using statistical tests can one reasonably ensure that
the results yielded by a probabilistic heuristic are consistent and
independent of the random seed used. This way, Table IX pro-
vides statistical evidence that the experimental lower and upper
average values are very close to each other. Thus, it is fair to
say that the average algorithm behavior is quite similar from one
execution to the other, which is a desirable feature for a proba-
bilistic heuristic to exhibit.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TABLE IX
AVERAGE WITH 95% CONFIDENCE FOR RESULTS OBTAINED
BY THE AIS (30 INDEPENDENT RUNS)

Average
e from to
512 | 4924.7 | 4925.4
1000 | 10817 | 10820
1024 | 11125 | 11128
2000 | 24118 | 24122
2048 | 24790 | 24794
4096 | 54640 | 54649

C. A Special Class of Exponents Hard to Optimize

Let e = ¢(r) be the smallest exponent that can be reached
using an addition chain of length r. Solutions for that class of
exponents are known up to » = 30 and a compilation of them
can be found in [11]. Interestingly enough, the computation dif-
ficulty of finding the shortest addition chains for those expo-
nents seems to be among the hardest if not the hardest ones of
studied exponent families [26].

In order to assess the actual power of the AIS strategy as a
search engine, we used it to generate all the shortest addition
chains of the exponents ¢(r) forr = 0,1,2,...,30.

In all cases considered, our AIS heuristic was able to gen-
erate a valid addition chain having the predicted optimal length.
Notice that the search space size for this special class of expo-
nents (considering both feasible and infeasible individuals) is !.
Hence, in the case of = 30, finding the shortest addition chain
for the exponent ¢(r = 30) = 14143037, implied to search over
a space whose approximate size is

r! = 30! = 265252859812191058636308480000000 = 2107,

VII. APPLICATIONS

Some practical applications of addition chains are described
in this section. First, in Section VII-A, the efficient computation
of multiplicative inverses based on optimal addition chains is
explained. The material included in that section closely follows
the discussion presented in [9]. Then, in Section VII-B, the com-
bination of the AIS heuristic together with the sliding window
method for computing large exponentiation is presented.

A. Optimal Addition Chains for Computing Multiplicative
Inverses

Among the basic field arithmetic operations, namely, addi-
tion, subtraction, multiplication, and inversion of nonzero el-
ements, the later is the most time-consuming one. The multi-
plicative inversion of an element A € F' consists on finding an
element A~1 € F such that A - A™! = 1 mod P(x). Sev-
eral algorithms for computing multiplicative inverses over bi-
nary extension fields F¥ = GF(2") have been proposed in the
specialized literature [25], [36], [41].

One well-known strategy is based on Fermat’s Little The-
orem (FLT) which establishes that for any nonzero element A €

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

TABLE X
SHORTEST ADDITION CHAINS FOR A SPECIAL CLASS
OF EXPONENTS (TABLE 1 OF 3)

exponent Addition Chain Length
e=¢(r) r
1 1 0
2 1—=2 1
3 1—-2-=3 2
5 1—-2—-24-25 3
7 15224267 4
I1 1-2—-+4—-58—-10—11 5
19 1-2—-+4—+8-—16—18 = 19 6
29 15224281624 —28 =29 7
47 1-223=26—12—215— 30— 45 — 47 8
71 1-2234—-58-516—32-—>64-368—70 9
— 71
127 1-+2—-4—-+8—->9—18—>36— 54— 108 10
— 126 — 127
191 1—+2—-23—6—9—18—=27— 54— 108 11
— 162 — 189 — 191
379 15224582316 —18—36 =54 — 108 12
— 162 — 324 — 378 — 379
607 12223261224 48 596 - 102 13
— 204 — 408 — 510 — 606 — 607
1087 1525336 —=12—324 =48 - 96 — 120 14
— 240 — 360 — 720 — 1080 — 1086 — 1087
1903 1-52—33—>5—10— 20— 40 — 80 — 160 15
— 180 — 340 — 520 — 1040 — 1560 — 1900
— 1903
3583 1522535612318 —>336—>72— 144 16
— 288 — 576 — 594 — 1188 — 2376 — 3564
— 3582 — 3583
6271 152—-23-26—12—-524 548 - 96 — 192 17
— 384 — 768 — 1536 — 1537 — 3074 — 6148
— 6244 — 6268 — 6271
11231 1-2—-+3-25—=10—20— 30— 50— 100 18
— 200 — 400 — 800 — 1600 — 3200
— 6400 — 9600 — 11200 — 11230 — 11231
18287 152—-3—-5—10— 20— 40 = 80 — 160 19
— 320 — 640 — 1280 — 1283 — 2563 — 3846
— 7692 — 15384 — 17947 — 18267 — 18287

GF(2"), the identity A~* = A?"~2 holds. As surprising as it
may sound, this means that multiplicative field inversion can be
computed via an exponentiation operation.

Noticing that the exponent e = 2" — 2 can equivalently be
expressed as e = Zfz_ll 2%, we can write

. n—1 _) , :
Al g2 2 g0 H A% = 42 AT AT
im1

(24)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CRUZ-CORTES et al.: AN ARTIFICIAL IMMUNE SYSTEM HEURISTIC FOR GENERATING SHORT ADDITION CHAINS 19

TABLE XI
SHORTEST ADDITION CHAINS FOR A SPECIAL CLASS OF EXPONENTS
(TABLE 2 OF 3)

TABLE XII
SHORTEST ADDITION CHAINS FOR A SPECIAL CLASS OF EXPONENTS
(TABLE 3 OF 3)

A straightforward, but rather expensive implementation of
(24) can be carried out using the binary exponentiation method,
requiring n — 1 field squarings (S) and n — 2 field multiplica-
tions (M), i.e.,

FLT cost(n) = (n —1)S + (n — 2)M. (25)

Nevertheless, using an ingenious rearrangement of the re-
quired field operations it was shown in [25] that this calculation
can be performed much more efficiently by using the so-called
Itoh—Tsujii multiplicative inverse algorithm (ITMIA).

exponent Addition Chain Length exponent Addition Chain Length
e=c(r) r e=cfr) r
34303 15253361214 —>28 —+ 56 20 2211837 1—+2-53—-5—10— 20— 40 — 80 — 160 27
— 112 — 224 — 252 — 504 — 1008 — 2016 — 163 — 326 — 652 — 1304 — 2608
— 4032 — 8064 — 16128 — 32256 — 34272 — 5216 — 10432 — 20864 — 41728
4 34300 — 34303 —5 83456 — 166912 — 166922 — 333834
65131 | 152533521011 -522344—588 | 21 = H00756 = 1001512 — 2003024
3139 — 220 — 440 — 880 — 1760 — 2169946 — 2211674 — 2211837
s 3520 —> 7040 — 14080 —> 28160 4169527 132532612524 48 > 96 — 192 28
5 56320 — 63360 — 65120 — 65131 > 384 T68 = 1536 — 3072 = 6144
—» 12988 —» 24576 — 49152 —> 49344 — 98688
110591 1-52—23—-5—10—20—40— 80 22
— 148032 — 296064 — 592128 — 592129
— 160 — 320 — 640 — 1280 — 2560 — 2570
— 1184258 — 2368516 — 3552774 — 4144903
14 102 2 231 4,
— 5140 — 10280 — 20560 — 23130 — 43690 s 4169479 —s 4169597
— 87380 — 110510 — 110590 — 110591 7624319 | 152 34 38 516 332 564 5128 5129 | 29
196591 152—23—-6—>12—> 2448 23 y 958 —s 387 —s 774 —s 1548 — 2392
= 96 = 99 — 195 — 390 — 780 5 3870 5 7740 — 8127 — 15867 — 31734
— 1170 — 2340 — 4680 — 9360 — 18720 —5 63468 — 126936 — 253872 — 380808
— 18726 — 37446 — 74892 — 149784 — 761616 — 1523232 — 3046464 — 6092928
— 187230 — 196590 — 196591 — 7616160 — 7624287 — 7624319
357887 1523569182745 90 24 14143037 1525458516532 —564 72— 144 30
— 180 — 360 — 720 — 1440 — 1485 — 216 — 432 — 864 — 1728 — 3456
— 2970 — 5940 — 11880 — 23760 — 5184 — 10368 — 20736 — 41472 — 82944
— 47520 — 71280 — 142560 — 213840 — 93312 — 176256 —» 352512 — 705024
3 356400 — 357885 —» 357887 — 1410048 — 2820096 — 2820097 — 2820313
685951 135235335612 24 — 48 25 — 5640626 — 8460939 — 14101565 — 14143037
-+ 96 — 192 — 384 — 768 — 769 — 1538
— 3076 — 6152 — 9228 — 15380 — 24608
5 39988 —3 T9976 —> 159952 —s 319904 The ITMIA method is based on the observation that since
n__ _ n—1_ . N . . .
. 639808 — 679796 — 685948 —s 685951 2 .2 = (2 1) -2, Fermat’s little theorem identity can be
rewritten as
1176431 1-52—-3—=-5—10—20— 40 - 80 26
. 2
—5 160 — 180 — 340 — 680 — 1360 A=l 472 [A(Qn 1_1)} . 26)
— 2720 — 4080 — 8160 — 16320 — 32640
— 48960 — 97920 — 97925 — 195845 .
A R
\ 301690 > 587535 s 1175070 — 1176430 Thereaft.er, ITMIA computes the ﬁe?d element A . using
1176431 a recursive rearrangement of the finite field operations. It was
shown in [9] and [36] that this algorithm requires n — 1 field

squarings plus only l,.(n — 1) field multiplications, where
lac(n — 1) is the length of the addition chain used to reach the
number n — 1. Therefore, the cost is given as

ITMIAgenerat(n) = (n — 1)S + lye(n — 1) M. 27

Comparing with (24), it can be noticed that although the
number of field squarings required by the ITMIA method
remains the same, the total number of multiplications N has
been greatly reduced. Notice also that the concept of addition
chains leads us to a natural way to generalize the Itoh—Tsujii
algorithm reducing the number N even further.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

20

TABLE XIII
OPTIMAL ADDITION CHAINS FOR m = 32 k. AIS =
ARTIFICIAL IMMUNE SYSTEM (TABLE 1 OF 2)

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

TABLE XIV
OPTIMAL ADDITION CHAINS FOR m = 32 k. AIS =
ARTIFICIAL IMMUNE SYSTEM (TABLE 2 OF 2)

Since the original ITMIA method used a binary strategy, the
number of field multiplications required by that algorithm is not
optimal. Applying (3), the overall cost is then given as

ITMIApinary(n) =(n —=1)S+ (H(n—-1)—1)M (28)

where H (n—1) is the Hamming weight of the binary representa-
tion of n— 1. Takagi et al. [36] utilized a heuristic partially based

m—1 AIS AIS | [36] | [25] m—1 AIS ATIS | [36] | [25]
31 1223262714 479 14223326 7—14
—+28 = 31 7 7 8 — 28 — 56 — 112 — 224 — 448
63 1223326 —>7—14 — 476 — 479 12 13 15
— 28 = 56 — 63 8 8 10 511 1-+2—53-55—>10—>15
95 1+2—-3—-25->10—20 — 30 — 60 — 120 — 240 — 480
— 40 — 80 = 90 = 95 9 9 11 — 510 — 511 12 12 16
127 1422332362125 24 575 152—53-55—-10—20
— 48 = 96 — 120 — 126 — 127 10 10 12 — 23 > 46 — 92 — 184 — 368
159 1525356212524 — 552 — 575 12 13 15
— 48 —+ 96 — 144 — 156 — 159 10 10 12 607 152532561218
191 1245816 =17 — 36 > 72 — 144 — 288 — 576
— 34 — 68 — 136 —» 170 — 187 — 594 — 606 — 607 13 13 15
— 191 11 11 13 639 1+2—=+3—=26—12—24
223 152—=23—=+6—=12—=13 =26 — 26 = 52 — 104 — 208 — 416
— 52 — 104 — 208 — 221 — 223 11 11 13 — 624 — 636 — 639 13 13 16
255 152—-53-55->10—>20 767 1-2—-53—-5—-10—20
— 40 = 80 — 85 —+ 170 — 255 10 10 14 — 40 — 80 — 83 — 166 — 332
287 152332353714 — 664 — 747 — 767 13 14 17
— 28 = 56 — 112 — 224 — 280 799 1-2—+3-26—12—24
— 287 11 11 13 — 48 — 96 — 192 — 384 — 768
319 1-+2—-53—26—>12—18 — 792 — 798 — 799 13 13 15
—+ 36 = 72 — 144 — 288 — 306 863 1-2—-3—+5—+10—20
— 318 — 319 12 12 14 — 40 — 43 — 86 — 172 — 344
351 1-2233—26—>12—24 — 688 — 860 — 863 13 15 16
— 27 = 54 — 108 — 216 — 324 895 123351020
— 351 11 11 14 — 40 — 80 — 160 — 163 — 326
383 1+2-33-5-310—20 — 652 — 815 — 895 13 14 17
— 40 — 80 — 160 — 320 — 360
— 380 — 383 12 13 15
415 152535531020 on the factor method. They obtained shorter addition chains for
5 40 — 80 —s 83 — 166 —> 332 e = m — 1 than the ones generated by the ITMIA method, thus
415 " " Iy reducing the number of required multiplications of (28).
We compare the results obtained by our algorithm against
447 122232621218 the modified factor method presented by Takagi et al. [36] and
— 36 — 72 — 144 — 288 — 432 the ITMIA binary method [25]. Tables XIII and XIV show the
.y 444 — 447 12 12 15 optimal addition chains for m = 32k which is an important

class of exponents for error-correcting code applications. The
first column shows the target value, i.e., e = m — 1. The addition
chains found by the AIS algorithm and their respective lengths
are listed in the second and in the third column, respectively. On
a total of seven cases the AIS algorithm outperforms the method
of [36], and in all cases considered, both algorithms outperform
the ITMIA binary method.

As a second example, let us consider the family of exponents
e = p — 1, with p a prime number. This class of exponents is
of special interest for elliptic curve cryptosystems defined over
binary extension fields. For security reasons [24], that applica-
tion utilizes the set of finite fields F' = GF(2"), with » being a

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CRUZ-CORTES et al.: AN ARTIFICIAL IMMUNE SYSTEM HEURISTIC FOR GENERATING SHORT ADDITION CHAINS 21
TABLE XV of 20 of the cases considered, the AIS algorithm obtains better
OPTIMAL ADDITION CHAINS FOR ¢ = p — 1, p A PRIME results than the ITMIA binary method, and is no worse in the
other cases.
Pl AlS AlS | ITMIA In order to quantify the solution’s quality obtained from the
162 1=-225458—=16—32 addition-chain-based ITMIA method, let us consider the com-
— 64 — 80 — 81 — 162 9 9 putation of multiplicative inverses over the finite field F =
166 | 525355 10—20 GF(2%%9), by using Fermat’s identity, i.e., A=t = A -2,
5 40 — 80 — 83 —s 166 9 10 By consulting the second to last entry of Table XV, namely,
172 L 5253 5510 - 20 p- 1= 508, we see that its correspond.ing shortest addition
40 s 43 s 86 s 179 o 0 chain (as it was found by the AIS heurlstlc), has ler}gth 12.
Therefore, according to (27), the required number of arithmetic
190 1722325510220 operations for this 509-bit exponent is given as
— 40 — 80 — 160 — 180 = 190 | 10 12
192 15253561252 ITMIA o5t (n = 509) = (n — 1)S + lac(n —)M
— 48 — 96 — 192 8 8 =5085 + 12M.
196 1-2—-4—-8—16—32
Using the ratio #Operations/n as a figure of merit, we get
— 48 — 49 — 98 — 196 9 9
222 1525356512524 ITMIA cost(n = 509) _ 1,093 (29)
— 48 — 96 — 192 — 216 — 222 | 10 12 n
232 1525458316524 which according with the lower bound (9), is about the best cost
—28 2958116232 | 10 10 that one can expect from an exponentiation computation.
268 1+2—-4—-8—16—32
o645 66 5 67 > 134 3 268 | 10 10 B. AIS Heuristic Combined With the Sliding Window Method
270 1523551020 Perhaps the single most important arithmetic operation for
— 40 — 80 — 90 — 180 — 270 | 10 1 public-key cryptography is exponentiation. The RSA encryp-
292 13925438316 — 32 tion/decryption and signing/verification schemes are based
64— 72 T3 3 146 — 292 | 10 10 on the computation of an exponentiation operation, namely,
330 1595355510520 M? mod n, Where e is a fixed number, M is an arbitrarily
40— 80 o> 160 - 390 — 330 | 10 y chpsen numeric message, and n . the product of two large
primes n = pg. Additionally, the Diffie—Hellman key exchange
378 122245851618 scheme the ElGamal signature scheme and the digital signa-
36 = 72— 144 — 288 — 360 ture standard (DSS) also require the computation of modular
— 378 11 13 exponentiation [4], [27], [32].
382 135233251020 The exponentiation methods described in this paper are all fo-
3 40 — 80 — 160 — 320 cused on the so-called fixed-exponent exponentiation problem,
) 360 — 380 — 382 1 14 i.e., the exponent e is fixed and arbitrary choices of the base M
; are allowed. RSA encryption and decryption schemes are based
388 1-2—-4—-8—16—32 . ;
on these kind of algorithms.
— 64— 96 = 97 — 194 — 388 10 10 Since e is a fixed number, we can compute its addition chain
442 122232621213 in an offline fashion. Therefore, under this scenario, the compu-
— 26— 52 - 104 > 208 — 416 tational time needed for computing the optimal addition chain
— 442 11 13 becomes a noncritical design issue. Usually, we will precom-
462 159 54581632 pute that addition chain well before the beginning of the real
433 -3 66 —s 132 s 264 — 396 field exponentiation computation.
162 " " Fig. 15 shows the customary figure of merit
95 ‘ #Operations/m, ie. the average number of opera-
490 1—-2>33—=5 10 = 20
tions divided by the total number of bits m, for the m-ary, and
40— 80 = 160 - 320 the AIS sliding window algorithms as a function of m = 128,
> 480 — 490 1 13 256, 512, 1024. Those exponent lengths are regularly used in
508 15253561214 cryptographic applications.
— 28 — 30 — 60 — 120 — 240 Table XVI compares the performance of the traditional
4 480 — 508 12 14 sliding window method (as reported in [27]) against the sliding
520 1595458 16— 32 window method combined with the AIS h('euristic. ‘Those two
64 65 5 130 5 260 s 520 | 10 o methods were applied on exponents e with relatively large

prime in the range [160, 521]. Table XV summarizes the results
obtained by the AIS heuristic and the binary method. In 12 out

bit-length m, namely, m = 128, 256, 512, 1024. The AIS
sliding window method was tested allowing arbitrarily large
MSWs candidates but fixing the maximum size allowed for all
the other nonzero windows to a value k € [6, 7]. We also fixed

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

22

1400

Window method +
AlS . X
1200 *

iy
(o)
Q
o

800

600 *

400

addition chain lengths

200 %

0
100 200 300 400 500 600 700 800 900
exponent of m-bits

1000 1100

Fig. 15. AIS sliding window method against the sliding window method.

TABLE XVI
PERFORMANCE OF THE AIS METHOD FOR LARGE EXPONENTS
m || Sliding window Method [27] AIS Heuristic

length k | length | MSW size | q
128 156 4 152 17 |2
256 308 4 304 132
512 607 5 604 1112
1024 1195 5 1196 6|5

the maximum value of consecutive zeros to ¢ = 2, except for
the case m = 1024, where ¢ = 5 was used.

As it can be seen in Table X VI, our strategy outperforms the
window method for the first three cases, namely, m = 128, 256,
512. However, the AIS strategy tends to deteriorate its perfor-
mance as the bit length grows larger. In the case of m = 1024,
the traditional sliding window method shows a slightly better
performance than the AIS strategy.

VIII. CONCLUSION

In this paper, we presented an AIS heuristic applied to the
problem of finding optimal addition chains for field exponen-
tiation computations. We only emulated some immunological
actors and mechanisms, namely, antibodies and antigens, hy-
permutation, cloning, and secondary response. By doing so, we
believe that we were able to confection an algorithm that is con-
ceptually simple but at the same time effective and efficient.

The AIS heuristic proposed in this research work was capable
of finding almost all the optimal addition chains for any given
fixed exponent e with e < 4096, exhibiting a high success rate
of 99.6%. Furthermore, in order to assess the actual power of
the AIS strategy as a search engine, we used it for generating
the shortest addition chains of a class of exponents particularly
hard to optimize. In all cases considered, the AIS strategy was
able to find the optimal values.

Additionally, we collected the associated uncertainty of our
results through the computation of the experiments’ confidence

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

intervals. This was done by applying a bootstrap resampling sta-
tistical test. The importance of performing this type of test lies
in the fact that only by using statistical tests can one reasonably
ensure that the results yielded by a probabilistic heuristic are
consistent and independent of the random seed used. This way,
we provided statistical evidence that the experimental lower and
upper average values are very close to each other. Thus, it is fair
to say that the average algorithm behavior is quite similar from
one execution to the other, which is a desirable feature for a
probabilistic heuristic to exhibit.

As a means to show how the concept of a powerful heuristic
for finding addition chains could be applied in practice, we in-
cluded two code-theory applications.

The first application consisted on utilizing the AIS strategy
in the problem of finding optimal addition chains for field
exponentiation computations over binary extension fields. The
results obtained by our scheme yielded some of the shortest
reported lengths for exponents typically used when computing
field multiplicative inverses for error-correcting and elliptic
curve cryptographic applications.

The second application consisted of developing a strategy
that combined the sliding window method with the AIS-based
heuristic. While, in general, optimal solutions for exponents
with large bit lengths are unknown, we provided a compar-
ison of our experimental results against the ones obtained by
the traditional sliding window method. Our experiments show
that the AIS strategy tends to be better for moderated sizes of
e € [128,256, 512]. However, for larger sizes, the AIS strategy
is not as efficient as the traditional sliding window.

Future work includes improving the performance of our
strategy for both, exponents with moderated size (i.e., 32-bit
length or less); and when dealing with extremely large expo-
nents, as the ones typically used in RSA and DSA cryptosys-
tems. We are also planning to explore the performance of other
biologically inspired heuristics when applied to the optimal
addition chain problem.

ACKNOWLEDGMENT

The authors gratefully acknowledge the comments from the
anonymous reviewers, which greatly helped them to improve
the contents of the paper.

REFERENCES

[1]1 A. Schonhage, “A lower bound for the length of addition chains,”
Theor. Comput. Sci., vol. 1, pp. 1-12, 1975.
U. Aickelin, J. Greensmith, and J. Twycross, “Immune system ap-
proaches to intrusion detection—A review,” in Proc. 3rd Int. Conf.
Artif. Immune Syst, ICARIS 2004, G. Nicosia, V. Cutello, P. J.
Bentley, and J. Timmis, Eds., Catania, Sicily, Italy, Sep. 2004, vol.
3239, Lecture Notes in Computer Science, pp. 316-329.
[3] P. S. Andrews and J. Timmis, “Inspiration for the next generation of
artificial immune systems,” in Proc. 4th Int. Conf. Artif. Immune Syst.,
ICARIS 2005, C. Jacob, M. L. Pilat, P. J. Bentley, and J. Timmis,
Eds., Aug. 2005, vol. 3627, Lecture Notes in Computer Science, pp.
126-138.
National Standards for Financial Institution Key Management (Whole-
sale), ANSI X9.17 (Revised), American Bankers Assoc., Washington,
DC, 1986.
[5] F.Bergeron, J. Berstel, and S. Brlek, “Efficient computation of addition
chains,” J. de théorie des nombres de Bordeaux, vol. 6, pp. 21-38, 1994.
[6] J. Bos and M. Coster, “Addition chain heuristics,” in Proc. Adv. Cryp-
tology, CRYPTO 89, G. Brassard, Ed., 1989, vol. 435, Lecture Notes in
Computer Science, pp. 400-407.

[2

[

[4

[inar)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CRUZ-CORTES et al.: AN ARTIFICIAL IMMUNE SYSTEM HEURISTIC FOR GENERATING SHORT ADDITION CHAINS 23

(71

(8]

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24

[25]

[26]

[27

(28]

[29]

E. F. Brickell, D. M. Gordon, K. S. McCurley, and D. B. Wilson, “Fast
exponentiation with precomputation,” in Proc. Adv. Cryptology, EU-
ROCRYPT 92, R. A. Rueppel, Ed., 1992, vol. 658, Lecture Notes in
Computer Science, pp. 200-207.

F. M. Burnet, “Clonal selection and after,” in Theoretical Immunology,
G. L. Bell, A. S. Perelson, and G. H. Pimgley, Jr., Eds. New York:
Marcel Dekker, 1978, pp. 63-85.

N. Cruz-Cortes, F. Rodriguez-Henriquez, and C. Coello Coello, “On
the optimal computation of finite field exponentiation,” in Proc. 9th
Ibero-Amer. Conf. Al Adv. Artif. Intell., IBERAMIA 2004, C. Lemaitre,
C. Reyes, and J. Gonzilez, Eds., Nov. 2004, vol. 3315, Lecture Notes
in Computer Science, pp. 747-756.

V. Cutello and G. Nicosia, “An immunological approach to combina-
torial optimization problems,” in Proc. Adv. Artif. Intell., IBERAMIA
2002, Seville, Spain, Nov. 2002, vol. 2527, Lecture Notes in Artificial
Intelligence, pp. 361-370.

D. Bleinchenbacher and A. Flammenkamp, “An efficient algorithm for
computing shortest addition chains,” 1997. [Online]. Available: http://
www.uni-bielefeld.de/~achim

D. Dasgupta and N. Attoh-Okine, “Immunity-based systems: A
survey,” in Proc. IEEE Int. Conf. Syst., Man, Cybern., Orlando, FL,
Oct. 12-15, 1997, pp. 369 -374.

D. Dasgupta, K. KrishnaKumar, D. Wong, and M. Berry, “Negative
selection algorithm for aircraft fault detection,” in Proc. 3rd Int. Conf.
Artif. Immune Syst., ICARIS 2004, G. Nicosia, V. Cutello, P. Bentley,
and J. Timmis, Eds., Sep. 2004, pp. 13-16.

L. Nunes de Castro and J. Timmis, An Introduction to Artificial Im-
mune Systems: A New Computational Intelligence Paradigm. Berlin,
Germany: Springer-Verlag, 2002.

L. Nunes de Castro and F. J. Von Zuben, “Learning and optimization
using the clonal selection principle,” IEEE Trans. Evol. Comput., vol.
6, no. 3, pp. 239-251, Jun. 2002.

S. Forrest and S. A. Hofmeyr, “Immunology as information pro-
cessing,” in Design Principles for the Immune System and Other
Distributed Autonomous Systems, Santa Fe Institute Studies in the
Sciences of Complexity, L. A. Segel and I. Cohen, Eds. Oxford,
U.K.: Oxford Univ. Press, 2000, pp. 361-387.

S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense
of self for unix processes,” in Proc. IEEE Symp. Comput. Security Pri-
vacy, 1996, pp. 120-128.

S. A. Frank, “The design of natural and artificial adaptive systems,” in
Adaptation, R. Michael and L. George, Eds. New York: Academic
Press, 1996, ch. 12, pp. 451-505.

F. Gonzilez and D. Dasgupta, “Anomaly detection using real-valued
negative selection,” Genetic Programming Evolv. Mach., vol. 4, no. 4,
pp- 383-403, Dec. 2003.

D. M. Gordon, “A survey of fast exponentiation methods,” J. Algo-
rithms, vol. 27, no. 1, pp. 129-146, Apr. 1998.

P. Hajela and J. Lee, “Constrained genetic search via schema adapta-
tion. An immune network solution,” in Proc. 1st World Congr. Stuc-
tural Multidisciplinary Opt., N. Olhoff and G. I. N. Rozvany, Eds.,
Goslar, Germany, 1995, pp. 915-920.

P. K. Harmer, P. D. Williams, G. H. Gunsch, and G. B. Lamont, “An
artificial immune system architecture for computer security applica-
tions,” IEEE Trans. Evol. Comput., vol. 6, no. 3, pp. 252-280, Jun.
2002.

E. Hart, “The evolution and analysis of a potential antibody library
for use in job-shop scheduling,” in New Ideas in Optimization, D.
C. Dorigo and F. Glover, Eds. New York: McGraw-Hill, 1999, pp.
185-202.

Standard Specifications for Public-Key Cryptography, Draft Version
D18, IEEE P1363 (IEEE standards documents), Nov. 2004. [Online].
Available: http://grouper.ieee.org/groups/1363/

T. Itoh and S. Tsujii, “A fast algorithm for computing multiplicative
inverses in GF(2™) using normal basis,” Inf. Comput., vol. 78, pp.
171-177, 1988.

D. E. Knuth, The Art of Computer Programming—3rd. ed. Reading,
MA: Addison-Wesley, 1997.

C. K. Kog, High-speed RSA implementation RSA Laboratories, Red-
wood City, CA, Tech. Rep. TR 201, 1994, 71 pages.

C. K. Kog, “Analysis of sliding window techniques for exponentia-
tion,” Computer and Mathematics With Applications, vol. 30, no. 10,
pp. 17-24, Oct. 1995.

N. Kunihiro and H. Yamamoto, “Window and extended window
methods for addition chain and addition-subtraction chain,” IEICE
Trans. Fundamentals, vol. E81-A, no. 1, pp. 72-81, Jan. 1998.

[30] N. Kunihiro and H. Yamamoto, “New methods for generating short
addition chains,” IEICE Trans. Fundamentals, vol. E83-A, no. 1, pp.
60-67, Jan. 2000.

[31] G. B. Lamont, R. E. Marmelstein, and D. A. Van Veldhuizen, “A
distributed architechture for a self-adaptive computer virus immune
system,” in New Ideas in Optimization. New York: McGraw-Hill,
1999, pp. 167-183.

[32] A.J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. Boca Raton, FL: CRC, 1996.

[33] N. Nedjah and L. D. Mourelle, “Efficient preprocessing for large
window-based modular exponentiation using genetic algorithms,”
Developments in Applied Artificial Intelligence, vol. 2718, Lecture
Notes in Artificial Intelligence, pp. 625-635, 2003.

[34] J. Olivos, “On vectorial addition chains,” J. Algorithms, vol. 2, no. 1,
pp. 13-21, 1981.

[35] S. Stepney, R. E. Smith, J. Timmis, and A. M. Tyrrell, “Towards a con-
ceptual framework for artificial immune systems,” in Proc. 3rd Int.
Conf. Artif. Immune Syst., ICARIS 2004, G. Nicosia, V. Cutello, P.
Bentley, and J. Timmis, Eds., Sep. 2004, vol. 3239, Lecture Notes in
Computer Science, pp. 53-64.

[36] N. Takagi, J. Yoshiki, and K. Tagaki, “A fast algorithm for multiplica-
tive inversion in GF(2™) using normal basis,” IEEE Trans. Comput.,
vol. 50, no. 5, pp. 394-398, May 2001.

[37] J. von zur Gathen and M. Nocker, “Computing special powers in finite

fields: Extended abstract,” in Proc. International Symp. Symbolic and

Algebraic Comput., 1999, pp. 83-90.

Y. Lee, H. Kim, S. Hong, and H. Yoon, “Expansion of sliding window

method for finding shorter addition/subtraction-chains,” Int. J. Network

Security vol. 2, no. 1, pp. 34-40, Jan. 2006. [Online]. Available: http://

isrc.nchu.edu.tw/ijns/

[39] Y. Tsuruoka and K. Koyama, “Fast computation over elliptic curves
E(F,~) based on optimal addition sequences,” IEICE Trans. Funda-
mentals, vol. E84-A, no. 1, pp. 114-119, Jan. 2001.

[40] Y. Yacobi, “Exponentiating faster with addition chains,” in Proc. Adv.
Cryptology, EUROCRYPT 90, 1. B. Damgard, Ed., 1990, vol. 473, Lec-
ture Notes in Computer Science, pp. 222-229.

[41] S. M. Yen, “Improved normal basis inversion in GF(2™),” IEE Elec-
tronic Lett., vol. 33, no. 3, pp. 196-197, Jan. 1997.

[38

Nareli Cruz-Cortés received the B.Sc. degree in
Computer Engineering from the Technological In-
stitute of Tepic, Nayarit, México, in 1995, the M.Sc.
degree in artificial intelligence from the University
of Veracruz and LANIA, Veracruz, México, in 2000,
and the Ph.D. degree in electrical and computer en-
gineering from CINVESTAYV, México City, México,
in 2004.

Currently, she is a Lecturer at the Center for
Computing Research, National Polytechnic Institute,
México. Her major research interests are in com-
binatorial and multiobjective optimization, genetic algorithms, and artificial
immune systems.

Francisco Rodriguez-Henriquez (M’03) received
the B.Sc. degree in electrical engineering from the
University of Puebla, Puebla, México, in 1989, the
M.Sc. degree in electrical and computer engineering
from the National Institute of Astrophysics, Optics
and Electronics (INAOE), Puebla, in 1992, and the
Ph.D. degree in electrical and computer engineering
from Oregon State University, Corvallis, in 2000.

Currently, he is a Professor (CINVESTAV-3B Re-
searcher) with the Department of Computer Science,
CINVESTAV-IPN, Mexico City, México, which he
joined in 2002. He is an Alumni Member and Research Associate of the Infor-
mation Security Laboratory, Oregon State University. His major research inter-
ests are in data security, cryptography, finite fields, error correcting codes, and
mobile computing.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

24

Carlos A. Coello Coello (M’89-SM’04) received
the B.Sc. degree in civil engineering from the Uni-
versidad Auténoma de Chiapas, México, in 1991,
and the M.Sc. and Ph.D. degrees in computer science
from Tulane University, New Orleans, LA, in 1993
and 1996, respectively.

He is currently a Professor (CINVESTAV-3D Re-
searcher) with the Department of Computer Science,
CINVESTAV-IPN, Mexico City, México. He has au-
thored and coauthored over 120 technical papers and
several book chapters. He has also coauthored the
book Evolutionary Algorithms for Solving Multi-Objective Problems (Kluwer,
2002) and has coedited the book Applications of Multi-Objective Evolutionary

e)

-

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Algorithms (World Scientific, 2004). His major research interests are: evolu-
tionary multiobjective optimization, constraint-handling techniques for evolu-
tionary algorithms, and evolvable hardware.

Dr. Coello is a member of the Association for Computing Machinery (ACM),
Sigma Xi, and the Mexican Academy of Sciences. He has served on the pro-
gram committees of over 40 international conferences and has been Technical
Reviewer for over 30 international journals including the IEEE TRANSACTIONS
ON EVOLUTIONARY COMPUTATION in which he also serves as Associate Editor.
He is a member of the editorial boards of the journals Evolutionary Computa-
tion, Engineering Optimization, and Soft Computing. He also chairs the Task
Force on Multi-Objective Evolutionary Algorithms of the IEEE Computational
Intelligence Society.

