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Abstract: The purpose of this research was to develop an artificial intelligence-based method for
evaluating substitution voicing (SV) and speech following laryngeal oncosurgery. Convolutional
neural networks were used to analyze spoken audio sources. A Mel-frequency spectrogram was
employed as input to the deep neural network architecture. The program was trained using a collec-
tion of 309 digitized speech recordings. The acoustic substitution voicing index (ASVI) model was
elaborated using regression analysis. This model was then tested with speech samples that were
unknown to the algorithm, and the results were compared to the auditory-perceptual SV evaluation
provided by the medical professionals. A statistically significant, strong correlation with rs = 0.863
(p = 0.001) was observed between the ASVI and the SV evaluation performed by the trained laryngol-
ogists. The one-way ANOVA showed statistically significant ASVI differences in control, cordectomy,
partial laryngectomy, and total laryngectomy patient groups (p < 0.001). The elaborated lightweight
ASVI algorithm reached rapid response rates of 3.56 ms. The ASVI provides a fast and efficient option
for SV and speech in patients after laryngeal oncosurgery. The ASVI results are comparable to the
auditory-perceptual SV evaluation performed by medical professionals.

Keywords: convolutional neural networks; deep learning; laryngeal carcinoma; substitution
voicing; ASVI

1. Introduction
1.1. Issue

Laryngeal carcinoma is one of the rare oncological illnesses with a declining 5-year
survival rate over the last several decades. In the last 40 years, it has fallen from 66 to
63 percent. Some researchers ascribe this considerable decline to better organ-preserving
treatment procedures and circumstances that may affect the patient’s follow-up, most
notably a lack of specialist medical care near the patient’s domicile [1]. Meanwhile, the
American Cancer Society predicts that there will be 12,470 new cases and 3820 fatalities
from laryngeal cancer in the United States alone in 2022 [2]. The true impact of the
COVID-19 pandemic on the 5-year survival rate and quality of life of these patients remains
unknown. However, allocating specialized medical facilities and personnel to contain the
recent COVID-19 pandemic led to delayed diagnostics and treatment of both primary and
recurrent laryngeal cancer [3,4]. Due to the fact that more than half of laryngeal cancer
patients arrived with stage III or IV at their initial consultation, this necessitated more
aggressive laryngeal cancer therapies and increased patient mortality [1].

Laryngeal preserving surgery, complete removal of the larynx, chemotherapy, radio-
therapy, or a combination of these methods are usually used to achieve remission [5]. A
complete removal of the larynx may also be necessary if chemotherapy and radiotherapy

Appl. Sci. 2022, 12, 9748. https://doi.org/10.3390/app12199748 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12199748
https://doi.org/10.3390/app12199748
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2809-2213
https://orcid.org/0000-0001-9990-1084
https://doi.org/10.3390/app12199748
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12199748?type=check_update&version=1


Appl. Sci. 2022, 12, 9748 2 of 19

are ineffective or unavailable. Following laryngeal oncosurgery treatments, these indi-
viduals are often limited to using only a single vocal fold oscillating with the remaining
laryngeal and pharyngeal tissues for phonation. After total laryngectomy, the only way to
communicate is by alaryngeal (esophageal or tracheoesophageal) speaking. This causes
varying degrees of speech impairment or even total inability to speak. Substitution voicing
(SV) is the situation that occurs following laryngeal oncosurgery when voicing is achieved
without one or two vocal folds [6]. The body begins to use the remaining structures (ven-
tricular folds, aryepiglottic folds, pharyngeal mucosa), which were not previously used, to
substitute the missing laryngeal structures in closing the phonatory gap and producing
voice. The patient retains the ability to phonate and speak, but previously unintended
anatomical structures substitute voice production. The downside of this phenomenon is
that both SV and speech following laryngeal oncosurgery exhibit significant irregularity, fre-
quency changes, aperiodicity, and phonatory interruptions [7]. With traditional approaches,
these characteristics render SV assessment potentially incorrect, if not impossible [8,9].

Voice loss substantially impacts the quality of life of laryngeal cancer patients, sig-
nificantly affecting their social life and well-being [10]. Furthermore, because impaired
communication abilities cause discomfort, 40–57 percent of these people develop depres-
sion [10]. This can be alleviated in part by postsurgical voice and speech rehabilitation.
Despite their effectiveness, all recognized speech rehabilitation procedures produce dis-
tinctively altered patient speech patterns. These discrepancies are particularly obvious
when the patient is compelled to speak in a loud setting or on the phone [11]. Additionally,
patients who were unable to use a phone independently during the COVID-19 epidemic
had to rely on text messaging to communicate with their relatives and found it challenging
to get basic social or telemedicine care.

Healthcare providers frequently rely on specialists’ opinions on perceived speech
quality, disability classification, and pathology diagnosis. This method is frequently time-
consuming and prone to parameter sensitivity [12]. Computer-assisted medical approaches
have grown in prominence over the last few decades. According to conventional wisdom,
the acoustic prosodic qualities of a speech signal can be altered by a range of health-related
events [13]. The use of machine learning algorithms to automate the diagnosis of diseases
using variations in human speech has piqued the interest of medical researchers [14].

1.2. A State of the Art Review in Machine Learning Applications for Vocal Pathology Detection
and Analysis

The human voice production system is a complex natural mechanism capable of chang-
ing pitch and volume. The section in which folding is the principal source of underlying
internal and external elements frequently destroys the rationale of vocal folds [15]. While
many approaches for detecting voice pathology have been proposed in recent research,
they tend to focus on distinguishing normal voices from pathological sounds [12,14,16].
The aforementioned papers focus on the design of the algorithm, while neglecting to test
it with the clinical professionals whom the software is supposed to help or even replace.
Additionally, the classification into healthy and pathological voices proves the concept,
but does not track the scope of the problem or any changes over time. Foregoing the
comparison of the final algorithm to its human counterparts and the binary classification
approach eventually hinders the practical application of the research.

In the recent study, in order to identify, extract, and evaluate substitution voicing fol-
lowing laryngeal oncosurgery, we proposed employing convolutional neural networks for
the categorization of speech representations (spectrograms). The proposed algorithm takes
an input of a Mel-frequency spectrogram as an input of deep neural network architecture.
This approach has shown the best true-positive rate of any of the compared state-of-the-art
approaches, achieving an overall accuracy of 89.47% [16]. In the present study, the acoustic
substitution voicing index (ASVI) model was elaborated on, accomplishing quantification
of SV assessment. The ASVI results were comparable to the auditory-perceptual SV evalua-
tion performed by medical professionals. Therefore, the ASVI demonstrates the potential
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to provide a fast and efficient option for SV and speech assessment in patients after laryn-
geal oncosurgery. Furthermore, this approach determines the research gap in automated
speech pathology detection concerning laryngeal cancer. In some circumstances, speech
signals used with machine learning algorithms cannot ensure high accuracy or save time in
pathology monitoring systems, limiting their practical application. This results in the need
for research highlighting the essential concerns and challenges confronting vocal pathology
detection systems and their practical application. To the best of our knowledge, there is
very little evidence in the literature on the use of AI technology for SV evaluation [17–21].
As a result, using AI-based models for objective SV evaluation and categorization might
pave the way for new research and clinical practice directions. Furthermore, a consistent
computerized objective SV evaluation technique would enable comparisons of patient
groups in different medical centers without the need for expert professional assistance. The
same data sets might be utilized to refine the algorithm further.

Several recent research articles have attempted to discriminate between normal and
abnormal voices by employing a variety of machine learning-based classifiers capable
of detecting diseased voices [14,22,23]. A broad range of statistical, machine learning-
based, and other algorithms are currently available for detecting disordered voices based
on computed acoustic aspects of the input signal [24]. Pathology categorization approaches
typically fall under two categories: statistical and deep learning-based [25]. The statistical
approach is frequently based on k-nearest neighbor, random forests, support vector machines,
Gaussian mixture models, and others [26–33]. The Online Sequential Extreme Learning
Machine (OSELM) is one of the more noteworthy machine learning methods that can be
considered a more current technique, as well as a faster and more accurate algorithm than
classic adaptations in the categorization process of voice disorders [28]. The majority of recent
research falls into the latter category, as the focus has shifted to deep learning applications
and notable variations of convolutional and recurrent neural networks [34,35]. Deep learning
can manage more extensive data sets and distinguish more diverse speech characteristics,
potentially outperforming medical experts in various vocal pathology classification tasks.
Chen et al. showed this in their deep learning approach by employing 12 Mel-frequency
cepstral coefficients from each speech sample as row attributes or as cepstrum vectors [36–38].
Zakariah et al. showed that MFCC-based approaches could be enhanced by including gender-
specific information [38]. By extracting and analyzing variable-length speech signal segments
utilizing the prisms of the energy, primary tone, and spectrum, Miliaresi et al. proposed
assessing several characteristics of the voice signal window as low-level descriptors [39].
They then trained their model using the obtained data. Various functional factors, including
moments, extremes, percentiles, and regression parameters, may be provided for the
network, resulting in a collection of aggregate characteristics for healthy and impaired
speech. In order to show how multipath learning and learning transfer applications
could be used in accordance with the multifunctional LSTM-RNN paradigm, Kim et al.
collected features from voice samples of the vowel sound /a:/ and computed the Mel-
frequency cepstral coefficients (MFCCs), which can be used to differentiate between patients
with laryngeal cancer and healthy controls [40,41]. Similar findings in additional studies
indicated that the recurrent neural network’s accuracy was comparable to CNN, and the
predicted outcomes were almost identical. Mittal et al. proposed filtering the input voice
signal using deep learning, followed by a decision-level fusion of deep learning with a
non-parametric learner [40–43]. Chaiani demonstrated that employing suitable speech
enhancement pre-processing improves the accuracy of automated categorization of vocal
diseases by reducing the inherent noise caused by voice impairment [44,45]. The FC-
SMOTE approach described by Fan et al. handles the original class-imbalanced dataset
and outperforms standard imbalanced data oversampling algorithms [45]. The application
of kernel-based extreme learning machines, data pre-processing, a combination of the
k-means clustering-based feature weighting approach and a complex-valued artificial
neural network, and other techniques were also demonstrated [23,45,46]. Muhammed
et al. utilized a hybrid system using microphones and electroglottography (EGG) sensors
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as inputs. These signals are converted into spectrograms and input into a pre-trained
convolutional neural network (CNN). The CNN features are merged and processed using
a bi-directional long short-term memory network [47]. Analogic hybrid fusion produced
by Omerlogu et al. achieved a similar outcome [48].

Despite the favorable results which were produced utilizing classic approaches ma-
chine learning and modern deep learning techniques, some worries and unresolved dif-
ficulties, such as the correct prediction of a large number of characteristics, remain [49].
There is a scarcity of medical voice training data for machine learning models. Furthermore,
comprehending voice-impacting illnesses and their varieties is more complicated than other
activities, and the result often is valid only in narrow given conditions. Finally, pathological
voice is inherently noisy, complicating the algorithms with real-life data even further [44].

1.3. Proposed Research

For temporal audio signal analysis, most contemporary deep learning voice analysis
systems use some sort of recurrent gates. This method is famously challenging to teach
and suffers from poor performance. We seek to employ areas of machine learning (deep
learning) research to extract, measure, and objectively describe SV and speech following
laryngeal oncosurgery through audio signals instead of the current ineffective method-
ologies that require prior medical expertise for signal analysis. Furthermore, we aim to
streamline the obtained objective estimates to the point where they can be interpreted
without specialized medical training. The automated speech and SV evaluation programs
may offer the patients reliable early laryngeal cancer recurrence follow-up and decrease
the requirement for specialist medical treatment, which may result in enhancement of their
5-year survival rate. Furthermore, the same tools might improve patient safety during the
COVID-19 pandemic by eliminating unnecessary follow-up visits to medical institutions,
thereby lessening the risk of infection [21]. Finally, this strategy might lessen the strain
and stress on specialized medical workers, which has been critical during the COVID-19
epidemic [30]. This may be accomplished without contributing additional expenditures to
the healthcare system.

We discovered three main issues when reviewing existing machine learning-based au-
dio feature processing techniques: categorization, screening, and heavy computer workload.
First, the accuracy varies due to the wide range of treatment options applied to laryngeal
cancer patients, combined with high irregularity, frequency shifts, and aperiodicity found
in SV. This implies that pathology detection is not universal. Second, most techniques are
slow to operate and excessively dependent on hardware, necessitating expensive GPUs to
train and run the models [7].

By converting the waveform into Mel’s spectrogram-based cochleagrams and putting
it into a modified lightweight classification network, we suggest using a hybrid convo-
lutional neural network model to evaluate audio inputs in this study. We were able to
classify the speech pathology of the sub-subjects with an overall accuracy of 89.47 percent
using this optimized network architecture, which allowed the approach to be used on
low-end computing devices with only a Central Processing Unit (CPU) and no specific
Graphical Processing Unit (GPU). Consequently, the present study aimed to elaborate on
an artificial intelligence-based algorithm for the assessment of substitution voicing after
laryngeal oncosurgery.

2. Materials and Methods
2.1. Groups

Speech samples were collected from 379 male participants (100 after laryngeal onco-
surgery and 279 healthy) assessed at the Lithuanian University of Health Sciences Depart-
ment of Otorhinolaryngology in Kaunas, Lithuania. The ages of the subjects ranged from
18 to 80 years. The study included 100 male patients (mean age 63.1; SD 22.8 years) who
were surgically treated for histologically confirmed laryngeal cancer. Patients with endola-
ryngeal cordectomy type III/IV, partial vertical laryngectomy, or total laryngectomy with
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tracheoesophageal prosthesis implantation were specifically selected for this investigation,
since they communicate via speech created by either a single vocal fold or none [50,51].
This sort of speech creation is known as substitution voicing (SV) [6]. Patients were divided
into groups based on the number of residual vibrating laryngopharyngeal structures em-
ployed for SV production. The single vocal fold group (endolaryngeal cordectomy and
partial laryngectomy) included 70 patients, whereas the total laryngectomy group had
30 individuals. Patient voice recordings were gathered at least 6 months following surgery
to guarantee that healing and speech rehabilitation programs could be completed.

The control group included 279 healthy male volunteers with normal speech (mean
age 38.1; standard deviation (SD) 12.7 years). They had no current or previous speech,
neurological, hearing, or laryngeal abnormalities. At the time of speech recording, the
control group was clear of a common cold or upper respiratory illness. Individuals with
any pathological laryngeal changes discovered after laryngeal endoscopy were excluded
from the study.

For the cordectomy, partial laryngectomy, and control groups, laryngeal endoscopy was
conducted without topical anesthesia using the XION EndoSTROB DX instrument (XION
GmbH, Berlin, and Germany) with a 70◦ rigid endoscope. Before recording, the tracheoe-
sophageal prosthesis was examined for signs of leakage or infection and, if necessary, replaced.

The collected speech recordings from control and patients’ groups were randomized.
Then, the SV recordings were split into two subgroups, i.e., cordectomy and partial laryn-
gectomy (phonation with single vocal fold) and total laryngectomy (phonation without
vocal folds). Speech recordings of 309 subjects were used to train the algorithm. The
additional speech recordings of 70 subjects were reserved to evaluate how the algorithm
performs with recordings unknown to it. The arrangement of the study groups is presented
in Table 1.

Table 1. Arrangement of the groups in the study.

Group Teaching Testing Total

Control (class 0) 250 29 279

Cordectomy and partial
laryngectomy (class 1) 41 29 70

Total laryngectomy (class 2) 18 12 30

2.2. Speech Recordings

The spoken Lithuanian phrase “Turėjo senelė žilą oželį” which means “the granny had
a small grey goat”, was recorded. The phrase was chosen following Lithuanian language
rules on phonetic balancing. Participants had to speak both utterances at a steady speed. A
D60S Dynamic Vocal microphone (AKG Acoustics, Vienna, Austria) and a T-series quiet
room for hearing testing (CA Tegner AB, Bromma, Sweden) were used for the recording. A
microphone was positioned approximately 90 degrees from the mouth and 10.0 cm from the
lips. The speech was created as uncompressed 16-bit deep WAV audio files and captured
at 44.100 samples per s. The recordings were set up to contain an unvoiced fragment of
the same length of 300 ms at the start and end of each one, using Praat version 6.2.14 [52].
Eight acoustic speech features were extracted from the aforementioned speech recordings,
and are described in Table 2.

Table 2. Acoustic speech features captured in the dataset.

Feature Description

F0 Fundamental frequency

PVF Percentage of voiced frames

PVS Percentage of voiced speech frames

AVE Mean voicing evidence of voiced frames (proportion)
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Table 2. Cont.

Feature Description

PVFU Percentage of voiced frames with unreliable F0

MD Average F0 modulation

MDc
MD only in frames with a “reliable” F0 estimate. Vocal frequency estimate
F0 is considered reliable if it deviates less than 25% from the average over

all voiced frames.

Jitter F0-jitter in all voiced frame pairs (=2 consecutive frames)

2.3. Auditory-Perceptual Evaluation

A panel of three native Lithuanian-speaking otolaryngologists with at least 10 years
of experience in the field of laryngeal pathology and phoniatrics were recruited for the
auditory perceptual evaluation of the speech samples. Over the course of three auditory-
perceptual evaluation sessions, they were asked to rate the same group of recordings that
were used for training and testing the current algorithm using the Impression, Intelligibility,
Noise, Fluency, and Voicing perceptual rating scale (IINFVo), which is aimed specifically at
quantifying the perception of SV and speech after laryngeal oncosurgery [9]. The IINFVo
scale rates the impression (first I) of voice quality; intelligibility (second I), the amount
of effort required to understand a given segment of speech; unintended additive noise
(N); fluency (F), hesitations between successive sounds and within continuous sounds;
and quality of voicing (Vo), unintentionally voiced or unvoiced speech fragments. Each
parameter of the IINFVo scale is scored on a 10.0-cm long visual analog scale (VAS) from left
(worst/absent) to right (optimal) [6]. The total IINFVo score can range from 0 to 50 points,
with a higher score indicating better speech quality.

The purpose of the study, SV and speech evaluation standards, and retesting were all
explained to the panel ahead of time. Before each rating, a training session was held to
standardize the criteria and achieve a better level of unanimity. An independent training
set of five speech samples was supplied (two samples of normal speech and three samples
of SV from distinct SV subgroups, i.e., cordectomy, partial and total laryngectomy). The
primary rating set does not include these speech recordings.

The SV rating processes were conducted in a quiet area with little ambient noise.
Speech samples were presented at a suitable hearing level using MacBook Pro model A1211
stereo speakers (Apple Inc., Cupertino, CA, USA). Each voice sample was played in random
order. Before a choice, each sample was repeated as many times as necessary. Following
the training session, no conversation among panel members was permitted.

2.4. Exploratory Analysis of the Datasets

We evaluated the distributions of energy (Figure 1), power (Figure 2), and signal-to-
noise ratio (SNR) (Figure 3) in our dataset compared to those in other relevant datasets
commonly used in medical voice analysis, as was proposed by the reviewers (as our
algorithm does not alter the signal in any way) [53,54].

Since the distribution of voice features was skewed (Figures 1–3), data were analyzed
using a Kruskal–Wallis rank sum test with Holm correction. The Kruskal–Wallis test is
a nonparametric statistical test that evaluates differences on a non-normally distributed
continuous variable between independently sampled groups. The results indicate that our
dataset is more coherent when compared to others.

The signal energy of the Lithuanian dataset (median = 0.002) is smaller than signal
power of the German dataset (median = 0.02), but larger than that of the Italian dataset
(median = 0.001). The difference is statistically significant (Figure 4).
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The signal power of the Lithuanian dataset (median = 49.00) is larger than signal power
of both the German dataset (median = 47.70) and the Italian dataset (median = 44.10 dB).
The difference is statistically significant (Figure 5).
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The SNR of the Lithuanian dataset (median = 18.59 dB) is lower than the SNR of
the German dataset (median = 22.10 dB), but larger than the SNR of the Italian dataset
(median = 9.72 dB). The difference is statistically significant (Figure 6).
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2.5. Cochleagrams of the Speech Signal

Figure 7 shows a cochleagram for a normal male voice. Figure 8 shows a cochleagram
for substitution voicing after total laryngectomy and TEP implantation. They were gener-
ated from sound data for a frequency range of 30–5000 Hz using a 128-channel filter bank. A
cochleagram is a time-frequency representation of a sound signal generated by a filter bank.
It divides the sound into different frequencies based on a model that mimics the internal
structure and composition of the human ear (outer and middle ear, membrane, cochlea,
and hair cells) [55]. A comparative visual analysis of cochleagrams reveals the detectable
features of cochleograms that reflect high irregularity, frequency shifts, aperiodicity, and
phonatory interruptions of substitution voicing.

In terms of classification performance, the cochleagram can outperform the spectro-
gram [56]. We consider cochleagrams to be a useful addition to the domain of audio
analysis, which can be used in conjunction with traditional acoustic features provided
by Fast Fourier Transformation (FFT) and work well with deep learning audio analysis
applications [57,58].
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2.6. Network Model

The chaotic character of the substitution voicing signal renders examination of substi-
tution voicing unsuitable, if not impossible, using standard clinical acoustic voice analysis
procedures. In order to perform automatic speech pathology categorization and diagnosis,
it is critical to collect trustworthy signal qualities, which are critical for the dependability
of the outcome. Clinical interpretation of voice characteristics is frequently performed
before pathology identification. Based on the analysis of other studies, many researchers
distinguish signal processing functions such as Mel-frequency Coefficients (also chosen to
feed the deep neural network approach), waveform packet transformations, and features
reflecting a variety of human physiological and etiological reasons [59–61]. Multiple charac-
teristics, including height, vibration, and flicker, were used to determine speech roughness,
as well as additional approaches, such as the Harmonic to Noise Ratio, Normalized Noise
Energy, and Smooth-to-Noise Ratio [62].

The hybrid neural network was used to develop the speech screening solution method-
ology. Given an input speech line, firstly, we convert the voice line into 16 kHz mono-
channel audio to normalize inputs from potentially different sources into a single stan-
dardized input type. Once the speech line is processed, the input is then converted into an
MFCC spectrogram using 80 MFC coefficients, which is then converted into the cochlea-
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gram [55]. This results in a 2D image-like input of N × 80 × 1, where N is the length of
the clip. Unlike a 1D voice clip, 2D MFCC representation allows us to use 2D convolution
kernels for the given voice clip input. The given spectrogram is then processed in the initial
feature extraction layer. This layer consists of 80 × 64 convolution, batch normalization,
and ReLU activation functions. A feature extraction max pooling is then applied. The
network then branches out into a feature extraction network. The feature extraction archi-
tecture is as follows: the network consists of 4 layers, each having 4 blocks. Each block
consists of convolution, batch normalization, and ReLU activation functions. The first and
third blocks in the layer are residually connected with the input from the previous layer,
whereas the blocks themselves are chained linearly. Additionally, the fourth block halves
the latent space, reducing the input dimensionality. The fourth layer is then connected to
the output layer, and the output layer depends on the network branch. The classification
branch consists of max pooling followed by a fully connected layer of 4 neurons, one for
each class. There are three softmaxed probabilities for each of the speech abnormalities, as
can be seen in Figure 9. This approach provides us with a simple network architecture in
terms of latent space variable count, therefore allowing for the potential application of the
method in embedded systems such as phones.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 21 
 

channel audio to normalize inputs from potentially different sources into a single stand-
ardized input type. Once the speech line is processed, the input is then converted into an 
MFCC spectrogram using 80 MFC coefficients, which is then converted into the coch-
leagram [55]. This results in a 2D image-like input of N × 80 × 1, where N is the length of 
the clip. Unlike a 1D voice clip, 2D MFCC representation allows us to use 2D convolution 
kernels for the given voice clip input. The given spectrogram is then processed in the ini-
tial feature extraction layer. This layer consists of 80 × 64 convolution, batch normalization, 
and ReLU activation functions. A feature extraction max pooling is then applied. The net-
work then branches out into a feature extraction network. The feature extraction architec-
ture is as follows: the network consists of 4 layers, each having 4 blocks. Each block consists of 
convolution, batch normalization, and ReLU activation functions. The first and third blocks in 
the layer are residually connected with the input from the previous layer, whereas the 
blocks themselves are chained linearly. Additionally, the fourth block halves the latent 
space, reducing the input dimensionality. The fourth layer is then connected to the output 
layer, and the output layer depends on the network branch. The classification branch con-
sists of max pooling followed by a fully connected layer of 4 neurons, one for each class. 
There are three softmaxed probabilities for each of the speech abnormalities, as can be 
seen in Figure 9. This approach provides us with a simple network architecture in terms 
of latent space variable count, therefore allowing for the potential application of the 
method in embedded systems such as phones. 

 
Figure 9. The architecture of the hybrid deep neural network used for classification. 

The deep neural network consists of four feature extraction layers, and each of the 
layers subsists of four feature extraction nodes. The node in this context consists of three 
operations: convolution, normalization, and non-linearity function. The convolution op-
eration takes an input cochleagram image that can be represented as a 2D matrix, and the 
convolutional kernel selects the latent features. The output matrix is then fed into a batch 
normalization operation, which has been shown to reduce training times, improve recall 
rates, and reduce occurrences of gradient explosion or vanishing [63,64]. The batch nor-
malized result is then applied with a non-linearity function. In our case, we used a Recti-
fied Linear Unit (ReLU), as it was experimentally determined to be the best non-linearity 
function when dealing with cochleagram images, in addition to its mathematical simplic-
ity [65,66]. Each layer’s first convolutional operation kernel also performs a stride opera-
tion of size 2. This reduces the input dimensionality by skipping every other value in the 
input. Dimensionality reduction is not only necessary to perform the operations in real-
time on modern hardware, but also improves the recall rate by removing potential noise 
from the input by selecting only the most prominent features. In each layer except the 
first, the first and third nodes are connected residually (skip connections). Skip connec-
tions have been shown to improve gradient propagation due to the spatial structuring of 
the gradients [63]. Finally, each layer’s second and fourth feature extraction nodes are 
summed up and sent to the following layer. 

  

Figure 9. The architecture of the hybrid deep neural network used for classification.

The deep neural network consists of four feature extraction layers, and each of the
layers subsists of four feature extraction nodes. The node in this context consists of three
operations: convolution, normalization, and non-linearity function. The convolution
operation takes an input cochleagram image that can be represented as a 2D matrix, and
the convolutional kernel selects the latent features. The output matrix is then fed into a
batch normalization operation, which has been shown to reduce training times, improve
recall rates, and reduce occurrences of gradient explosion or vanishing [63,64]. The batch
normalized result is then applied with a non-linearity function. In our case, we used a
Rectified Linear Unit (ReLU), as it was experimentally determined to be the best non-
linearity function when dealing with cochleagram images, in addition to its mathematical
simplicity [65,66]. Each layer’s first convolutional operation kernel also performs a stride
operation of size 2. This reduces the input dimensionality by skipping every other value
in the input. Dimensionality reduction is not only necessary to perform the operations in
real-time on modern hardware, but also improves the recall rate by removing potential
noise from the input by selecting only the most prominent features. In each layer except the
first, the first and third nodes are connected residually (skip connections). Skip connections
have been shown to improve gradient propagation due to the spatial structuring of the
gradients [63]. Finally, each layer’s second and fourth feature extraction nodes are summed
up and sent to the following layer.

2.7. Fast Response Network

Unlike many other voice analysis approaches which use recurrent or transformer
neural networks, we opted to use convolutional neural networks by analyzing the input
voice data as a 2D spectrogram. This, together with the choice of the tiny ResNet-18
backbone, allowed us to reach rapid response rates of 3.56 ms for a voice line that averages
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around 5 s per clip when tested. This allows our approach to be used in real-time speech
analysis, not only prerecorded audio clips.

2.8. Network Implementation

In Figure 10, the implementation from the software engineering perspective and the
UML activity diagram of our approach are showcased. The application processes the signal
by converting it to a wav format, resampling to 16 kHz Mono, calculating Mel-frequency
Cepstral Coefficients, and then producing cochleagrams. The hybrid deep neural network
is then employed to classify the sound file, as shown in Figure 10.
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The application also uses PRAAT API functionality and AMPEX Diva API functionality as
the ground truth for signal feature estimation (pitch, harmonics, average voicing, etc.) [53,67].

3. Results
3.1. Auditory-Perceptual Speech Evaluation Outcomes

The overall IINFVo scores ranged from 34 to 50 points in the control group, 18 to
40 points in the cordectomy and partial laryngectomy groups, and 0 to 35 points in the
total laryngectomy group, respectively. With a Cronbach’s alpha of 0.961, the IINFVo scale
demonstrated strong inter-rater reliability. The Interclass Correlation Coefficient was 0.891
on average (ranging from 0.843 to 0.927). There was no statistically significant difference
in the mean IINFVo scores of the classes utilized for teaching and training the algorithm
(shown in Table 3).

Table 3. Results of auditory-perceptual speech evaluation.

Group Teaching Group IINFVo
Total Score (SD)

Testing Group IINFVo
Total Score (SD) p

Control (class 0) 48.01 (2.88) 49.02 (2.62) 0.0724

Cordectomy and partial
laryngectomy (class 1) 22.52 (9.98) 26.62 (8.09) 0.0721

Total laryngectomy (class 2) 16.92 (10.71) 17.95 (7.44) 0.7746

3.2. Developing a Combined Model for SV and Speech Assessment in Patients after
Laryngeal Oncosurgery

Regression analysis was employed in order to streamline a vast number of different
results provided by the algorithm into a single numeric scale, which would be easier
to interpret, and therefore more applicable in a clinical setting. Data from 309 speech
recordings were used for the algorithm training. A linear stepwise backward regression
was used to find the most reduced model which best explained the data, and to reduce
suppressor effects that may have falsely impacted the significance of predictors. Possible
predictors were probabilities and digital speech features provided by the algorithm, with
the total IINFVo score chosen as the dependent variable. IINFVo was chosen as a dependent
in order to make the model-based speech evaluation comparable to the IINFVo evaluation
performed by the trained otorhinolaryngologist. The correlation between the observed
and predicted values (R) was used to measure how well the regression model matched the
data. The modified R2 was used to estimate the model’s quality for the population while
considering the sample size and number of predictors utilized.

The starting variable formula was as follows: Class = PVF + PVS + AVE + PVFU + MD
+ MDc + Jitter + F0 + Probability the recording belongs to class 0 (Prob0) + Probability the
recording belongs to class 1 (Prob1) + Probability the recording belongs to class 2 (Prob2).
Out of all possible models, a model with the lowest Akaike Information Criterion (AIC)
was chosen. A final model for assessment of SV quality, i.e., acoustic substitution voicing
index (ASVI), consisted of the constant combined with statistically significant parameters
(F0, AVE, Prob0, Prob1, and Prob2):

ASVI = 8.0518 + 29.534 × AVE − 0.03 × F0 − 0.1876 × Prob2 − 0.172 × Prob1 − 0.0336 × Prob0

The possible range of the ASVI was 0 to 30, with higher values indicating better overall
speech quality. The model exhibited a correlation between the predicted and observed
values (R = 0.922) with an adjusted R2 of 0.842.

3.3. Testing of the ASVI Performance

The reserved speech recordings of 70 subjects were used to evaluate how the algorithm
performed with recordings not used in the training session. This approach demonstrated
an overall accuracy of 92.14% when evaluating the previously unknown speech recordings.
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Total IINFVo scores of the same 70 recordings were then compared to the ASVI scores
given by the developed algorithm. A statistically significant, strong correlation with
Spearman’s rho (rs) = 0.863, p = 0.001 was observed between the ASVI and the IINFVo
scores provided by the trained physicians (Figure 11). There was no statistically significant
difference between model-predicted and observed correlation values (p = 0.284; z = −0.571).
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The one-way ANOVA showed statistically significant differences between the ASVI in
different study groups F (2, 69) = 60.54, p < 0.001, with the control group having the highest
values that corresponded to normal voice quality, followed by the SVI patients’ groups in
descending order directly depending on the extent of laryngeal oncosurgery. The mean
ASVI scores in different study groups are presented in Table 4.

Table 4. The mean acoustic substitution voicing index (ASVI) scores in control and patients’ groups.

Group n ASVI (SD) p

Control (class 0) 29 28.28 (2.93) 0.001

Cordectomy and partial laryngectomy (class 1) 29 15.39 (7.31) 0.001

Total laryngectomy (class 2) 12 8.48 (3.53) 0.001

4. Discussion

The proposed ASVI has the potential to be used in research and clinical practice as
an easy-to-use metric for SV and speech changes in patients after laryngeal oncosurgery.
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This index combines the benefits provided by contemporary AI-based machine learning
and conventional acoustic speech assessment approaches. A statistically significant, strong
correlation was revealed between the ASVI assessment results and the auditory-perceptual
evaluation on the IINFVo scale provided by the trained physicians.

As with any oncological condition, laryngeal cancer patients require continuous follow-
up and ongoing care. This may be hindered by several socioeconomic factors, COVID-19
pandemic-related healthcare interruptions among them. After laryngeal oncosurgery,
patients, especially those who live in rural areas, are often faced with limited availability
of specialized medical care [68]. As a result, there are clear benefits to offering a new
framework by employing telecommunication means and artificial intelligence approaches
for automated speech analysis in the context of remotely-provided healthcare services [69].
Telehealth consultations have already been shown to be beneficial for various laryngeal
pathologies, with diagnostic decision results equivalent to in-patient examination [70].
From a medical standpoint, the ASVI could potentially be useful in detecting and objectively
measuring changes in SV. To begin with, this would help patients to seek treatment on
time after laryngeal oncosurgery, as changes in voice and speech are usually the first
sign of laryngeal cancer recurrence. Consequently, early diagnosis of the recurrence and
subsequent intervention results in better 5-year survival rates in most cases. Furthermore,
the ability to monitor patients’ speech at home or in non-specialized patient facilities may
lead to early detection of faulty tracheoesophageal prosthesis (TEP). Consequently, this
would ensure the timely replacement of the TEP and avoid life-threatening complications,
such as dislocation of the TEP and asphyxiation [71].

While AI-based machine learning is already a mainstay in early diagnosis in cardiology
and pulmonology, it becomes less common when it comes to the assessment of laryngeal
pathology, namely SV, after laryngeal oncosurgery [72]. Currently, the AI-based research on
this topic is hindered by the small sample sizes in different languages and researchers using
different methodologies to evaluate speech, as noted in the systematic review conducted by
van Sluis et al. [73]. However, ASVI could be applied retrospectively to already-available
speech datasets and provide a simple-to-interpret metric. Additionally, generated acoustic
parameters provide a more in-depth look for researchers. The combination of AI-based
machine learning and objective acoustic parameters provides a further benefit, as ASVI
requires fewer resources for cross-cultural adaptation when compared to routine speech
evaluation methods tools, i.e., special questionnaires.

The proposed version of ASVI has the benefit of a lightweight algorithm. This benefits
the user in two ways. The rapid response rate allows the SV analysis to be performed in real
time instead of using pre-recorded speech samples. Additionally, this approach does not
require high-end hardware to run efficiently. This allows ASVI to be seamlessly implemented
into smartphones or CPU-based computers which the medical centers already have.

Our team modified well known CNN models used for image categorization. The devel-
oped technique feeds a Mel-frequency spectrogram into deep neural network architecture,
yielding excellent SV classification results. Our findings show that a deep learning model
trained on a diseased and healthy speech database might be utilized to identify and classify
speech variations that emerge following laryngeal oncosurgery. This is possible using only
speech samples. This is not a replacement for clinical evaluation, but could serve as a sup-
plementary tool when specialized care is scarce or unavailable. It can be employed through
telemedicine in locations where primary care facilities lack a qualified practitioner on-site. It
might help clinicians pre-screen patients by allowing invasive examinations to be performed
only when concerns with automated recognition are paired with clinical findings.

In conclusion, the developed ASVI might be a significant step toward creating a prac-
tical and reliable tool for reproducible objective SV evaluation, which would be available to
non-experts or professionals to assist clinical decisions in practice or research in patients
following laryngeal oncosurgery.
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5. Conclusions

Convolutional neural networks were utilized to analyze speech audio signals. A
corpus of digitized voice recordings from 309 male individuals was used to train the system.
The acoustic substitution voicing index (ASVI) model was developed using regression
analysis. This model was then evaluated with an additional 70 speech samples that had
not been included in the algorithm’s training, and compared to the auditory-perceptual SV
rating supplied by medical practitioners. After laryngeal oncosurgery, the ASVI provided a
quick and efficient solution for SV and speech in patients. The ASVI results were equivalent
to medical specialists’ auditory-perceptual SV evaluations and may be called cutting-
edge. The ASVI and the SV assessment conducted by qualified laryngologists had a
statistically significant, strong connection with rs = 0.863 (p = 0.001). ASVI differences in
the control, cordectomy and partial laryngectomy, and whole laryngectomy patient groups
were statistically significant (p = 0.001). The refined, lightweight ASVI algorithm achieved
reaction times of 3.56 ms.

The present study is the first work describing the use of AI-based algorithm and
originally elaborated ASVI in patients’ SV and speech evaluation after surgical treatment
of laryngeal cancer, and comparing it to auditory-perceptual speech evaluation provided
by medical professionals. Moreover, the use of ASVI enables the quantification of SV
assessment based on acoustic speech parameters. These features represent the novelty and
originality of this work.
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