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Abstract: Predicting subcellular protein localization has become a popular topic due to its utility in
understanding disease mechanisms and developing innovative drugs. With the rapid advancement
of automated microscopic imaging technology, approaches using bio-images for protein subcellular
localization have gained a lot of interest. The Human Protein Atlas (HPA) project is a macro-initiative
that aims to map the human proteome utilizing antibody-based proteomics and related c. Millions
of images have been tagged with single or multiple labels in the HPA database. However, fewer
techniques for predicting the location of proteins have been devised, with the majority of them relying
on automatic single-label classification. As a result, there is a need for an automatic and sustainable
system capable of multi-label classification of the HPA database. Deep learning presents a potential
option for automatic labeling of protein’s subcellular localization, given the vast image number
generated by high-content microscopy and the fact that manual labeling is both time-consuming
and error-prone. Hence, this research aims to use an ensemble technique for the improvement in
the performance of existing state-of-art convolutional neural networks and pretrained models were
applied; finally, a stacked ensemble-based deep learning model was presented, which delivers a more
reliable and robust classifier. The F1-score, precision, and recall have been used for the evaluation
of the proposed model’s efficiency. In addition, a comparison of existing deep learning approaches
has been conducted with respect to the proposed method. The results show the proposed ensemble
strategy performed exponentially well on the multi-label classification of Human Protein Atlas
images, with recall, precision, and F1-score of 0.70, 0.72, and 0.71, respectively.

Keywords: deep learning; sustainable healthcare; biomedical image analysis; image classification;
artificial intelligence; protein subcellular localization prediction

1. Introduction

Plasma membranes encase all eukaryotic cells, containing complicated organelles and
a complex endomembrane system. Different compartments for varied metabolic activities
are provided by these organelles. Only one of these organelles, the cytosol, can synthesize
proteins. From the cytosol, these proteins are then transported to their target destination
organelle to perform their functions. Protein translocation is required for proteins to
function in multiple organelles. To approach their functional destination, almost 50% of
a cell’s proteins must be carried inside or across at least one cell membrane. Subcellular
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localization refers to the position of a protein within cellular compartments. For protein
function, subcellular localization has been proposed to increase functional diversity while
minimizing the cost of designing and synthesizing proteins [1]. It also controls protein
interaction with other proteins and the posttranslational modification machinery, allowing
proteins to be integrated into biological networks. Human disorders, such as cancer, kidney
stones, and neurogenerative conditions like Alzheimer’s disease, have been related to
abnormally localized proteins [2].

A lot of data is needed to be acquired regarding subcellular protein distributions and
how they vary throughout cell populations to comprehend the complicated mechanisms
that control biological processes at the cellular level. Automatic recognition of fluorescence
microscopy images is an excellent tool for obtaining this data [3]. High temporal and spatial
resolution imaging of living cells is possible thanks to fluorescent probes’ high specificity
for tagging elements of interest and the accessibility of modern fluorescence microscopes.
Furthermore, understanding the chemical pathways that underpin cell functions requires
correct protein localization.

The HPA project is currently working on annotating the localization of human proteins
inside cells using biotechnology [4]. HPA uses fluorescence-based microscopy techniques
to capture images [3]. For mapping the expression of the human proteome, researchers
used a systematic antibody-based technique to create trillions of fluorescence microscopy
images [5]. These data can reveal necessary information about cellular processes and
biochemical pathways unless we can overcome the obstacles of analyzing such a large
quantity of images.

In the recent past, with rapid technological improvement and a wide range of applica-
tions, Artificial Intelligence has become increasingly prevalent due to its robust applicability
in situations that cannot be solved well by humans or traditional computing structures.
Artificial intelligence with deep learning and machine learning is having a significant
impact in all industries, including agriculture [6–8], medical diagnostics [9], education [10],
autonomous vehicles [11], voice assistants [12], and many more.

Researchers have recently proposed techniques combining fluorescence microscopy
with machine learning and deep learning methods to predict protein subcellular localization.
Due to the vast quantity of high-resolution microscopic images collected, it is now possible
to build high-performance identification and classification systems using deep neural
network-based methods. Protein localization using microscopic images, on the other hand,
poses a distinct machine learning difficulty, namely, how to cope with data that are poorly
annotated. The problem is that instead of labeling individual incidents, a collection of them
has been labeled (in this case, cells). Each of these instances could provide insight into the
correct classification. As a result, this is a multi-label classification problem, which means
that an image could have multiple labels associated with it.

There are numerous approaches to tackle multi-label classification issues [13–15]
and these approaches can be categorized as algorithm adaptation method and problem
transformation method [16]. The first category includes algorithms like Rank-SVM [17],
ML-DT [18], and ML-KNN [19], which can be extended to process multi-label data. In the
second situation, a multi-label classification problem is broken down into several single-
label classification problems, or even one multi-class classification problem. Classifier
chains [20–22], Label Powerset [23], and Binary Relevance [24,25] are examples of this
type of technique. There are still challenges with the aforesaid algorithms in real-world
applications, such as class imbalance, label correlations, and high dimensionality.

Furthermore, some ensemble techniques have been presented as benchmarks for
multi-label classification tasks in recent years [26,27]. However, all existing models usually
consider the bagging concept in order to build a variety of ensemble classifier models
and finally use majority voting to merge them for the final outcome. Another prominent
method is the stacked ensembled technique, which has been demonstrated to be beneficial
to a variety of learning tasks. A stacked ensemble has been developed in this study, which
uses pretrained models as ensemble members and has been fine-tuned on the HPA dataset.
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We anticipate that the suggested approach can be used for a better understanding of an
automated classification method for the multi-label HPA problem. Following are the
contributions made by the author in this research work:

1. Three transfer learning models namely VGG16, ResNet152, and DenseNet169 have
been used for protein subcellular localization prediction in 28 subcellular compart-
ments and their evaluation of the three models has been conducted on the basis of
precision, recall, and F1-score.

2. Further improvement in results has been achieved by proposing a stacked ensemble
model using the predictions obtained from three transfer learning models, and it has
also been evaluated on the basis of precision, recall, and F1 score.

3. Comparison in the performance of proposed stacked ensemble model has been made
with the three transfer learning models.

The rest of the article is organized as follows: The contributions made for protein
subcellular localization prediction are highlighted in Section 2. The materials and methods
followed by dataset utilization and the proposed model’s architecture have been explained
in Section 3. Section 4 presents the results and discussion which contains the detailed
experimental setup along with the analysis of the results. The concluding remarks, the
shortcomings, as well as future opportunities are outlined in Section 5.

2. Related Work

Methods that integrate fluorescence microscopy with deep learning and machine learn-
ing approaches have been developed during the last decade to analyze protein localization
in cultured cells systematically [28]. These approaches involve the extraction of subcellular
location features (SLFs) from microscopic images [29]. SLFs comprise morphological fea-
tures, wavelet features, Haralick features, and Zernike moment features, all of which are
numerical characteristics that define subcellular distributions quantitatively. After being
extracted from images, SLFs can be used for developing classifiers to discriminate different
protein patterns.

Tahir et al. [30] extracted subcellular location features like Haralick textures, linear
binary patterns, and histograms of oriented gradients from microscopic images and applied
random forest and rotation forest classifiers for classification. They also balanced the data
using SMOTE technique and achieved an F1-score of 0.53 on the images of the Chinese
Hamster Ovary dataset. Tahir et al. [31] also extracted subcellular location features from the
microscopic images obtained from HeLa and CHO dataset, and the prediction was made
using the ensemble of support vector machine (SVM) classifier and achieved F1-score of 0.31
on HeLa and 0.64 on CHO dataset. Though machine learning techniques for the localization
of protein are successful, they involve time-consuming manual feature extraction from
images. By allowing the model to learn feature representations independently, in deep
learning feature extraction does not need to be conducted separately.

Deep learning models have been used for numerous applications such as facial recog-
nition [32], image segmentation and classification [33], and many others [34]. Techniques
based on CNN for predicting protein patterns have also recently been deployed with
effectiveness. A neural network is used by Boland et al. [35] for detecting protein in 2D
and 3D microscopic images. A model based on SVM and an ensemble model for protein
localization has been developed by Huang et al. [36]. Justin et al. [37] introduced two novel
classifiers based on random forest and SVM that dramatically increased protein subcellular
location detection accuracy. Coelho et al. [38] produced two new protein datasets using
microscopic images to automate the protein subcellular localization prediction using CD
tagging. They combined K-means and SVM to improve the classification. With 55% ac-
curacy, Lu et al. devised a supervised learning technique to learn patterns in single cells
using microscopic imagery [39]. Liimatainen et al. [40] employed microscopic images to
identify the protein’s location using CNN and FCN. FCN outperformed CNN, with an
F1-score of 0.696. Li et al. [41] proposed a model achieving an F1-score of 0.706 that was
created with an Inception V3 pretrained model. Using two different algorithms, Shwetha
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et al. [42] classified images from the HPA database. Two techniques were used. In the
first technique, the random forests classifier was utilized for classification. The second
method extracted features and classified them into 15 different classes using two different
architectures, namely Xception and ResNet 50. The F1-score of the Hybrid Xception model
was 0.69, compared to 0.61 for the traditional approach. Sullivan et al. [43] used a mixture
of two techniques to classify fluorescent microscopic images from the Human Protein Atlas
dataset. An online video game competition was hosted by the first for the classification
of images, from which 33 million annotations of protein location were obtained. Then,
using the outcomes of the online video game competition, an automated algorithm named
Loc-CAT was created to classify protein localization into 29 subcellular compartments.
The two strategies were then combined using transfer learning to develop a model for
categorizing protein patterns with an F1-score of 0.72. Kraus et al. [44] created DeepLoc i.e
a CNN with 11 layers to assess the localization of the proteins in yeast, achieving 72.3%.
Chang et al. [45] applied ResNet on microscopic images from the HPA dataset and achieved
an F1-score of 0.3459.

In the literature, some authors have also developed ensemble learning-based models
using classifiers based on machine learning for protein location prediction and achieved
good results. Ensemble learning concatenates the predictions of more than one model
to achieve better results. The model presented by Zhang et al. [46] is made up of two
cascading ensembles. The initial group of classifiers was a collection of binary SVMs that
could be trained to perform broad classification tasks. The second set used 3 classifiers
including multiple-layer perceptron, multi-class SVM, and the random forest classifier.
Features were extracted manually and an accuracy of 96% was achieved using 2D HeLa
cell images. Another ensemble learning-based model was proposed by Muhammad Tahir
et al. [47] consisting of an ensemble of SVMs. They achieved an accuracy of approx. 99% to
classify protein location in 10 subcellular compartments on images procured from HeLa
and LOCATE datasets.

As a result of better results obtained in the literature using an ensemble of machine
learning classifiers, we implemented the ensemble learning technique using neural net-
works on the HPA dataset. The novelty of our work is that we have used an ensemble
learning technique using neural networks, which have not been deployed for protein local-
ization to date. The main advantage of using deep learning models like transfer learning
models is that feature extraction need not be conducted manually, and also these models
have been pretrained on a huge ImageNet dataset, which makes feature extraction easier
and also helps to achieve good results.

3. Materials and Method

The dataset utilized in this study is described in detail in this section. In addition, the
preprocessing of the images before feeding them to the model has been explained. This
section also covers the methods utilized in this study, including a detailed description of
the proposed model’s architecture and parameters employed in its training.

3.1. Dataset Description

The dataset is obtained from the “Human Protein Atlas Image Classification” crowd-
sourcing competition on Kaggle [48]. Confocal microscopy, a highly homogeneous imaging
technique, was used to create this dataset. In the database, there are 31,072 samples. As
shown in Figure 1, every sample consists of four images. These 4 images are labeled with a
distinct fluorescent protein marked with red, blue, green, and yellow colors. We used three
of the four images offered for one sample in this analysis (red, blue, and green).

Proteins have been distributed into 28 subcellular compartments in this dataset. There-
fore, there are 28 different classes in this dataset into which classification must be done. It’s
also possible for a single image to belong to many classes. As a result, this is a multi-label
classification challenge. Table 1 provides the names of the 28 different classes. Since four
separate filters are provided for one image sample, data preparation was completed first by
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combining the three images belonging to the red, green, and blue filters. After combining
the three channels, sample images obtained from the database are presented in Figure 2.
The single or multiple labels to which they belong are mentioned in the image description.
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Figure 1. Four filters of an image sample: (a) red filter represents the microtubules, (b) blue filter
represents the nucleus, (c) green filter represents the protein of interest, and (d) yellow filter represents
the intermediate filament.

Table 1. Sample distribution of each label in training and test data.

Label No. Label Name Total Train Test

0 Nucleoplasm 12,885 10,306 2579
1 Nuclear Membrane 1254 999 255
2 Nucleoli 3621 2880 741

3 Nucleoli Fibrillar
Center 1561 1282 279

4 Nuclear Speckles 1858 1499 359
5 Nuclear Bodies 2513 1994 519

6 Endoplasmic
Reticulum 1008 811 197

7 Golgi Apparatus 2822 2251 571
8 Peroxisomes 53 42 11
9 Endosomes 45 36 9
10 Lysosomes 28 22 6

11 Intermediate
Filaments 1093 888 205

12 Actin Filaments 688 560 128
13 Focal Adhesion Sites 537 430 107
14 Microtubules 1066 839 227
15 Microtubule End 21 17 4
16 Cytokinetic Bridge 530 419 111
17 Mitotic Spindle 210 165 45

18 Microtubule
Organizing Centre 902 701 201

19 Centrosome 1482 1178 304
20 Lipid Droplets 172 143 29
21 Plasma Membrane 3777 3010 767
22 Cell Junctions 802 648 154
23 Mitochondria 2965 2358 607
24 Aggresome 322 255 67
25 Cytosol 8228 6560 1668
26 Cytoplasmic Bodies 328 260 68
27 Rods and Rings 11 9 2
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Figure 2. Sample images from HPA database: (a) cell junctions and nucleoplasm; (b) mitochondria;
(c) focal adhesion sites; (d) centrosome and cytosol; (e) intermediate filaments and cytokinetic bridge;
(f) nucleoplasm, nuclear membrane, and cell junctions; (g) endoplasmic reticulum; (h) nucleoplasm;
(i) centrosome; (j) nucleoplasm, nuclear membrane, and Golgi apparatus; (k) acting filaments and
plasma membrane; (l) intermediate filaments; (m) microtubules; (n) peroxisomes and endosomes; (o)
nucleoplasm and microtubule organizing center; (p) microtubule end; (q); (r) nucleoplasm, nucleoli,
and cytosol; (s) nucleoli; and (t) cytokinetic bridge and endoplasmic reticulum.

The dataset was split into two parts: training and testing data. Eighty percent of
image samples belonged to training data and twenty percent belonged to testing data.
Data splitting was completed with an iterative stratification split module from the scikit
multi-learn library. Iterative stratification is useful in multi-label classification problems as
it allows the balanced distribution of classes between train and test data [49]. The number of
images belonging to each class and their distribution in test and training data is mentioned
in Table 1. Table 1 shows that the dataset is highly imbalanced since the majority class
(cytoplasm) belongs to as large as 12,885 image samples, while the minority class (rods
and rings) belongs to only 11 image samples. This severe skewness in the dataset poses a
significant challenge for accurate multi-label classification.
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3.2. Data Pre-Processing

Pre-processing was completed on the microscopic images before they were fed into the
model for training. To begin, all images were scaled to 224 × 224 pixels using the open-cv
library to be used as input tensors for pretrained CNN networks with predefined image
shapes. The capacity of the model to predict has been observed to be unaffected by image
scaling. If, on the other hand, the default image size is used, the number of parameters will
substantially increase, leaving the model computationally costly. Finally, data normalization
was completed by scaling the pixel values in the range of 0 to 1. Normalization was
completed by dividing every pixel by 255. The step of data normalization ensures that
every pixel has a uniform data distribution. After normalization, it was observed that the
model was more quickly and effectively trained.

3.3. Architecture of Fine-Tuned Transfer Learning Models

For the challenge of protein subcellular localization prediction, researchers have used
a variety of models in the literature. However, the majority of the models employ machine
learning techniques, which include manual feature extraction followed by a machine
learning classifier. Yet, in real time, manual feature extraction is tedious since it needs a
human expert. In this research, we have used deep learning-based models which do not
require manual feature extraction. This makes our model practicable in real time, as we have
trained our model using raw images with minimal pre-processing. When deep learning
models are trained on large datasets, they have the potential to yield exceptional results.

Due to data scarcity in some applications, such as medical imaging, expanding training
samples is not always practical. Transfer learning may be beneficial in such areas. A model
trained on a bigger database, such as ImageNet, can be utilized in transfer learning for
tasks that are equivalent to domains with small datasets. There are many applications
where transfer learning has been applied successfully, for example, automation, medical
imaging, and manufacturing [50].

In this study, three pretrained transfer learning models, namely, VGG16 [51], DenseNet1
69 [52], and ResNet152 [53,54], have been used for HPA image classification. Instead of
starting from scratch to build a CNN model, the proposed approach relies on pretrained
models with fine-tuned top layers [55]. The initial layers of any CNN-based model extract
edges, lines, blobs, and other low-level features. To solve any image classification task,
the effective extraction of such low-level features is required [56]. Because the weights
of pretrained models have been significantly refined on a bigger dataset, the suggested
method focuses solely on fine-tuning the top layers by freezing initial layers to maximize
the high-level features [57]. The modified architectures of the pretrained transfer learning
models chosen for this study are depicted in Figures 3–5. As shown in the figures, the head
of the model was replaced with a set of new layers, including a pooling layer and a fully
connected layer with 1024 nodes. Lastly, another fully connected layer with a sigmoid acti-
vation function is used as a final layer that predicts 0 and 1 for the 28 labels [58]. Following
the fine-tuning of the top layers, the other layers were also trained at a meager learning rate
to ensure that their pretrained weights did not change significantly. Then, to achieve out-
standing results, an ensemble of the models indicated above was developed. The following
sections provide background information on each transfer learning model [59,60].

3.4. Architecture of VGG16

Simonyan et al. [51] proposed this architecture. In the 2014 ILSVRC competition,
VGG16 was one of the top performers. The small kernel size of this network is its key
distinguishing feature. It employs a 3 × 3 kernel that is repeated in the layers 256 and
512 times. This aids the model in capturing localized properties unique to a specific class,
hence enhancing classification accuracy. Using a smaller kernel size in VGG16 architecture
imposes several disadvantages. Because of the small size of convolutions applied, it leads
to an increase in the number of training parameters. Pooling layers are also used in



Sustainability 2023, 15, 1695 8 of 20

VGG to reduce the model’s complexity by eliminating unnecessary features [61–63]. The
architecture of the modified VGG16 is presented in Figure 3.
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Figure 5. Architecture of DenseNet169.

3.4.1. Architecture of ResNet152

The vanishing/exploding gradient problem is solved using ResNet, a residual learning
framework [64]. Skip connections are employed in this network. The skip connection links
straight to the output after skipping a few stages of training. The benefit of including
this type of skip connection is that regularization will skip any layer that degrades the
architecture’s performance [65] As a result, an intense neural network can be trained
without the issues caused by vanishing/exploding gradients. ResNet152 [52] is a 152-layer
CNN, and its modified architecture is displayed in Figure 4.

3.4.2. Architecture of DenseNet169

As a result of improved accuracy by the vanishing gradient, DenseNet [66] was chosen
as a component model for the ensemble. Because of the long distance between the input
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and output layers of neural networks, information may be lost before reaching the last
layer [67]. Every layer in the DenseNet model receives more data from the previous layers
before passing its feature maps to all layers. The model conducts information concatenation,
and each layer acquires collective knowledge from the layers before it [68]. This model is
169 layers deep, and its modified architecture is shown in Figure 5.

3.4.3. Architecture of the Proposed Stacked Ensemble Model

Because each convolutional neural network has a varied number of layers and network
architecture, its performance on various tasks differs [69]. Furthermore, when applied to
medical images, each pretrained model has its own set of strengths and limitations. We can
train many models on a similar dataset, make predictions, and combine findings to attain
the best performance in the ensemble learning strategy. Ensemble learning has been shown
to minimize variation and enhance performance significantly [70]. Taking an average of the
predictions predicted from individual models on a similar group of training and test data is
the simplest technique to integrate the predictions of many trained models [71]. Averaging
ensemble provides combined forecasts by evenly combining predictions from numerous
trained models. Another technique is the weighted average ensemble method that provides
weights to individual model predictions that are tuned using validation data [72].

The stacked ensemble approach is another prevalent method [73]. It is a refined version
of an average ensemble that incorporates the post-training of the new model created by
combining many sub-models. A stacked ensemble entails two or more base models or base
learners and a meta-model or level 1 model [74]. Base learners are the models trained on
the training dataset and their predictions are concatenated, while meta-learner learns how
to concatenate the predictions obtained from base models. The training of meta-learner is
completed on the predictions concatenated from base learners on the hold-out dataset or
test dataset. The architecture of proposed stacked ensemble model is given in Figure 6.
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3.5. Experimental Setup

Various hyper-parameters were modified during deep neural network training to
achieve better outcomes as presented in Table 2. Pretrained models had all their layers
frozen at the beginning of the process, and only new layers used as the head of the network
were trained. The training was completed for 15 epochs with learning rate of 1 × 10−3.
Adam was used as an optimizer with default parameters [56] as mentioned in Table 2.
Thereafter, the models were fine-tuned by training all the layers for 20 epochs with average
small learning rate of 1 × 10−5. After training pretrained models, predictions obtained
from them were concatenated to form a feature vector fed to the meta-learner. At this
time, all the pretrained models were frozen and training of meta-learner was completed
for 25 epochs with a learning rate of 1 × 10−3. Early stopping callback with patience of
4 epochs was used as a regularization method to avoid overfitting during the training
of both pretrained models and meta-learner. Binary cross entropy was utilized as a loss
function due to the multi-label nature of the dataset. Due to the limitations of the available
GPU RAM, a batch size of 32 was chosen for simulation. All the experiments were carried
out on the Kaggle platform with enabled GPU hardware as an accelerator.

Table 2. Hyperparameter Settings.

Hyper-Parameters Values

Mini Batch Size 32
Initial Learning Rate 0.001

Weight Decay 1.0 × 10−8

Beta 0.9, 0.999
Optimizer Adam (Default Parameter)

3.6. Performance Metrics

For each class, the following criteria were chosen to evaluate the results of classi-
fication problems: recall and precision. Precision is the fraction of correctly predicted
positive instances to overall predicted positive instances. It assesses the quality of positive
predictions, whereas recall assesses the number of positive predictions. Recall is given
by the percentage of positive samples that are predicted to be positive out of all positive
samples. Precision, F1-score, and recall are calculated independently for all the labels in a
multi-label classification problem. Since this study relies on an imbalanced dataset, each
label’s sample numbers must be considered while computing the performance measures.
Therefore, weighted recall, F1-score, and precision were also calculated and are shown in
Tables 3 and 4, considering the number of samples belonging to each label.

Table 3. Performance of the fine-tuned transfer learning models.

Model VGG16 ResNe152 DenseNet169

Label No. Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

0 0.80 0.86 0.83 0.78 0.85 0.81 0.77 0.83 0.80
1 0.83 0.68 0.75 0.74 0.55 0.63 0.65 0.52 0.58
2 0.71 0.66 0.68 0.69 0.65 0.67 0.64 0.64 0.64
3 0.49 0.51 0.50 0.48 0.45 0.47 0.44 0.37 0.40
4 0.65 0.70 0.67 0.76 0.61 0.68 0.69 0.63 0.66
5 0.65 0.42 0.51 0.35 0.44 0.39 0.35 0.41 0.38
6 0.46 0.53 0.49 0.47 0.49 0.48 0.43 0.45 0.44
7 0.75 0.64 0.69 0.63 0.54 0.58 0.61 0.48 0.54
8 0.11 0.45 0.17 0.50 0.27 0.35 0.07 0.09 0.08
9 0.23 0.67 0.34 1.00 0.22 0.36 0.33 0.11 0.17

10 0.15 0.50 0.23 0.67 0.33 0.44 0.25 0.17 0.20
11 0.77 0.54 0.64 0.66 0.55 0.60 0.70 0.47 0.57
12 0.67 0.46 0.55 0.52 0.48 0.50 0.48 0.48 0.48
13 0.55 0.54 0.55 0.68 0.41 0.51 0.71 0.43 0.53
14 0.84 0.81 0.82 0.88 0.80 0.84 0.89 0.78 0.83
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Table 3. Cont.

Model VGG16 ResNe152 DenseNet169

Label No. Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

15 1.00 0.25 0.40 0.00 0.00 0.00 0.00 0.00 0.00
16 0.47 0.15 0.23 0.20 0.26 0.23 0.16 0.18 0.17
17 0.30 0.18 0.22 0.13 0.29 0.18 0.41 0.24 0.31
18 0.38 0.40 0.39 0.35 0.44 0.39 0.22 0.36 0.27
19 0.37 0.50 0.43 0.30 0.32 0.31 0.21 0.34 0.26
20 0.13 0.52 0.20 0.44 0.24 0.31 0.26 0.34 0.30
21 0.64 0.64 0.64 0.63 0.63 0.63 0.62 0.65 0.63
22 0.44 0.51 0.47 0.49 0.39 0.43 0.50 0.35 0.41
23 0.75 0.69 0.72 0.71 0.68 0.69 0.70 0.63 0.66
24 0.74 0.60 0.66 0.65 0.49 0.56 0.56 0.49 0.52
25 0.63 0.76 0.69 0.63 0.72 0.68 0.63 0.73 0.67
26 0.26 0.32 0.29 0.22 0.28 0.25 0.09 0.28 0.14
27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Weighted Average 0.67 0.68 0.67 0.64 0.65 0.64 0.62 0.63 0.62

Table 4. Precision, Recall, and F1-score of the proposed Ensemble Model.

Label No. Label Name Precision Recall F1-Score

0 Nucleoplasm 0.79 0.90 0.84
1 Nuclear Membrane 0.84 0.69 0.76
2 Nucleoli 0.72 0.75 0.73

3 Nucleoli Fibrillar
Center 0.60 0.47 0.53

4 Nuclear Speckles 0.81 0.67 0.73
5 Nuclear Bodies 0.56 0.52 0.54

6 Endoplasmic
Reticulum 0.60 0.51 0.55

7 Golgi Apparatus 0.76 0.67 0.71
8 Peroxisomes 0.29 0.18 0.22
9 Endosomes 0.70 0.56 0.63
10 Lysosomes 1.00 0.50 0.67

11 Intermediate
Filaments 0.81 0.59 0.68

12 Actin Filaments 0.67 0.55 0.60
13 Focal Adhesion Sites 0.73 0.52 0.61
14 Microtubules 0.92 0.83 0.87
15 Microtubule End 0.50 0.25 0.33
16 Cytokinetic Bridge 0.41 0.19 0.26
17 Mitotic Spindle 0.34 0.24 0.29

18 Microtubule
Organizing Center 0.45 0.44 0.45

19 Centrosome 0.45 0.48 0.46
20 Lipid Droplets 0.41 0.24 0.30
21 Plasma Membrane 0.74 0.64 0.68
22 Cell Junctions 0.58 0.45 0.51
23 Mitochondria 0.81 0.69 0.74
24 Aggresome 0.81 0.64 0.55
25 Cytosol 0.75 0.80 0.72
26 Cytoplasmic Bodies 0.67 0.79 0.72
27 Rods and Rings 0.00 0.00 0.00

Weighted Average 0.72 0.70 0.71

4. Results and Discussions
4.1. Performance of Fine-Tuned Pretrained Transfer Learning Models

In this research, three pretrained models, namely VGG16, ResNet152, and DenseNet169,
have been used as the base learners. These models were trained, evaluated, and saved
independently to be used for the staked ensemble approach. Loss and accuracy plots of the
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pretrained models are displayed in Figure 7. Figure 7a shows that training and test accuracy
of 68% and 58%, respectively, were achieved using the VGG16 model; Figure 7c shows that
training and test accuracy of 80% and 50%, respectively, were achieved using ResNet152;
and Figure 7e shows that training and testing accuracy of 75% and 55%, respectively, were
attained using DenseNet 169. Although all the models were trained for 30 epochs, their
plots show different epochs because the training was stopped using an early stopping call
back to avoid overfitting the models. Similarly, loss plots for the three models are given in
Figure 7b,d,f.
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As shown in Table 3, the three models were evaluated on the test dataset based on
recall, precision and F1-score. The three performance criteria were calculated for all the
labels. Table 3 shows that VGG16 performed best by attaining 0.67 precision, 0.68 recall,
and 0.67 F1 score. However, since every model has its own advantages and limitations, as
they differ in their depth and architecture, instead of selecting the best model, an ensemble
approach has been proposed. As can be seen from Table 3, label 0 (nucleoplasm) was best
predicted by VGG16 than the other two models. Similarly, label 10 (lysosomes) and label
14 (microtubules) were predicted best by ResNet152, and label 17 (microtubule ends) was
best predicted by DenseNet169. Hence, to achieve better results, the predictions obtained
from the three base learners were combined and fed to another meta-learner, creating a
stacked ensemble.

4.2. Performance of the Proposed Stacked Ensemble Model

The ensemble model proposed in this research has been built by stacking the three
base learners whose predictions are combined and fed as input to the meta-learner. The
meta-learner we have employed is a fully connected network, which allows the stacked
model to be flexible while also reducing generalization error. Because the neural network
incorporates the predictions from each of the underlying models, the overall performance
of the model is enhanced. To increase classification accuracy, the neural network has been
tuned to ignore the incorrect predictions produced by the base models. Because various
CNN models make errors in the classification of different samples, combining them helps
to improve test set outcomes.

The accuracy and loss plots of the stacked ensemble model are shown in Figure 8. As
can be seen from Figure 8a, training and testing accuracy of approximately 65% is achieved,
and Figure 8b shows validation loss reaches 0.08 approximately. Table 4 displays recall,
precision, and the F1-score achieved for every label as well as their combined values for
the model. It can be inferred using Table 4 that almost every label has a better F1 score
than the individual separate models. Hence, the classification results improved when the
predictions were made on the test dataset using a stacked ensemble to those made on the
individual transfer learning models.
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4.3. Performance Comparison of Proposed Model with Transfer Learning Models

Figure 9 compares the performance of the three transfer learning models and the
proposed ensemble models. Figure 9a compares precision across all the labels for the four
models. However, some labels might show better precision results for transfer learning
models than the ensemble model. Yet even then, Table 4 shows that the ensemble model
achieved the highest average precision of 0.71 among all the four models. Similarly,
Figure 9b,c compare the recall and F1-score achieved across all labels for all four models.



Sustainability 2023, 15, 1695 14 of 20

Again, the proposed ensemble model achieved the highest average value of F1-score and
recall with 0.71 and 0.70, respectively.
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Additionally, the cost efficiency of a model can be measured based on the time taken to
train a model. In this research, all the models have been run on a publicly available Kaggle
platform with a GPU accelerator. The time taken to train each model has been compared in
Table 5. From Table 5, it can be inferred that less time was taken to achieve results from the
proposed ensemble model as compared to individual transfer learning models. So, it can
be concluded that the ensemble learning-based technique makes our model cost-efficient.
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Table 5. Comparison of Time Taken to Train Different Models.

Model Name Time Taken to Train the Model

Fine-tuned VGG16 10,839.0 s
Fine-tuned ResNet152 11,099.3 s

Fine-tuned DenseNet169 16,928.5 s
Proposed Ensemble Model 5564.8 s

4.4. Visualization of Correct Classifications

Figure 10 depicts some examples of correct classification performed by transfer learn-
ing models and the ensemble model. To obtain predictions of 0 and 1 for each label from the
sigmoid layer of the pretrained and ensemble models, the threshold level was set to 0.5. For
example, in Figure 10b, the true labels for the sample image are 19 and 25. The ensemble
model predicted the same labels, as evidenced by the corresponding graph. As a result,
this is an example of correct classification. However, it can be seen that the probability
obtained from VGG16 for label 19 is less than 0.5, whereas the probability obtained from
the other two pretrained models is greater than 0.5. Even so, the ensemble model correctly
predicted label 19. This demonstrates that the ensemble model combines predictions from
multiple models to produce the best result. Figure 10 also shows that labels 0 and 25 have
been predicted more confidently by all the models, because these are the majority classes.
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4.5. Visualization of Incorrect Classifications

Figure 11 shows some examples of incorrect classification performed by transfer
learning models and the ensemble model. For example, in Figure 11b, the true labels for
the sample image are 0 and 25. Yet the ensemble model predicted one extra label, that is 23,
as evidenced by the corresponding graph. So, this is an example of incorrect classification.
It can also be observed from Figure 11 that label 23 has been predicted for almost all the
images, even though it is not shown by actual labels. Moreover, Figure 11c shows there
were three labels in the image, but the model could only predict one label correctly.
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4.6. Comparison with State-of-Art

A comparison of the proposed model’s performance with the state-of-art methods is
shown in Table 6. The performance criterion selected for the comparison is the F1-score,
as it gives us the harmonic mean of recall and precision. Table 6 shows that the proposed
model’s performance is better than the state-of-the-art deep learning models, as it improved
the F1-score by 0.1.



Sustainability 2023, 15, 1695 17 of 20

Table 6. Comparison of the proposed model with the state-of-art techniques.

Reference No. Dataset Used Technique F1-Score

[30] Chinese Hamster
Ovary (CHO) Dataset Random Forest and Rotation Forest 0.53

[31] CHO Dataset Ensemble of SVM classifier 0.64
[40] HPA Dataset FCN

CNN
0.696
0.676

[41] HPA Dataset Inception V3 0.706
[42] HPA Dataset Hybrid Xception 0.69
[45] HPA Dataset ResNet 0.3459

Proposed Model HPA Dataset Stacked Ensemble of Transfer
Learning models 0.71

5. Conclusions and Future Scope

In this research, three pretrained models, namely VGG16, ResNet152, and DenseNet
169, were used to predict protein subcellular location in microscopic images procured
from HPA Database. The three said models achieved an F1-score of 0.67, 0.64, and 0.62,
respectively. Yet, instead of selecting the best model among the three, this article proposed
a stacked ensemble approach that combined the power of the three pretrained models
and achieved a better F1-score of 0.71. The result shows that assembling different weak
convolutional neural networks results in better predictions than single models.

The main limitation of this research work was the huge class imbalance observed in
the dataset. In addition, there were some labels for which very few images were provided,
which were insufficient to train the model. More samples for the minority classes will be
collected in future work to achieve better results. Data balancing techniques can also be
applied to balance the data, and samples for minority classes can also be increased by using
data augmentation techniques. Furthermore, instead of using pretrained models, CNN
from scratch can also be built for the multi-label HPA classification.
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