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Abstract: The crude distillation unit (CDU) is one of the most energy-intensive processes of
a petroleum refinery. The composition of crude is subject to change on regular basis. The uncertainty
in crude oil composition causes wastage of a substantial amount of energy in the CDU operation.
In this study, a novel approach based on a multi-output artificial neural networks (ANN) model
was devised to cope with variations (uncertainty) in crude composition. The proposed method is
an extended version of another method of cut-point optimization based on hybridization of Taguchi
and genetic algorithm. A data comprised of several hundred variations of crude compositions and
their optimized cut point temperatures, derived from the hybrid approach, was used to train the
ANN model. The proposed method was validated on a simulated CDU flowsheet for a Pakistani
crude, i.e., Zamzama. The proposed method is faster and computationally less expensive than the
hybrid method. In addition, it can efficiently predict optimum cut point temperatures for any variant
of the crude composition.

Keywords: crude distillation unit; energy efficiency; Taguchi method; genetic algorithm; artificial
neural networks

1. Introduction

Petroleum refining is one of the largest energy consuming industrial sectors. Thus, it is always
desired to realize an energy efficient process design and operation. According to a study conducted by
the US Department of Energy, 794 TBTU/year (26%) of energy could be saved if the current R&D-based
technologies were effectively implemented in US petroleum refineries [1]. The major opportunities for
saving energy are in the crude distillation, hydrotreating, reforming, vacuum distillation, and catalytic
cracking units. The crude distillation unit (CDU) has the highest energy saving potential among all
other process units; Figure 1 shows the energy saving opportunities of process units across the refinery,
where the atmospheric CDU, the subject of this study, surpasses all the other units.

Due to its immense importance, CDU has been the focus of research from various aspects, i.e.,
scheduling of crude [2–5], estimation of product properties [6–9], optimization and control of important
parameters of CDU [10–13], and cut point temperature optimization [14–21]. CDU fractionates crude oil
at the cut point temperatures of the respective products such as naphtha, kerosene, and diesel. The tray
temperature at which the product streams are separated, called cut-point temperature, is crucial in
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realizing energy-efficient operation of a CDU. The cut point temperatures heavily depend on the crude
composition and need to be optimized whenever a new crude blend is incorporated into the feed.

Several optimization methods have been developed for the cut point temperatures optimization.
These methods include mode or categorization approach [14], fixed yield structure representations
model [15], swing cut modeling [16], weight transfer ratio (WTR) approach [17], fractionation index
model [18], Taguchi method [19], monotonic interpolation [20], and hybrid framework of Taguchi
method and genetic algorithm (GA) [21].

point is allowed to adjust or “swing” to improve the objective function.

Figure 1. Potential of energy savings in petroleum refineries (energy savings per annum in trillion
BTUs) [1].

Brooks et al. used a mode-based approach to realize an optimal plan for CDU operation [14].
Spreadsheets were used to blend CDU modes keeping in mind the specifications of the final products.
Similarly, the fixed yield modeling uses linear equations for CDU yield prediction [15]. The equations
are adopted on the basis of feed multiplied by a coefficient generated accordingly. The swing cut
approach fine-tunes the fixed cut to further optimize the CDU model [16]. A small portion of the yield
near the cut-point is allowed to adjust or “swing” to improve the objective function.

In the weight transfer ratio (WTR) approach, cut-point temperatures are determined on the basis
of the weight transfer ratio (WTR) ranges of CDU fractions [17]. Initially, cut-points for operation
modes are calculated using ASTM D86 boiling ranges. Then the range of maximum and minimum
WTRs are utilized in the planning model to optimize the cut-points of the different CDU fractions.
In the fractionation index (FI) model, representation of the complex CDU is split into a series of simple
fractionation units modeled using a simple common equation of component distribution [18].

Ali et al. performed optimization of cut point temperatures of a CDU using a statistical approach
known as the Taguchi method [19]. Straight run cut point temperatures of three Malaysian crude
oils were taken as reference and a virtual CDU of 100 kBPD was simulated in the Aspen HYSYS
environment. The monotonic interpolation-based optimization of CDU allows the distillation curve
to be manipulated using the cut points [20]. In our earlier study, a new cut point temperatures
optimization technique was developed through hybridization of the Taguchi method and a genetic
algorithm [21]. The hybrid approach comprised of two phases; the first phase used the Taguchi method
to optimize the cut point temperatures while the genetic algorithm in the second phase performed
further optimization.

The cut point optimization methods, in general, face a challenge in coping with the uncertainty
in the feed composition of the CDU; for each variant of the feed composition, the computationally
expensive optimization methods must be re-run to update the cut points. The uncertainty arises from
the frequent scheduling process which depends on several uncertain parameters, i.e., availability of
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crude sources, prices, machine reliability, and market requirements [22–27]. Operation of a CDU under
uncertain feed composition conditions causes wastage of a substantial amount of energy.

Intelligent systems have been the subject of high interest in order to cope with challenges and
realize higher efficiency in energy management systems. Applications of intelligent systems have
been reported in ventilating and air-conditioning systems, solar radiation systems, power-generation
systems, energy load management and refrigeration system [28]. For instance, a relation between
operating parameters and performance of a solar thermal energy system (STES) was investigated
through an adaptive neuro-fuzzy inference system (ANFIS) [29]. In addition, the ANFIS was compared
with artificial neural networks (ANNs) methods where both methods provided high accuracy and
reliability. In another work, an intelligent method like ANN was integrated with genetic algorithms for
optimization of a solar-energy system [30]. In a study on lead-acid batteries formation, an intelligent
energy performance indicator (EnPI) was used to evaluate the process energy efficiency [31]. EnPI
reduced the electricity consumption of battery manufacture from 3% to 5%. A comprehensive review on
the role of artificial intelligence methods in renewable energy systems such as wind energy, geothermal
energy, ocean energy, hydro energy, solar energy, hydrogen energy, bioenergy, and hybrid energy can
be found in [32].

The current study is also based on the use of ANN in realizing energy efficient operation of
CDU. The hybrid framework of the Taguchi method and genetic algorithm (GA) was integrated with
a multi-output ANN model to cope with uncertainty in the crude composition. A dataset comprised of
several hundred variations of crude compositions and their optimized cut point temperatures, derived
from the hybrid approach, was used to train the ANN model. The proposed method was validated on
a simulated CDU flowsheet for a Pakistani crude, i.e., Zamzama. The proposed method is faster and
computationally less expensive than the hybrid method. In addition, it can efficiently predict optimum
cut point temperatures for any variant of the crude composition.

The remainder of the paper is organized as follows: Section 2 presents the process description
and the proposed methodology. Results and discussion are presented in Section 3 while Section 4
concludes the work.

2. Process Description and Methodology

2.1. Process Description

Figure 2 shows a process flow sheet of a CDU. The flowsheet was designed for compositions of
three Pakistani crudes, i.e., Bobi, Kunnar, and Zamzama [21]. All three crudes were sweet and light,
with specific gravities ranging between 0.75 and 0.76, and a sulfur content of less than 0.05 weight
percent and water content of less than 0.05 volume percent, as shown in Table 1. Seven feed blends
were devised from the three crudes: three mono crude feeds, i.e., Bobi, Kunnar, and Zamzama, three
binary crude blends, i.e., Bobi-Kunnar blend, Bobi-Zamzama blend, and Kunnar-Zamzama blend
and one tertiary blend, i.e., Bobi-Kunnar-Zamzama blend. The crude assay was characterized and
hypothetical components were generated in HYSYS Oil. Figure 3 shows the true boiling point (TBP)
curves of three crudes, which were generated by using hypothetical components.

Crude oil at 232.222 ◦C temperature and 517.107 kPa pressure was pumped to the pre-flash
column at a rate of 100 kBPD. The pre-flash column separated the vapors from the liquid to reduce the
duty on the furnace. The liquid crude from pre-flash column was pumped to the furnace in order to
preheat the crude oil. The preheated crude oil was then pumped to the CDU column. The fractionation
column had 29 theoretical trays and was connected with three pump arounds, three side strippers,
and a three-phase partial condenser; summary of the specifications and CDU parameters is shown in
Table 2.

Hot crude from the furnace and the pre-flash vapor from the pre-flash column were passed
through the mixer and then introduced at the tray 28 of the column. Three side-strippers, each of
which had tray sections, were used in the column. Parameters used in the side strippers are listed
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in Table 3. The top tray pressure of the column was 135.82 kPa with a pressure drop of 62.05 kPa
while the bottom pressure was 225.45 kPa. Three pump-around were installed for internal reflux with
parameters shown in Table 4.

 

  

Figure 2. Crude distillation unit process flow diagram.

 

Figure 3. TBP Curves for the three Pakistani Crude Oils generated through Aspen HYSYS.

Table 1. Specifications of Pakistani Crudes: Bobi, Kunnar and Zamzama.

Test Description Bobi Kunnar Zamzama

Specific Gravity 60/60 F 0.7513 0.7934 0.7588
Total Sulphur Content (Wt.%) 0.05 0.0376 0.0083

Basic Sediment (Vol %) 0.05 <0.05 <0.05
Water Content (Vol %) 0.02 <0.05 <0.05

Salt Content Lb/1000 bbl <1 4.5 Nil
Kinematic Viscosity 40 C (cSt) 0.8 1.27 0.78
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Table 2. Parameters for Designing the CDU [21].

Parameters Values

Total Number of Trays 29

Column Temperature
70.99 ◦C (top tray)

338.57 ◦C (bottom tray)

Column Pressure
135.82 kPa (top tray)

225.45 kPa (bottom tray)
Number of pump arounds 3
Number of side strippers 3

Crude Feed Rate 100.00 kBPD
Crude Feed Location Tray–28

Crude Feed Temperature 328.60 ◦C
Crude Feed Pressure 448.20 kPa
Type of Condenser Partial Condenser

Fluid Package Peng-Robinson

Table 3. Specifications for Side-Strippers [21].

Side Strippers Draw Line Return Line Stripping Through Flow/Duty

SS–1 Tray–9 Tray–8 Reboiler 2198.03 kW
SS–2 Tray–17 Tray–16 Steam 1362.00 kg/h
SS–3 Tray–22 Tray–21 Steam 1135.00 kg/h

Table 4. Specifications for Pump-Arounds [21].

Pump Arounds Draw Line Return Line Duty (kW) Flow (kBPD)

PA–1 Tray–2 Tray–1 −16,118.91 50.00
PA–2 Tray–17 Tray–16 −10,257.48 29.99
PA–3 Tray–22 Tray–21 −10,257.48 30.00

2.2. Modeling Method

In the proposed method, the ANN model was integrated with the hybrid framework. The
procedure is schematically shown in Figure 4 and the main steps are listed below:

Phase I: Several crude compositions/blends are generated through inserting variations/uncertainty
in compositions of a Zamzama crude/assay.

Phase II: Cut-point temperatures of the composition/blends are calculated through the hybrid,
i.e., Taguchi and GA, optimization framework. The hybrid framework involves the following steps:

(a) Specify the number of controlling factors and levels for the Taguchi method.
(b) Develop a standard orthogonal array for the specified factors and levels.
(c) Draw response plots and select cut point temperatures with minimum E/V values.
(d) Generate an initial population of the cut point temperatures for GA application.
(e) Specify the upper and the lower limits of the cut point temperature and fitness function.
(f) Derive E/V values against the generated cut point temperatures. If the fitness function and/or

stopping criteria are satisfied, optimization is achieved otherwise the generation of population
and fitness test procedure is repeated.

Phase III: The datasets comprising of the compositions and their corresponding cut points are
used to develop the ANN model.

Phase IV: The ANN model is then used to predict cut point temperatures for any varied
composition of the assay.
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Figure 4. Schematic diagram of integration of hybrid framework and ANN model.

3. Results and Discussion

The results are discussed in two phases; initially, observations of the hybrid framework are
described in Section 3.1 followed by results of the ANN model in Section 3.2. The overall findings are
discussed in Section 3.3.

3.1. Results of Hybrid Optimization Framework

For the hybrid framework, initially, four controlling factors were devised. Three levels of the
cut point temperatures were chosen at ±5 ◦C of the straight run cut point temperatures as shown in
Table 5. For the 4-factors and 3-levels, a standard L9 orthogonal array was determined.

Table 5. Factors and levels for the optimization of CDU [21].

Factors Level A Level B Level C

1 Cutpoint Temperature (Naphtha) −5 ◦C SR Temp +5 ◦C
2 Cutpoint Temperature (Kerosene) −5 ◦C SR Temp +5 ◦C
3 Cutpoint Temperature (Diesel) −5 ◦C SR Temp +5 ◦C
4 Cutpoint Temperature (AGO) −5 ◦C SR Temp +5 ◦C

Trial runs were performed for each factor in the Aspen HYSYS simulation by putting the cut point
temperatures assigned by the levels. Recipes for the optimized cut points for Zamzama crude along
with six other cases is listed in Table 6.

Table 6. Recipe for optimized cut points of seven crude blends [21].

Crude Blends

Factors

1
(Naphtha)

2
(Kerosene)

3
(Diesel)

4
(AGO)

Blend A: Bobi Oil B A B A
Blend B: Kunnar B A C A

Blend C: Zamzama C A C A
Blend D: Bobi + Kunnar Blend C A C A

Blend E: Bobi + Zamzama Blend A A C A
Blend F: Kunnar + Zamzama Blend A A C A

Blend G: Bobi + Kunnar + Zamzama Blend B A C C

E/V values were calculated by running the optimized cut point temperatures in the Aspen HYSYS
model simulation, shown in Table 7. To achieve further optimization, GA was applied to the Taguchi
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optimized cut point temperatures. Upper and lower bound of ±2.5 ◦C of cut point temperatures,
the population of 100 samples, iterations of 10 generations and tolerance function of 1 × 10−4 were
used. The comparison between the straight run, Taguchi method and hybrid optimization framework
for blend C is shown in Table 7.

Table 7. Result comparison of straight run, Taguchi method, and hybrid framework for blend C
(Zamzama Crude) [21].

Method Objective Functions Unit Blend C (Zamzama)

Straight Run Results E/V kW/kBPD 1104.12
Diesel Output kBPD 37.52

Taguchi Optimized Results E/V kW/kBPD 979.30
Diesel Output kBPD 40.09

Hybrid Framework Results E/V kW/kBPD 895.41
Diesel Output kBPD 41.59

3.2. Results of Data-Driven Approach Based on ANN

For the development of the ANN-based model, 33 components of Zamzama crude were used
as inputs while the four cut points, i.e., naphtha, kerosene, diesel, and AGO, were used as output.
192 feed compositions of Zamzama crude were developed. The original value of each component of
the assay was altered for −3%, −2%, −1%, 1%, 2% and 3% and the other components of the essay
were also adjusted, accordingly.

Six sample variants (datasets) of the original blend, i.e., blend C, are shown in Table 8. A total of
192 data sets were generated. 164 (85%) datasets were used to develop the multi-output ANN model
while 28 (15%) were used for validation. The ANN model had three hidden layers where a number
of neurons in hidden layers 1, 2 and 3 were 13, 17, and 16, respectively. The correlation coefficient
between the targets cut point and the predicted cut points was 0.99 as shown in Figure 5.

Table 8. Six sample variants of Zamzama crude.

Component No. Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6

1 0.023626351 0.023665842 0.0236852 0.023666 0.0236273 0.02356837
2 0.027626334 0.027672511 0.0276952 0.0276727 0.0276275 0.02755854
3 0.036053581 0.036113844 0.0361434 0.0361141 0.0360551 0.0359651
4 0.061877081 0.061980508 0.0620313 0.061981 0.0618797 0.06172523
5 0.082073145 0.082210329 0.0822777 0.082211 0.0820766 0.08187173
6 0.08343473 0.081902706 0.0811501 0.0818952 0.0833965 0.08568402
7 0.091063729 0.091215941 0.0912907 0.0912167 0.0910675 0.09084026
8 0.071834448 0.071954518 0.0720135 0.0719551 0.0718374 0.07165816
9 0.056970183 0.057065407 0.0571122 0.0570659 0.0569726 0.05683038

10 0.052350227 0.05243773 0.0524807 0.0524382 0.0523524 0.05222176
11 0.047732605 0.047812389 0.0478516 0.0478128 0.0477346 0.04761547
12 0.041477561 0.04154689 0.0415809 0.0415472 0.0414793 0.04137577
13 0.035915059 0.035975091 0.0360046 0.0359754 0.0359166 0.03582692
14 0.032084289 0.032137918 0.0321643 0.0321382 0.0320856 0.03200555
15 0.028328743 0.028376094 0.0283994 0.0283763 0.0283299 0.02825922
16 0.025733674 0.025776688 0.0257978 0.0257769 0.0257347 0.02567052
17 0.024027203 0.024067365 0.0240871 0.0240676 0.0240282 0.02396824
18 0.024935002 0.024976681 0.0249972 0.0249769 0.024936 0.02487381
19 0.024652781 0.024693987 0.0247142 0.0246942 0.0246538 0.02459228
20 0.021172035 0.021207423 0.0212248 0.0212076 0.0211729 0.02112008
21 0.017883244 0.017913135 0.0179278 0.0179133 0.017884 0.01783936
22 0.01491413 0.014939059 0.0149513 0.0149392 0.0149148 0.01487753
23 0.012335549 0.012356168 0.0123663 0.0123563 0.0123361 0.01230528
24 0.010290474 0.010307675 0.0103161 0.0103078 0.0102909 0.01026522
25 0.008847667 0.008862455 0.0088697 0.0088625 0.008848 0.00882595
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Table 8. Cont.

Component No. Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6

26 0.007717981 0.007730881 0.0077372 0.0077309 0.0077183 0.00769904
27 0.006733757 0.006745012 0.0067505 0.0067451 0.006734 0.00671723
28 0.005805959 0.005815663 0.0058204 0.0058157 0.0058062 0.00579171
29 0.005260808 0.005269601 0.0052739 0.0052696 0.005261 0.0052479
30 0.004453308 0.004460752 0.0044644 0.0044608 0.0044535 0.00444238
31 0.00623265 0.006243067 0.0062482 0.0062431 0.0062329 0.00621735
32 0.003340658 0.003346242 0.003349 0.0033463 0.0033408 0.00333246
33 0.003215055 0.003220429 0.0032231 0.0032205 0.0032152 0.00320716

Figure 5. ANN-based prediction of cut points.

3.3. Discussion

In the Taguchi method, a decrease of energy requirement from 10.99% to 44.56% for the production
of a kilo barrel of diesel was achieved compared to the straight run approach (SR). In the case of
a hybrid framework, a decrease in energy requirement from 15.66% to 55.14% was observed when
compared to the straight run approach (SR). Similarly, in the Taguchi method, an increase of 6.84% to
32.56% in the diesel production was observed, while in case of a hybrid framework, an increase of
11.33% to 35.54% in diesel production was achieved. The hybrid framework clearly outperforms the
straight run and Taguchi-based methods both in energy consumption minimization and increase in
diesel production. However, the hybrid approach has also a limitation; it needs too much time for
iterations to update cut-points whenever a variation in the assay composition occurs. Considering
the fact that feed composition of CDU is prone to changes due to an abrupt shortage in feedstock or
change in product demand, the hybrid approach becomes less feasible.

The ANN method aimed at reducing the time needed for updating cut points in response to
variation in crude composition. The cut points predicted by the ANN model were fed to the distillation
columns and their respective E/V and diesel production values were obtained. E/V values for the
ANN model, straight run (SR) approach, Taguchi method, and hybrid framework are shown in Figure 6.
Average E/V values for the twenty-eight testing variants (datasets) of Figure 6 are shown in Figure 7.
Average E/V values obtained through the ANN approach are comparable (rather slight lower/better)
than the hybrid approach and way better than the Taguchi and straight run (SR) approach.

Similarly, the amount of diesel produced using the cut-points obtained through the ANN model,
straight run (SR) approach, Taguchi method, and hybrid framework are shown in Figure 8. Average
diesel production values for the twenty-eight testing variants (datasets) of Figure 8 are shown in
Figure 9. Diesel production obtained through the ANN based approach are comparable (rather
slight higher/better) than the hybrid approach and way better than the Taguchi and straight run
(SR) approach.
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Figure 6. Comparison of E/V values obtained through straight run (SR), Taguchi technique, hybrid
framework, and ANN model.
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Figure 7. Average energy consumption for 28 testing variants (datasets) of Zamzam crude.

Figure 8. Comparison of diesel production obtained through straight run (SR), Taguchi technique,
hybrid framework, and ANN model.
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Figure 9. Average diesel production of 28 testing samples.

Hence, it is evident that the proposed data-driven approach is highly efficient in predicting
the optimum cut-points without going through the time consuming iterative steps of optimization.
The ANN model once trained on a given crude blend can handle variants of the crude in running
process of CDU operation. The proposed approach will not only reduce the time required for tuning of
CDU but will save substantial amount of energy lost during the conventional method of updating the
cut-point temperature.

4. Conclusions

In this study, a conventional hybrid framework of Taguchi method and genetic algorithm (GA)
for cut point temperature optimization was integrated with a data-driven method to make it robust to
uncertainty in the crude composition. A multi-output artificial neural networks (ANN) model was
adopted as a data-driven method. Artificial variations were inserted in the standard composition of
Zamzama crude from Pakistan to produce 192 variants (data-sets). The hybrid framework of Taguchi
method and genetic algorithm (GA) was used to determine optimum cut-point temperatures of the
variants. The variants and their corresponding cut-points were used to develop an ANN model.
The ANN model drastically reduced the calculation time and was capable of predicting optimum
cut-points for testing variants of Zamzama crude with a high accuracy. The proposed approach will
not only reduce the time required for tuning of CDUs, but will save a substantial amount of the energy
lost during the conventional method of updating the cut-point temperature.

In future work, the proposed method can be extended to other types of crudes, i.e., single crudes
or blends of several crudes. Furthermore, uncertainty in process condition, i.e., temperature, pressure,
etc., can also be added to the presently considered uncertainty in crude composition. In that context,
use of some uncertainty quantification methods such a polynomial chaos expansion (PCE) or Monte
Carlo’s (MC) are recommended.
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Nomenclature

AGO Atmospheric Gas Oil
ANN Artificial Neural Network
ASTM American Society for Testing and Materials
BPD Barrels Per Day
BTU British Thermal Unit
CDU Crude Distillation Unit
DOE Design of Experiments
E Energy
EFV Equilibrium Flash Evaporation
GA Genetic Algorithm
MC Monte Carlo’s Method
PA Pump Around
PCE Polynomial Chaos Expansion
SRT Straight Run Temperature
SS Side Stripper
TBP True Boiling Point
V Volumetric Flow Rate
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