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Abstract Robots have been used to model nature, while na-

ture in turn can contribute to the real-world artifacts we con-

struct. One particular domain of interest is chemical search

where a number of efforts are underway to construct mobile

chemical search and localization systems. We report on a

project that aims at constructing such a system based on our

understanding of the pheromone communication system of

the moth. Based on an overview of the peripheral processing

of chemical cues by the moth and its role in the organization

of behavior we emphasize the multimodal aspects of chem-

ical search, i.e. optomotor anemotactic chemical search. We

present a model of this behavior that we test in combination

with a novel thin metal oxide sensor and custom build mobile

robots. We show that the sensor is able to detect the odor cue,

ethanol, under varying flow conditions. Subsequently we
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show that the standard model of insect chemical search, con-

sisting of a surge and cast phases, provides for robust search

and localization performance. The same holds when it is aug-

mented with an optomotor collision avoidance model based

on the Lobula Giant Movement Detector (LGMD) neuron of

the locust. We compare our results to others who have used

the moth as inspiration for the construction of odor robots.

Keywords Electronic noses . Odor discrimination .

Mobile olfaction . Gas distribution mapping . Gas source

localization

Introduction

Chemical search has been implemented on robots both to

study how biological systems accomplish this task and to

develop new real-world applications (Russell, 1999; Ishida

et al., 2001). Robotic applications may make significant

contributions to environmental monitoring, exploration and

chemical source localization. So far, however, the perfor-

mance of robot based chemical search systems is inferior to

their biological counterparts. This is due to both technical and

conceptual problems. For instance, the sensitivity observed

in nature to chemical compounds is not matched by current

chemosensing microtechnology. In addition, odors comprise

of complex mixtures, which change dynamically in time, re-

quiring further neuronal processing of the chemical signals

detected at the periphery. Moreover, the biomechanical sys-

tems embodied in insects by far outstrip the capabilities of

modern mobile and flying devices.

One of the best studied biological chemical search sys-

tems is pheromone communication in the moth (Kennedy

and Marsh, 1974). Male moths are capable to detect and lo-

calize female moths over up to several hundred meters while
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the latter secrete only minute quantities of attractants (on the

order of ng h−1), i.e. pheromones, that are mixed in a com-

plex chemical background signals and dispersed in turbulent

plumes. Moths solve this task by combining highly special-

ized olfactory, anemotactic, and visual sensors with specific

information processing and behavioral control strategies. We

aim at solving the robot chemical search problem by con-

structing an artifact that is closely based on our understanding

of the sensor processing and behavioral control systems of

the moth.

Sensor periphery

The peripheral mechanism of odorant reception involves

the binding of an odorant to a receptor site on a sensory

neuron (Mombaerts, 2004). Invertebrate antennae and verte-

brate noses exhibit superficial morphological differences but

the morphology and function of the receptor cells is strik-

ingly similar (Hildebrand and Shepherd, 1997). Olfactory

receptor neurons (ORNs) of both vertebrates and inverte-

brates are bipolar neurons that project directly to the CNS

(Firestein, 2001). Dendritic terminals, or cilia, extend into

a lipid/aqueous fluid inside sensilla, which acts as the inter-

face between sensory neurons and the environment. Binding

of an odor molecule to a receptor site initiates a cascade of

events in the dendritic part of the receptor neuron. These

second messenger and transductory pathways seem to be

similar in phylogenetically diverse species of animals (Ache,

1994; Hildebrand and Shepherd, 1997). Changes in calcium

concentrations in the dendrite lead to depolarization of the

membrane that eventually evoke action potentials in the soma

when the firing threshold of the neuron is exceeded. Action

potentials carry information along the axons to the primary

olfactory centre of the brain, the antennal lobe in insects

or the olfactory bulb in vertebrates. The frequency of the

evoked action potentials in a receptor neuron is dependent

on the concentration of the stimulus.

Access to the receptors is complicated by the hydrophobic

nature of many odorous volatiles. In the case of invertebrates,

the transport of a pheromone to the receptor site on the ORNs

in a single sensillum is believed to be facilitated by docking

to pheromone binding proteins (PBP). These proteins

increase the water solubility of the odorants and might be

involved in the binding process of odor molecules to receptor

sites.

A breakthrough in olfactory research came when a large

multigene family coding for odorant receptor proteins in rats

was discovered (Buck and Axel, 1991). Since this historical

landmark putative odorant receptor proteins have been iden-

tified in a number of organisms (Mombaerts, 1999). The sizes

of the gene families coding for these receptors are remarkable

and the number of different receptors expressed in olfactory

tissues can be as large as 1300 in the mouse (Zhang and

Firestein, 2002). Odorant receptors are G-protein coupled 7-

transmembrane proteins with little homology between phy-

logenetically divergent groups of organisms (Mombaerts,

1999). Generally, each ORN expresses only a single type

of receptor, although this is currently a topic of controversy

(Mombaerts, 2004). It is still not known, however, how odor

molecules interact with receptor proteins.

Despite the large number of olfactory receptors a com-

binatorial strategy is used to detect and discriminate the

enormous repertoire of potential odor molecules. Most odor

molecules are detected by several different receptors and

each receptor can recognize different odorants (Malnic et al.,

1999). It seems, however, that each receptor binds a specific

set of features, or odotopes, of a molecule (Araneda et al.,

2000). That is, different odorants sharing the same odotope

bind to the same receptor. It appears that the olfactory system

achieves a large coding capacity by exploiting hundreds of

overlapping and differently tuned receptors. Here we deploy

a thin film metal oxide sensor technology that shares this

broad tuning with biological receptors (see methods).

Behavior

At typical flow velocities in natural open environments,

chemical plumes, such as those tracked by moths, show

complex filamentous structures (Murlis et al., 2000). The an-

imals’ flight velocity combined with the short feature length

of the plume micro-structural properties mean that time-

averaged statistics relating, for instance to chemical signal

mean, variance, or probability density, cannot be reliably

computed in the short time span available. The computation

of such measures would require integration times far longer

than available to the animal, since the rate of convergence of

these measures at this time scale has been shown to be low

(Qian and Cowen, 2002). Rather, moths are known to code

and exploit behaviorally the instantaneous temporal struc-

ture of the plume dynamics (Kennedy et al., 1978). Thus,

the instantaneous sensory signals received at chemosensory

structures of the moth antenna may well hold key information

relating to the nature of the source, its direction and distance,

as well as other properties (Murlis et al., 2000; Webster and

Weissburg, 2001).

The male moth solves the complex chemical search prob-

lem by combining active sampling with a specific behavioral

search strategy, where crosswind casting is combined with

upwind surges to follow the pheromone plume to its source

(Kennedy et al., 1978; Cardé and Hagaman, 1979; Baker and

Kuenen, 1982; Vickers and Baker, 1994). This behavior is

controlled by specialized chemical detection and orientation

systems. The orienting system uses visual cues to control

overall navigation relative to wind direction and objects. It

has been suggested that the moth relies on the longitudi-

nal and transversal movement of its optic flow to assess

Springer



Auton Robot (2006) 20:197–213 199

ground speed and wind direction (Ludlow et al., 1982). For

this reason this behavior has been characterized as opto-

motor anemotaxis (Kennedy and Marsh, 1974). The system

that controls the turns and their amplitude during the search

is called self-steered counterturning (Kuenen and Baker,

1983).

In addition to processing odor cues and localizing their

source, male moths also need to adjust their search trajectory

to properties of the environment, such as obstacles and poten-

tial predators. Similarly, a robot moth will need to combine

its search behavior with avoidance maneuvers due to obsta-

cles or predators. Moreover, flying platforms will have to

augment this with flight stabilization maneuvers to compen-

sate for drift and turbulence induced perturbations.

The organization of the visual systems of flying insects

is rather species invariant. The hierarchical organization of

the different layers of this system feed into a number of neu-

rons that are specialized in detecting specific properties of

the visual world, such as optic flow and rapidly approach-

ing surfaces (Egelhaaf and Borst, 1993; Hatsopoulos et al.,

1995). Here we will focus on obstacle avoidance using a

model of the locust Lobullar Giant Movement Detector neu-

ron (Bermúdez i Badia et al., 2005).

How different sensing and motor control systems are in-

tegrated in the moth brain is not fully understood. One of

the goals of our modeling study is to explore different sce-

narios on sensor fusion and behavior selection. Here we

will consider the simplest scenario where the optomotor and

anemotactic systems are considered as two parallel compet-

itive processing streams that are integrated at the level of the

motor ganglion. In this integration the optomotor system will

override actions triggered by the anemotactic system. This

is based on the observation that visual cues are necessary

to trigger and maintain anemotactic search (Kennedy and

Marsh, 1974; Charlton and Cardé, 1990).

A number of other groups have also reported moth based

or inspired robot applications that perform chemical search

(e.g., Kuwana et al., 1999; Lilienthal et al., 2003; Rutkowski

et al., 2004). Kuwana et al. use the ElectroAntennoGram

(EAG) signal of the antennas of the male silkworm while

Lilienthal et al. have presented an alternative approach

where a large indoor mobile robot equipped with two groups

of three tin-oxide chemosensors each is used for chemical

search in a standard office environment 15.4 × 5.1 m.

In addition, Rutkowski et al. study 2 and 3D chemical

search using a linear Cartesian gantry to move a sensor in 2

dimensions adding a treadmill to add movements in a third

dimension. We will present a more detailed comparison

with these approaches in the discussion. In our project

(www.amoth.org), we try to technically solve the chemical

search and localization problem by developing an Unmanned

Aerial Vehicle (UAV) that is based upon our understanding

of the moth, i.e. an artificial moth or AMOTH. Here we will

present the robot infrastructure that we have developed, the

neuronal control models that we have defined for optomotor

behavior and chemical search, together with an overview

of the biology on which they are based. In particular we

will focus on the multi-modal aspects of chemical search.

We will analyze the performance of the robots in solving

2 dimensional olfactory search problems in a wind tunnel

under varying wind and stimulus delivery conditions. In

our experiments, we want to understand how the different

components of the anemotactic optomotor control system

need to interact to provide reliable and robust navigation and

accurate chemical source localization. After evaluating the

different components of our system, we will assess the abil-

ity of a control system that solely relies on the competition

between feedforward motor signals, derived from its differ-

ent sensory processing modules, to control a mobile robot

in a 2 dimensional chemical search and obstacle avoidance

task.

Methods

The artificial moth (amoth) described here consists of a

chemosensor system, a mobile or flying platform and a sim-

ulated neuronal control system.

The chemosensor

The 6 grid array thin film metal oxide chemosensor used

(Fig. 1(a) provides a broad spectrum of sensitivity to a

wide range of volatile organic compounds (Alpha MOS SA,

France). This technology has relatively low power consump-

tion (approx. 270 mW) while providing a high degree of

miniaturization. Moreover, selectivity of individual sensors

to different compounds can be controlled by its geometric

organization as well as variations in the semiconductor mate-

rials and dopants used. In this study we used a 6 sensor array

where sensors 1–5 were n-type metal oxide semiconductor

Tin Oxide (SnO2), sensors 2 and 4 were doped with catalytic

metal additives Palladium (Pd) and Platinum (Pt) respec-

tively, while sensor 6 was a p-type metal oxide semiconduc-

tor Niobium Oxide (Nb2O5). The bulk resistance of these

chemo sensitive resistors depends upon various physical pa-

rameters, such as surface interaction between odor molecules

and the semiconductor material (Nanto and Stetter,

2003).

The discrete chemosensor array was integrated on a PCB

(Fig. 1(b) that controlled its heating to determine the operat-

ing temperature, and sampled the sensor resistance. The sen-

sor resistance was converted to a voltage and subsequently

digitized. In general we used the fractional change in con-

ductance (FCG) as our measurant that was calculated on a

computer according to:
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Fig. 1 The AMOTH 6 grid array metal oxide sensor package. (a)

Schematic drawing of sensor package indicating its main compo-

nents. See text for further explanation. Dimensions of single sensor are

0.18 × 0.2 mm (with × length), this creates the active area 0.032 mm2.

Thickness of sensitive material is 0.8 µm Dimensions of whole 6 grid

array sensory chip are 2 × 3 × 0.38 mm (with × length × thickness)

(b) Application diagram of the chemosensor. PWM signals are gener-

ated by the microcontroller are low pass filtered (marked as LP) and

amplified (marked as amp), then use for driving the heating elements

of the sensor package (Rheat). The sensor resistance (Rsens) is converted

to a voltage. The board can be interfaced to a host computer via RS232

or TWI bus. (c) Chemosensory board containing a 6 grid array sensor.

The sensor sampling rate is around 1045 Hz that are averaged over 64

samples rendering an effective sampling frequency of 16.3 Hz for each

of the 6 sensory channels. Weight: 13.8 g, dimensions: 34.5 × 60 mm

FCG(t) =
Gstimulus(t) − Gnostimulus

Gnostimulus

(1)

where Gstimulus (t) is the conductance (1/R) during the experi-

ment i.e. in the presence of chemical stimuli and Gnostimulus is

the mean conductance obtained under the same conditions as

those during experiment but in the absence of any stimuli—

this allows us to both calibrate the sensor system to the “real

world conditions” as well as to sensor drift.

The AMOTH robots

For the wind tunnel experiments we have developed a num-

ber of custom Plexiglas circular robots with a diameter of

20 cm (Fig. 2). For locomotion it uses two active wheels (di-

ameter 49 mm) placed on the axis of the robot, allowing in

Fig. 2 AMOTH mobile robot platform. (a) AMOTH chemosensory

vehicle (diameter 20 cm, height 16 cm). Visible are, from top to bottom,

control board with Bluetooth communication module, the chemosensor

board and the wind direction sensor. On the front of the robot a wire-

less CMOS color camera is mounted that is fitted with a fisheye lens

that provides for a 190 degree field of view. (b) Wind direction sensor,

an electronic wind vane sensor consists of a light weight styrophore

vane that is attached to a rotating shaft fitted with a small magnet.

Dimensions are 3 mm × 3 mm (diameter × length). The angular

position of the shaft was measured using a 2-axial magnetometer (Mi-

croMag2, PNI Corporation, Santa Rosa, USA, www.pnicorp.com). The

shaft and part of the suspension were extracted from a handheld wind

speed measuring device (ELV Hand-Windmesser, ELV Elektronik AG,

Möhlin, Germany, www.elv.de). The board is fitted with ATmega32L

microcontroller that calculates the wind direction and interfaces the

magnetometer to the robot infrastructure via the TWI bus
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place rotation, each driven by geared motors with a contin-

uous rotation servo (Parallax-Futaba Continuous Rotation

Servo, Parallax, Rocklin, CA, USA, www.parallax.com).

The internal motor controllers of the servos were removed

and the servos were used as geared motors driven by the

external motor controller located on our control board. To

provide balance, a free moving metal ball encapsulated in

a holder, i.e. caster wheel, was used as the third support

point. The chemosensor board was placed in the middle of

the platform so that rotations would not affect the position

of the chemosensor. The wind direction was measured with

a custom build sensor consisting of a wind vane that was

fitted to a magnetic encoder (the angular position of the shaft

was measured using a 2-axial magnetometer) that was placed

near to the chemosensor.

The design of the mobile amoths involved issues of wire-

less communication, modularity, platform portability, and

energy autonomy. Communication is assured by wireless

movement control, sensor telemetry and a separate wireless

vision system (Fig. 3(a). The movement commands and inte-

grated sensory data are exchanged using a Bluetooth module

(BluetoothTM RS232 Class I Industrial Adapter, LinTech,

Berlin, Germany, www.lintech.de). The robot is equipped

with a wireless CMOS color camera (ZT-802A, ZTV Tech-

nology Co., Ltd, Shenzhen, China, www.ztv.cc) in the front

fitted with a fisheye lens providing for a 190 degree field of

view (ORIFL190-3, Omnitech Robotics International LLC,

Englewood, USA, www.omnitech.com).The robot is con-

trolled by the neural simulator program IQR (Bernardet et al.,

2002) via a wireless link with a ground station. IQR allows

us to control the robots with large-scale simulations of in-

sect neuronal systems that are running on a PC or laptop

(under the Linux operating system). This solution keeps the

onboard computation to a minimum while not compromising

the computational requirements of the neuronal systems that

we study.

The robot electronics consists of three custom built boards

(Fig. 3(b). The olfactory board containing an array of six

broadly tuned chemosensors (Fig. 1), and the wind direction

sensor (Fig. 2(b) that are each served by their own micro-

controller. A third microcontroller is responsible for com-

munication and motor control. All of these microcontrollers

(ATmega32L, Atmel, San Jose, CA, USA, www.atmel.com)

are connected to a common bus (TWI—Two-Wires Inter-

face) which allows for easy system expansion with any other

board, e.g. for our outdoor systems modules additional mod-

ules for GPS, 3D compass and altimeters are included. The

robot uses Lithium-Polymer rechargeable batteries (KOK

3270, Kokam, Kyunggi-do, Korea, www.kokam.com) that

provide up to 5 times higher energy per mass unit than clas-

sic Nickel Cadmium rechargeable batteries (2 cells with a

capacity of 3.3 Ah, provide 7.4 V). As a result, as the robot

an autonomy of up to 8 h can be achieved. Since the batteries

Fig. 3 Experimental setup. (a) The robot setup and its communication

with a ground station. See text for further explanation. (b) Diagram

of mobile robot control and sensor integration modules. See text for

further explanation. (c) Mobile robot control board using a Bluetooth

Class I communication module (range up to 100 m). Weight: 23.5 g,

dimensions: 56 × 67 mm

are sensitive to discharge and overcharge, the battery status

is continuously monitored. The modular architecture of the

robot infrastructure was designed to allow easy expansion

and application to other vehicles including mobile robots

and UAVs.

Wind tunnels

In our experiments we used two wind tunnels. In the first

one the responses of the chemosensor array, mounted on
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a wheeled mobile robot platform (Koala, K-team, Lau-

sanne, Switzerland, www.k-team.com), were assessed under

varying wind conditions using a wind tunnel (approx.

3 × 3 × 0.8 m (width × length × height)) constructed

from transparent polyethylene sheeting. A controllable mas-

ter 4.4 kW centrifugal fan generated negative pressure at the

outlet of the wind tunnel (of cross-sectional area 3 × 0.8 m

(length × height)) to control the flow velocity within the

wind tunnel up to 1.0 m s−1. Five axial fans were installed

at the wind tunnel exit, in front of a manifold feeding the

master fan, in order to adjust for a uniform and symmetric

velocity profile. Hexcel material of 1 cm diameter was used

at the inlet of the wind tunnel in order to remove large scale

eddies from the flow. Ethanol was introduced into the wind

tunnel by construction of a platform inside the wind tunnel

close to the inlet at the same height as the chemosensor. Ab-

sorbent material soaked in chemical stimuli was placed on

the platform of 5 cm in diameter acting as a chemical source.

Flow visualization was achieved by filling the wind tunnel

with smoke using a smoke generator (Concept Smoke Sys-

tems, London, UK) producing approximately 1 µm diameter

oil/water droplets introduced at the point of the source (noz-

zle diameter approx. 2.5 cm) that were visualized using 4

slide projectors with light slits focused on a single plane

positioned at the height of the chemosensor. A camcorder

(Panasonic DV 300, Matsushita Electric Industrial, Osaka,

Japan) was mounted directly above the wind tunnel for image

capture.

All of the mobile robot experiments were performed in a

low-cost wind tunnel based on the same principles as the one

described above that was constructed from wood and trans-

Air flow: 1.097 m /s
Wind speed: 0.67 m/s

3

0.54 m

Fig. 4 Structure of the wind tunnel. The wind tunnel is 4 m long,

3 m wide and 0.54 m high. 4 ventilators with independently adjustable

speeds at the end of the wind tunnel create negative pressure and suck

the air out of the wind tunnel into an exhaust tunnel that is open on both

sides. From the exhaust tunnel air is sucked into the exhaust system

and removed. The robot (blue) is tracked with a CCD camera mounted

above the centre of the wind tunnel. In all experiments, the odor source

(white) was placed in the middle at the entrance of the wind tunnel.

In some experiments, an obstacle (yellow) was placed inside the wind

tunnel. The walls of the wind tunnel were covered with black and white

textures to provide visual cues for the optomotor system

Fig. 5 Implementation of the LGMD model, making use of the Re-

ichardt correlator (Reichardt, 1961), where δ represents a delay, “ × ”

the multiplication and “ − ” the subtraction operation. This model re-

sponds to looming stimuli in the visual field normalizing the strength of

the response with the global activity level of the image using feed for-

ward inhibition. The specific and non-specific inputs are integrated over

time and thresholded (adapted from Bermúdez i Badia and Verschure,

2004)

parent plastic sheets measuring 3 × 4 × 0.54 m (Fig. 4(a)).

Solutions of different concentrations of ethanol and distilled

water (9.4 and 23.5% ethanol) were converted using an ultra-

sonic release system (Mist of Dreams, XrLight, Zhongshong

City, China) that generates a rapidly evaporating mist at a

rate of about 3.33 ml min−1, yielding about 0.31 ml min−1

(9.4%) and 0.78 ml min−1 (23.5%) of ethanol. The average

air speed was measured with an anemometer placed at the

outlet of the tunnel and the wind speed and air volume at the

inlet was reconstructed from these measurements.

Course stabilization, collision avoidance and chemical

search models

Insects compound eyes lack a high resolution and acuity, but

nevertheless they appear sufficient for robust flight control.

The insect visual system is a specialized machinery that ana-

lyzes visual stimuli in order to produce, so called, optomotor

reflexes. Many of the visual neurons found in the insect vi-

sual system are specialized in extracting motion information

such as the, so called, Elementary Motion Detectors (EMDs).

This is a widely studied system (Reichardt, 1961; Egelhaaf

and Borst, 1993) that is able to extract directional local mo-

tion information from the visual field. The commonly used

model for these neurons is based on the, so called, Reichardt

correlation model (Reichardt, 1961).

The Reichardt correlation model is applied at the photore-

ceptor level. It computes a temporal correlation between the

responses of neighboring photoreceptors (Ia, Ib) separated
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by a certain distance D. There are two branches, the null and

preferred output, which are computed independently (Fig. 5

left branch). Given a translating object from photoreceptor

a to its neighbor b at speed v, the response of the correlator

(Rcorr), can be explained by:

Rcorr(Ia, Ib) = Preferred output(Ia, Ib)

−Null output(Ia, Ib) (2)

Preferred output(Ia, Ib) = Ia(t − δ) · Ib(t), (3)

Null output(la, lb) = lb(t − δ) · la(t), (4)

Given the speed v and a pixel separation of D,

Ib(t) = Ia(t − D/v) (5)

then,

∂

∂δ
Preferred output = 0, for δ = D/v (6)

and

∂

∂δ
Null output = 0, for δ = −D/v (7)

We observe that the Reichardt correlator is optimized for a

certain speed and the closer D/v is to δ, the higher the pre-

ferred output is (Eq. (6)); and therefore, the closer D/v is

to - δ, the higher the null output is (Eq. (7)). The subtrac-

tion of the null branch from the preferred one results in a

local motion response that is directional selective. Our sys-

tem comprises four populations of EMDs tuned to drift in the

four cardinal directions corresponding to rotations in the hor-

izontal plane and changes in elevation. Course stabilization is

achieved by triggering motor actions that minimize the EMD

responses.

The model for collision avoidance is based on mecha-

nisms known from the locust visual system in particular

the, so called, Lobula Giant Movement Detector (LGMD).

The LGMD is a wide-field neuron that specifically re-

sponds to looming,i.e. approaching, stimuli (Gabbiani et al.,

2002; Hatsopoulos et al., 1995; Rind and Simmons, 1992;

Schlotterer, 1977). Its firing rate depends on the velocity of

and the distance to the approaching object, reaching a max-

imum for a specific angular size of the looming object. In

previous work we have developed a model of the LGMD that

was shown to allow mobile and flying robots to avoid colli-

sions (Bermúdez i Badia and Verschure, 2004; Blanchard and

Verschure, 1999; Blanchard et al., 2001). Here we present a

further extension of this model that can be applied to rov-

ing and flying robots operating in complex natural environ-

ments (Fig. 5, see Bermúdez i Badia et al., 2004; Bermúdez i

Badia et al., 2005). The model presented here is based on the

assumption that the LGMD receives inputs from motion sen-

sitive cells of the Reichardt type (Reichardt, 1961) in order

to differentiate between expanding and contracting stimuli

(Hatsopoulos et al., 1995). Our approach to the LGMD pro-

cessing relies on the integration of the responses of a set of

EMDs. A topographic remapping allows us to correlate the

activity of pixels that are aligned radialy through the centre

of the image. This process is equivalent to the integration

of the responses of the EMDs that are sensitive to radial

outward motion through the centre of the image. Hence, the

looming sensitivity of the LGMD model emerges from its

particular connectivity with the EMD neurons. These inputs

are integrated and whenever its sum exceeds a given thresh-

old it produces action potentials that will be translated into

motor actions. To illustrate the operation of this obstacle

avoidance model we evaluate it using a flying blimp based

robot. In this case we use two cameras and two LGMD neu-

rons are implemented to detect looming stimuli on either side

of the compound visual field. Whenever a train of spikes is

produced by one of the simulated LGMD cells, either left

or right, it triggers an avoidance reaction in the opposite

direction, performing a turn over a variable angle propor-

tional to the strength of the response of the model LGMD.

If both LGMDs respond at the same time a reverse motor

action is triggered. The responses of the collision detection

models overwrite the responses triggered by the stabilization

model and the search system in order to prioritize avoidance

reactions.

In order to evaluate the performance of the LGMD and

course stabilization model we have evaluated it in a free-

flight scenario using a blimp based UAV (Fig. 6, Bermúdez

i Badia et al., 2005). During a four minute flight, the robot

controlled by these insect based models showed obstacle

detection at a mean distance of 1.69 m from the wall, i.e.

with a minimum of 1 m and a maximum of 2.7 m, the longest

distance in the test room being ∼ 6.5 m. We have shown that

this model correctly deals with the trade-off between the

speed of the robot and collision detection: the higher the

flight speed the faster the rate of looming of stimuli in front

of the robot and the sooner the LGMD model responds. In

the experiments reported here we combine this biologically

based optomotor system for collision avoidance with a model

that supports chemical search.

The model used in our wind tunnel experiments is based

on two basic behaviors observed in the moth; cross-wind

casting and up-wind surge (see Introduction). Changes of

the concentration of the target odor provoke transitions be-

tween these two states. In these experiments, an electronic

wind vane is used for the detection of the wind direction (see
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Fig. 6 (a) Trace describing one minute of free flight of the UAV with

both stabilization and collision avoidance systems enabled. Blue trace:

the position of the UAV every 200 ms. Green arrows: the direction of the

compensation responses to detected drift. Red dots: collision detection.

(Adapted from Bermúdez i Badia et al., 2005) (b) Indoor UAV blimp

platform. A mylar blimp filled with helium is propelled by 4 geared

DC motors (motor: 08GS61-107.7 with gearbox 4:1 R10.0.4 both from

API-Portescap, La Chaux-de-Fonds, Switzerland, www.portescap.com;

propellers are 125 × 110 mm model no. 302 Paul Günther KG,

Eggenfelden, Germany) fixed to a rigid carbon fiber frame (100 cm

long). The hull is a welded mylar blimp bag (Mobile Airships & Blimps,

Toronto Canada), that is 1.6 m long with a volume of 336 dm3, envelope

payload 237 g. The UAV shown is also equipped with two chemosen-

sory boards while its two cameras are visible at the front of the hull

Methods) that allows the robot to drive upwind in case of

a surge mode or to move across the wind direction in case

of casting. The neural model for casting is an oscillator that

triggers turns from right to left and vice versa resulting in

a zig-zag trajectory (Balkovsky and Shraiman, 2002). The

counter turn oscillator is running in real time at 0.043 Hz and

is independent from the state of the robot, i.e. it is not reset

when stimuli are detected. Thus the phase of the counter

turn behavior is quasi random. In the cast mode, the mea-

sured wind direction is used for aligning the robot crosswind,

so the search area is maximal. A contact with the plume

inhibits the casting mode and switches the robot to surge

mode, i.e. aligning the robot against the wind and surging

as long as the stimulus is detected. The absence of an odor

brings it back to casting mode (Fig. 7). In the wind tunnel

experiments the course stabilization model is disabled since

the mobile robot does not suffer from significant drift in its

trajectory.

Our model for optomotor anemotactic chemical search

consists of 7082 neurons, aggregated in 97 groups, and 180

connections with 11887 synapses. It is important to note

that this is a real time model of a biological neural system

including a partial visual system, central motor system and

olfactory system and not an abstract artificial neural network.

We try to restrict ourselves to plausible implementations of

biological nervous systems using standard neural models (in-

tegrate and fire, linear threshold, sigmoidal cells), while all

behaviors emerges from the excitatory and inhibitory inter-

actions among those neurons. Neither learning nor training

algorithms are used and the synaptic weights are fixed.

In order to develop, manage and run simulations of this

magnitude (Fig. 8), the neuronal systems simulation envi-

ronment IQR was used (Bernardet et al., 2002). IQR pro-

vides the means to run large scale simulations at the speed

required for the control of real-world devices. The design of

the model, the control of the simulation and the acquisition of
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Fig. 7 Block diagram of the optomotor anemotactic chemical search

algorithm applied during the experiments. The detection of a chemical

stimulus, “pheromone”, triggers a behavioral change from casting to

surge mode, causing an upwind displacement. The collision avoidance

neural model runs in parallel and overwrites the motor commands

in case of imminent collision, provoking an avoidance maneuver to

prevent the robot from colliding

data are done via a graphical user interface while device spe-

cific modules are written in C ++ and dynamically linked

to the IQR compute engine.

Results

Before the robot experiments were performed we charac-

terized the basic properties of our chemosensor under stan-

dardized conditions, i.e. the same wind tunnel setup and

the same wind and delivery conditions as used in the robot

experiments. A solution of ethanol and distilled water was

converted to a rapidly evaporating mist (see Methods). In

addition, in order to extract the time constants of the sensor

we have modulated the source using a square wave at 0.05

Hz (duty cycle = 50%) note that in this case the average

delivery was half of the quantity released during the contin-

uous delivery mode described in Methods. The source was

placed in the middle at the entrance of the wind tunnel (see

Methods). Using a curve fitting procedure we observed a rise

time of 2.0 ± 0.77 s (mean ± std, n = 5) and a decay time of

3.1 ± 0.84 s (mean ± std, n = 9) in the vector norm of the

FCGs of the six sensors. Although the first order inertial

curves were observed, the extracted time constants probably

still contain the influence of the delivery system and airflow

thus the real time constants of the sensor are probably shorter.

The relatively high std may be result of these additional time

constants.

In a first experiment, we mapped the distribution of

ethanol in the wind tunnel while the airflow velocity was

0.67 m s−1 measured at the outlet of the wind tunnel. The

source was placed in the middle at the entrance of the wind

tunnel (same location as during characterization). Delivery

was active and uniform (about 0.31 ml min−1 of ethanol, see

Methods). We used subsequent measurements of 2 min per

location using a single sensor. The measured response map

shows that high ethanol concentrations are detected in an

approximately parabolic region downwind from the source

(Fig. 9(a)). These results are consistent with theoretical

studies (Balkovsky and Shraiman, 2002; Shraiman and

Fig. 8 Block diagram of the collision avoidance and course stabi-

lization model used for controlling the UAV. Each block indicates one

population of simulated neurons. Red arrows represent excitatory con-

nections while blue lines indicate inhibition. LGMD: Lobula Giant

Movement Detector, EMD: Elementary Motion Detector. The simula-

tion runs at about 30 Hz using a Pentium4 at 2.4 GHz

Springer



206 Auton Robot (2006) 20:197–213

Fig. 9 Wind tunnel calibration using static measurements of ethanol.

(a) Response to a 9.4% solution of ethanol in distilled water. (b) Re-

sponse to distilled water only (control). The response was sequentially

measured using a single sensor placed for 2 min at 9 times 7 equally

spaced locations (white dots). The obtained map of time-averaged sen-

sor responses (window size 2 min) was smoothened (bi-cubic filter) and

divided into 11 contours of about equal response strength. The source

was placed at (x, y) = (0 m, 1.5 m). The wind direction is the positive

x-axis direction. The color bar indicating response strength, as vector

norm of the FCGs of the six sensors (see Methods), is representative

for both maps

Siggia, 2000). No detectable responses were measured when

we repeated the mapping experiment with only distilled wa-

ter as odor source (Fig. 9(b)) Hence, the chemosensor only

responded to the dispersed ethanol. Thus, the overall setup of

the wind tunnel and the response properties of the chemosen-

sor render a reasonable response map of the ethanol

concentration.

The challenge to understanding moth chemotaxis behav-

ior is to quantify to what extent temporal features of the sen-

sory signal change the behavior of the animal during flight.

In order to better understand the nature of the instantaneous

chemical signals available to the animal we visualized the

chemical plume, as well as measure the instantaneous chem-

ical signal detected by the metal-oxide chemosensor arrays

(see Methods) under physiologically relevant conditions. In

this way it is possible to correlate the sensor response with

the qualitative properties of the chemical plume. In contrast

to the conventional approach taken to machine olfaction,

whereby the stimulus is deliberately controlled under known

conditions, we embrace the neuroethological perspective: to

understand the structure of chemical signals in natural en-

vironments and assess the signal properties in this context.

We investigated chemical plumes at different flow velocities

up to the maximum supporting moth chemotaxis (close to

1 m s−1). Low flow velocities are seen to produce a high

degree of patchiness in the chemical flow field (Fig. 10(a),

right), characterized by patches of relatively high concen-

tration, interspersed by little or no chemical signal. Over

larger distances these patches become less distinct, even at

constant flow velocity, due to turbulent mixing of eddies

governed by the Kolmogorov scale (Kolmogorov, 1941) and

molecular diffusion governed by the Batchelor scale (Batch-

elor, 1959). Hence the chemical signal becomes less inter-

mittent and more homogeneous as we move away from the

source.

For higher flow or injection velocity (Fig. 10(b) and (c)

right), greater turbulence leads to more mixing of the flow

thus spreading the signal in space. In this case, the sen-

sor signal contains rich temporal dynamics that correspond

to the filaments of the passing chemical plume (Fig. 10(b)

and (c) left). For still greater velocity, increasing levels of

turbulence mix the flow locally, resulting in a less defined

structure, which ultimately removes the filaments completely

(Fig. 10(d) right). This results in less temporal structure in

the chemosensor response since it is more uniform over time

(Fig. 10(d) left). Hence, there appears to be an optimal match

between the sensor dynamics and the flow velocity that al-

lows extraction of the natural microstructure of chemical

plumes.

A necessary condition to successfully locate an odor

source is that the chemosensor has to be fast enough to

detect differences in concentration while the robot is moving

through the plume. We therefore investigated the dynamic

responses of the chemosensor to ethanol by driving the

robot through the wind tunnel on a zig-zag trajectory at

an approximately constant translation speed of 10 cm s−1,

while continuously acquiring the chemosensor response

(Fig. 11). We observe that the spatial response map of the

chemosensor is similar to the distribution of ethanol in the

wind tunnel using static measurements (Fig. 9). The de-

tected concentration is highest close and downwind from the

source and higher concentrations are detected in a spatially

constrained conical region around the (horizontal) centerline

of the wind tunnel. The spatial response map obtained

from averaging over 3 independent runs (Fig. 11(a)) is

comparable to that from a single run (Fig. 11(b)), indicating

that the observed spatial response map is repeatable across

trials. Hence, these results show that the chemosensor

provides a rapid and reliable measurement of the ethanol

concentration while the robot is moving.

We confirmed earlier that also in our wind tunnels wind

velocity crucially affects the dynamics of the odor plumes

(see above). For our experiments reported here we used

two wind tunnels: the Leicester wind tunnel to visualize
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Fig. 10 6-element

chemosensor array response

(left column) 1.5 m downstream

of a 30 ml ethanol source inside

a wind tunnel at different flow

velocities (see methods): (a):

0.28 m s−1; (b): 0.42 m s−1; (c):

0.56 m s−1; (d): 0.70 m s−1. At

each flow velocity the

corresponding chemical plume,

is visualized at the same height

(z = 0.33 m) as the chemosensor

(right column)

Fig. 11 Dynamic response map. Spatial distribution of the responses

of the chemosensor while moving through the wind tunnel (a) averaged

over three runs and (b) computed from a single run. The dashed lines in-

dicate the track of the robot. The odor source was located at (x, y) = (0 m,

1.5 m). For illustration purposes, the chemosensor response between

the traces was interpolated (triangle-based cubic interpolation). The

resulting spatial map of the chemosensor response was divided into

11 contours. The wind direction is the positive x-axis direction. The

airflow in the wind tunnel was 1.097 m3 s−1 with an average air speed

of 0.667 m s−1. The robot translated at approx. 10 cm s−1

the plume dynamics, and the Zurich wind tunnel for the

robot experiments. In order to qualitatively characterize

the dynamics of the Zurich wind tunnel we compare the

chemosensor response measured in the Zurich wind tunnel

to that of the Leicester wind tunnel. At approximately the

same wind velocity of 0.7 m s−1, a comparison of the

normalized chemosensor response reveals similar dynamics

in both wind tunnels, even if the robot is moving (Fig. 12(a)).

This is also confirmed by comparing the power spectra of the

chemosensor response (Fig. 12(b)). Hence, this indicates that

the plume dynamics of the two wind tunnels are comparable

and that the search experiments are performed under the

complex plume dynamics depicted in (Fig. 10(d)).

Since the chemosensor response provides a readily usable

signal for the detection of ethanol, we set out to investigate

the ability of the robot to perform chemical search and to

locate the odor source. For each trial, the robot was placed

around 3.5 m downwind from the source on an arbitrary y-

coordinate. The chemical search model used the wind vane

sensor reading to determine the wind direction. In all trials

carried out, the robot was able to find the source after an

median searching time of 74.17 s (percentile 10% = 47.35 s,

percentile 90% = 170.01 s, n = 37; detailed results in Table

1, Fig. 13(a–d). Search times were not significantly different

for 9.4% and 23.5% source concentrations (Wilcoxon rank

sum tests for equal medians, see Table 1). We observe that
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Fig. 12 Dynamics of the chemosensor response in our two wind tun-

nels under similar conditions. (a) Normalized response (see Methods)

of the chemosensor placed 1.5 m downwind from the odor source in the

wind tunnel at the University of Leicester (black) and in the wind tunnel

at the University/ETH Zurich (red). In addition, the response measured

while the robot was translating at about 10 cm s−1 is shown (blue).

The wind velocity was 0.7 m s−1 and 0.67 m s−1 at the wind tunnel in

Leicester and Zurich, respectively. (b) Power spectrum (estimated with

the multitaper method) from the responses measured in the two wind

tunnels

the system displays casting at low sensor readings and surges

when the sensor reading is high. However, in the absence of

wind (Fig. 13(e)) or when we replaced the ethanol mixture

with distilled water (Fig. 13(f)), the robot was unable to find

Table 1 Results of the chemical search behavior of the robot excluding

the optomotor system

Percentile Percentile

Ethanol source Mode 10% (s) Median (s) 90% (s)

9.4% (n = 17) Casting 28.37 39.90 45.72

Surge 17.91 33.10 103.66

Total 62.35 74.97 121.89

23.5% (n = 20) Casting 16.42 32.32 61.73

Surge 14.23 31.88 136.53

Total 45.50 67.83 174.37

Results were analyzed with Lilliefors test for goodness of fit to a normal

distribution. All hypothesizes about normal distribution were rejected.

Wilcoxon rank sum tests for equal medians were performed to see

whether there is a significant difference between search times for total

search time, time of casting, and surge for an ethanol source with a

concentration of 9.4% or 23.5%. The test have shown show that there

was no significant difference in behaviour related to concentration.

the source, showing that both airflow and chemical stimuli

must be present to complete the localization behavior. We

wanted to understand further the influence of concentration

on behavior—our analyses show no significant difference be-

tween casting and surge time distributions for concentrations

Fig. 13 Chemical search

behavior of the robot excluding

the optomotor system. (a, b)

Two traces of the robot with the

chemical search behavior

switched on (using 9.4%

ethanol, see Methods). (c, d)

The same as in (a, b), however,

with an elevated concentration

of ethanol (23.5% ethanol). (e)

Control trace without wind

(9.4% ethanol source). (f)

Control trace (source is using

distilled water only). The

ethanol source is denoted with a

red circle. A thick line indicates

an upwind surge, a thin line

indicates a crosswind cast. The

color of the line indicates the

intensity of the sensor response.

The color bar indicating

response strength, as vector

norm of the FCGs (see

Materials), is representative for

all maps. The wind direction is

the positive x-axis direction

(average air speed of

0.667 m s−1). The robot

translated at approx. 10 cm s−1
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of 9.4 and 23.5%. Thus we can conclude that, for the range

of concentrations evaluated, the search behaviour displayed

by our model is independent from the concentration.

As to be expected when only casting is triggered the robot

displays a minimal overall translation against the wind di-

rection. Hence, the moth based search behavior of the robot

provides for a relatively rapid and reliable strategy to suc-

cessfully localize the odor source under turbulent conditions.

This demonstrates that the dynamics of the sensor, robot and

control system is matched to that of the odor and plume.

Chemical search involves not only the following of an

odor plume, but also the adaptive avoidance of collisions

with obstacles. Hence, we combined the chemical search

behavior with the collision avoidance behavior of the robot

(see Methods) and introduced an obstacle placed about in the

centre of the wind tunnel. Note that also the walls constitute

obstacles and are marked with visual cues, i.e. black and

white vertical stripes. We observed that in the case when the

obstacle avoidance behavior is switched off, the robot gets

stuck behind the obstacle and is unable to find the source

(Fig. 14(b)). In case the LGMD based obstacle avoidance is

switched on, the obstacle avoidance behavior overwrote the

commands of the chemical search behavior (Fig. 14(a)). As

a result avoidance reactions were displayed, after which the

robot continued with the chemical search and successfully

located the odor source. Thus, the combination of the ob-

stacle avoidance behavior with the chemical search behavior

renders a behavioral control structure that is robust and ac-

curate in locating the odor source under realistic real-world

conditions.

Discussion

We have presented a model of optomotor anemotactic

chemical search that is based on the neuroethology of the

pheromone communication system of the moth. We have

shown that thin film metal oxide chemosensors show robust

responses under turbulent plume conditions and can be

used for robot chemical search tasks. The sensor appears

to show variations in the amplitude and variance of its

responses to ethanol that seem to be correlated with the

plume dynamics (Figs. 9 and 10). Moreover, we have shown

that the frequency content of the dynamically sampled odor

plume is comparable to those of the statically measured

and time integrated plume (Fig. 12). This suggests that

frequency information could provide information on the

odor that is invariant to movements of the sensor. When

combined with the mobile platform we observe that a

surge and cast model, closely resembling the behavioral

analysis of moth chemical search, is effective in solving

the search task. Our results showed that this model can

exploit the full dynamic range of the odor plume showing

its first surges, triggered by the detection of the odor at

almost four meters from the odor source, i.e. practically

the maximal range available in our wind tunnel (Fig. 13).

On the basis of a theoretical analysis of a conceptual odor

plume, it has been argued that an optimal strategy would

consist of casting behavior that includes a translation at its

extreme positions (Balkovsky and Shraiman, 2002). Our

results suggest that this approach might not be optimal in

the context of real world behavior since it would lead to an

exploration strategy that is solely up wind. This would lead

to the sub-optimal result that the male moth would persist in

searching in a direction where the probability for successful

mating is low. This illustrates the importance of analyzing

individual behavioral patterns in the context of the overall

behaving system. We looked at the multi-modal aspects of

chemical search by combining our anemotactic chemical

search system with an optomotor LGMD based collision

avoidance system. The integration of these two models

was based on minimal assumptions. We observed that this

combined model was able to find the odor source in the pres-

ence of obstacles (Fig. 14). However, the resulting trajectory

appeared suboptimal and inconsistent with the behavioral

literature. The avoidance directions that were followed were

independently generated from the information available to

the search system not dissimilar to popular approaches in

behavior based robotics (Brooks, 1986; Arkin, 1998). How-

ever, our results suggest that there could be more advanced

arbitration and interaction between these behavior systems

than usually assumed. In future work we will therefore ana-

lyze the interaction between the optomotor and anemotactic

chemical search system in the moth in more detail.

We can compare our approach and results to those pre-

sented by a number of other groups (e.g., Kuwana et al., 1999;

Lilienthal et al., 2003; Rutkowski et al., 2004). Kuwana et al.

use the ElectroAntennoGram (EAG) signal of the antennas

of the male silkworm moth to detect a chemical cue where

the amplitude of the EAG is assumed to be proportional

to the concentration. This biological sensor is applied to a

small-wheeled robot (approx. 4 × 4 cm (width × length))

and a simple Braitenberg vehicle type reflex based program

uses two chemosensors (antennae) to control two motors in

a 10 × 4 cm work space. Here the chemosensors are biologi-

cal while the further signal processing is strictly algorithmic.

The authors show results of single runs of their system in a

wind tunnel, although the robot does not use any type of

wind sensor. This project provides a proof of concept for the

application of biosensors, i.e. the EAGs of biological anten-

nae, to the control of a robot, but does not contribute to our

understanding of the multimodal aspects of anemotactic op-

tomotor chemical search displayed by animals. Moreover, it

is unclear how easily this approach would generalize to real-

world applications. For instance, this approach has only been

tested with pheromones and it is unclear how the EAG could
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Fig. 14 Chemical search behavior of the robot in an environment con-

taining obstacles using the LGMD-based optomotor collision avoid-

ance system. (a) Trace of the robot with the obstacle avoidance module

switched on. The robot is able find the odor source. (b) Control trace

with the obstacle avoidance module switched off. An obstacle was

placed in the wind tunnel (box at position ∼ (1.5 m, 1.5 m)). The

ethanol source is denoted with a red circle. The detection of imminent

collisions is indicated with white dots. A thick line indicates an up-

wind surge, a thin line indicates a crosswind cast. The color of the line

indicates the intensity of the sensor response. The color bar indicat-

ing response strength, as vector norm of the FCGs (see Methods), is

representative for all maps. The wind direction is the positive x-axis

direction

be used to process other chemical stimuli, while the robot has

only been tested in a rather small area (10 × 4 cm). More-

over, the biological sensor will only have a short lifetime

(about 60 min under optimal conditions), while its baseline

drift and non-trivial mounting and handling procedure would

rather exclude its practical application.

Lilienthal et al. have presented an alternative approach

(Lilienthal et al., 2003) where a large indoor mobile robot

80 × 65 × 55 cm (length × height × height) equipped

with two groups of three tin-oxide chemosensors each is

used for chemical search in a standard office environment

15.4 × 5.1 m. A sophisticated search strategy is developed

to support chemical search under conditions where the air-

flow is below the detection limits. The proposed algorithm

consists of fixed motion patterns parameterized by the ex-

pected direction of the source. Obstacle avoidance is based

on odometery (clearance area around an obstacle) recali-

brated by a laser range scanner. The authors show that they

can trace the plume and stay in the proximity of the source.

This approach lacks a clear anemotactic component since

the robot is not equipped with a wind sensor. This also ques-

tions the biological relevance of the proposed algorithm. In

many technical aspects our approach is similar to the one

proposed by Lilienthal et al. (size of robot, search area, type

of sensors). However, the time to find the source was larger

by an order of magnitude, although the speed of the robot in

both case was the same the search area was 6.4 times larger.

However, the authors are mainly interested in the problem

of plume tracing. Finding the plume itself was not the main

issue and was accomplished by random search. Thus it may

serve as a reference for the casting phase in our experiments.

In another approach, Rutkowski et al. study 2 and 3D

chemical search using a linear Cartesian gantry to move a

sensor in 2 dimensions (range 42 × 42 cm) and combine this

with a treadmill (122 cm long) to add movements in a third

dimension (Rutkowski et al., 2004). Although in this project

a 3D plume-tracking algorithm has not yet been developed,

this setup provides an alternative approach to those that use

mobile or flying robots. So far this setup has been used with

an ionization detector. Hence, it is unclear how well it would

generalize to a chemosensor. Although the flow dynamics of

an ion plume is similar to that of a gas, the time constants

of ionization detectors seems to be much shorter than for

chemosensors. Moreover, although this setup is described as

an universal platform for testing chemical search algorithms,

the absence of an airflow direction sensor and the applica-

tion of only one “chemosensor” under the assumption of

an a priori defined fixed wind direction excludes the explo-

ration of more realistic real-world scenarios and algorithms,

including the models presented here and those proposed by

Kuwana et al. and Lilienthal et al. Rutkowski et al. show an

example biologically inspired algorithm demonstrating an

example of successful search. However the physical nature

of an ion plume and ion sensors is different than the plume

generated by general stimuli, such as ethanol, used in our

experiments. The static distribution of concentration mea-

sured in our experiment appears to be similar to the results

of shown by Rutkowski et al. This is an important additional

validation of our sensor since ion detectors are faster than

chemosensors, are more stable and easier to calibrate than

metal oxide sensors. Our search algorithm is based on a sin-

gle translational speed and tree angles of rotation. This is

consistent with the conclusion of Rutkowski et al. that only

a few discrete speeds, angles of rotation and few detection

levels are required to accomplish chemical search.

In addition, also other groups have used gas sensors

to exploit the temporal properties of chemical plumes for

robot navigation by looking at the transient sensor responses

(Ishida et al., 2002) or used learning in recurrent neural net-

works in order to take into account the temporal sequences

of sensory patterns (Duckett et al., 2001). Both of these

approaches are interesting from a technical perspective but
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they do not aim at explaining the neuroethological basis of

chemical search behavior.

Our results show that the current sensor and robot

technology is available to construct an artificial moth that

can perform complex odor source localization and mapping

tasks. We are currently integrating the anemotactic chemical

search system into the optomotor control systems that

control our flying robots. Tests are underway that assess

the ability of this system in outdoor scenarios. In addition,

our results show the effectiveness of a neuroethological

approach towards engineering complex real-world artifacts

such as an artificial moth.
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