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Abstract. Various statistical, mathematical and artificial in-

telligence techniques have been used in the areas of engi-

neering geology, rock engineering and geomorphology for

many years. However, among the techniques, artificial neu-

ral networks are relatively new approach used in engineer-

ing geology in particular. The attractiveness of ANN for the

engineering geological problems comes from the informa-

tion processing characteristics of the system, such as non-

linearity, high parallelism, robustness, fault and failure tol-

erance, learning, ability to handle imprecise and fuzzy infor-

mation, and their capability to generalize. For this reason, the

purposes of the present study are to perform an application of

ANN to a engineering geology problem having a very large

database and to introduce a new approach to accelerate con-

vergence. For these purposes, an ANN architecture having

5 neurons in one hidden layer was constructed. During the

training stages, total 40 000 training cycles were performed

and the minimum RMSE values were obtained at approxi-

mately 10 000th cycle. At this cycle, the obtained minimum

RMSE value is 0.22 for the second training set, while that

of value is calculated as 0.064 again for the second test set.

Using the trained ANN model at 10 000th cycle for the sec-

ond random sampling, the debris source area susceptibility

map was produced and adjusted. Finally, a potential debris

source susceptibility map for the study area was produced.

When considering the field observations and existing inven-

tory map, the produced map has a high prediction capacity

and it can be used when assessing debris flow hazard mitiga-

tion efforts.

Correspondence to: C. Gokceoglu

(cgokce@hacettepe.edu.tr)

1 Introduction

In recent years, artificial neural networks (ANN) have been

applied to many studies in engineering geology and geomor-

phology (Meulenkamp and Alvarez Grima, 1999; Singh et

al., 2001; Zhang and Govindaraju, 2003; Lee et al., 2003a, b,

2004, 2006; Gomez and Kavzoglu, 2005; Ermini et al., 2005;

Sarangi and Bhattacharya, 2005; Yesilnacar and Topal, 2005;

Sonmez et al., 2006; Lee and Evangelista, 2006) because an

ANN based prediction model has a high prediction capac-

ity due to its high performance in the modeling of non-linear

multivariate problems. For this reason, ANN has become

an attractive and important tool for engineering geologists

and geomorphologists because both engineering geological

and geomorphological problems are generally non-linear and

multivariate problems. One of these problems is to produce

debris source maps because the debris materials are produced

in mountainous regions with high slope gradients and to ac-

cess all debris source locations is almost impossible. A typi-

cal example for such fields is the northern slopes of the Barla-

Besparmak and Kapi Mountains of the Taurids Mountain belt

in the western part of the Mediterranean region of Turkey.

In this region, an important amount of debris deposits ac-

cumulate in channels at upper elevations and foot zones of

the mountain slopes. When these debris materials in the

channels at upper elevations are triggered by heavy rainfalls,

some catastrophic debris flows occur in the region. For this

reason, the wide interest in research on Quaternary deposits

is west-central Anatolia is partly because slope avalanches

pose a serious hazard to many populated areas and mountain

resorts (Nemec and Kazanci, 1999). In Turkey, mass move-

ments are one of the most hazardous natural processes. Re-

cently, some international papers have been published on the
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Fig. 1. Location map of the study area.

landslide mechanisms (Gokceoglu et al., 2005) and landslide

susceptibility mapping (Gokceoglu and Aksoy, 1996; Can et

al., 2005; Duman et al., 2006; Akgun and Bulut, 2007; Yal-

cin, 2007). However, these studies were applied in northern

part of Turkey.

Although it is possible to find a number of recent pub-

lications on the various aspects of debris flow hazard (e.g.,

Rickenmann, 1999; Ishikawa et al., 2003; Jomelli et al.,

2004; May and Greswell, 2004; Scally and Owens, 2004;

Malet et al., 2004, 2005; Chien-Yuan et al., 2005; Garcin

et al., 2005; Glade, 2005; Jakob, 2005; Wen and Aydin,

2005), no study was found in the literature on the assess-

ment of debris source areas by artificial neural networks, ex-

cept the study performed by Crowley et al. (2003). Crowley

et al. (2003) analyzed potential debris flow source areas on

Mount Shasta (California, USA) by using airborne and satel-

lite remote sensing data. As mentioned earlier, determination

of debris source areas by both field investigations and aerial

photo interpretations is sometimes highly difficult because

mountainous regions generally have extremely steep slopes,

and moreover the scale of aerial photos does not allow such

studies to be carried out. Considering these reasons, to pro-

duce a debris source area susceptibility map of the study area

is the main purpose of the present study by artificial neural

networks. For this purpose, the study is composed of two

main stages such as compilation of the existing debris source

area inventory map and application of artificial neural net-

work analyses between the existing landslide inventory map

and the geological and geomorphological parameters.

2 General characteristics of the study area

2.1 Geology

The study area is located at the connection point of West Tau-

rids and Middle Taurids (Fig. 1). This region is also called

the Lakes Region or the Isparta Triangle. The Isparta Trian-

gle is bounded by Antalya Gulf and three lakes (the Burdur,

Hoyran, and Beysehir Lakes). This region is composed of

different rock associations based on stratigraphical and struc-

tural properties. Considering the purpose of this study and

the areal extent of the study area, the Geyik Mountain and

the Barla Mountain associations are briefly summarized in

below, and the geological map of the study area is given in

Fig. 2.

The relatively autochthonous Geyik Mountain unit, which

extends as far as the long axis of the Taurides and constitutes

the base line of the central Taurides, consists of an Infra-

Cambrian, Cambrian, and Ordovician basement that is trans-

gressively overlain by the Upper Paleozoic, Triassic, and

Lower Jurassic clastics and carbonate rocks and by a plat-

form type of a thick carbonate section of Jurassic to Lower

Tertiary age that is bounded by Eocene flysch (Ozgul et al.,

1991).

The Barla Mountains are bounded by the Senirkent plain

to the north, Tertiary flysch of the Senirkent subunit to the

west, the Isparta plain to the south, and Egirdir Lake to the

east. The Barla Mountains, which are made up of a num-

ber of mountains and high hills, extend in an E-W direc-

tion. Length, width, and change of height of these moun-

tains are 30 km, 10–12 km, and 2400–2800 m, respectively.

The Barla Mountains subunit includes the sedimentary rock

unit from the Upper Triassic to the Lower Eocene. The

Ayazmana Formation, which is composed of sandstone and

shale with reef limestone blocks, is the oldest rock unit of

the Barla Mountains subunit that appears as an allochthon

on the Senirkent unit. The Ayazmana Formation is overlain

by the Norian-Rhaetian dolomites (Sariyer Dere dolomite)

and Liassic limestones, which are rich in algea (Yassiviran

limestone). The thickness of this formation is ∼500 m and

includes abundant paleodasycladus. The Ayazmana Forma-

tion is overlain by the Dogger–Senonian pelagic deposition

called as the Tinastepe Formation. Malm–Lower Cretaceous

is assigned to micrite of flint nodules, pelagic foraminifera,

and calsiturbidite (Ozgul et al., 1991).

2.2 Climate

The precipitation data is very important for such type anal-

yses. For this reason, the precipitation data obtained from

the Senirkent and Uluborlu meteorology stations located in

the study area were employed. The region receives a long-

term (1975–2004) average annual rainfall of over 54 mm. A

mass movement in the form of debris flow occurred in the

town Senirkent on 13 July 1995. This disaster resulted in

74 deaths, and demolition and destruction of 180 buildings.

Moreover, systems of communication, sewerage, drinking

water, and electricity were considerably damaged. In addi-

tion, ∼1 yr later, a new debris flow phenomenon occurred on

18 and 19 July 1996. However, because of warnings to lo-

cal dwellings, no loss of life occurred. When making a close

inspection to precipitation data recorded at the Senirkent and

Uluborlu meteorology stations, the amount of the precipi-

tation was very high. In other words, the values of total

monthly precipitation recorded by the Senirkent meteorology

station in July 1995 and July 1996 were 88.8 and 73.9 mm,
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Fig. 2. Geological map of the study area.

respectively, while those recorded at the Uluborlu meteorol-

ogy station were 79.6 and 105.2 mm, respectively. Because

the average monthly precipitation values over a long period

of time are 16.6 mm in July for Senirkent and 21.8 mm in

July for Uluborlu, the July 1995 and July 1996 precipitations

can be considered as meteorological anomalies.

3 Debris source inventory map

The term “debris source area” can be described as a region

having a potential to produce debris material. As mentioned

earlier, the study area has mainly high altitudes and steep

slopes. These characteristics do not allow us access every-

where in the area for field observation. For this reason, an

extensive aerial photo interpretation was carried out to ex-

tract the possible debris source areas using vertical black and

white aerial photographs of medium scale (1:35 000), dated

in 1956 and 1991 (Tunusluoglu et al., 2007). In the study

area, the debris material is produced by various limestones

exposed in the study area. The frequency ratio table (Lee,

2005; Lee and Sambath, 2006) was prepared and given in Ta-

ble 1. The Kapidag limestone, Kazanpinari Formation, Suu-

candere limestone, Besparmak limestone, Tinaztepe Forma-

tion, Yassiviran limestone, Kapidag Formation and Uluborlu

Formation have the potential for debris production (Table 1).

However, in order to make an objective assessment for debris

production potential of the lithological units, the following

debris source intensity index (Eq. 1) is suggested by Tunus-

luoglu et al. (2007):

DSIi =
NPDSi

ALi

(1)

Where DSIi is the debris source intensity of lithology I;

NPDSi is the number of pixels including debris source area

of lithology I; and ALi is the total area of lithology i in the

whole study area.

No vegetation cover is observed when the altitude is about

higher than 2200 m. In other words, the study area with an

altitude of 2200 m or more is barren. This allows us to extract

possible debris source areas with the aid of aerial photo inter-

pretations. Identifying small source areas was almost impos-

sible because of the scale of the aerial photos. However, the

large areas were easily identified; and a debris source area

inventory map was drawn (Fig. 3). During the second stage

of the preparation of debris source inventory studies, an ex-

tensive field study was performed to check the findings ob-

tained from aerial photo interpretations and to understand the
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Fig. 3. Debris source inventory map of the study area.

mechanisms of debris generation (Tunusluoglu et al., 2007).

The boundaries determined by aerial photo interpretations

were checked by field investigations, and necessary correc-

tions were done in the field at accessible locations. At not

only higher elevations but also at lower elevations, the debris

generation is observed. The possible causes of debris gen-

eration at lower elevations are the climate and topographic

conditions. The climatic conditions governing debris gen-

eration prevail not only at higher elevations but also lower

elevations in the region. Besides, transition between plain

and mountain morphology is highly sharp. Hence, this re-

sults in a steep morphology at lower elevations. However,

the debris source areas at these regions were not determined

by aerial photo interpretations because of vegetation cover.

The main source of the debris in the study area is the Bespar-

mak limestone. However, a major structural control exists on

the generation of debris. If the dip directions of slopes and

bedding planes are parallel or nearly parallel to each other,

no debris generation is observed. Dip of the bedding planes

must be into the slope face for generation of debris. This

situation results in a difficulty when preparing debris source

area map because there is a major structural control on the

generation of debris, and this control should be considered.

An approach was introduced to overcome this difficulty by

Tunusluoglu et al. (2007).

4 Parameters contributing to debris generation

When producing debris source areas susceptibility map,

some geological and geomorphological parameters are re-

quired. For this reason, during the study, some index parame-

ters such as stream power index (SPI), aspect, elevation, sed-

iment transport capacity index (LS), plan curvature, profile

curvature, and slope were considered (Fig. 4). As the terrain

mapping unit, grid cell (pixel) having a spatial resolution of

25×25 m was selected. The maps of all index parameters

mentioned above were derived from digital elevation mod-

els (DEM) produced by digitizing 10-m altitude contours of

the 1/25 000 scale topographical maps of the study area. The

topographic elevations vary between 925–2800 m at the site.

Statistical properties of each parameter were assessed into

two groups such as: (i) pixels representing debris source ar-

eas and (ii) pixels representing free from debris source areas.

While distribution of the topographic elevations free from

debris source areas shows a similarity with the distribution

of topographic elevations of whole area, the distribution of

the pixels representing debris source area is quite different.

This is an expected result because the debris source areas are

generally located at upper elevations. One of the most impor-

tant topographical parameters governing production of debris

material is slope, because the debris material occurs at talus

slopes. A talus slope can be described as an accumulation of

rock debris at the base of a cliff or steep mountain slope and

they generally show high gradients. For this reason, the slope

map of the study area is produced. The slope angle values of

the pixels representing debris source areas vary from 5 to 65

degrees while average of those is about 36 degrees. Con-

trary to this, the average values of slope angle of the pixels

free from debris source areas is 16 degrees. This shows that

the slope angle is one of the most representative topographi-

cal indicators for the assessment of debris source areas. The

other DEM derived parameter employed in the study is as-

pect. Majority of the slopes free from debris source area in

the area north-facing and limited number of pixels represent

south-facing slopes (Table 1). The aspect map representing

debris source areas has no south-facing slope. This indicates

that the aspect is one of the main topographical attributes in-

fluencing the generation of debris material.

Slope curvatures were also investigated with respect to

their effects on generation of debris material. The term

curvature is generally defined as the curvature of a line

formed by intersection of a random plane with the terrain

surface. The curvature value can be evaluated calculating
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Table 1. Frequency ratios for different parameter classes with respect to debris source areas.

Parameter the number of grid (%) the number of grid (%) Frequency DSI for lithology

Class cells on debris cells on class ratio classes

source area

Lithology

Kapidag limestone 1434 14.23 26 054 5.66 2.52 0.06

Kazanpinari fm. 27 0.27 22 639 4.92 0.05 0.00

Suucandere limestone 1071 10.63 25 034 5.44 1.95 0.04

Besparmak limestone 1799 17.85 8028 1.74 10.24 0.22

Kizilcik fm. 0 0.00 2990 0.65 0.00 0.00

Tinaztepe fm. 3663 36.35 19 552 4.25 8.56 0.19

Yassiviran limestone 996 9.88 101 876 22.12 0.45 0.01

Yassiviran limestone +
627 6.22 4330 0.94 6.62 0.14

Kapidag fm. (not distinguished, bJy bKk)

Yassiviran limestone +
0 0 22 514 4.89 0 0

Kapidag fm. (not distinguished, bJy bTRs)

Ayazmana fm. 0 0.00 635 0.14 0.00 0.00

Sariyardere dolomite 0 0.00 17 464 3.79 0.00 0.00

Konglomera 0 0.00 1354 0.29 0.00 0.00

Alluvium 31 0.31 111 972 24.32 0.01 0.00

Cemented debris 405 4.02 22 977 4.99 0.81 0.02

Uluborlu fm. 24 0.24 73 059 15.87 0.02 0.00

Altitutde (m)

<1100 39 0.39 129 513 28.13 0.01

1100–1300 724 7.18 74 747 16.23 0.44

1300–1500 1119 11.10 65 400 14.20 0.78

1500–1700 1408 13.97 51 571 11.20 1.25

1700–1900 2080 20.64 40 037 8.69 2.37

1900–2100 2762 27.41 48 864 10.61 2.58

2100–2300 1496 14.85 32 173 6.99 2.12

2300–2500 428 4.25 13 415 2.91 1.46

2500–2700 21 0.21 4415 0.96 0.22

>2700 0 0.00 343 0.07 0.00

Slope (degree)

<10 59 0.59 156 867 34.07 0.02

10–20 404 4.01 121 656 26.42 0.15

20–30 1750 17.37 112 206 24.37 0.71

30–40 4885 48.48 60 772 13.20 3.67

40–50 2452 24.33 7980 1.73 14.04

50–60 496 4.92 961 0.21 23.59

>60 31 0.31 36 0.01 39.35

Aspect (degree)

Flat (−1) 0 0.00 11 529 2.50 0.00

0–45 2613 25.93 108 927 23.66 1.10

45–90 482 4.78 53 899 11.71 0.41

90–135 49 0.49 32 375 7.03 0.07

135–180 15 0.15 24 866 5.40 0.03

180–225 36 0.36 28 532 6.20 0.06

the reciprocal value of the radius of curvature of the line.

Hence, while the curvature values of broad curves are small,

the tight ones have higher values. Plan curvature is described

as the curvature of a contour line formed by intersection of

a horizontal plane with the surface (Eq. 2) (Wilson and Gal-

lant, 2000). The influence of plan curvature on the erosion

processes is the convergence or divergence of water during

downhill flow. In addition, this parameter constitutes one of

the main factors controlling the geometry of the terrain sur-

face where the debris material is accumulated. This can be
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Table 1. Continued.

Parameter the number of grid (%) the number of grid (%) Frequency

Class cells on debris cells on class ratio

source area

Aspect (degree)

225–270 474 4.70 30 391 6.60 0.71

270–315 2649 26.29 54 687 11.88 2.21

315–360 3759 37.30 115 272 25.03 1.49

Plan curvature (rad/m)

<(−1.0) 1658 16.45 21 473 4.66 3.53

(−1)–(−0.5) 1122 11.13 31 045 6.74 1.65

(−0.5)–(−0.1) 1386 13.75 70 337 15.27 0.90

(−0.1)–0 444 4.41 57 394 12.46 0.35

0–0.1 522 5.18 123 192 26.75 0.19

0.1–0.5 1644 16.31 98 338 21.36 0.76

0.5–1 1417 14.06 39 916 8.67 1.62

>1.0 1884 18.70 18 783 4.08 4.58

Profile curvature (rad/m)

<(−1.0) 1376 13.65 14 436 3.14 4.36

(−1)–(−0.5) 1353 13.43 36 286 7.88 1.70

(−0.5)–(−0.1) 1861 18.47 85 825 18.64 0.99

(−0.1)–0 563 5.59 52 504 11.40 0.49

0–0.1 568 5.64 125 573 27.27 0.21

0.1–0.5 1864 18.50 90 634 19.68 0.94

0.5–1 1276 12.66 38 258 8.31 1.52

>1.0 1216 12.07 16 962 3.68 3.28

Stream power index

<1.0 4699 46.63 307 053 66.68 0.70

1.0–2.0 2846 28.24 90 027 19.55 1.44

2.0–3.0 1363 13.53 32 999 7.17 1.89

3.0–4.0 473 4.69 13 887 3.02 1.56

4.0–5.0 364 3.61 7883 1.71 2.11

>5.0 332 3.29 8629 1.87 1.76

Sediment transport capacity

index

<2.0 2276 22.59 225 841 49.04 0.46

2.0–4.0 402 3.99 74 031 16.08 0.25

4.0–6.0 1535 15.23 57 264 12.44 1.22

6.0–8.0 1564 15.52 37 772 8.20 1.89

8.0–10.0 1225 12.16 23 429 5.09 2.39

>10.0 3075 30.52 42 141 9.15 3.33

obviously realized when comparing the mean plan curvature

values of the pixels representing debris source areas (0.05)

with pixels representing free from debris source areas (0.01).

The profile curvature is the curvature in the vertical plane

parallel to the slope direction (Eq. 3) (Wilson and Gallant,

2000). It is the measure of the rate of change of slope. For

this reason, this parameter directly controls velocity of wa-

ter flow, and so erosion. While the values of minimum and

maximum profile curvatures of debris source areas and the

areas free from debris are −7.08, 8.42, and −9.35, 10.95,

respectively, the mean profile curvature values are 0.01 for

debris source area and −0.04 for the areas free from debris.

This descriptive statistical evaluation suggests that the profile

curvature parameter also strictly controls the zones of debris
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material accumulation.
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Primary topographical attributes such as aspect, slope and

slope curvatures are calculated directly from the derivatives

of a topographic surface (Wilson and Gallant, 2000). On the

other hand, the secondary topographical attributes are com-

puted from two or more primary attributes. According to

Wilson and Gallant (2000), the majority of these secondary

attributes comes from the ability of describing patterns as a

function of process. In this study, two well-known secondary

topographical attributes were also evaluated. One of the sec-

ondary topographical attributes used in this study is stream

power index (SPI). It is a measure of erosive power of water

flow based on assumption that discharge (q) is proportional

to specific catchment area (As) (Eq. 4) (Moore et al., 1991).

SPI = As tan β (4)

where, As is the specific catchment area (m2 m−1), β is the

slope gradient in degree. The index, SPI, is one of the main

factors controlling the erosion processes. Besides, the ero-

sion processes can be considered as one of the main compo-

nent of the generation of debris material. Descriptive statis-

tical evaluations suggest that particularly the mean values of

SPI for debris source areas (1.42) and for areas free from de-

bris (0.93), the importance of the index SPI in generation of

debris material is comprehensible.

The other secondary topographical attribute used in this

study is the sediment transport capacity index (LS) (Moore

and Burch, 1986). The calculation of LS value is given in the

equation below:

LS = (m + 1)(As/22.13)m(sin β/0.0896)n (5)

where As is the specific cathment area (m2 m−1), β is the

slope gradient (in degrees), values of m and n are 0.4 and 1.3,

respectively (Moore and Wilson, 1992). This parameter was

derived from unit stream power theory and is equivalent to

the length-slope factor in the revised universal soil loss equa-

tion in certain circumstances where slope length <100 m and

slope <14◦ (Moore and Wilson, 1992). However, these con-

ditions could not be satisfied in this study due to the mor-

phological characteristics of the study area. As mentioned

previously, the secondary topographical attributes such as LS

are the functions of surface processes. Depending on the in-

crease of slope gradient and specific catchment area, the LS

Fig. 4. Topographical parameter maps of the study area; Altitude

(a), slope gradient (b), aspect (c), plan curvature (d), profile cur-

vature (e), stream power index (f) and sediment transport capacity

index (g).

will increase. Obviously, this high energy environment con-

tributes disintegration of slope-forming rock. The mean val-

ues of LS of debris source areas and areas free from debris

are 9.4 and 3.85, respectively. These descriptive statistics

also indicate that LS is a useful parameter in differentiating

debris sources.

5 Application of ANN architecture to produce potential

debris source area map

In engineering geology and geomorphology literature, an

ANN architecture have been used for different purposes,

www.nat-hazards-earth-syst-sci.net/7/557/2007/ Nat. Hazards Earth Syst. Sci., 7, 557–570, 2007
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Fig. 4. Continued.

however parameter estimation and landslide susceptibility

mapping are the most popular among the ANN applications

(Singh et al., 2001; Lee et al., 2003; Gomez and Kavzoglu,

2005; Ermini et al., 2005; Yesilnacar and Topal, 2005; Son-

mez et al., 2006).

The first stage in the application of the ANN architecture

is the production of data matrix. While each row data rep-

resents an individual case expressed using a terrain mapping

unit (grid cell), columnar data show the input and output vari-

ables in the data matrix. In this matrix, continuous variables

(SPI, aspect, altitude, LS, plan curvature, profile curvature

and slope) were normalized in the range of [0, 1]. Since the

parameter of geology is a categorical data, it was expressed

in binary format with respect to each lithological definition.

By considering 7 continuous variables and 15 lithological

units in binary format, total 22 independent variables were

included in the ANN architecture. Output variable of the

analysis is also expressed in binary format with respect to

presence (1) and absence (0) of debris material.

A neural network model of the data-generating system

can be constructed using an artificial neural network (ANN),

the network predicting outputs from inputs. Hecht-Nielsen

(1987) and Schalkoff (1997) indicate that an ANN may be

defined as a structure comprised of densely interconnected

adaptive simple processing elements that are capable of per-

forming massively parallel computations for data processing

and knowledge representation.

The attractiveness of ANN comes from the informa-

tion processing characteristics of the system, such as non-

linearity, high parallelism, robustness, fault and failure toler-

ance, learning, ability to handle imprecise and fuzzy infor-

mation, and their capability to generalize (Jain et al., 1996).

ANN-based models are also empirical in nature; however,

they can provide practically accurate solutions for precisely

or imprecisely formulated problems and for phenomena that

are only understood through experimental data and field ob-

servations (Basheer and Ajmeer, 2000).

Several types of ANN have been used in the literature.

However, the back-propagation ANN, which is also known

as the generalized delta rule, is the most popular one. A

back-propagation network is a multi-layer neural network

(MNN). The MNN with back-propagation (BMNN) has been

successfully used as a mapping and prediction tool in the

engineering geology. Neaupane and Achet (2004), Lee et

al. (2004), Gomez and Kavzoglu (2005), Ermini et al. (2005)

and Yesilnacar and Topal (2005) are some examples for

landslide susceptibility mapping applications of BMNN. The

back-propagation technique has expanded the range of prob-

lems to which ANNs can be applied, and it has generated

many successful demonstrations of its power (Neaupane and

Achet, 2004). The simplest form MNN is composed of one

input layer and one output layer. The complexity of the

MNN structure increases by the addition of a hidden layer.

Each layer consists of neurons (nodes), and the neurons are
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connected by weighted links passing signals from one neu-

ron to another. The final weights and thresholds of activation

for decreasing the error between observed and computed out-

puts subject to a sufficient level defined by the user is set in

the training phase of the ANN algorithm.

The transfer function, also called the activation function,

is necessary to transform the weighted sum of all signals im-

pinging on a neuron so as to determine its firing intensity

(Basheer and Hajmeer, 2000). The most common transfer

function implemented in the literature is the sigmoid func-

tion. Therefore, the sigmoid function is preferred as the

transfer function in this study. The forward and backward

stages are performed repeatedly until the neural network so-

lution reaches the predefined threshold for the root mean

square error (RMSE).

Kavzoglu (2001) pointed out that a sufficient number of

training samples being available is important to estimate

these parameters accurately. For this purpose, Klimasauskas

(1993) and Messer and Kittler (1998) suggested that at least

5–10 times the number of training samples as free parame-

ters (weights) should be used. While Swingler (1996) and

Looney (1996) proposed 20% and 25% of the data for test-

ing, respectively, Nelson and Illingworth (1990) recommend

between 20% and 30% of data for testing. However, Kav-

zoglu (2001) proposed that the optimal number of training

samples must be between [30 × numbers of input nodes ×
(numbers of input nodes+1)] and [60 × numbers of input

nodes × (numbers of input nodes+1)]. When considering

the approach proposed by Kavzoglu (2001), the number of

dataset should be between 15 180 and 30 360. In this study,

total 10 077 pixels are included by the debris source areas in

the debris source inventory map. 20% of this amount were

selected randomly, and assigned as the test data set. Consid-

ering the rest of the presence data having 8062 pixels in spa-

tial domain, the same amount of cases were picked up ran-

domly from the grid cells without debris source area. Hence,

a training data set contains total 16 124 cases, while a test

data set includes 2015 grid cells. As a consequence, the num-

ber of dataset used in the model training can be considered as

acceptable. In this study, to check the generalization capac-

ity of the constructed ANN structure, three different random

data sets produced applying the sampling procedure given

above.

The initial weights, learning rate (η) and momentum co-

efficients (µ) of the ANN influence the convergence of the

back-propagation learning rule (Basheer and Hajmeer, 2000;

Yesilnacar and Topal, 2005). In the literature, the initial

weights are generally set as random small values. Differ-

ent ranges were used to set the initial weights: such as

[−0.1;0.1] by Paola (1994) and Staufer and Fisher (1997);

[−0.25;0.25] by Gallahger and Downs (1994) and Kavzoglu

(2001); [−0.3;0.3] by Rumelhart et al. (1986) and ASCE

(2000); and [−0.5;0.5] by Sietsma and Dow (1991) and

Looney (1997). Fahlman (1988) stated that initialization of

the weights has an insignificant effect on both the conver-

Fig. 5. The approach of the calculation of dynamic learning rate.

gence and final network architecture. However, Basheer and

Hajmeer (2000) indicated that too small a range can lead to

small error gradients which may slow down the initial learn-

ing process. In this study, the initial weight range was ran-

domly selected between −1.0 and 1.0.

The learning rate (η) and momentum coefficient (µ) plays

important role on the time consuming during the training

phase of ANN. The training rate may be slow for very small

learning rate because of minor changes to weights in the net-

work due to small η values. On the other hand, training phase

can be oscillated when η is selected to large. In this study, to

accelerate the convergence, dynamic learning rate was pre-

ferred instead of constant unique value. For this purpose, a

new approach for dynamic learning rate was introduced by

using the heuristic proposed by Negnevitsky (2002). In the

heuristic suggested by Negnevitsky (2002) a multiplier is se-

lected to increase or decrease the learning rate. If the sum of

square errors at the current epoch exceed the previous value

by more that a predefined value (typically 1.04), the learn-

ing rate parameter is decreased (typically by multiplying by

0.7), on the contrary, if the error is less than the previous one

learing rate is increased (typically by multiplying by 1.05)

according to the heuristic proposed by Negnevitsky (2002).

A function for multiplier in the range of predefined ratio of

the sum of square errors obtained current to previous epochs

was preferred instead of constant value in the approach intro-

duced in this study. The approach is explained in Fig. 5, and

given by Eq. (6).

m =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m = SSE at current epoch
SSE at previous epoch

− 0.05

for 1.05 >
SSE at current epoch

SSE at previous epoch
> 1.00

m = SSE at current epoch
SSE at previous epoch

+ 0.05

for 1.00 >= SSE at current epoch
SSE at previous epoch

> 0.95

m = 1.0

for
SSE at current epoch

SSE at previous epoch
>= 1.05

or
SSE at current epoch

SSE at previous epoch
<= 0.95

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(6a)

www.nat-hazards-earth-syst-sci.net/7/557/2007/ Nat. Hazards Earth Syst. Sci., 7, 557–570, 2007



566 M. C. Tunusluoglu et al.: ANN application to produce debris source areas

Fig. 6. Artificial neural network structure used in this study.

Fig. 7. The relations between the number of the training cycles and RMSE values for the training and the test data sets (a), and ROC curve

evaluations for entire study area.

ηfor next epoch = mxηat current epoch (6b)

where m is multiplier, SSE is sum of square error, η is learn-

ing rate. Negnevitsky (2002) indicated that the momentum

coefficient has stabilizing effect in the back-propagation al-

gorithm. The momentum coefficient was set between 0.4 and

0.9 by Wyhthoff (1993), Hassoun (1995) and Fu (1995) sug-

gests a value between 0.0 and 1.0, and Henseler (1995) and

Hertz et al. (1991) suggest µ∼=1.0. In this study, the mo-

mentum coefficient was set to 0.95 by considering the values

suggested in the literature.

Selection of the number of neurons is one of the most crit-

ical tasks in the ANN structure. In the literature, it is possi-

ble to find many heuristic approaches for the selection of the

number of hidden neurons. These were summarized by Kav-

zoglu (2001). In this study, the heuristic approach proposed

by Kaastra and Boyd (1996) was employed because this ap-

proach gives minimum number of hidden layers among the

approaches proposed for the selection of the number of hid-

den layers. In this study, the numbers of input and dataset are

very large. As a result of the heuristic approach proposed by

Kaastra and Boyd (1996), total 5 neurons in one hidden layer

were obtained for the model employed in this study (Fig. 6).

The ANN structures were trained by using combinations

of learning rates and the number of hidden neurons defined
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Fig. 8. Potential debris source susceptibility map.

above. The datasets were normalized between zero and 1

considering the maximum values of input variables. In this

study, a computer code, namely ANNES written by Sonmez

et al. (2006) was used to construct the ANN structure. The re-

lation between the number of training cycles and the RMSE

values of the models obtained by ANNES for each random

data set are given in Fig. 7. During the training stages, to-

tal 40 000 training cycles were performed and the minimum

RMSE values were obtained at approximately 10 000th cy-

cle. At this cycle, the obtained minimum RMSE value is 0.22

for the second training set, while that of value is calculated

as 0.064 again for the second test set (Fig. 7a).

Using the trained ANN model at 10 000th cycle for the

second random sampling, the debris source area susceptibil-

ity map was produced and given in Fig. 8. Considering the

receiver operating characteristic curves (ROC) and the area

under curve (AUC) values, the more spatially effective map

was achieved by using the second random sampling (Fig. 7b).

However, as can be seen from Fig. 8, the produced map is

conservative when considering the field observations. The

similar observations were also carried out by Tunusluoglu et

al. (2007). The main reasons and a proposal were given by

Tunusluoglu et al. (2007). There is a considerable structural

control on debris generation in the study area. In other words,

if slope aspect and orientation of bedding planes are same in

the region, no debris generation occurs. However, this situ-

ation was not detected by aerial-photo interpretations due to

scale of the aerial photos and vegetation cover at some parts

of the study area. For this reason, a structural adjustment for

the debris source area susceptibility map is needed. Since

it was observed that all debris generation occurs on the geo-

morphologic units of cuestas, it can be considered that all de-

bris source areas mapped during field studies coincided with

the geomorphologic units of cuestas. Consequently, this sit-

uation constitutes the main assumption of the approach pro-

posed for the structural adjustment for the susceptibility map

of potential debris source area in this study (Tunusluoglu et

Fig. 9. Continuous aspect distribution (Tunusluoglu et al., 2007).

al., 2007). The second assumption is that theoretical prob-

ability distribution of slope aspect values of debris source

areas is equal to the theoretical probability distribution of

being a cuesta in the field. If Pq is the probability of be-

ing a cuesta, 1−Pq is the probability of not being a cuesta.

To calculate the adjusted probability (P ′
d) of being a debris

source area at a point in the field, 1−Pq (the probability of

not being a cuesta) is subtracted from the probability (Pd)

value of being a debris source area. Calculation of the value

“1−Pq” (the probability of not being a cuesta) has three main

stages. First stage is the construction of the theoretical prob-

ability distribution of slope aspect values of debris source

areas. However, due to the categorical nature of slope aspect

values, a transformation is needed to obtain the continuous

slope aspect distribution. For example, value of −1 in the

slope aspect values does not mean orientation information.

It means flat areas in the field. Hence, this value should be

excluded from the distribution. In addition, the value “0” and

the value “360” in the slope aspect distribution are equal with
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Fig. 10. Adjusted potential debris source susceptibility.

respect to orientation information. So, the transition from “0”

to “360” should be removed (second stage). For this purpose,

the slope aspect values in the range of [0, 157] were summed

with the value 360. The new distribution which shows almost

an ideal theoretical normal distribution (Fig. 9) is obtained in

the range of [165, 514]. The mean and the standard deviation

values of this distribution are 337.32 and 42.59, respectively

(Tunusluoglu et al., 2007). As a result, the probability den-

sity function of this distribution can be written as follows.

f (x)=[1/42.59
√

(2π)] exp(−[1/(3628.04)(x−337.32)2]) (7)

For the last stage, using Eq. (4), the probability values of

being a cuesta were calculated (the value “Pq”). Then, to ob-

tain the probability values of not being a cuesta, these “Pq”

values were subtracted from 1. To obtain the adjusted prob-

ability (P ′
d) values of being a debris source area, the values

“1−Pq” was subtracted from the probability values of de-

bris source areas. Finally, adjusted potential debris source

area map is obtained (Fig. 10) by using the adjusted proba-

bility values. The adjusted map was not classified into sub-

classes and the map was given as continuous scale. How-

ever, to make a general assessment, it may be classified into

three sub-classes such as low (0–0.4), moderate (0.4–0.6) and

high (0.6–1). The percent areal extensions of low, moderate

and high susceptibility classes are found as 93.3%, 3.0% and

3.7%, respectively. The field observations revealed that the

final adjusted susceptibility map exhibits a high performance,

and it can be used for debris flow hazard assessments to be

performed at this site in future.

6 Results and conclusions

The following results and conclusions can be drawn from the

present study:

1. In this study, an ANN architecture having five neu-

rons in one hidden layer was constructed to obtain po-

tential debris source susceptibility map of the northern

slopes of the Barla - Besparmak and Kapi Mountains

of the Taurids Mountain belt in the western part of the

Mediterranean region of Turkey. In this region, an im-

portant amount of debris deposits accumulate in chan-

nels at upper elevations and foot zones of the mountain

slopes. When these debris materials in the channels at

upper elevations are triggered by heavy rainfalls, some

catastrophic debris flows occur in the region, and these

catastrophic mass movements result in loss of lives, en-

vironmental hazards and economical losses.

2. The produced map show a considerable performance

and it can be used for debris flow hazard mitigation ef-

forts. To make a general assessment on the produced

map and the study area, the map was classified into three

sub-classes such as low (0–0.4), moderate (0.4–0.6) and

high (0.6–1). The percent areal extensions of low, mod-

erate and high susceptibility classes are found as 93.3%,

3.0% and 3.7%, respectively.

3. A new approach for dynamic learning rate introduced

in this study to accelerate convergence should be inves-

tigated for different database having varied volume of

data. The needed improvement to the new approach for

dynamic learning rate could be employed.
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