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Abstract. This work deals with the investigation of bifurcating fluid phenomena using a reduced

order modelling setting aided by artificial neural networks. We discuss the POD-NN approach

dealing with non-smooth solutions set of nonlinear parametrized PDEs. Thus, we study the Navier-
Stokes equations describing: (i) the Coanda effect in a channel, and (ii) the lid driven triangular

cavity flow, in a physical/geometrical multi-parametrized setting, considering the effects of the

domain’s configuration on the position of the bifurcation points. Finally, we propose a reduced
manifold-based bifurcation diagram for a non-intrusive recovery of the critical points evolution.

Exploiting such detection tool, we are able to efficiently obtain information about the pattern
flow behaviour, from symmetry breaking profiles to attaching/spreading vortices, even at high

Reynolds numbers.

1. Introduction and motivation

Nowadays, many authors are investigating the benefits that a machine learning (ML) [20] approach
could bring to different topics in numerical analysis [50, 22, 32, 34, 21, 52, 57]. On one hand, the
higher computational resources and the increasing data available make the application of these
methodologies easier and faster, but on the other hand it is clear that without relying on a solid
mathematical analysis they could led to unreliable results. In the context of the approximation
of partial differential equations (PDEs), an example of such a situation is given by the existing
duality between projection-based and data-driven methods [7, 38]. While the former builds upon
the mathematical formulation of the problems (e.g. the weak formulation of the PDE), the latter
only exploits the information from data to learn the dynamics.

The scientific community is making a great effort focusing the attention on a better mathematical
characterization of the approximation properties of data-driven techniques based on the Neural
Networks (NNs) [14, 54, 35]. Despite this, results are still limited.

Nevertheless, projection-based methods are usually characterized by high computational burden
and their applicability is compromised when a real-time or many-query context is needed. This is the
case for the investigation of bifurcating phenomena [53, 33, 10] modelled by parametrized nonlinear
PDEs, for example by means of high-fidelity discretization techniques such as the Finite Element
(FE) method (or Finite Volume, Finite Difference, Spectral Element) [49]. The aim, when modelling
such complex problems, is to detect and properly follow the bifurcating behaviour of the model,
i.e. study the sudden qualitative changes and stability properties of the solutions w.r.t. a smooth
variation of the bifurcating parameter. Indeed, the general setting includes a non-differentiable
evolution of the solution manifold, and thus the non-uniqueness of the state.

This lead us to the investigation of the many possible existing solutions of a multi-parametrized
system, where both physical and geometrical quantities are varied. Therefore, repeated evalua-
tions of the PDE solutions, corresponding to the sampling over the parameter space, are required
to obtain information about the model’s behaviour. In addition to this, fine mesh discretization
have to be considered to be able to capture all effects of the nonlinearities in the system. Thus, to
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2 AN ANN APPROACH TO BIFURCATING PHENOMENA IN CFD

properly reconstruct the bifurcating behaviour, we need a collection of methodologies (e.g. contin-
uation techniques [1], deflation methods [16], and eigenvalue problems [42]) which make such task
computationally unbearable.

Recently, due to the high computational cost discussed above, a growing effort was put towards
the use of Reduced Order Models (ROMs) [6] to these bifurcating systems [39, 43, 41, 42, 44, 40,
24, 23, 55]. The ultimate goal of ROMs is to build a low-dimensional manifold which: (i) is able to
represent the physics involved, (ii) enables fast evaluation of the solution for new parameters, and
(iii) provides an accurate approximation of the high-fidelity manifold.

Among the many possible ROM techniques, we focus on the Reduced Basis (RB) method [26, 48,
37], which takes advantage of the offline-online paradigm to build a reduced space from a collection
of high-fidelity solutions (time-demanding phase to be computed on high performance resources),
to obtain reduced coefficients, i.e. the coefficients appearing in the linear expansion w.r.t. the RB
functions. In fact, the latter can be recovered by Proper Orthogonal Decomposition (POD) and
span the reduced space.

Unfortunately, this offline-online decomposition is prevented in our setting by the nonlinear terms
appearing in the PDEs, and from which the bifurcating phenomena arise. Therefore, the reduction
of nonlinear parametrized PDEs usually still suffers from the curse of dimensionality and requires
the adoption of intrusive hyper-reduction techniques such as the Empirical Interpolation Method
(EIM) and its variants [5, 11]. These methodologies prevent the online phase to depend on the
large number of degrees of freedom that characterizes the high-fidelity simulation, enabling a good
speed-up.

In the bifurcating context, this intrusive hyper-reduction approach not only increases the compu-
tational burden during the offline phase, but it is also not robust due to the non-uniqueness of the
solution [39, 41]. To properly investigate the complex physics involved, we seek to adopt a method
combining the reliability of the projection-based RB and the efficiency of the data-driven NNs.

Thus, we chose the POD-NN method presented and further investigated in [28, 12] as the re-
gression based non-intrusive RB method. This approach relies on the combination of the POD
technique, based on the Galerkin-FE method, and artificial neural networks. It enables a complete
offline-online decoupling, recovering the efficiency without the need of intrusive methodologies, while
still relying on accurate high-fidelity approximations.

In practice, instead of retrieving the RB coefficients by means of the classic POD-Galerkin ap-
proach, where we have to intrusively assemble and solve at each step a nonlinear reduced system, we
aim at training a feedforward neural network, based on the same POD dataset, to build a map from
the parameter space to the reduced coefficients themselves. Other ML approaches could have been
used to investigate this framework [30, 50, 18, 9], but we focus only on this POD-NN technique.

We analyze two relevant test cases in computational fluid-dynamics (CFD), where both physical
and geometrical parameters have been taken into consideration. The first problem describes a
viscous, steady and incompressible flow in a planar straight channel with a sudden expansion, while
the second one deals with the driven flow inside a triangular cavity.

Indeed, both applications are subject to bifurcating phenomena: while the former models a
cardiac disease, called mitral-valve regurgitation, caused by the Coanda effect [47, 43, 44, 24], the
latter involves many different interesting behaviours that, to our knowledge, have not been studied
in detail previously.

Moreover, since the computational domain has great relevance for these applications, i.e. the
steady state solutions and their uniqueness strongly depend on it, we encode parametrized geometries
in the models to investigate how the uniqueness regime vary with it.

Thus, the goal is to exploit the regression based non-intrusive RB method to develop an efficient
and deep understanding of complex bifurcating phenomena in the physically and geometrically
parametrized context.

The standard way to study the solutions’ behaviour is the bifurcation diagram, which is a tool that
exploits specific features of the model to understand the evolution of the solutions manifold w.r.t.
the bifurcating parameter. It is possible to build an affine output directly from the reduced solution
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to obtain a representation of the bifurcation, but this would still depend on the intrusive RB phase.
Motivated by this, we develop a reduced manifold based bifurcation diagram (RMBBD). The latter
is a detection tool which exploits the parameter dependence of the RB coefficients to discover, in a
non-intrusive manner, the evolution of the critical points corresponding to the branching behaviour.

All simulations were performed within the open source software FEniCS [17] and RBniCS [51],
while we chose PyTorch [36] to construct the neural network.

The work is organized as follows: in Section 2 we present the general nonlinear parametrized set-
ting for a PDE undergoing bifurcating phenomena, in both the continuous and the discrete context.
In Section 3 we briefly introduce the reduced order methodology that will serve to cut the computa-
tional burden and to provide the low fidelity space needed for the non-intrusive investigation. Then,
in Section 4 we discuss the POD-NN approach for an efficient recovery of the reduced coefficients
and introduce the reduced manifold based bifurcation diagram that we develop for a non-intrusive
detection of the bifurcation points. In Section 5 we discuss the behaviour of the Navier-Stokes
model and the RB/POD-NN results for: (i) the Coanda effect in a channel, and (ii) the lid driven
triangular cavity flow, both of them in a multi-parametrized context. Finally, in Section 6 we draw
some conclusions and highlight future perspectives.

2. Approximation of bifurcating PDEs

Let us consider a generic parametrized PDE which models a system whose behaviour is affected
by some physical or geometrical parameters. When the parameters change slightly, we would expect
the solution to evolve continuously in a unique manner. This may not be the case when dealing with
complex phenomena modelled by nonlinear equations. Indeed, sudden changes in the qualitative
solutions’ behaviour can occur at critical parameter values, known as the bifurcation points [53, 2].
Moreover, when reaching these values, we may loose the uniqueness of the solution for a given
configuration of the system, i.e. a specific value of the parameter. We will refer to the set of
solutions with the same qualitative properties as a branch. Thus, an extensive numerical study of
such models is required to understand the underlying physics.

Denoting the parameter as µ ∈ P ⊂ RP , the strong form of a parametrized PDE, over the original
(parameter-dependent) domain Ω(µ) ⊂ Rd, can be expressed as

(1) G(X(µ);µ) = 0 in X′µ ,

where X(µ) ∈ Xµ is the solution belonging to some suitable Hilbert space Xµ :=X(Ω(µ)), and
G : Xµ × P → X′µ is the parametrized map representing the PDE.

The numerical approximation of these problems often involves their weak formulation, that reads
as: given µ ∈ P, find X(µ) ∈ Xµ such that

(2) g(X(µ), Y ;µ) := 〈G(X(µ);µ), Y 〉X′
µ,Xµ = 0 ∀ Y ∈ Xµ ,

where we have introduced the parametrized variational form g : Xµ × Xµ × P → R.
Let (Z;µ) ∈ Xµ × P be a known solution of (1). Then, to ensure the well-posedness of the

problem, one usually assumes that the Frechét partial derivative DXG(Z;µ) : Xµ → X′µ is bijective
(thanks to the Implicit Function Theorem [13, 10]).

Introducing the parametrized variational form dg[Z](·, ·;µ) expressing the Frechét partial deriva-
tives of G w.r.t. X at (Z,µ) ∈ Xµ × P as

(3) dg[Z](X,Y ;µ) := 〈DXG(Z;µ)X,Y 〉 ∀X,Y ∈ Xµ ,

the bijectivity can be reformulated in terms of the variational form (3), as:

◦ continuous on Xµ × Xµ, if there exists a continuity constant γ > 0 such that

(4) γ(µ) := sup
X∈Xµ

sup
Y ∈Xµ

dg[Z](X,Y ;µ)

‖X‖Xµ
‖Y ‖Xµ

> γ ∀µ ∈ P ,
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◦ inf-sup stable on Xµ × Xµ, if there exists an inf-sup constant β > 0 such that

(5) β(µ) := inf
X∈Xµ

sup
Y ∈Xµ

dg[Z](X,Y ;µ)

‖X‖Xµ
‖Y ‖Xµ

≥ β ∀µ ∈ P ,

and

(6) inf
Y ∈Xµ

sup
X∈Xµ

dg[Z](X,Y ;µ)

‖X‖Xµ
‖Y ‖Xµ

> 0 ∀µ ∈ P .

Since the conditions (5) and (6) are equivalent, respectively, to the injectivity and the surjectivity
of the Frechét derivative DXG(Z;µ), the existence of a local branch of non-singular solutions is
guaranteed.

When the parameter reaches a critical value µ∗, i.e. the bifurcation point, the inf-sup stability
of the model is lost, and the system admits the existence of a qualitatively different solution that
bifurcates from the previous branch. Indeed, the inf-sup constant β(µ∗) becomes zero, and the
Frechét derivative DXG(Z;µ) fails to be invertible.

The main goal of bifurcation theory is to provide a mathematical description of the bifurcating
scenario that can be observed in physical systems. The understanding of the global behaviour is
usually pursued by means of the reconstruction of the bifurcation diagram, i.e. the plot of a scalar
characteristic output s(X(µ)), corresponding to a given solution (X(µ),µ) of the PDE, for each
instance of the parameter in P. Therefore, the existence of qualitatively different solutions for the
same values of the parameter will result in the presence of multiple branches.

The bifurcating phenomena depend on the physical domain in which the problem is posed. There-
fore, to pursue a more general investigation, we considered a parametrized geometry Ω(µ). A more
practical way to deal with (2) is to express the weak formulation over a reference (parameter-
independent) domain Ω ⊂ Rd, which is usually taken as Ω = Ω(µ) with µ ∈ P. Finally, denoting
by Φ : Ω×P → Ω(µ) the (affine) transformation map such that Ω(µ) = Φ(Ω,µ), we can pull back
the weak formulation (2) over the reference domain Ω as follows: given µ ∈ P, find X(µ) ∈ X such
that

(7) g(X(µ), Y ;µ) = 0 ∀ Y ∈ X ,
where, with a little abuse of terminology, we have kept the same notation for all quantities now
defined on the reference domain Ω. Furthermore, the solution over the original domain Ω(µ) can be
recovered by means of the composition X(µ) ◦Φ(· ;µ).

For the numerical approximation of (7), a full-order (or high-fidelity) discretization method is
needed. Here we focus on the Finite Element method [49], which exploits a Galerkin projection of
the system over a finite dimensional subspace XN ⊂ X of dimension N .

The Galerkin-FE method reads as: given µ ∈ P, we seek XN (µ) ∈ XN that satisfies

(8) g(XN (µ), YN ;µ) = 0 , ∀YN ∈ XN .
The nonlinear solver chosen to linearize the weak formulation in (8) is the Newton-Kantorovich
method [13, 48], given as: for µ ∈ P and an initial guess X0

N (µ) ∈ XN , for every k = 0, 1, . . . , we
seek the variation δXN ∈ XN such that

(9) dg[Xk
N (µ)](δXN , YN ;µ) = g(Xk

N (µ), YN ;µ) , ∀YN ∈ XN .

We update the solution as Xk+1
N (µ) = Xk

N (µ) − δXN , and repeat these steps until an appropriate
stopping criterion is verified.

From the algebraic point of view, we denote with {Ej}Nj=1 a Lagrangian basis for XN , such that,

denoting the solution vector as XN (µ) = {X(j)
N (µ)}Nj=1, we can write each element XN (µ) ∈ XN as

(10) XN (µ) =

N∑
j=1

X
(j)
N (µ)Ej .

Thus, we return to the study of the solution XN (µ) ∈ RN of the system provided by the combination
of the Newton-Kantorovich method’s k-th step and the Galerkin-FE discretization: given µ ∈ P
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and an initial guess X0
N (µ) ∈ RN , for every k = 0, 1, . . . , we seek the variation δXN ∈ RN such

that

(11) JN (Xk
N (µ);µ)δXN = GN (Xk

N (µ);µ) ,

where the high-fidelity residual vector in RN and Jacobian matrix in RN×N are defined as

(12)
(GN (Xk

N (µ);µ))i = g(Xk
N (µ), Ei;µ), ∀ i = 1, . . . ,N ,

(JN (Xk
N (µ);µ))ij = dg[Xk

N (µ)](Ej , Ei;µ), ∀ i, j = 1, . . . ,N .

Let us note that, even when considering a non-bifurcating context, one has to take care of the
discrete counterpart of the inf-sup stability conditions. Indeed, a common choice for the FE space
in computational fluid-dynamics applications, where velocity and pressure fields are involved, is the
Taylor-Hood P2 − P1 FE discretization.

Thus, given µ ∈ P we are able to find an approximate solution XN (µ) of (8). However, we
aim at investigating solution’s behaviour following its branching phenomenon. For this reason, the
presented framework needs to be coupled with a continuation method [1, 53, 33], which enables the
convergence to a prescribed branch.

Finally, we remark that the computational cost of a deep analysis for a given bifurcating model
is often infeasible. In fact, we should solve the possibly large linear system (11) in a nested way;
i.e. , for every iteration of the Newton-Kantorovich method, for every parameter in the continuation
method and for every solution branch that we want to reconstruct. To enable this, we introduce in
the next section a reduced order modelling approach to recover the bifurcation diagram in a more
efficient way.

3. Reduced order model

Dealing with nonlinear parametrized PDEs remains a computational challenge. During the last
decade, much efforts has been put towards Reduced Order Models [6], a class of techniques that are
very well suited when dealing with many-query or real time investigations.

One of the main techniques is the Reduced Basis method [26, 48, 37], which enables a fast evalua-
tion of the solution for a new parameter µ ∈ P. This is possible thanks to the decomposition of such
methodology into two phases, the offline and the online one. During the former, one precomputes the
high-dimensional terms coming from the full-order approximation technique and then assembles all
relevant quantities. On the contrary, during the latter, one rapidly solves a reduced system of much
smaller dimension, where the efficiency comes from its independence from the degrees of freedom N
of the underlying high-fidelity method.

Therefore, while the scope of the offline phase is the construction of a low dimensional basis for
the reduced manifold XN ⊂ XN , the online phase is the model resulting from the Galerkin projection
onto this precomputed space, to obtain the solution as a linear combination of the RB functions
which span XN .

Among many possible ways to construct a basis for the reduced manifold, we focus here on the
Proper Orthogonal Decomposition [56], a singular value decomposition based algorithm exploited
to extract the most meaningful information about the system. Even though it requires a greater
computational effort during the offline phase (when compared with other sampling/construction
strategies), this choice is motivated by: (i) better approximation capability when dealing with the
bifurcating context, (ii) no need for the development of an a posteriori error estimator (required
instead by the Greedy algorithm [27, 8]), (iii) good fit with the machine learning paradigm we will
present later on, and (iv) easy combination with continuation strategies.

Given Ptrain = {µ(i)}Ntrain
i=1 ⊂ P, a collection of parameters, this method entails solving the

corresponding Ntrain Galerkin-FE problems associated to each value in Ptrain. Then, one builds the
so-called snapshots matrix S from the high-fidelity solutions vectors {XN (µ(i))}Ntrain

i=1 , which contain
the information about the µ-dependence of the solutions manifold.
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Finally, applying the POD algorithm to S, one obtains the best basis of rank N (among all the
orthonormal ones) by taking the first N left singular vectors. Denoting these basis functions as
{Σn}Nn=1, we can define the reduced space as XN = span{Σ1, . . . ,ΣN}.

The starting point to obtain an efficient online phase is to express every element XN (µ) ∈ XN as
a linear combination of the RB functions {Σn}Nn=1, that is

(13) XN (µ) =

N∑
n=1

X
(n)
N (µ)Σn ,

where the reduced solution XN (µ) = {X(n)
N (µ)}Nn=1 ∈ RN is the coefficients vector in the RB

expansion.
Here, we denote by Σn ∈ RN the nodal values of the basis function Σn for all n = 1, . . . , N , and

express with the matrix V = [Σ1| . . . |ΣN ] ∈ RN×N the change-of-variable mapping from the RB
basis to the FE basis, i.e. we write XN = VXN .

During the online phase we project the linearized weak formulation (9) onto the reduced space
XN , obtaining the algebraic problem: given µ ∈ P, and an initial guess X0

N (µ) ∈ RN , for every
k = 0, 1, . . . , we seek the variation δXN ∈ RN such that

(14) JN (XkN (µ);µ)δXN = GN (XkN (µ);µ) ,

where GN ∈ RN and JN ∈ RN×N are, respectively, the reduced residual and the reduced Jacobian
matrix. Equation (14) can be equivalently written as

(15) VT JN (VXkN (µ);µ)VδXN = VTGN (VXkN (µ);µ) .

We update the solution as Xk+1
N (µ) = XkN (µ)− δXN until convergence.

Once again, let us remark that the inf-sup stability properties are not inherited from the underly-
ing FE discretization step, and thus we need to recover such feature also at the reduced level. This
task is accomplished by means of standard supremizer enrichment [4].

Moreover, it is clear that (15) still involves the degrees of freedom N of the high-fidelity problem,
thus a repeated assembly of the system compromises the efficiency of the RB during the online
phase. This issue can be overcome by adopting hyper-reduction techniques, such as the Empirical
Interpolation Method (EIM) and its variants [5, 11], to allow a consistent speed-up by recovering
the affine dependency w.r.t. the parameter µ. The application of such intrusive affine-recovery
techniques (in the bifurcating context) is not robust (due to the presence of multiple existing solutions
corresponding to a fixed µ) and adds further complexity to the offline phase [39, 41]. The lack of
efficiency of the methodology described above has brought us towards a non-intrusive investigation,
that we explore in the next section.

4. A non-intrusive POD-NN approach for bifurcating phenomena

In this section, we briefly describe the POD-NN approach presented and further investigated in
[28, 12], discussing how neural networks can be used to recover a non-intrusive reduced approxi-
mation of a generic nonlinear and parameter dependent PDE. In particular, we aim at building a
regression model able to efficiently retrieve the RB coefficients to investigate branching phenomena,
and eventually use them to obtain information about the location of the bifurcation points.

The first step is the construction of the dataset used for the regression procedure. Having denoted
with {Ei}Ni=1 a basis for the FE space XN and with {Σi}Ni=1 a basis for the RB space XN , we recall
that the || · ||XN - closest element of XN to the high-fidelity solution XN can be expressed by its
projection onto the reduced space itself as

XV
N (µ) :=

N∑
j=1

(VVTXN (µ))jE
j =

N∑
i=1

(VTXN (µ))iΣ
i ∈ XN .

This means that, once we built the RB space by means of the POD technique, we can approximate
the high-fidelity solution via a regression task that finds the “best” RB coefficients in that basis.
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We seek to build a neural network to approximate the function π : P ⊂ RP → RN , which maps
each input parameter µ ∈ P to the vector of reduced coefficients

(16) π(µ) :=VTXN (µ) ∈ RN

expressing the expansion of XV
N (µ) in the reduced basis {Σi}Ni=1.

The learning procedure is performed through a supervised learning approach and is based on the
training set given by the pairs {(µ(i), π(µ(i))}1≤i≤Ntrain

. For the sake of consistency, rather then

computing the training output for µ(i) as in (16), we project the snapshots through the normal
equations, solving the system given by VTMVπ(µ) = VTMXN (µ), where M is the inner product
matrix of the discretization. The main advantage of this training process is that it does not affect
the offline phase of the reduction strategies. Indeed, one only has to rely on the computed snapshots
to perform the POD compression step, i.e. : for any given µ ∈ P, the POD-NN solution can be
recovered non-intrusively by evaluating the regression map π(µ) and projecting the vector of reduced
coefficients in the high-fidelity space XN , to obtain XNN(µ) = Vπ(µ) ∈ RN . Thus, denoting with
XNN (µ) :=π(µ) the NN coefficients, the RB expansion of the POD-NN solution reads

(17) XNN(µ) =

N∑
n=1

X
(n)
NN (µ)Σn ∈ XN .

We note that another advantage of the POD-NN non-intrusive approximation consists of the fact
that we do not need to implement any continuation strategies. Indeed, just by querying the trained
network, we obtain the reduced coefficients for any given value of µ ∈ P without the need for a
proper initial guess to guide the convergence of the nonlinear solver.

Despite the huge variety of neural network structures, we chose here a standard feedforward neural
network, or multi-layer perceptron (MLP), shown in Figure 1. The latter is an oriented graph, where
the nodes, or neurons, are organized as follows: (i) an input layer of dimension P corresponding
to the dimension of the parameter space P; (ii) an output layer of dimension N corresponding to
the dimension of the RB space; (iii) LK inner layers, each with HK computing neurons. We set
a learning rate η, the weighted sum as a propagation function, the hyperbolic tangent tanh(x) as
activation functions, and the identity as output function in the last layer.

RP
RN

INPUT

OUTPUT

HIDDEN LAYERS

Figure 1. A feedforward neural network receiving the parameter µ ∈ P as input
and returning the reduced coefficients π(µ) as output, with LK = 3 layers and
HK = 5 neurons.

Moreover, once the dataset given by the parameters and the corresponding target outputs is
obtained, we split it for cross-validation purposes as follows: a training set Ξtr = {µ(1), . . . ,µ(Ntr)}
with Ntr = (5/6) · Ntrain and a validation set Ξva = {µ(1), . . . ,µ(Nva)} with Nva = (1/6) · Ntrain.
Thus, during the training procedure, we are using ∼15% of the data to obtain an indicator, to gauge
the generalizing capabilities of the network on the validation set. We want to prevent overfitting,
which appears when the NN memorizes the training set exactly and thus produce bad approximation
of unseen data.
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As concerns the training procedure, we took into account both mini-batches and learning through
the epochs paradigm. Within this setting, we adjust the weights of the network by means of the
ADAM optimizer [31], guided by the mean squared error (MSE) function as an indicator of the
performance. The MSE provides a measure of the discrete error obtained by replacing the projected
solution XV

N (µ) with the output of the neural network regression XNN(µ). The ADAM method is
a first order technique that considers only the gradient of the cost function, while for example the
optimizer used in [28] is the Levenberg-Marquardt algorithm, which is of the second order and thus
requires the computation of the Hessian. This makes our approach faster but less accurate.

We initialized the weights with a uniform distribution (without using a multiple restarts ap-
proach), while for the learning rate decay we use the following hyperbolic relation weighted by the
square root of the current epoch

(18) η =
η0

1 +
√

epoch
.

This way we reach a better accuracy, since the learning parameter gives a weighted importance
to the information at any instance of the training loop on epochs. The latter is controlled by an
early-stop procedure, which checks whether or not the training validation accuracy has decreased
within the last Nep

it iterations, or the loop has reached a maximum of instances Nep
max.

Furthermore, we remark that a critical task when dealing with neural networks is the by-hand
tuning of the hyper-parameters, some of which we have already introduced (number of layers, number
of neurons, learning rate, activation function). Nonetheless, a more robust investigation of the
hyper-parameter space can be done through automated machine learning (AutoML) and Bayesian
optimization [29].

At the end of the procedure, we consider the network identified by the configuration of the weights
associated to the best validation accuracy and we use it for the non-intrusive step.

Moreover, we introduce a normalization on the dataset to rescale it in the range [0, 1]. This is a
necessary step to allow the network to learn from the different order of magnitudes of the training
dataset and to improve the results.

Finally, we note that although many different sampling procedures can be adopted, we chose an
equispaced or log-equispaced distribution, since they help guarantee that after the splitting of the
dataset, each portion of the parameter domain is well represented for the training and validating
phases, also when Ntrain is small. Another observation is that we use a fixed initialization seed to
guarantee the reproducibility of these results.

All ad-hoc settings for the network that one can implement increase the computational burden,
so that the learning procedure may become too costly. Given the low-dimensionality of the input
and output layers, we always rely on small network structures, thus avoiding more complex deep
neural networks and machine learning’s advanced techniques. This allow us to have a rapid training
procedure to be embedded into the costly HF offline phase.

As concerns the errors, we consider, for a given parameter µ ∈ P, the quantities

εRB(µ) =
‖XN (µ)−XN (µ)‖XN

‖XN (µ)‖XN

and εNN (µ) =
‖XN (µ)−XNN (µ)‖XN

‖XN (µ)‖XN

,

respectively for the POD-Galerkin and the POD-NN relative errors.
We evaluate these errors on the test parameter set Ξte ⊂ P of dimension Nte, which is the

parameter subspace on which we build the bifurcation diagrams. As statistics for the performance,
we considered the average of these quantities, and denote them by

εRB =

∑
µ∈Ξte

εRB(µ)

Nte
and εNN =

∑
µ∈Ξte

εNN (µ)

Nte
,

and their maximum value

εmax
RB = max

µ∈Ξte

εRB(µ) and εmax
NN = max

µ∈Ξte

εNN (µ),

over the whole test data set Ξte. We use the same notation also when the unknown X contains
multiple variables, thus specifying the corresponding field.
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Instead of considering a network which aims at approximating all coefficients monolithically, i.e.
trying to recover simultaneously, in a CFD context, the reduced vector for velocity and pressure
with the same network, we construct two different NNs with their own weights for each field. This
is crucial to obtain good approximation results, indeed even if the networks share the same inputs,
the corresponding outputs usually have very different behaviour and magnitude. As in [28], we have
not used the supremizer to recover the POD-NN solution.

Before moving to the numerical results, we present an empirical detection tool to recover the
position of the bifurcation points in multi-parameter applications. We will use this technique to
understand how changes in the domain geometry affect the bifurcating phenomena.

4.1. A Reduced Manifold Based Bifurcation Diagram (RMBBD). We aim to develop a non-
intrusive empirical strategy, based on theoretical considerations, to recover the bifurcation diagram
of potentially unknown bifurcating phenomena from the reduced coefficients in the RB expansion. As
we have discussed in previous sections, the investigation of the critical points for multi-parametrized
models can be too expensive, since we need to consider outputs relying on the high-fidelity ap-
proximations. Thus, the starting point to obtain an efficient prediction about the position of the
bifurcation points will be the POD-NN technique.

To catch the bifurcating phenomena, we usually need a priori information about the position of the
critical points to refine the parameter test space and allow for a better description of the branching.
We aim at efficiently reconstructing a bifurcation diagram where the output is entirely based on the
reduced coefficients vectors. This approach can be pursued with the reduced coefficients obtained
by POD-NN or RB techniques, i.e. from the output of the neural network or the solution of the RB
projection. Nevertheless, the main issue with the pure RB approach is that we need a reasonably
rich set of reduced vectors, which is infeasible in the absence of hyper-reduction technique. For this
reason, all simulations are obtained from the evaluation of the network.

The paradigm of ROMs is the approximation of the manifold of the truth solutions by means of
a reduced space spanned by some suitable basis functions, here obtained through POD. But when
dealing with bifurcating models, this results in a much more difficult task, since the solutions near a
critical point suddenly change their behaviour, exhibiting a C1 discontinuity in the chosen bifurcation
output.

The main idea is to take advantage of the non-smoothness of the manifold to construct a detection
tool which is able to track the bifurcation points. Indeed, if we are able to reconstruct the bifurcation
diagram in the RB space with good accuracy, since the basis are fixed and precomputed, it means
that also the reduced coefficients have to show a sudden variation, as they encode the parametrized
information.

If we consider the sensitivity of the POD-NN solution, i.e., the partial derivative ∂XNN (µ)
∂µi

, then

by the orthonormality of the ROM’s basis functions, we obtain∥∥∥∥∂XNN (µ)

∂µi

∥∥∥∥
XN

=

∥∥∥∥∥
N∑
k=1

∂X
(k)
NN (µ)

∂µi
Σk

∥∥∥∥∥
XN

≤
N∑
k=1

∣∣∣∣∣∂X(k)
NN (µ)

∂µi

∣∣∣∣∣ ,
so that the behaviour of the solution w.r.t. µ, when expressed in terms of the POD basis, can be
controlled by the vectors of reduced coefficients, thus giving us information about the branching.
Motivated by this consideration we choose, as a detection tool, an approximation of the curvature
of the reduced coefficients manifold. Assuming that the RB space contains enough information, the
reduced coefficients have to reflect the bifurcation phenomenon, showing the maximum curvature
w.r.t. the parameter space near the critical points.

Let us describe in more detail the approach for the multi-parameter case. For the sake of clarity
we consider the case with P = 2.

If we consider the parameter µ = (µ1, µ2) ∈ P, we can efficiently and non-intrusively compute

XNN (µ) for each pair of the grid G = {(µ(i)
1 , µ

(j)
2 )}(n,m)

(i,j)=1 ⊂ P. This way, we obtain a 3D tensor

defined as {Xki,j}
(n,m,N)
(i,j,k)=1, such that for every µ ∈ G the vector {Xki,j}Nk=1 is, e.g., the reduced

coefficients expansion obtained through the POD-NN technique, i.e. XNN (µ) = {X(k)
NN (µ)}Nk=1.
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Γwall
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100

Γin 7.52.5 Γout
Ω

Figure 2. Domain Ω which represents a straight channel with a narrow inlet.

The pseudo-code in Algorithm 1, illustrates the procedure to find the critical points. For each
value of µ2, we define the curvature of the sum over all the N coefficients vector Xi,k, by means
of the Matlab function del2. The latter, representing the divergence of the gradient, measures how
much the value of the field differs from its average value taken over the surrounding points, and
provides a valid measure for the actual curvature. Having obtained, for each point in the grid G, the
value of the corresponding curvature, we can simply compute the maximum value of this quantity
for each fixed µ2, and obtain a curve in G which describes the critical points location w.r.t. µ1.

Algorithm 1 Reduced manifold based bifurcation diagram

1: for j = 1 : m do . Loop over the parameter space
2: Xi,k = Xki,j ∈ Rn×N . Extract the reduced coefficients for all µ

3: Cj =
∑N
k=1 ∆Xi,k ∈ Rn . Compute the global curvature

4: end for
5: M = arg maxi ∆Ci,j ∈ Rm . Find indexes of local maxima for the curvature

6: x∗ = {µ(i)
1 }i∈M . Extract the vector of critical points

5. Numerical results

In this section, we present two different benchmarks concerning the investigation of POD-NN
approximation properties when dealing with bifurcating systems in computational fluid-dynamics
problems governed by the Navier-Stokes equations. In particular, we consider multi-parameter
applications with parametrized geometries linked to the Coanda effect in a sudden-expansion channel
and to the lid driven flow in a triangular cavity.

5.1. Navier-Stokes system in a channel. Let us begin by describing the complex phenomena
originating in the Navier-Stokes equations when modelling the so-called Coanda effect [47, 43, 44, 24,
25, 45, 46]. The latter expresses the tendency of a fluid jet to be attracted to a nearby surface. Being
present in many practical applications, such as a cardiac disease related to mitral valve regurgitation,
it is important to understand its behaviour. Indeed, if we consider a channel geometry, a fluid
characterized by an high viscosity will present a jet which is symmetric w.r.t. the horizontal axis. As
we lower the viscosity, the inertial effects of the fluid become more important and the two symmetric
recirculation regions, formed downstream of the expansion, break the symmetry to give rise to an
asymmetric jet, which represents the wall-hugging behaviour. Furthermore, the new configuration
inherits the stability properties of the symmetric configuration [43], but it also represents a source
of trouble and inaccurate measurements in the biomedical context.

From the mathematical point of view, the problem described above translates to a generic
parametrized PDE of the form (1) which admits, when decreasing the viscosity µ below a cer-
tain critical threshold µ∗, the coexistence of multiple solutions for the same value of the parameter
µ ∈ P.

To be concrete, we consider a viscous, steady and incompressible flow, in the long planar straight
channel with a narrow inlet represented by the domain Ω ⊂ R2, depicted in Figure 2, which aims at
reproducing a toy version of the heart chamber downstream the mitral valve.
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The flow inside the sudden-expansion channel can be modelled by the Navier-Stokes system

(19)

{
u · ∇u− µ∆u+∇p = 0 in Ω,

∇ · u = 0 in Ω,

where u = (ux, uy) is the velocity, p the pressure normalized over a constant density and µ the
viscosity. We supplement system (19) with proper boundary conditions (BCs): a stress free BC on
the velocity on Γout, a no-slip Dirichlet BC on the physical walls Γwall and a parabolic Dirichlet BC
at the inlet Γin, as follows

u = uin on Γin,

u = 0 on Γwall,

−pn+ (µ∇u)n = 0 on Γout,

where uin =

[
20(5− y)(y − 2.5)

0

]
.

Furthermore, we denote the function spaces Vin = {v ∈
(
H1(Ω)

)2 | v = vin on Γin, v = 0 on Γwall},
V0 = {v ∈

(
H1(Ω)

)2 | v = 0 on Γin ∪ Γwall} and Q = L2(Ω) respectively for the velocity (keeping
track of the inhomogeneous Dirichlet BC) and the pressure fields. The variational formulation reads
as: given µ ∈ P, find u ∈ Vin and p ∈ Q such that

(20)


µ

∫
Ω

∇u · ∇v dΩ +

∫
Ω

(u · ∇u) v dΩ−
∫

Ω

p∇ · v dΩ = 0 ∀ v ∈ V0,∫
Ω

q∇ · u dΩ = 0 ∀ q ∈ Q.

If we introduce the following bilinear and trilinear forms

(21)

a(u, v;µ) = µ

∫
Ω

∇u · ∇v dΩ ∀u, v ∈ V0,

b(u, p) = −
∫

Ω

(∇ · u)p dΩ ∀u ∈ V0, ∀ p ∈ Q,

c(u, ū, v) =

∫
Ω

(u · ∇ū) v dΩ ∀u, ū, v ∈ V0,

we can rewrite the formulation of (20) in an equivalent way as: given µ ∈ P, find u ∈ Vin and p ∈ Q
such that

(22)

{
a(u, v;µ) + c(u, u, v) + b(v, p) = 0 ∀ v ∈ V0,

b(u, q) = 0 ∀ q ∈ Q.

After a description of the physical phenomenon and its modelling equations, we can move to the
results of the POD-NN approximation. In particular, we discuss the bifurcating regime starting from
a one-dimensional parameter space and then investigate how this is influenced by a parametrized
domain in a multi-parameter setting.

5.1.1. The bifurcating regime. Let us first consider the Navier-Stokes equations in the bifurcating
regime, when the solution to the parametrized PDE exists but it is not unique. During the study
of the solution’s behaviour varying the viscosity values, we expect the system to undergo two quali-
tatively different configurations: (i) a physically unstable configuration represented by a symmetric
jet flow, and (ii) a physically stable configuration represented by a wall-hugging jet.

These solutions, coexisting when the viscosity is lower than a critical threshold, belong to different
branches that intersect in the bifurcation point µ∗ forming a pitchfork bifurcation. Indeed, due to the
symmetry group of the PDE, there exist two stable asymmetric configurations w.r.t. the channel’s
centreline. We are only interested in the approximation of one of these two, e.g., the downwards
wall-hugging behaviour. Otherwise, the reconstruction of the full bifurcation diagram would require
the network to assign different outputs to the same input parameter. To solve this issue, one could
exploit a branch-wise strategy, building a specific network for each branch or consider more involved
machine learning strategies. Furthermore, it is clear that a key aspect for the reconstruction of a
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Figure 3. High-fidelity post-bifurcated solutions for the Coanda model at µ = 0.5,
velocity and pressure fields (top and bottom), for the asymmetric and symmetric
profiles (left and right).

bifurcating behaviour, especially in an artificial neural network context, is the complete identification
of the singularities of the model, which can be pursued following the strategy discussed in Section
4.1.

For this reason, we consider as a range for the viscosity, the parameter space P = [0.5, 2] which
includes the first bifurcation point for the model at µ∗ ≈ 0.96 [43, 44, 39].

We want to describe and compare the different strategies used for the approximation of the
Coanda effect. We start by showing, in Figure 3, representative FE solutions of the bifurcated states
for µ = 0.5, in which the velocity flow attaches to the bottom of the channel and remains symmetric,
left and right respectively.

Since we are interested in the reconstruction of the bifurcation diagram, we fix the testing set Ξte
as an equispaced set of Nte = 151 points in P. This way, we are able to perform the continuation
procedure, needed for the FE and RB approximations, to detect the bifurcating behaviour by fol-
lowing the evolution of the manifold through the choice of the initial guesses. Once again, this is
not required by the neural network, which simply evaluates the input parameters giving back the
value of the reduced coefficients.

To capture all effect of the nonlinearities, which give rise to the bifurcations, we consider a fine
mesh discretization resulting in N = 79868 degrees of freedom for the FE space. Regarding the RB
step, by selecting the POD tolerance as 10−8, we obtain Nu = 11 and Np = 9 basis functions for
the velocity and pressure fields, respectively. We remark that the dimension of the RB space for the
velocity is increased by one, due to the lifting coming from the inhomogeneous Dirichlet BC.

As concerns the learning procedure, we considered η0 = 0.3 for both velocity and pressure net-
works, and we updated it by means of the learning rate schedule in (18), considering Nep

it = 5 · 102

and Nep
max = 104.

The offline phase is initialized with Ntrain = n2
b (and corresponding size nb for the mini-batches,

where nb = 6(i + 1) with i = 1, 2, 3) equispaced points in the parameter set P, using the ratio
described before to split the dataset in training and validation sets.

To find the best configuration for the network, we test the accuracy properties on Ξte w.r.t. the
dimension of the dataset, while increasing the number of hidden layers LK = 1, 2 and computing
neurons HK = 3, . . . , 11, for nb = 12, 18. In Figure 4 we show a comparison of the mean NN errors
εNN for the velocity and pressure fields w.r.t. HK .

We show in Figure 5 the relative error εNN (µ) for both velocity and pressure fields in the best
case scenario for the network configuration, which corresponds to the case with LK = 2 layers,
nb = 18 and HK = 7. In this case, the maximum and mean errors over the testing dataset are
εmax
NN = 0.02104 and εNN = 0.00506, respectively. Similar results hold for the pressure field, where

we have εmax
NN = 0.03805 and εNN = 0.00751.
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Figure 4. Mean NN errors εNN w.r.t. the number of neurons HK , for velocity and
pressure fields, left and right, respectively.

As a comparison, we show in Figure 6 the RB error on the testing set Ξte, when employing the same
number of basis functions. Performing the online phase through the RB method (without hyper-
reduction) we obtained the maximum and mean errors over Ξte as εmax

RB = 0.02579 and εRB = 0.00115.
Again, similar results hold for the pressure field, where we have εmax

RB = 0.01726 and εRB = 0.00086.

Figure 5. Relative error εNN (µ) for velocity and pressure fields in the bifurcating
regime computed on Ξte, left and right, respectively.

Figure 6. Relative error εRB(µ) for velocity and pressure fields in the bifurcating
regime computed on Ξte, left and right, respectively.
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Figure 7. Bifurcation diagram for the Coanda model with point-wise vertical ve-
locity uy at (20, 2.5) as output, obtained with FE, RB and POD-NN.

As seen from the errors, in the proposed setting, the POD-NN approach was able to properly re-
cover the bifurcating behaviour of the model. Moreover, it reached good accuracy also in comparison
with the RB strategy. As understood from the analysis of bifurcating problems, when the solution
does not depend smoothly on the parameter, we can expect peaks in the errors corresponding to the
parameter values at which the bifurcation occurs.

The results for the reduced approximation of the bifurcation test case are always less accurate
when the critical point is in the parameter range. In general it could be a limitation, but we
remark that, on the contrary, since the network is only built from the snapshots, it does not see the
singularities of the model and it is only slightly affected by it. This results in the similar order of
accuracy between mean and max errors for the POD-NN, while the same quantities for the RB ones
are of different orders of magnitude.

In Figure 7 we show a comparison of the bifurcation diagrams obtained through the FE, RB and
POD-NN approaches for the Coanda effect where, for each value of the viscosity µ, we consider the
point-wise vertical velocity s(u) = uy(20, 2.5) as output. It is clear that µ∗ = 0.96 corresponds to
the critical value at which the flow exhibits the wall-hugging behaviour.

Finally, the speed-up for the evaluation of the network on Ξte in the POD-NN context, with
respect to the FE method, is almost 1.2 · 106, while the RB one is equal to 1.25. In fact, the
nonlinearity of the problem together with the lack of an efficient hyper-reduction/tensor assembly
for the weak form, causes the standard RB approach to be dominated by a N -dependent online
phase.

5.1.2. Multi-parameter analysis with varying geometry. Having recovered the evolution of a single
bifurcating branch, we move to the more complex and interesting multi-parameter case. In such
case, we aim at investigating how the uniqueness regime of the system changes while varying the
model’s features. Here, we generalize the Coanda’s problem discussed above, by considering a
geometric parametrization. In particular, still relying on the planar sudden-expansion channel,
we introduce a parametrization of the semi-width of its narrow inlet by means of the geometric
parameter w ∈ [0.5, 2.0], obtaining a problem parametrized by µ = (µ,w).

The context from the physical point of view is clear. By reducing or increasing the height of the
inlet channel, we are changing the intrinsic value of the Reynolds number Re = Uw/µ (where U is
the characteristic velocity taken at the inlet), balancing differently the inertial and viscous forces.
This means that the critical points of the model can be expected to vary for the different geometries
considered. More specifically, we expect to observe that the smaller the parameter w, and thus the
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corresponding inlet, the sooner the bifurcation occurs. As we will see, such behaviour will be not
entirely obvious.

Let us consider the Navier-Stokes system in (19), but this time defined over the parametrized
domain Ω(w). We consider affine transformation maps of the form Φ(x;w) = B(w)x+c(w), choosing

as reference domain Ω = Ω(w = 1.25) =
⋃3
i=1 Ωi, where Ωi are defined as the three horizontal stripe-

shaped subdomains, i.e. Ω1 = [10, 100]× [5, 7.5], Ω2 = [0, 100]× [2.5, 5] and Ω3 = [10, 100]× [0, 2.5].
In this case, the transformation maps are given by the following quantities

B1(w) =

[
1 0
0 1.5− 0.4w

]
and c1(w) =

[
0

3w − 3.75

]
,

B2(w) =

[
1 0
0 0.8w

]
and c2(w) =

[
0

−3w + 3.75

]
,

B3(w) =

[
1 0
0 1.5− 0.4w

]
and c3(w) =

[
0
0

]
.

Thanks to the change of variable formula [48], if we express with JΦ = B the Jacobian of the affine
maps, the variational forms in (21) become

(23)

a(u, v;µ) = µ

2∑
i,j=1

∫
Ω

∂v

∂xi

[
J−1
Φ (x;w)J−TΦ (x;w)|JΦ(x;w)|

]
i,j

∂u

∂xj
dΩ ∀u, v ∈ V0,

b(u, p;µ) = −
2∑

i,j=1

∫
Ω

p
[
J−TΦ (x;w)|JΦ(x;w)|

]
i,j

∂ui
∂xj

dΩ ∀u ∈ V0, ∀ p ∈ Q,

c(u, ū, v;µ) =

2∑
i,j,k=1

∫
Ω

ui
[
J−TΦ (x;w)|JΦ(x;w)|

]
j,i

∂ūk
∂xj

vk dΩ ∀u, ū, v ∈ V0.

Finally, we write the weak formulation of the problem, posed over the reference domain Ω, as

(24)


a(u, v;µ) + c(u, rin, v;µ) + c(rin, u, v;µ) + c(u, u, v;µ)

+ b(v, p;µ) = −a(rin, v;µ)− c(rin, rin, v;µ)
∀ v ∈ V0,

b(u, q,µ) = −b(rin, q;µ) ∀ q ∈ Q,

where we already encode the lifting function rin s.t. rin|Γin = uin. The solution is given by u+ rin.
As expected, the new system is characterized by different regimes for its well posedness, depending

on the configuration we are interested in. As an example, we show in Figure 8 four FE solutions
at µ = 0.5 for different values of the inlet width w. As we see, the system ranges from exhibiting a
fully developed wall-hugging behaviour to still undergoing the pre-bifurcation regime.

These velocity profiles are already telling us that, while varying the geometry, the position of
the bifurcation points changed for each fixed value of w. Thus, if we are able to correctly explore
the parameter space during the offline phase, we can efficiently reconstruct and investigate the 3-D
bifurcation diagram during the online phase, either by means of an RB or a POD-NN strategy. As
we observe empirically from the velocity profiles in Figure 8, the bifurcation phenomena happen for
values of w in [0.5, 1.5]. Thus, we restrict the study to this range for the geometrical parameter.

We present the bifurcation diagrams in Figures 9, respectively a 3-D version with respect to
the viscosity µ and the 2-D one with respect to the Reynolds number corresponding to the chosen
geometry. For the output, we chose a measure of the symmetry of the flow w.r.t. the mid-line of the
channel. The effect of the geometrical parametrization on the location of the critical points is now
evident.

We note that we are still considering an output which depends on the N degrees of freedom of
the high-fidelity solution. In fact, we need to project the RB solution over the FE space to obtain
point-wise evaluation of the fields. Different affinely decomposable functionals can be considered,
but in this context we rely on the strategy developed in Section 4.1 to fully exploit the artificial
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Figure 8. High-fidelity velocity profiles at µ = 0.5 for the Coanda model with
w = 0.5, 1.0, 1.5, 2.0, from top to bottom.
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Figure 9. 2-D and 3-D bifurcation diagrams for the Coanda model with geomet-
rical parametrization of the narrow inlet, with respect to the Reynolds number Re
and the viscosity µ, left and right, respectively.

neural network capabilities, efficiently recovering the bifurcation diagram during the online phase,
without involving any N -dependent quantity.

As concerns the offline sampling procedure, the parameter space considered for this test case is
(µ,w) ∈ P = [0.5, 2.0]× [0.5, 1.5], where we chose an equispaced grid of n2

b×6 values for the viscosity
and inlet’s width, respectively.

Since the reduced model in this multi-parameter context has to encode much more information,
a POD tolerance equal to εPOD = 10−8 forced us to consider Nu = 50 velocity basis functions and
Np = 24 pressure basis functions to built the reduced manifold.

We chose the hyper-parameters for the POD-NN technique as: LK = 2 layers, nb = 18 and
HK = 15, for both velocity and pressure networks. Considering the testing dataset Ξte as an
equispaced grid of Nte = 301×11 points in P, we are able to reconstruct the wall-hugging behaviour
for 11 different geometries. As regards the accuracy, we show in Figure 10 the error εNN (µ) for the
two components of the solution. Even for this more complex multi-parameter test case we obtain
good generalization of the network, since the maximum and the mean relative errors for the velocity
field over Ξte, are εmax

NN = 0.06250 and εNN = 0.01181, respectively. Similar results hold for the
pressure field, where we have εmax

NN = 0.11417 and εNN = 0.01150.
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Figure 10. Relative error εNN (µ) for velocity and pressure fields computed on
Ξte, left and right, respectively.

As concerns the RB approximation results, we have εmax
RB = 0.75538 and εRB = 0.01297 for the

velocity field and εmax
RB = 0.69706 and εRB = 0.00984 for the pressure field.

While the mean errors for the RB and POD-NN techniques are comparable, we observe that the
maximum error yields very different result. In fact, still relying on a nonlinear solver during the
online phase, the RB technique fails to convergence to the solution (even employing a reduced order
continuation method), and provide a bad approximation of the solution especially near the bifurca-
tion point. On the contrary, since the POD-NN strategy is not based on the explicit formulation of
the model, it does not encounter any convergence issue.

As regard the computational time, since we are now considering a greater number of basis func-
tions all the efficiency of the reduced model is lost. In fact, each RB or HF solution requires almost
tRB = tHF = 10(s). This means that if we want a complete bifurcation diagram with e.g. n = 301
values for µ and m = 151 points for w, we need 45451 solutions, thus more then 5 days of computa-
tional time using either the RB or the HF solver. On the contrary, a single evaluation of the network,
which provides the coefficients for the POD-NN approximation, takes only tNN = 1.2 · 10−5(s), en-
abling a speed-up of almost 8 · 105.

Even if we were able to considerably reduce the computational burden to obtain the reduced
coefficients, we still have to project them onto the FE space to build the point-wise based bifurcation
diagrams in Figure 9. However, when considering multi-parameter geometric context for bifurcating
phenomena, the main goal is to understand the branching behaviour and the location of the critical
points, rather then the output.

For these reasons, we applied the technique introduced in Section 4.1 to recover non-intrusively
a guess on the location of the bifurcation points for the model.

Thus, let us consider the extended parameter space P = [0.5, 2.0]2 where the grid G is determined
by n = 301 and m = 151 equispaced points in P. In Figure 11, we plot the output of Algorithm
1, where the black dots stand for the exact (high-fidelity) critical points for eleven equispaced
geometries, while the blue line is the approximated location for each value w(j) in G. The curvature
of the manifold, obtained entirely through the POD-NN coefficients, is able to detect the critical
viscosities at which a sudden change in the weighting of the reduced basis functions occurs. As we
expected, the evolution of the critical line is not obvious and could represent a fundamental tool to
obtain a refined approximation near the bifurcation point for prescribed geometries. Furthermore,
this approach could be used to design geometries which can sustain maximum values for viscosity
(or for the load in a buckling context [40]) without undergoing bifurcating phenomena. We note that
in this setting, we are able to recover the critical points behaviour with a relative l2 error of order
10−2. Moreover, even the non-bifurcating regime near the larger inlet’s width values was properly
detected by our technique, indicating (by convention) a critical value µ = 0.5.
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Figure 11. Left : Reduced manifold based bifurcation diagram for the Coanda
model with geometrical parametrization. The black dots represent the high-fidelity
critical points, while the blue line corresponds to the maximum curvature obtained
trough the POD-NN coefficients. Right : Corresponding HF bifurcation diagram
obtained through point-wise evaluations of FE solutions.

5.2. Cavity flow in a triangular domain. In this section, we investigate the bifurcating phenom-
ena originating in cavity flow problems in a triangular domain. This class of models is of importance
in practical applications, as well as benchmark test cases for numerical solver due to their intrinsic
complexity. In particular, several studies focused on triangular cavities, investigating: the laminar
to chaotic transition [3], the flow behaviour w.r.t. grid refinement for different (fixed) geometries [15]
and the 3D context concerning a real life application [19]. For a comprehensive literature, we direct
the interested reader to the great historical introduction in [3]. Despite this, a complete knowledge
of the dynamics is far from known, as the prediction of recirculating eddies is more involved w.r.t.
the standard square cavity [15] and a new steady (bifurcating) state was recently discovered [3].

Within this complex setting, we aim at investigating the flow’s vortex pattern while varying the
viscosity and the domain itself. Thus, we consider a parametrized context involving the advection
dominated regime and the geometric parametrization of the triangular cavity in a multi-parameter
context. This way, we describe for the first time the vortex pattern behaviour connected to the
existence of a critical width angle for the domain.

We consider the triangular domain Ω in Figure 12 identified by the vertices A = [ax, ay], B =
[bx, by] and C = [cx, cy]. Using the same Navier-Stokes model presented in Section 5.1, we aim
at describing the behaviour of the flow inside the cavity when varying its physical and geometric
features. As concerns the boundary condition, we chose the following{

u = ulid on Γlid,

u = 0 on Γwall,
where ulid =

[
1
0

]
,

expressing: no-slip Dirichlet BC on the physical walls Γwall and a horizontal velocity Dirichlet BC
at the lid Γlid. Moreover, since there are no Neumann conditions, we have to impose, e.g. on the
bottom vertex C, a zero value for the pressure field.

To have a coherent structure, we chose here to remain within the velocity-pressure variables pair
as unknowns, instead of modelling the flow by means of the streamfunction-vorticity formulation
that usually appears in this context.

5.2.1. Equilateral geometry toy problem. As a first study case, we investigate the cavity flow in the
one-dimensional parameter space, studying the behaviour of both the RB and the POD-NN method-
ologies for the approximation of the solution when varying the viscosity parameter µ. Before going
towards advection dominated regimes, we considered here the parameter space P = [10−3, 1], corre-
sponding to a maximum value of the Reynolds number equal to 1000, for the equilateral geometry
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Figure 12. Domain Ω representing the triangular cavity.

in Figure 12, where A = [−
√

3, 1], B = [
√

3, 1] and C = [0,−2]. As concerns the offline phase, we
rely again on the Taylor-Hood FE pair, with the fine mesh discretization, resulting in N = 41931
degrees of freedom. Compared to the previous test case we are using a much more refined grid,
which is essential to capture the boundary layers, improve the numerical stability controlling the
Peclet number and properly approximate step gradients near the corners of the domain.

We chose the hyper-parameters for the RB/POD-NN approximations as follows. Having a one
dimensional parameter space corresponds to an input dimension for the network P = 1, while the
output layer has a dimension equal to the number of reduced basis considered Nu = Np = 14,
selected by the POD with tolerance εPOD = 10−9. We note that for the velocity field we have to
add the lifting basis function to allow for the non-homogeneous Dirichlet condition on the moving
wall Γlid.

The network is constructed using HK = 15 hidden neurons for each of the LK = 4 layers, the
initial learning parameter is fixed to η0 = 5× 10−2 with square root learning rate schedule in (18).
We train and validate the network with a batch size nb = 24, which corresponds to Ntrain = 576
training points. Such points are selected through a logarithmically equispaced distribution on P and
then divided into training and validation sets, following the rule in Section 4, for cross-validation
purposes. The choice of the sampling’s feature is motivated by the fact that slight changes for µ
have a greater importance when the viscosity is small. For the online simulation Ξte is chosen as a
logarithmically equispaced sample of 250 points in P.

As shown in Figure 13, the maximum and mean relative error over the testing dataset for the
velocity field are εmax

NN = 0.00265 and εNN = 0.00037, respectively. Similar result holds for the
pressure field, where we have εmax

NN = 0.06637 and εNN = 0.01091. In comparison we show the RB
relative error behaviour on Ξte for the velocity and pressure field in Figure 14. In both Figures 13
and 14 the error fields are reported for the minimum viscosity value µ = 0.001.

We notice that the POD-NN approximation of the velocity field outperforms the one obtained
by RB. This is due to the fact that we are employing a low number of basis functions and, again,
within the POD-NN approach we are learning from the best possible solution in the RB space, i.e.
the projection of the snapshots. The same does not hold for the recovery of the pressure field that
seems to be more sensitive to the learning procedure.

We note that a much lower number of training points is sufficient to reach a good accuracy of the
neural network approximation. As an example, employing only Ntrain = 36 snapshots, we are able
to obtain a max/mean relative POD-NN error of order 10−2.

To understand the flow behaviour w.r.t. the parametrization, we show in Figures 15 and 16 some
representative high-fidelity velocity and pressure fields solutions obtained for different values of the
viscosity µ = {1, 0.1, 0.01, 0.001}.

Having described the flow behaviour in this relatively simple setting, two questions naturally
arise: (i) What happens for different geometries? (ii) How far can we move towards the advection
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dominated regime? In the next section we will consider a global framework combining these to
aspects, while trying to discover the hidden dynamics.

5.2.2. Bifurcating regimes with parametrized cavities. Let us begin this section by considering the
effect of increasing the Reynolds number on different triangular cavities. To do so, we consider the
multi-parameter setting where the viscosity varies in P = [2 · 10−4, 10−1], and the vertex C has
parametric coordinates [cx, cy] = [µ1, µ2] ∈ [−0.5, 0.5]× [−0.75,−0.25]. Thus, we redefine the cavity
as the triangle identified by the vertices A = [−0.5, 0], B = [0.5, 0] and C = [µ1, µ2]. Within this low
viscosity context we reach the advection dominated regime up to a maximum Re = 5000, while the
HF degrees of freedom w.r.t. the refined mesh increased up to N = 283827.

In Figure 17 we show the velocity fields with fixed viscosity for the two cavities characterized
by µ1 = (2 · 10−4, 0,−0.5) and µ2 = (2 · 10−4, 0.25,−0.5). It is clear that even varying slightly
a single component of the geometric parametrization, the flow exhibits very different behaviours.
In particular, the flow inside the isosceles cavity (related to µ1) shows the existence of a vortex
attaching to the top-right vertex B, being pushed by the one formed near vertex C. As concerns the
configuration corresponding to µ2, we observe that the primary vortex is now occupying the whole
cavity, attaching to the opposite wall w.r.t. the upstream vertex and resulting in an entirely different
pattern flow. This suggests the existence of a critical value for the angles’ width which determine if
have the attaching behaviour, or not.

Before presenting the general framework to study the complex phenomena linked to the geometric
parametrization, let us give more insights into the solution behaviour w.r.t. the viscosity value µ.

We show in Figure 18 the behaviour of the solution manifold w.r.t. the maximum value of the
streamfunction ψ over the two cavities, corresponding to µ1 and µ2. While the output for the
non-isosceles configuration has a smooth behaviour, indicating the formation and spreading of the
unique central vortex, the situation for the isosceles cavity is entirely different. In fact, we observe
a sudden change in the output, linked to the movement of the vortex towards the top-right vertex.
This behaviour suggests that: (i) the flow profile is highly dependent on the domain, and (ii) it
seems that, for the isosceles cavity, we are looking at a bifurcating phenomenon while varying µ
near 10−3. In fact, the latter, could be connected to the other stable steady solution found in [3]
departing from Re ≈ 4908.

To further investigate the isosceles flow dynamics, we present in Figure 19 a plot comparing the
bifurcation diagram and the evolution of the smallest real eigenvalue of the generalized Navier-Stokes
eigenvalue problem. Following the analysis in [42, 43] and knowing the connection between stability
properties and the sign of the eigenvalues, we observe that in the same interval where the output
shows the sudden change, the eigenvalue moves towards zero and bounces back, thus ensuring the
flow’s stability. Indeed, a change in the sign of the eigenvalue would have denoted a change in the

Figure 13. Relative error εNN (µ) for velocity and pressure computed on Ξte, left
and right respectively, with reference fields at µ = 0.001.
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Figure 14. Relative error εRB(µ) for velocity and pressure computed on Ξte, left
and right respectively, with reference fields at µ = 0.001.

Figure 15. High-fidelity velocity fields for the Navier-Stokes system in the trian-
gular cavity for µ = {1, 0.1, 0.01, 0.001}, from left to right.

Figure 16. High-fidelity pressure fields for the Navier-Stokes system in the trian-
gular cavity for µ = {1, 0.1, 0.01, 0.001}, from left to right.

stability features of the solution and so the presence of a new branch. In this case, we have followed
the stable one, corresponding to the positive eigenvalue.

To conclude this analysis, we briefly present the RB and POD-NN results concerning the high
Reynolds regime for the two cavities. To have a uniform setting we sample Ntrain = 100 snapshots,
extracting Nu = Np = 30 basis functions, and test the intrusive and non-intrusive techniques on
Ξte, constructed by 250 logarithmically equispaced points on P. As concerns the NN structure,
given the increased parametric range and number of basis, we employed HK = 60 neurons for each
one of the LK = 4 layers. We can observe in Figure 19 that, once the RB space is built with a
proper number of modes, we obtain good approximation properties for the standard POD-Galerkin
approach, for both configurations. Despite this, trying to encode the moving vortex, the RB space
for the isosceles domain, when compared with the other one, produces a similar mean error ε̄RB
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Figure 17. POD-NN velocity fields for the Navier-Stokes system in the triangular
cavities for µ1 = (2 · 10−4, 0,−0.5) and µ2 = (2 · 10−4, 0.25,−0.5), left and right,
respectively.

Figure 18. Bifurcation diagram w.r.t. the maximum value of the streamfunction
ψ for the Navier-Stokes system at µ = 2 · 10−4 in the triangular cavities with
(µ1, µ2) = (0,−0.5) and (µ1, µ2) = (0.25,−0.5).

of order 10−5, but also a much worse maximum error, e.g., we obtain εmax
RB (·, 0,−0.5) = 0.00227

and εmax
RB (·, 0.25,−0.5) = 0.00005. The same effect, but mitigated to only one order of magnitude,

can be seen for the POD-NN approximation. This is due to the fact that without intrusiveness
the equation are not taken into consideration, and thus the mean ε̄NN and max εmax

NN errors share
the same order of accuracy. Of course, the better approximation performance of the intrusive RB
technique are balanced by the great speedup (of order 106) obtained through the non-intrusive
POD-NN approach.

Having clarified the main differences when looking at two different configurations, now we aim at
investigating for which Reynolds numbers this top-right attaching vortex behaviour exists, and its
connection to the angles defining the triangular domain.

To obtain a global investigation of the phenomena we consider here the physical/geometric multi-
parametrized setting, with P = 3, given by µ = (µ, µ1, µ2) ∈ P = [4 · 10−4, 10−1] × [−0.5, 0.5] ×
[−0.75,−0.25], where (µ1, µ2) are the coordinates of the vertex C with reference configuration
C = (0,−1). Since we are changing the characteristic of the triangular domain, substantially we
expect that this will influence the flow behaviour. Thus, we halved the minimum viscosity value,
considering a maximum Re = 2500. While remaining in the advection dominated regime, this avoids
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Figure 19. Left : Comparison between bifurcating branch and eigenvalue dynamics
for the isosceles cavity. Right : RB and POD-NN log-relative errors for the two
configurations w.r.t. µ for the velocity field.

divergence of the Newton solver during the offline training. On the one hand, within the geometri-
cally parametrized context we do not want/need to recompute the mesh for each cavity, but on the
other hand, to obtain good approximations at the HF level, we have to consider a properly refined
grid, which has to be regular especially near the corners.

Moreover, in this case we have a unique subdomain, corresponding to the entire cavity, where we
need to define an affine transformation map. Following the analysis in Section 5.1.2, we define the
transformation matrix as B(µ) = [1, −µ1; 0, −µ2] and express the weak formulation of the problem
in the reference configuration through the variational forms in (23).

To give an idea of the complexity of the combined effect of high Reynolds number and existence
of the critical angles’ width, we show in Figure 20 the “4-D” bifurcation diagram where we plot the
maximum value of the streamfunction ψ w.r.t. the viscosity µ and the y-coordinate µ2 of C , while
with the colors from violet to green denote increasing values for the x-coordinate µ1 of C. In Figure
20 we clearly observe the advection dominated effect, due to the low viscosity regime, depending
on the abscissa of vertex C, and the evolution of this phenomenon while varying the height of the
triangular cavity. In particular, we have chosen a grid for (µ, µ1, µ2) of 250 × 21 × 4 equispaced
points, on which we computed the HF solutions. As we have done in Section 5.1.2, we aim at having
an even refined investigation while obtaining substantial a speedup.

Moreover, the different behaviour of the manifold for µ2 = 0.25. Even if it is not clearly visible
from the bifurcation diagram (with this output function), also for this configuration we have both
attaching and spreading vortex phenomena while varying µ1. Thus, we claim that the different
dynamics w.r.t. the streamfunction is due to the fact that almost all configurations with µ2 = 0.25
are actually obtuse triangles, minimizing the differences between the two pattern flows.

We are finally ready to study the RB and POD-NN approximations of the high-fidelity results
presented up to now. As concerns the offline procedure, here we sample µ in an equispaced grid of
100× 11× 5 points in the parameter space P.

Instead of fixing the POD tolerance we decide a priori a much higher dimension for the reduced
basis space with Nu = Np = 150. Consequently, we modified the structure of the network for
the POD-NN technique as: LK = 5 layers and HK = 80 neurons, for both velocity and pressure
networks. Regarding the online phase we considered the testing dataset Ξte as 4 random couples
(µ1, µ2) of which we study the evolution for 250 viscosity values µ.

As concerns the accuracy, we show in Figure 21 the velocity relative errors εNN (µ) and εRB(µ)
for the four random geometries. We were able to obtain good POD-NN approximations, with mean
and maximum errors of order 10−2. Similar accuracy have been obtained by means of standard
POD-Galerkin approach, where, as before, if compared with the POD-NN technique we have a
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Figure 20. 4-D bifurcation diagram with the maximum value of the streamfunc-
tion ψ as output for the Navier-Stokes system, w.r.t. the viscosity µ, the y-coordinate
µ2 of C, and from violet to green increasing values for the x-coordinate µ1 of C.
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Figure 21. Relative errors εNN (µ) and εRB(µ) for the velocity field computed on
Ξte, left and right, respectively.

better mean error but a worst maximum one. Once again, the main result here is the computational
speedup which allows us to evaluate efficiently the reduced coefficients in a non-intrusive manner.
To be more precise, to obtain the evolution in µ for a single test cavity through the HF technique
we need tHF = 4500(s), while the same computation within the POD-NN approach required only
tNN = 0.05(s) for the network evaluation. On the contrary, when employing such a great number of
basis functions for the RB space, the POD-Galerkin strategy (without hyper-reduction) is no longer
advantageous when compared to the Galerkin-FE method.

As already observed in Section 5.1.2, even if we have obtained the reduced coefficients, we still have
to rely on the HF degrees of freedom N to recover the solutions and extract the bifurcation diagram.
We applied again the strategy developed in Section 4.1 to discover the pattern flow evolution and, in
particular, which of the two phenomena, attaching or spreading vortex, we obtain for all the possible
parametrized cavities.

Let us focus on the high Reynolds regime, corresponding to the lowest viscosity value in the
parameter space µ = 4 · 10−4. Given the high sensitivity of the solution w.r.t. the geometric
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Figure 22. Left : Reduced manifold based bifurcation diagram for the triangular
cavity problem with geometric parametrization. The blue line corresponds to the
maximum curvature obtained trough the POD-NN coefficients. Right: Contour
lines of angles ratio comparing the evolution of the RMBBD critical points and
height values.

parameters, we chose the grid G as n = 501 and m = 501 equispaced points in [−0.5, 0.5] ×
[−0.75,−0.25]. In Figure 22, we plot the output of Algorithm 1, where the blue line is representing
the approximated locations of the critical parameters, and so the critical angles’ width, that serves as
separation for the region where we observe attaching vortices (to the left of the line) and the region
where we observe spreading ones (to the right of the line). The curvature of the manifold is able to
detect the critical parameters at which a sudden change of the flow solution occurs. We highlight
that such analysis, involving n×m solutions, would not have been possible through standard FE or
RB techniques.

Even if the critical line seems to be obvious and due to some rescaling argument concerning the
geometrical parametrization, this is not the case. In fact, the computed transformation map cannot
be expressed in terms of a single parameter. Moreover, the direction of the inlet flow ulid breaks
the symmetry of the cavity problem and make the critical locations less than obvious. Finally, while
trying to explain this phenomenon, we observe that a possible guess for the location of the critical
points is given when the ratio between the angles’ width of vertices B and C is equal to the height of
the cavity, namely µ2 with changed sign. To show this, we plot in Figure 22 the contour lines of the

angles ratio, i.e. B̂/Ĉ for every pair (µ1, µ2) ∈ G. As we see, the blue line given by the RMBBD is
very close to the red one, indicating when the angles ratio function assumes the value of the cavity’s
height µ2.

6. Conclusions and perspectives

In this work, we have discussed the use of an artificial neural network to efficiently recover the
evolution of bifurcating phenomena in computational fluid-dynamics problems. We investigated the
multi-parametrized setting with varying geometry, analysing its effect on the position of the bifurca-
tion points. In particular, we discussed the physics behind the Coanda effect in a sudden expansion
channel and the lid driven triangular cavity flow, providing new insights on recently discovered phe-
nomena. Beyond the discussion of the models, we studied their numerical approximation in the
reduced order modelling context, building the basis with a branch-wise POD technique. Moreover,
we combined the latter with an artificial neural network, through the POD-NN approach, which
provides good approximation properties even when considering such complex behaviours. Finally,
we developed a reduced manifold based bifurcation diagram, able to detect in a non-intrusive manner
the position of the critical points.
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Many possible directions can be further investigated, improving the approximation strategies
or focusing on the CFD models. As concerns the former, one could choose a more advanced NN
technique based on autoencoder or physics informed neural networks. Instead, moving the focus onto
the bifurcating models, it could be interesting to consider an improved description of the Coanda
effect, for example based on a fluid-structure interaction problem, or deepen the fluid-dynamic
analysis of the triangular cavity flow, which could undergo more complex phenomena.
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