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An artificial neural network for surrogate modeling of stress
fields in viscoplastic polycrystalline materials
Mohammad S. Khorrami1✉, Jaber R. Mianroodi 1,2✉, Nima H. Siboni1,2, Pawan Goyal3, Bob Svendsen 1,4, Peter Benner3 and
Dierk Raabe 1

The purpose of this work is the development of a trained artificial neural network for surrogate modeling of the mechanical
response of elasto-viscoplastic grain microstructures. To this end, a U-Net-based convolutional neural network (CNN) is trained
using results for the von Mises stress field from the numerical solution of initial-boundary-value problems (IBVPs) for mechanical
equilibrium in such microstructures subject to quasi-static uniaxial extension. The resulting trained CNN (tCNN) accurately
reproduces the von Mises stress field about 500 times faster than numerical solutions of the corresponding IBVP based on spectral
methods. Application of the tCNN to test cases based on microstructure morphologies and boundary conditions not contained in
the training dataset is also investigated and discussed.
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INTRODUCTION
In material science and engineering, material modeling is of
central importance for gaining insight into the interplay between
material properties, microstructure, and behavior essential for
material optimization and design. In the case of polycrystalline
structural materials (e.g., steels), for example, a common
approach to the modeling of their mechanical behavior is the
numerical solution of initial-boundary-value problems (IBVPs) for
mechanical equilibrium, for example, via spectral or finite-
element methods (e.g., refs. 1–7). Unfortunately, such methods
are computationally quite expensive, especially at high resolu-
tion or “fidelity” (e.g., refs. 8–10). As such, alternative approaches
to the modeling of complex polycrystalline and polyphase
materials and their behavior under mechanical loads are the
focus of current research.
Among existing alternatives to the currently used solvers,

perhaps the most prominent ones are those based on artificial
neural networks (ANNs) and machine learning (ML) (e.g., ref. 11).
Development of corresponding models is based in particular on
the fitting of ANN parameters to data via constrained optimiza-
tion, i.e., ANN training, yielding a trained ANN (tANN). Except for a
few early works (e.g., refs. 12,13), most such “surrogate” models
based on tANNs have been introduced in the last 4 years (e.g.,
refs. 14–18). The data employed for training and testing can be
experimental, empirical, or synthetic in nature. An example of the
latter are results from the numerical solution of IVBPs based on
physical models. In the “data-driven” case, training is based on
such data alone. Going beyond this, one can employ physical
relations (e.g., constitutive relations) on which the data are based
as additional training constraints. In the case of physics-informed
neural networks (PINN) (e.g., ref. 19), the data are the initial and
boundary conditions of an IBVP, and the ANN is used to
approximate a least-squares-based (numerical) solution of the
IBVP (e.g., ref. 20). Recent reviews of applications in the field of
continuum mechanics and material modeling include, for
example, ref. 21. In the current work, attention is focused on the

data-driven approach. The data are obtained from the numerical
solution of a BVP for quasi-static mechanical equilibrium based on
viscoplastic material modeling of grains in a heterogeneous
polycrystalline ensemble.
A number of data-driven approaches have been proposed for

applications in solid mechanics. For example, Yang et al.22 trained
a conditional generative adversarial network (cGAN) to reproduce
stress and strain fields in strained isotropic elastic two-phase
composites. Mianroodi et al.23 trained a U-Net-based convolu-
tional neural network (CNN) using results for the von Mises stress
for grain microstructures consisting of isotropic elastic and ideal
elastoplastic grains subject to uniaxial extension. More recently,
Rashid et al.24 introduced a neural-operator-based approach, the
Fourier Neural Operator (FNO)25,26, in particular for the surrogate
modeling of stress and strain in heterogeneous composites. The
U-Net-based CNN and FNO-based ANN have been compared
recently by Kapoor et al.27 in the context of surrogate modeling of
stress fields in heterogeneous elastoplastic solids.
In the current work, a U-Net-based CNN is trained to output the

von Mises stress field σvM in heterogeneous periodic microstruc-
tures consisting of inelastic grains subject to uniaxial extension.
More specifically, the constitutive behavior of each grain is modeled
via J2 elasto-viscoplasticity with linear isotropic hardening. Results
from the numerical solution of BVPs for quasi-static mechanical
equilibrium in periodic unit cells based on this grain behavior and
spectral numerical solution methods (e.g., refs. 1,2,4,7) are employed
to train the CNN. For brevity, this is referred to as the “reference
model” (RM) in this work. In the “Results” section, results for σvM and
its average σvM over the unit cell U of the grain microstructure
obtained from the trained CNN (tCNN) are presented and compared
with corresponding results from the RM. In particular, these include
the dependence of the tCNN on details of the training dataset and
training such as (i) the number of grains in the microstructure, and
(ii) the range of material properties chosen for each grain. In
addition, the performance of the tCNN for (i) microstructure
morphologies (e.g., matrix-inclusion), and (ii) extension levels, not
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included in the training dataset, is also investigated and discussed.
The conclusions and outlook are presented in the “Discussion”
section. Methods employed in this work are presented in the
“Methods” section. In particular, this includes a brief summary of the
model for isotropic J2 viscoplasticity with linear isotropic constitu-
tive response assumed for each grain in the polycrystalline
ensemble. Data generation, the U-Net-based network architecture
employed, and network training are also explained and discussed.

RESULTS
The purpose of this section is to compare the output of the tCNN
for the von Mises stress field σvM with corresponding results from
the RM for selected test cases. As explained in more detail in the
“Methods” section below, the current CNN is trained with results
for σvM on unit cells U with 10-grain microstructures and a
resolution of 64 × 64 pixels subject to uniaxial extension. Training
(80%) and validation (20%) datasets are based on data from
1000 such microstructures generated randomly. For simplicity,
data used for training and testing are based on a single (quasi-
static) extension rate of 1 × 10−3 s−1. Test cases here include
microstructures with (i) different numbers of grains, (ii) material
property contrasts in neighboring grains, and (iii) grain morphol-
ogies, which differ from those in the training and validation
datasets. The tCNN is also tested for extensions larger than those
in these datasets. Lastly, the computational efficiency of the
tCNN in comparison to the RM is also discussed. In what follows,
σRM and σtCNN represent σvM from the RM and tCNN, respectively.

Test microstructures with a different number of grains
As stated above, the training dataset is based on 10-grain
microstructures. For test cases, 64 × 64 pixel unit cells U with 5 and
20 grains are considered here. Each corresponding test dataset
consists of 50 microstructures. The mean absolute error (MAE) for
these as based on σtCNN− σRM is compared with the MAE of the
training dataset in Table 1. Note that the MAE increases with
decreasing grain size (i.e., increasing number of grains in a unit cell
of constant size) and the concomitant increase in the number of
grain boundaries. As discussed in more detail below, these
interfaces are regions of maximum error in σtCNN.
Example results for 5- and 20-grain test microstructures, and

for a 10-grain training/validation microstructure, are shown
in Figs. 1–3.
As mentioned above and shown in Figs. 1–3 (b, bottom),

∣σtCNN− σRM∣ is maximal at grain boundaries and triple junctions
where spatial variations in the stress field are largest and pixel
resolution is lowest. In particular, the former is due to contrasts
among material properties across grain boundaries. Maximum
error at grain boundaries has been observed as well in the
previous work (e.g., 23). As can be seen in Figs. 1–3 (b, bottom), the
spatial extent of the maximum value of the measure ∣σtCNN− σRM∣
increases with increasing F11 and decreasing average grain size
(i.e., increased number of grains) in U.

Test microstructures with different material property
distributions
Training and validation data are based on 10-grain microstructures
in which material property values for the grains are selected

randomly from the ranges in Table 3. To obtain test data, random
distributions of E, ν, ξ0, h0 have been chosen from subsets of the
ranges in Table 3, i.e., E ∈ [50, 300] GPa, ν∈ [0.2, 0.4], ξ0∈ [50, 300]
MPa, and h0∈ [0, 50] GPa. In particular, the four cases

Case 1
E 2 ½50; 75�∪ ½275; 300�;
ξ0 2 ½50; 75�∪ ½275; 300�;

ν 2 ½0:2; 0:22�∪ ½0:38; 0:4�;
h0 2 ½0; 5�∪ ½45; 50�;

Case 2
E 2 ½75; 100�∪ ½250; 275�;
ξ0 2 ½75; 100�∪ ½250; 275�;

ν 2 ½0:22; 0:24�∪ ½0:36; 0:38�;
h0 2 ½5; 10�∪ ½40; 45�;

Case 3
E 2 ½100; 125�∪ ½225; 250�;
ξ0 2 ½100; 125�∪ ½225; 250�;

ν 2 ½0:24; 0:26�∪ ½0:34; 0:36�;
h0 2 ½10; 15�∪ ½35; 40�;

Case 4
E 2 ½125; 150�∪ ½200; 225�;
ξ0 2 ½125; 150�∪ ½200; 225�;

ν 2 ½0:26; 0:28�∪ ½0:32; 0:34�;
h0 2 ½15; 20�∪ ½30; 35�;

(1)

are considered. Note the decrease in property contrast in going
from Case 1 to Case 4. This is reflected in the MAEs of the
corresponding test datasets shown in Table 2. Note the decrease
in MAE with decreasing contrast in material properties. For
example, the contrast in E is at least 215 GPa in Case 1, and
145 GPa in Case 4.
Example results for Case 1 and Case 3 are shown in Figs. 4 and 5,

respectively.
Note the slight difference in the grain shape distributions in

Figs. 4 and 5.
As noted above, since the material properties in each grain are

homogeneous, the contrast in the property distributions is also
related to the contrast in material properties at grain boundaries
and triple junctions. In comparison to the results in Figs. 1–3 (b,
bottom) for ∣σtCNN− σRM∣ in the case that material properties values
are chosen from the ranges in Table 3, note the increase in
∣σtCNN− σRM∣ in Fig. 4b (bottom: up to 100MPa) and Fig. 5b (bottom:
up to 80MPa) due to the larger contrast, especially in the former
case. This is also true for the relative error shown in Figs. 4c and 5c.
The figure indicates that the results from the tCNN in Case 3 (with a
maximum error of 2%) are more accurate than Case 1 in which the
maximum error is around 5% as shown in Fig. 4c. Training with a
larger dataset in this case would result in a reduction of such errors
and better agreement with the RM.

Test microstructures with different morphologies
In this subsection, the tCNN is applied to grain and microstructure
morphologies not included in the training dataset. These take the
form of a single inclusion embedded in a matrix material. Inclusions
of circular and square form are investigated. For each, 50 test results
are generated based on a random choice of material properties from
the ranges in Table 3. Examples of these are shown in Figs. 6 and 7.
Analogous to the case of grain boundaries and triple junctions

in the polycrystalline cases in Figs. 1–3 (b, bottom), ∣σtCNN− σRM∣
is largest at the sharp matrix–inclusion (MI) interface where the
contrast in material properties is greatest and pixel resolution is
the lowest.
Note the maximum in ∣σtCNN− σRM∣ at the MI interface in the

circular case (Fig. 6b (bottom)) at F11 ¼ 1:001 not present at the
MI interface in the square case (Fig. 7b (bottom)). This is due to
the fact that (in contrast to the latter system) the former system
is still elastic at F11 ¼ 1:001, as implied by the unit cell stress-
deformation results in Fig. 6c and the larger initial resistance
stress ξ0 of the circular inclusion and corresponding contrast at
the MI interface (Fig. 6a). For comparable contrasts in material
properties at the (in particular sharp) interfaces of the circular
and square inclusions with the matrix, one expects the largest
stress concentration at the corners of the latter, and so the
largest values of ∣σtCNN− σRM∣ over the extension history. This is
also reflected by the fact that the MAE of the test dataset for the
circular inclusion case (1.42 MPa) is slightly lower than in the
square inclusion case (1.58 MPa).

Table 1. MAE for test datasets based on 5- and 20-grain
microstructures and for the training dataset based on 10-grain
microstructures.

Number of grains 5 10 20

MAE (MPa) 1.578 1.733 1.869

M.S. Khorrami et al.
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Extension histories not in the training dataset
The training data is based in particular on results for σRM
corresponding to uniaxial extension of the unit cell up to
F11 ¼ 1:004. Since σvM is an input to the network, the tCNN can
be used to calculate σvM for values larger than those in the
training data, corresponding to unit cell uniaxial extension beyond
that represented by the training data. A typical maximum is just

above 500 MPa (see, for example, Fig. 11, bottom right). Results for
this are shown in Fig. 8.
Note the significant increase in ∣σtCNN− σRM∣ in Fig. 8b (bottom)

and in the corresponding relative error in Fig. 8c (red triangles)
above F11 ¼ 1:0065.
Figure 8c shows the corresponding stress–strain curve for

further loading. According to this curve, the error notably

Fig. 1 Five-grain test microstructure subject to uniaxial extension along the horizontal axis. a Young’s modulus E, Poisson’s ratio ν, initial
flow resistance ξ0, linear isotropic hardening modulus h0. b Results for σRM (above), σtCNN (middle), ∣σtCNN− σRM∣ (below) (all MPa), at different
F11. c σRM (blue curve), σtCNN (green points), and relative error (red triangles) given by 100 ðσtCNN � σRMÞ=σRM versus F11.

Fig. 2 Ten-grain test microstructure subject to uniaxial extension along the horizontal axis. a Young’s modulus E, Poisson’s ratio ν, initial
flow resistance ξ0, linear isotropic hardening modulus h0. b Results for σRM (above), σtCNN (middle), ∣σtCNN− σRM∣ (below) (all MPa), at different
F11. c σRM (blue curve), σtCNN (green points), and relative error (red triangles) given by 100 ðσtCNN � σRMÞ=σRM versus F11.

M.S. Khorrami et al.
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increases for values of σvM greater than 500MPa. One reason for
this is very little data in the training data for such values. This can
be seen for example in Fig. 11 (below right), which displays the
distribution of pixel values for σvM at F11 ¼ 1:004. As shown, only
0.084% of the pixels in the whole training dataset have a von
Mises stress level above 500 MPa.

Computational efficiency
We consider next the time required to calculate the von Mises
stress field based on the RM and the tCNN. Recall that the former
is based on the numerical solution of BVPs for quasi-static
mechanical equilibrium in periodic unit cells employing spectral
numerical solution methods (e.g., refs. 1,2,4,7). The corresponding
results for the RM are obtained using the DAMASK simulation
package5 (see next section). The calculations are carried out on a
single core of an Intel® Core™ i9900K clocked at 3.60 GHz. On this
basis, the run time of DAMASK for a single training simulation
averaged over 50 training simulations is approximately 75 s, and
the corresponding run time for the tCNN is about 0.15 s. As such,
the tCNN is about 500 faster than the RM for the training case. Of
course, this difference depends on the details of the training data,
e.g., on the chosen resolution of 64 × 64 pixels. For finer
resolutions, the difference increases significantly.

DISCUSSION
In this work, a U-Net-based CNN has been trained to calculate the
von Mises stress field in metallic polycrystals or composites in
which the mechanical behavior of the grains is modeled by

J2 elasto-viscoplasticity with linear isotropic hardening. Data for
training, validation, and testing were generated via numerical
solution of the corresponding periodic boundary-value problems
for quasi-static mechanical equilibrium on grain microstructure
unit cells via spectral methods. Data sets for testing of the
resulting trained CNN (tCNN) are based on the (i) number of
grains, (ii) distribution of material properties, (iii) grain morphol-
ogies, and (iv) applied unit cell extension.
For the 64 × 64 pixel resolution of the microstructure employed,

calculation of the von Mises stress field σvM with the resulting
tCNN is up to 500 times faster than with the RM. Increasing the
resolution would result in an even larger difference in computa-
tional time. On the other hand, in contrast to the RM, the accuracy
of the tCNN is limited to (i) the range of the training data as well as
(ii) uniaxial extension.
The current approach can be extended and further developed in

a number of directions. These include for example (i) output of all
components of the stress field, (ii) training for different deformation
and loading conditions, or (iii) training for multiple rates of
deformation and/or loading. As well, training can be based on
more sophisticated “physics-informed” loss functions (accounting,
for example, for mechanical equilibrium), or on more sophisticated
“physics-encoded” network architectures. This represents work in
progress to be reported on in the future.

METHODS
RM: J2 viscoplasticity with isotropic hardening
As discussed in the introduction, data for the training and testing of
the ANN are obtained from the numerical solution of a boundary-
value problem for quasi-static mechanical equilibrium based on
viscoplastic material modeling of grain behavior in a grain
microstructure. In the current context of isothermal and quasi-
static conditions, these include in particular mechanical equilibrium
divP ¼ 0 in terms of the first Piola–Kirchhoff stress P. In the context
of the viscoplastic decomposition F= FeFp of the deformation
gradient F, the linear elastic relation Se= λ (I ⋅ Ee)+ 2μ Ee ⋅ Ee is

Fig. 3 Twenty-grain test microstructure subject to uniaxial extension along the horizontal axis. a Young’s modulus E, Poisson’s ratio ν,
initial flow resistance ξ0, linear isotropic hardening modulus h0. b Results for σRM (above), σtCNN (middle), ∣σtCNN− σRM∣ (below) (all MPa), at
different F11. c σRM (blue curve), σtCNN (green points), and relative error (red triangles) given by 100 ðσtCNN � σRMÞ=σRM versus F11.

Table 2. MAE for test datasets based on the material property
distributions in Eq. (1).

Case 1 2 3 4

MAE (MPa) 3.662 1.925 1.519 1.265

M.S. Khorrami et al.
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assumed between the elastic second Piola-Kirchhoff stress
S and the elastic Green strain Ee ¼ 1

2 ðFTeFe � IÞ; note that
P ¼ FeSeF�T

p . In the following, the Lame constants with λ= Eν/
((1+ ν)(1− 2ν)) and μ= E/(2(1+ ν)) are determined in terms of
the Young’s modulus E and the Poisson ratio ν. The evolution of Fp

Fig. 4 Case 1 (high-contrast) test microstructure subject to uniaxial extension along the horizontal axis. a Young’s modulus E, Poisson’s
ratio ν, initial flow resistance ξ0, linear isotropic hardening modulus h0. b Results for σRM (above), σtCNN (middle), ∣σtCNN− σRM∣ (below) (all MPa),
at different F11. c σRM (blue curve), σtCNN (green points), and relative error (red triangles) given by 100 ðσtCNN � σRMÞ=σRM versus F11.

Fig. 5 Case 3 (low-contrast) test microstructure subject to uniaxial extension along the horizontal axis. a Young’s modulus E, Poisson’s
ratio ν, initial flow resistance ξ0, linear isotropic hardening modulus h0. b Results for σRM (above), σtCNN (middle), ∣σtCNN− σRM∣ (below) (all MPa),
at different F11. c σRM (blue curve), σtCNN (green points), and relative error (red triangles) given by 100 ðσtCNN � σRMÞ=σRM versus F11.

Table 3. Material property ranges used for generating the dataset.

E (GPa) ν ξ0 (MPa) h0 (GPa)

Minimum 50 0.2 50 0

Maximum 300 0.4 300 50

M.S. Khorrami et al.

5

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2023)    37 



is determined by the J2 flow rule _FpF�1
p ¼ _γp S

dev
e =jSdeve j, where _γp

is the rate of equivalent plastic shear, and Sdeve the deviatoric
part of Se. The viscoplastic (i.e., rate-dependent28) form
_γp ¼ _γ0ðjSdeve j=ξÞn0 for the evolution of γp is determined by the
typical material inelastic shear rate _γ0, the power-law exponent
n0, and the flow resistance ξ(γp)= ξ0+ h0γp for linear isotropic

hardening, with ξ0 the initial flow resistance, and h0 the isotropic
hardening modulus.
The viscoplastic model is implemented in the simulation

software toolkit DAMASK5. This toolkit is also used for numerical
solution of the corresponding quasi-static mechanical boundary-
value problem on periodic grain microstructures based on spectral
(i.e., Fourier) methods.

Fig. 6 Round inclusion test microstructure subject to uniaxial extension along the horizontal axis. a Young’s modulus E, Poisson’s ratio ν,
initial flow resistance ξ0, linear isotropic hardening modulus h0. b Results for σRM (above), σtCNN (middle), ∣σtCNN− σRM∣ (below) (all MPa), at
different F11. c σRM (blue curve), σtCNN (green points), and relative error (red triangles) given by 100 ðσtCNN � σRMÞ=σRM versus F11.

Fig. 7 Square inclusion test microstructure subject to uniaxial extension along the horizontal axis. a Young’s modulus E, Poisson’s ratio ν,
initial flow resistance ξ0, linear isotropic hardening modulus h0. b Results for σRM (above), σtCNN (middle), ∣σtCNN− σRM∣ (below) (all MPa), at
different F11. c σRM (blue curve), σtCNN (green points), and relative error (red triangles) given by 100 ðσtCNN � σRMÞ=σRM versus F11.

M.S. Khorrami et al.
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Data generation
Material parameters for each grain in the microstructure include E,
ν, ξ0, h0, _γ0, and n0. For simplicity, _γ0 ¼ 10�3 s−1 and n0= 20 are
assumed the same for all grains. Values for the remaining material
properties of each grain are chosen randomly from a range of

values shown in Table 3. The training dataset consists of 1000
grain microstructures based on 10 grains and random material
property distributions. Grain morphologies and microstructures
are generated randomly via Voronoi tessellation. An example is
shown in Fig. 9.

Fig. 8 Extension histories test microstructure subject to uniaxial extension along the horizontal axis. a Young’s modulus E, Poisson’s ratio
ν, initial flow resistance ξ0, linear isotropic hardening modulus h0. b Results for σRM (above), σtCNN (middle), ∣σtCNN− σRM∣ (below) (all MPa), at
different F11. c σRM (blue curve), σtCNN (green points), and relative error (red triangles) given by 100 ðσtCNN � σRMÞ=σRM versus F11.

Fig. 9 Example of a randomly generated grain microstructure and corresponding material property distribution. The latter include
Young’s modulus E, Poisson’s ratio ν, the initial flow resistance ξ0, and the linear isotropic hardening modulus h0.

Fig. 10 Schematic illustration of the tANN for calculation of the local von Mises stress based on J2 viscoplasticity with linear isotropic
hardening. a Young’s modulus E, Poisson’s ratio ν, initial flow resistance ξ0, and linear isotropic hardening modulus h0 are material property
distributions as input of the tANN. σtvM denotes the von Mises stress distribution at time step t.

M.S. Khorrami et al.
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As done, for example, in ref. 23, the ANN input consists of the
distribution of these material properties in the unit cell/
microstructure as well as results for the scalar von Mises stress
field σvM ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3Tdev � Tdev=2
p

(Cauchy stress T ¼ PFT=det F) dur-
ing extension. Given the material property distribution
(E, ν, h0, ξ0) and σvM at time step t (i.e. σt

vM), then, the trained

ANN (tANN) outputs σvM at time step t+ Δt (i.e., σtþΔt
vM ). This is

depicted in Fig. 10.
In the current case of purely bulk behavior of grain

microstructures on the unit cell U, fields f ¼ f þ ~f on the unit
cell U are additively split into mean f and fluctuation ~f parts, with
f :¼ vðUÞ�1R

Uf dv and v(U)≔ ∫Udv. In this context, deformation

Fig. 11 Distributions of values and corresponding mean value (in red) for selected input quantities in the training data. Top left: Young’s
modulus E. Top right: σRM for F11 ¼ 1:001. Bottom left: σRM for F11 ¼ 1:002. Bottom right: σRM for F11 ¼ 1:004.

Fig. 12 U-Net-based ANN architecture adopted in this work. Depicted are the number of channels as well as the size of the images in each
layer. Employed are two-dimensional (2D) separable convolution with 9 × 9 kernel, ReLU activation, batch normalization, 2D max pooling, and
upsampling with bilinear interpolation, all as implemented in TensorFlow30. All weights and biases are initialized via the Glorot algorithm31.
See text for discussion.

M.S. Khorrami et al.
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“boundary conditions” on U take the form of prescribed values for
the mean deformation gradient FðtÞ. For the current case of
uniaxial extension, the Cartesian/matrix form

FðtÞ �
F11ðtÞ 0 0

0 1 0

0 0 1

2
64

3
75; F11ðtÞ ¼ 1þ _F11ð0Þ t; (2)

of FðtÞ applies. For simplicity, data for training and testing are
limited to a single extension rate _F11ð0Þ ¼ 1 ´ 10�3 s−1, i.e., to
quasi-static extension. Based on this extension rate, results
obtained up to F11ð4Þ ¼ 1:004 are employed as training data,
and those between this value and F11ð8Þ ¼ 1:008 are used for
testing the tCNN.
The pixel distributions of values for Young’s modulus E and σvM

for different values of F11 in the training data are shown in Fig. 11.
The pixel distributions of the other input material properties are

similar. As evident, the pixel distribution of σvM at each value of
F11 is quasi-normal in character, as expected for randomly
distributed material property values.

Neural network type, architecture, and training
The current ANN is based on the U-Net convolutional type and
architecture introduced by Ronneberger et al.29. As shown by
Mianroodi et al.23, this architecture is suitable for surrogate
modeling the stress field in solid mechanics problems, and in
particular the von Mises stress σvM. Fig. 12 schematically depicts
the U-Net network architecture, (referred to in ref. 29 as U-Net due
to its shape).
Network input consists of 64 × 64 pixel images for E, ν, ξ0, h0,

and σvM, and the network outputs one 64 × 64 pixel image for σvM.
As usual, both input and output are normalized to 1. In addition,
32 filters capture the main features from the input images. As
shown in the figure, four types of operation are performed in the
U-Net, namely, separable two-dimensional (2D) convolution with a
kernel size of 9, batch normalization, 2D max pooling, and 2D
upsampling with bilinear interpolation.
For the training process, Adam optimization is employed with a

learning rate of 0.001 and a momentum of 0.9. As discussed
above, the loss function for training, validation, and testing is
given by the mean absolute error (MAE) based on the difference
σtCNN− σRM. TensorFlow30 is used to set up and train the network.
As usual, the dataset is divided into training (80%) and (20%)
testing subsets. Training is based on 500 epochs and has an MAE
of 1.733 MPa; the corresponding MAE for the validation dataset is
1.743 MPa. No sign of overfitting was observed.
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