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Growing concerns on energy consumption of buildings by heating and cooling applications have led to a demand for improved
insulating performances of building materials. ,e establishment of thermal property for a building structure is the key per-
formance indicator for energy efficiency, whereas high accuracy and precision tests are required for its determination which
increases time and experimental costs.,emain scope of this study is to develop amodel based on artificial neural network (ANN)
in order to predict the thermal properties of concrete through its mechanical characteristics. Initially, different concrete samples
were prepared, and their both mechanical and thermal properties were tested in accordance with ASTM and EN standards. ,en,
the Levenberg–Marquardt algorithm was used for training the neural network in the single hidden layer using 5, 10, 15, 20, and 25
neurons, respectively. For each thermal property, various activation functions such as tangent sigmoid functions and triangular
basis functions were used to examine the best solution performance. Moreover, a cross-validation technique was used to ensure
good generalization and to avoid overtraining. ANN results showed that the best overall R2 performances for the prediction of
thermal conductivity, specific heat, and thermal diffusivity were obtained as 0.996, 0.983, and 0.995 for tansig activation functions
with 25, 25, and 20 neurons, respectively.,e performance results showed that there was a great consistency between the predicted
and tested results, demonstrating the feasibility and practicability of the proposed ANN models for predicting the thermal
property of a concrete.

1. Introduction

Building and construction sector has an important role in
global energy consumption in terms of heating and cooling
applications. Especially in Turkey, this amount approxi-
mately corresponds to 37% of the total energy consumption
[1]. ,e main purpose of a heating or cooling system is to
maintain conditions that provide thermal comfort for the
building occupants and conditions that are required by the
products and processes within the space. ,e net rate at
which heat must be removed from a space to maintain a
constant space air temperature at comfort level is called the

cooling load [2]. ,e heat gain through the building en-
velope at most buildings, which contains walls and roofs,
constitutes a major portion of the total cooling load of a
space due to their large surface area [3]. Concrete is the most
economical building material used in a building construc-
tion sector twice as much as the total of all other building
materials, including wood, steel, and plastic [4]. To minimize
energy consumption of the buildings, it is very important to
enhance the insulation characteristics of concrete which
greatly depend on its thermal properties. ,e thermal
property is defined as a property that measures the response
of a material to the application of heat. ,e energy may be
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transported to cooler regions of the specimen if temperature
gradients exist [5]. For building heat transfer, important
thermal properties are thermal conductivity, specific heat,
and thermal diffusivity. Especially, a low value of thermal
conductivity is desirable because of the associated ability to
provide thermal insulation. Moreover, a high value of
specific heat is desirable due to the associated ability to retain
heat [6]. Besides, thermal conductivity of a concrete is
strongly affected by microstructure, mineralogical compo-
sition, proportion, supplementary materials, moisture
content, and porosity [7]. Especially, aggregate materials,
which generally constitute about 70–80% by volume of
concrete, can be expected to have a more important impact
on thermal properties of concrete structures [8]. On the
contrary, the compressive strength is a significant me-
chanical property in the construction and design; hence,
these structures also need to have suitable mechanical
properties.

Since the heat transfer mechanism in a concrete is
complicated due to the contribution of the each component
(aggregate, composition, etc.) to the heat transfer, it is
difficult to find the ideal thermal properties of concrete
structures. High accuracy and precision tests are required for
its determination which increases time and experimental
costs. Hence, a lot of work has been carried out by many
researchers to find thermal properties of concrete using
definite simple models. ,e effect of thermal conductivity
and the mixing ratio of the lightweight materials on the heat
insulation properties were investigated by Wang et al. [9].
,e results demonstrated that there was an inverse re-
lationship between porosity and thermal conductivity with
R2 of 0.81. ,e comparison of the thermal conductivity and
its trend with the 28-day compressive strength was depicted
with R2 of 0.96 in a study [10]. ,e compressive strength and
the thermal conductivity were found to reduce with a de-
crease in the density of the concrete. Sengul et al. [11] in-
vestigated the effect of expanded perlite on the mechanical
properties and thermal conductivity of lightweight concrete.
,e results showed that there was a linear relationship
between density and thermal conductivity with R2 of 0.98. In
another study, Nandi et al. [12] studied various thermal
properties of anisotropic shale from Tennessee, which is
commonly used as building stones and bricks. ,e re-
gression analyses were conducted between heat capacity and
significant independent variables including porosity, density
(unit weight), and compressive strength test values of shale
samples.

,e models indicated in the literature are generally in
regression forms and obtained from physicomechanical
properties such as porosity, bulk density, and compressive
strength which have primary effect on thermal properties.
However, thermal properties of building materials are af-
fected by many independent mechanical properties; using a
simple regression method to investigate the effect of each
mechanical property on thermal property produces less
accuracy results and requires more assumption. Artificial
neural network (ANN) is considered to be an innovative
solution to overcome this problem. In the literature,
the principles of ANN have been briefly introduced and

summarized in several studies. Nikoo et al. [13] and Chopra
et al. [14] both conducted an experimental study about the
prediction of concrete compressive strength by using evo-
lutionary artificial neural networks as a combination of ANN
and genetic algorithms. ,e results of simulation verify that
the recommended ANN model enjoys more flexibility, ca-
pability, and accuracy in predicting the compressive strength
of concrete. Liang et al. [15] employed a neural network for
the prediction of compressive strength of concrete in the
wet-dry environment.,e performance results show that the
model is practical to predict the concrete mechanical per-
formance. Safiuddin et al. [16] studied the modeling of
compressive strength for self-consolidating high-strength
concrete incorporating palm oil fuel ash. ,e predicted
compressive strength values obtained from the trained ANN
model were much closer to the experimental values of
compressive strength, which was R2 of 0.9486. Alshihri
et al. [17] used the ANNs to predict the compressive
strength of lightweight concrete mixtures after 3, 7, 14, and
28 days of curing. It is concluded that the cascade corre-
lation neural network model predicated slightly accurate
results and learned very quickly as compared to the back-
propagation procedure. So far, many studies have been
conducted to predict 28-day compressive or tensile
strength of concrete using ANNs [18–22]. However, there
have been only a few studies conducted to investigate the
thermal property of concrete materials. Gencel et al. [23]
predicted the thermal conductivity of concrete with ver-
miculite by using ANN with 20 data set. Experimental
results were compared with those of the ANNmodel. It was
found that the radial basis neural network model is superior
to the other models. ,e thermal conductivity of rock was
predicted through physicomechanical properties in a study
conducted by Singh et al. [24]. It was evident from the study
that ANN modeling had good prediction capability to
determine the very complex rock parameter like thermal
conductivity. Lee et al. [25] presented a study about an
effective prediction of thermal conductivity of concrete
using ANN. ,e model was trained by 124 data sets with
eleven parameters: 9 concrete composition parameters and
2 concrete state parameters. ,e result indicated that the
proposed method was effective at predicting the thermal
conductivity of concrete.

Although many researches have attempted to use the
ANN method to predict the mechanical behavior of con-
cretes, there has not been much research about in-
vestigating the thermal properties. Besides, there is no
study in the literature to predict the thermal properties
using mechanical properties of concretes. Both accurate
and simple methods are required to describe the ideal
thermal insulation properties of those structures. ,ere-
fore, an ANN model has been used to predict the thermal
properties of concrete utilizing its mechanical properties so
as to reduce time and experimental costs. ,e concrete
samples were prepared by changing the volume fraction of
normal and lightweight aggregate materials in the ce-
mentitious matrix, which were exposed to the same con-
ditions. ,e findings and results are presented in detail in
the following sections.
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2. Materials and Methods

2.1. Concrete Mixtures, Materials, and Test Methods.
Concrete is a composite material composed of aggregate
material embedded in a hard matrix of material that fills the
space between the particles and glues them together [26].
Several materials were used to produce concrete materials
which were locally available ordinary Portland cement
(CEM I 42.5R), silica fume, superplasticizer, air-entrained
mixture, and fine and coarse aggregates such as gravel,
sand, rubber, perlite, and pumice aggregates. In the ex-
perimental setup, concrete samples were designed with a
constant water-cementitious material ratio of 0.48 and total
cement content of 350 kg/m3. Normal aggregates (sand and
gravel) were replaced by lightweight aggregates (rubber,
perlite, and pumice) at different volume fractions varying
between 10% and 100%. In total, 264 concrete samples were
produced, and their mechanical tests, which are the
compressive strength (ASTM C39), split-tensile strength
(as shown in Figure 1, ASTM C 496), ultrasonic pulse
velocity (as shown in Figure 2(b), ASTM C597), bulk
density (ASTM C138), and porosity (ASTM C1202-12)
tests, were performed in accordance with ASTM stan-
dards on air-dried samples aged 28 days (ASTM C330-99).
,e minimum strength requirements for building blocks
are most commonly set at 2.5MPa (BS 6073: Part 1);
therefore; the produced samples whose compressive
strengths are under the limit are not included in the study.

,e thermal properties tests, which are thermal con-
ductivity, specific heat, and thermal diffusivity, were per-
formed on the same state with the age of 35 days according
to EN 12667 [27]. In this study, ISOMET 2104 device
(Figure 2(a)) was used to measure the thermal conductivity
of concrete samples on the basis of the transient plane
source (TPS) method. In comparison with stationary or
steady-state methods, the advantage of transient methods is
to give a full set of thermal properties within a single rapid
measurement. Moreover, the Matest 24048 test device is
used for the determination of ultrasonic pulse velocity. ,e
technical specifications of the used devices are given in
Table 1.

2.2. Construction of Artificial Neural Network Model.
ANNs are one of the most important methods used in
machine learning. ,e neural networks algorithm is gen-
erally a useful tool for recognizing patterns, fitting a func-
tion, and clustering of data. ,e concept of neuron within
the abbreviation of ANN is the brain-inspired systems based
on the way people learn. It is very useful tool for the solution
of problems caused by the inability of manual solution when
the data are too much. ,e general neural network system
consists of units such as input/output, weights, activation
function, and hidden layer. ,e collected test data from
experiments are multiplied by weights and transferred to the
activation function. ,ere are various activation functions,
which are tangent sigmoid (tansig), linear (purelin), tri-
angular basis (tribas), radial basis (radbas), and logarithmic
sigmoid (logbas) transfer functions used in the networks

[28, 29]. ,e indicated activation functions are shown in
Table 2.

,emathematical expression of the basic neural network
is presented as

o � f(wx + bias), (1)

w � w1, w2, . . . , wn, (2)

x � x1, x2, . . . , xn. (3)

Weights and inputs are defined by equations (2) and (3).
,e transfer function of the neural network is defined in the
following equation:

net �∑n
i�1

wixi + b, (4)

where the index b is expressed as the bias value. If the
sigmoid function is used as an activation function, the
output of the network is expressed as

Cj � f netj( ) � 1

1 + e−(net)
. (5)

,e function shown in equation (5) represents that the
functions can be derived from derivatives such as hyperbolic,
sigmoid, and inverse hyperbolic. ,e error value in equation
(6) is calculated by determining the difference between the
expected output (Bk) and the calculated output (Ck) of the
network. To reduce the error value, weights of the neurons in
the network are changed until the error falls below a certain
value:

Em � Bk −Ck. (6)

,e total error is expressed as in the following equation:

TH �
1

2
∑
m

E2
m. (7)

,e performance of the networks can be examined by
using different training functions such as gradient descent,
BFGS quasi-Newton, resilient back propagation, and scaled
conjugate gradient; however, the Levenberg–Marquardt
training function is generally preferred, which was also used
in this study, due to its high accuracy and usability. By the
way, using different neuron numbers on hidden layers will

Figure 1: Split-tensile strength test.
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also have an impact on the results. For this purpose, 5, 10, 15,
20, and 25 neurons were tested in the single hidden layer,
respectively.

Figure 3 shows the proposed ANN model for 5 inputs
and 1 output with a single hidden layer. ,e mechanical
properties of the concrete obtained from the experimental
study are used as an ANN input, and three different neural
network structures with a single hidden layer are designed
to predict the thermal properties and are used as an output.
Consequently, in order to determine best performance
values, a single hidden layer ANN model with five acti-
vation functions and five different neuron numbers was
designed to perform the prediction of the thermal prop-
erties of concretes.

Cross validation is a method to assess the prediction
performance and to investigate how they perform outside
the sample to a new data set also known as testing data.
,e technique is used to ensure good generalization and
to avoid overtraining [30, 31]. In this paper, the fold
number k is set to 10 considering the computational time
and the recommendations in the literature. ,erefore, the
training data were divided into 10 subsets, of which 8 were
used for training, while the remaining one was used for

cross validation. In the training phase, experimental data
are shown to the network by shifting 10 times. ,en R2

values are calculated by taking the average of R2 values
obtained from each shift.

2.2.1. Normalization Process. Some activation function
values vary from 0 to 1. For this reason, it is required to use
some data in this range for training. To achieve this, a
process called normalization should be applied. ,e equa-
tion shown below is used to perform the normalization
process [32]:

Xnorm
i �

Xi −Xmin
i

Xmax
i −Xmin

i

, (8)

where Xnorm
i is the normalized value, Xmax

i is the maximum
value, Xmin

i is the minimum value, and Xi is the actual
value.

2.2.2. Performance Evaluation of the ANN. In order to
evaluate the performance of developed models, the co-
efficient of determination (R2) is used as a common criterion
to judge about the “accuracy” of a specific model based on its
prediction, while the root-mean-square error (RMSE) and
mean absolute percentage error (MAPE) are commonly used
to show the “precision” of a model based on residual
analysis. ,erefore, it is preferred to use a combination of
criteria to conclude and/or compare overall performance of
models. In this study, the stated metrics are used to evaluate
the prediction performance of an ANN. ,e first perfor-
mance indicator is the mean absolute error (MAE) which
measures the average magnitude of the errors without
considering their directions [33]. ,e MAE performance
function is expressed as

MAE �
1

n
∑n
k�1

|y(k)− t(k)|. (9)

,e root-mean-squared error performance function is
computed as follows:

RMSE �

����������������
1

n
∑n
k�1

[y(k)− t(k)]2
√√

. (10)

(a) (b)

Figure 2: ,e measurement devices of ultrasonic pulse velocity and the thermal property.

Table 1: Technical specifications of devices for measuring
parameters.

Measurement property
Measurement

range
Accuracy

,ermal
conductivity, λ

0.015–6W/m·K
5% of reading +
0.001W/m·K

Specific heat
capacity, ρcp

4×104–4×106

J/m3
·K

15% of reading +
1.103 J/m3

·K
Ultrasonic pulse
velocity, UPV

0–3000 µs ±0.1 µs

Table 2: Equation of different types of activation functions.

Name of activation function Function equation

Sigmoid (logsig) function y � 1/1 + e−x

Linear function (purelin) y � x

Triangular basis (tribas) function y �
1− |x| if − 1 ≤x≤ 1
0 otherwise

{
Radial basis (radbas) function y � e−x

2

Tangent sigmoid (tansig) function y � tanh(x)
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,e mean absolute percentage error is computed as
follows:

MAPE �
∑nk�1|y(k)− t(k)/y(k)|

n
× 100. (11)

,e coefficient of determination criterion is computed as
follows:

R2
�
∑nk�1(y(k)− t(k))2∑nk�1 y(k)−ym(k)( )2, (12)

where n is the number of observations, y(k) is the exper-
imental data t(k) is the predicted data, and ym(k) is the
mean experimental data.

3. Results and Discussion

In this study, the ANN model has been used to predict the
thermal properties of concrete by utilizing its mechanical
properties. ,e mechanical properties of the concrete ob-
tained from the experimental test data were used as inputs,
and the thermal properties were used as outputs. In this
regard, a single hidden layer neural network model with five
different activation functions and different neuron numbers
was designed, and their performances are examined. Due to
the fact that the best performance results were obtained in
the ANNs with single hidden layer, in this study, it was not
required to design a multilayered ANN. ,e data were di-
vided into two categories, training and testing subsets in-
cluding 110 and 22 data (total of 132 data), respectively. In
Figure 4, the coefficient of determination (R2) values for
prediction of thermal conductivity are indicated in training,
validation, testing, and overall phases, respectively. As
mentioned before, R2 can take values between 0 and 1 where
values closer to 0 represent a poor fit, while values closer to 1
represent a perfect fit. When overall R2 values are examined,
the tansig-based neural network with 25 neurons has the best

R2 performance with the value of 0.996. Although the best R2

performance results are obtained in that network, other
network results are also successful to predict the thermal
conductivity values.

Figure 5 illustrates RMSE, MAE, and MAPE perfor-
mance indices of the ANN in training and testing phases
for the prediction of thermal conductivity, respectively.
,e results show that the RMSE values of the tansig ac-
tivation function-based neural network with 25 neurons
in training and testing phases are 0.001508 and 0.011086,
respectively. MAE shows the average absolute error where
the values are 0.012485 and 0.031103 in the training and
testing phases for the tansig-based neural network with 25
neurons, respectively. When the MAPE performance
indicator is examined, the best performances of the MAPE
values in training and testing phases are 0.049987 and
0.141836 for the tansig-based neural network with 25
neurons, respectively.

Figure 6 shows the R2 performance results of the ANN
for the specific heat in training, validation, testing, and
overall phases, respectively. When overall R2 values are
considered, the tansig activation function-based neural
network with 25 neurons has the best R2 performance with
the value of 0.983.

Figure 7 illustrates RMSE, MAE, and MAPE perfor-
mance indices of the ANN in training and testing phases for
prediction of the specific heat, respectively. ,e results
show that the RMSE value of tansig activation function-
based ANN with 25 neurons in the training phase is
0.001787 and the RMSE value in the testing phase is
0.017423. ,e results for the MAE value of logsig-based
ANN with 25 neurons in the training phase is 0.015459 and
for the MAE value of tribas-based ANN with 15 neurons in
the testing phase is 0.030337. When the MAPE perfor-
mance indicator is considered, the best performances of the
MAPE values in training and testing phases are 0.044071
and 0.088857 for the radbas-based ANN with 20 neurons

Thermal conductivity
Specific heat
Thermal diffusivity

Output layer

βi,j

wi,j

Hidden layerInput layer

Ultrasonic pulse
velocity

Porosity

Tensile strength

Compressive
strength

Density

Bias

Figure 3: Construction of the ANN model.
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Figure 4: �e coefficient of determination (R2) values for the prediction of thermal conductivity.
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FIGURE 5: (a) RMSE, (b) MAE, and (c) MAPE performances of training and testing phases for thermal conductivity.
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Figure 6: �e coefficient of determination (R2) values for the prediction of specific heat.
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and for the logsig activation function-based ANN with 15
neurons, respectively.

Figure 8 shows the R2 performance results of the ANN
for thermal diffusivity in training, validation, testing, and
overall phases, respectively. When overall R

2 values are
examined, the tansig-based neural network with 20 neurons
has the best R2 performance with the value of 0.983. Al-
though the best R2 performance results were obtained in
those function-based networks, other network results are
also successful to predict the thermal diffusivity values.

Figure 9 illustrates RMSE, MAE, and MAPE perfor-
mance indices of the ANN in training and testing phases
for the prediction of thermal diffusivity, respectively. �e
results show that the RMSE values of tansig-based neural
network with 20 neurons in training and training phases are
0.001733 and 0.01001, respectively. �e best performance
results for theMAE value of the tansig-based neural network
with 20 neurons in the training phase is 0.015156 and for the
MAE value of the tansig-based neural network with 10
neurons in the training phase is 0.023443. When the MAPE
performance indicator is examined, the best performances
of MAPE values in training and testing phases are 0.020641
and 0.043037 for the tansig-based neural network with
20 neurons, respectively.

�ere are a few studies in the literature to estimate the
thermal properties of concrete through mechanical prop-
erties such as density. In the studies [34–37], regression
analyses were performed to obtain some correlations from
experimental results of those properties. �e comparison
results of experimental and tansig-based ANN with 25
neuron with a correlation obtained in Reference [37] for
thermal conductivity is shown in Figure 10.

�ere is a significant difference between the experi-
mental and correlation results when the density values are
between 1600 and 2500 kg/m3. �e difference is due to both
the correlation range, which gives better results with den-
sities from 320 to 1600 kg/m3 as stated in Reference [37], and
the nature of linear regression. It is shown that, while linear

regression modeling approach is deficient to predict the
thermal conductivity values, more accurate results are ob-
tained with the usage of ANN which perfectly represents the
features of the thermal conductivity values.�is is due to the
fact that ANN can approximate nonlinear relationships
between mechanical and thermal properties without any
presumptions, while the linear regression model is per-
formed between one input and output that leads to less
accuracy and also requires more assumptions.

4. Conclusions

In this study, a single hidden layer ANN model with five
different activation functions and five different neuron
numbers was designed to perform the prediction of thermal
properties of concrete through its mechanical properties.
�e Levenberg–Marquardt training algorithm-based neural
network was designed to predict the thermal properties
of building materials. In order to evaluate the predictions,
the normalization and the cross-validation processes were
performed at first. �en, R

2, RMSE, MAE, and MAPE
performance indicators were investigated for five different
numbers of neurons and activation functions. For each
thermal property, various transfer functions are used to
examine the best solution performance in the ANN. Due to
the fact that the best performance results were obtained in
the ANNs with single hidden layer, in this study, it was not
required to design a multilayered ANN. �e ANN results
showed that the best overall R2 performances for predicting
thermal conductivity, specific heat, and thermal diffusivity
were obtained as 0.996, 0.983, and 0.995 for tansig activation
function-based ANN with 25, 25, and 20 neurons, re-
spectively. Although the best R2 performance results have
been obtained in these function-based networks, other
network results are also successful to predict the thermal
properties of concrete structures. �e performance results
indicated that there was a great consistency between the
predicted and the tested results. Moreover, the experimental
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Figure 7: (a) RMSE, (b) MAE, and (c) MAPE performances of training and testing phases for specific heat.
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Figure 8: �e coefficient of determination (R2) values for prediction of thermal diffusivity.
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Figure 9: Continued.
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Figure 9: (a) RMSE, (b) MAE, and (c) MAPE performances of training and testing phases for thermal diffusivity.
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Figure 10: �e comparison of the experimental, ANN, and a correlation to Reference [37] results for thermal conductivity.
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and the ANN results of thermal conductivity values have
been compared with the literature studies. More accurate
results are obtained with the usage of ANN instead of re-
gression models. Consequently, the study is a major con-
tribution to the neural network literature, demonstrating the
feasibility and practicability of the proposed ANN models
for predicting the thermal property of concrete structures.
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