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Abstract

Background: Positron Emission Tomography – Computed Tomography (PET/CT) imaging is the basis for the
evaluation of response-to-treatment of several oncological diseases. In practice, such evaluation is manually
performed by specialists, which is rather complex and time-consuming. Evaluation measures have been proposed,
but with questionable reliability. The usage of before and after-treatment image descriptors of the lesions for
treatment response evaluation is still a territory to be explored.

Methods: In this project, Artificial Neural Network approaches were implemented to automatically assess treatment
response of patients suffering from neuroendocrine tumors and Hodgkyn lymphoma, based on image features
extracted from PET/CT.

Results: The results show that the considered set of features allows for the achievement of very high classification
performances, especially when data is properly balanced.

Conclusions: After synthetic data generation and PCA-based dimensionality reduction to only two components,
LVQNN assured classification accuracies of 100%, 100%, 96.3% and 100% regarding the 4 response-to-treatment
classes.
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Background
In an oncological context, Positron Emission Tomography
– Computed Tomography (PET/CT) became a standard
not only in disease staging but also as a quantitative
method to monitor treatment response and, in recent
years, in the early prediction of final response when only
few cycles of the programmed treatments have been per-
formed [1].
Basically, the images obtained through PET/CT show

the metabolism of a specific radiotracer like 18F-FDG
(18F-fuoro-deoxyglucose) or 68Ga-DOTANOC (68Ga-
DOTA-Nal-Octreotide), throughout the body. As cancer
cells are highly proliferative ones, they take a lot of the
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radiotracer and will appear as intense activity areas. How-
ever, some other causes can produce such activity like
infections, inflammations or muscle activity, which turn
the analysis of PET/CT images into a complex process.
One of the most widely used measures to quantify the

uptake of radiotracers is the Standardized Uptake Value
(SUV) [2]. Its calculation takes into account the differ-
ences between normalized values of body weight, lean
body mass, surface area, and injection dose. However,
multiple factors can influence the SUV calculation [3].
These factors can be related to/ influenced by:

1. Imaging Physics – The function of PET is to form an
image of the spatially varying concentration of
positron-emitters. However, the image resolution is
typically on the order of 4 to 7 mm full-width
half-maximum leading to partial volume effects or
partial volume errors [4], which can bias the true
concentration value for small objects in the image;
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2. Patient status – The status of the patient can directly
influence the SUV value. Factors like glucose and
insulin levels in the blood can increase FDG uptake
by muscles with less available molecules for
equilibration in tumor tissue. Also chemotherapy
treatments can result in impaired renal function,
reducing the clearance of plasma FDG through the
kidney that will increase the SUV value in
comparison to the initial PET scan;

3. Dose extravasation – Dose extravasation, defined as
the efflux of radiotracer from a vessel into
surrounding tissues during intravenous infusion,
results in an underestimated SUV, as the activity that
effectively enters the circulation and distributes
through the organs is inferior to the activity used for
SUV calculation;

4. Scan Protocol – There are some components
encompassing the scan protocol that can sway the
SUV value [5]. These components are: (1) the uptake
time: interval between injection and image
acquisition; (2) measuring the residual activity in the
syringe; (3) accurate measurement of patient weight;
(4) synchronization of clocks used for dose assays
and scanning; (5) patient respiratory motion; (6)
correct data entry;

5. Data Processing – Two steps compose Data
Processing: corrections for confounding effects like
attenuation, scattered and random coincidences,
scanner deadtime, and detector efficiency variations;
and image reconstruction where the raw data is
transformed into an image of relative radioactivity
concentration;

6. Scanner Calibration – The scanner calibration
comprises two phases: estimation of scanner
calibration factor and conversion of the image unit to
SUVs. An erroneous value inserted in the calibration
factor can originate an error in calibration and in
SUV calculation.

Throughout the years, some other metrics derived from
SUV have emerged to evaluate treatment response:

1. SUVmean and Region of Interest (ROI) definition –
This measure consists in the average of SUV value in
a tumor ROI. However, some issues arise mainly with
respect to image noise and limited image resolution
of PET. Another issue is related to the generalization
of the use of this measure (known as reproducibility).
This point is strictly related to the tumor ROI
identification, which depends on the physician
preferences related to margin drawings;

2. SUVmax – The idea behind the computation of
SUVmax is to identify the maximum SUV value in a
single voxel within a tumor ROI. As this measure

describes a value of a lesion based on a single voxel, it
eliminates the issue presented by SUVmean and ROI
(maximum value is invariant to small variations of
ROI). However, this measure can be considered more
biased and noisy in comparison to other SUV
variations, as it is substantially affected by the
reconstruction algorithm. Yet, some studies proved
that this bias and noise are less than previously
thought [6] and because of that it is the most used
metric to evaluate treatment response.

This project is part of a wider study whose goal is
to create a new accurate assessment measure of lesion
malignancy, that would outperform SUV metrics. In this
phase, the goal was to automatically assess the treat-
ment response of oncological patients based on PET/CT
images, using an artificial neural network approach, and
building proof that the set of features used in this
study (based on local image descriptors and clinical
information) are capable of characterizing this oncolog-
ical context. To achieve this, before and after-treatment
corrected- and non-attenuation-corrected PET images
and CT images from 63 patients suffering from one of
two oncological diseases – Hodgkyn disease or neuroen-
docrine tumors – were collected at IPO Porto center (a
tertiary cancer center in Northern Portugal).
Four standard artificial neural network (ANN) archi-

tectures were explored – multilayer perceptron (MLP),
radial basis function neural network (RBFNN), probabilis-
tic neural network (PNN) and learning vector quantiza-
tion neural network (LVQNN). These ANN receive an
input vector with more than 300 features combining clin-
ical and image descriptor information. For comparison
purposes, a baseline classifier was also used – k Nearest
Neighbors (kNN).
The results show that the considered set of fea-

tures allows for the achievement of very high classifi-
cation performances, especially when data is properly
balanced. After synthetic data generation and PCA-
based dimensionality reduction to only two components,
LVQNN assured classification accuracies of 100%, 100%,
96.3% and 100% regarding the 4 response-to-treatment
classes.
Although image descriptors are a common tool to

perform medical image analysis, regardless of the goal
(e.g., diagnosis, treatment), image modality or anatomy,
the complementary information provided by different
descriptors or their combination with other clinical data
is sometimes overlooked. While some works have illus-
trated the advantages of such combinations (see [7]), there
are many scenarios that would certainly benefit from such
strategy. To the best of our knowledge, an assessment of
oncological treatment response based on the combination
of local descriptors and clinical information from before
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and after treatment, such as the one presented herein, is
entirely novel.
Below, we present an overview of works related to the

application of ANN approaches in medical image analysis
and also a brief description of the use of image descriptors
in medical image context.

Artificial neural networks approaches
ANN have been widely used in automated medical diag-
nosis. In particular, feedforward neural networks tend to
be the most used ANN. Within the group of feedfor-
ward networks, a few particular architectures are usually
adopted, such as the multilayer perceptron (MLP), the
radial basis function neural network (RBFNN), a varia-
tion of the RBFNN known as probabilistic neural network
(PNN) and the learning vector quantization neural net-
work (LVQNN). Despite the predominance of these ’stan-
dard’ networks, a number of different neural networks
architectures is found in literature, resulting from modi-
fications and adaptations to particular problems. Regard-
ing automated diagnosis applications specifically based
on image, the most frequently adopted type of network,
within the group of standard architectures, is, by far, the
MLP, followed by RBFNN. PNN has also been used in sev-
eral studies. Other network models have been specifically
designed to operate directly on images, such as Convo-
lutional Neural Networks and Massive Training Artificial
Neural Networks [8, 9]. This subsection addresses some
relevant examples.
Verma and Zakos [10] used a BP (back propagation)-

MLP model with one 10-unit hidden layer for dis-
crimination between benign and malignant breast
microcalcifications. With only three inputs – two gray-
level features and the number of pixels –, computed from
microcalcification regions in mammograms, an accuracy
of 88.9% was achieved.
Halkiotis et al. [11] proposed a method to detect cluster

breast microcalcifications. Five features were computed
from the candidate ROIs, four of them being moments
computed from the gray-level histogram and the remain-
ing being the number of objects in a limited neigh-
borhood. These features were input to a BP-MLP with
a 10-unit hidden layer for classification as either clus-
tered microcalcification or not. A sensitivity of 94.7% was
obtained, with 0.27 false findings per image.
Papadopoulos et al. [12] developed a system also for the

detection of microcalcification clusters. From mammo-
gram ROIs, 22 intensity, shape and texture cluster features
were extracted. Features of candidates that passed a rule
system aiming at false positive elimination were subjected
to principal component analysis for posterior dimension-
ality reduction. Dimensionality was reduced to 9, through
the elimination of components that contributed with less
than 3% of the overall data variance. Then, the 9 features

were fed to a two-hidden-layer BP-MLP, the first layer
having 20 units and the second having 10. Area Under the
Curve (AUC) values of 0.91 and 0.92 were obtained for
two different datasets.
Christoyianni et al. [13] used an RBFNN classifier, first

for detecting abnormal breast tissue and, secondly, to dis-
criminate between benign and malignant breast lesions.
Three feature vectors were compared: one consisted of
gray-level histogram moments, a second one was com-
posed of statistics computed from the co-occurrence
matrix and the third onde was composed of the principal
components (5 in the case of abnormality detection and 8
in the case of discrimination between benign and malig-
nant lesions) of the coefficients resulting from indepen-
dent component analysis (ICA). The ICA-based feature
vector was the highest performing one in both classifica-
tion tasks, with an accuracy of 88.23% in the abnormality
detection scenario and of 79.31% in the benign from
malignant discrimination.
Chen et al. [14] used a PNN for discrimination between

two types of liver tumors (hemageoma and hepatoma),
based on three image features computed from CT ROIs -
correlation, sum entropy and normalized fractional Brow-
nian shape. An accuracy of 83% was obtained.
In some medical image-based diagnosis studies, net-

work models are designed to operate directly on images.
Examples are Convolutional Neural Networks – used, for
instance, in [15] for detection of abnormal breast tissue in
mammogram ROIs, achieving an AUC of 0.87 – andMas-
sive Training Artificial Neural Networks – applied to lung
nodule detection and false positive reduction, maintain-
ing a sensitivity of 96.4% and achieving a false positive rate
reduction of 33% when compared to a previous system
designed by the same authors [16].
Pruning algorithms can be used during training

for the elimination of irrelevant network connections
performance-wise (e.g. input selection). Setiono [17]
applied a pruning algorithm to an MLP in a breast cancer
diagnosis application.
Zhou et al. [18] used an ANN ensemble – , i.e. a com-

bination of ANN where final output of the system is a
function of the outputs of different ANN – for lung cancer
detection.
In [19], Liu presents a study with mammograms to illus-

trate how ANN can be trained, tested, and evaluated. The
main goal of this work is to understand how a radiolo-
gist should use the outputs provided by an ANNmodel as
second opinion in computer aided diagnosis.

Image descriptors
The design of algorithms aimed at providing a descrip-
tion of image parts is a prolific and central research topic
in the fields of computer vision and image analysis. Pop-
ular local descriptors such as scale invariant transform
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(SIFT) [20], shape contexts [21], or local binary patterns
(LBP) [22] have been used in a wide range of applications
such as matching, object recognition and face detection.
Image descriptors have also been widely and success-
fully used in medical image analysis [23]. They appear
as an effective tool to assist in the interpretation of dif-
ferent medical image modalities, contributing to improve
the diagnosis and monitoring of a large number of dis-
eases. The literature reporting the use of local descriptors
in medical image analysis is vast to be comprehensively
reviewed and discussed herein, although some relevant
and representative works will be presented.
A number of works uses texture descriptors such as

LBP in diagnosis and monitoring. For instance, Oliver
et al. [24] represented salient micro-patterns using LBP
for mammographic mass detection. Dettori and Semler
[25] compared the performance of wavelet, ridgelet, and
curvelet-based texture descriptors in tissue classification
using CT scans. Virmani et al. [26] developed a system
to characterize liver ultra sound images using a com-
bination of texture descriptors like the mean, standard
deviation, and energy of wavelet coefficients from differ-
ent families (e.g., Haar or Daubechies). Morgado et al.
[27] presented a comparative study of feature extraction
and selection on PET images for automated diagnosis
Alzheimer’s disease as well asMild Cognitive Impairment,
which is a syndrome associated with a pre-clinical stage of
Alzheimer’s disease. In this work, several variants of LBP
were analyzed, including a 3D one.
Reddy et al. [28] proposed a confidence-guided seg-

mentation on MRI. The authors used groups of multi-
parametric MRI data from different subjects. Each group
consisted of a pre-contrast T1-weighted (T1-pre), a post-
contrast T1-weighted (T1-post), a T2-weighted (T2) and
an attenuated inversion recovery (FLAIR) MRI image. A
mask for the enhanced region was generated with the
difference T1-pre and T1-post. Then, Mean Intensity,
LBP and HOG descriptors were computed for each pixel
within the enhanced region mask from each of T1-pre,
T1-post, T2 and FLAIR images, and concatenated to form
a single feature vector. After that, the feature vectors were
fed into a classifier for tumor pixel classification.
Moura and López [7] presented a study in which image

descriptors are used individually or combined with clini-
cal data to train classifiers for breast cancer diagnosis. Seg-
mented regions corresponding either to benign lesions or
to malignant ones were considered in this study. Besides
the mammographic images, other clinical data was col-
lected, such as patient’s age or breast density. The authors
selected 11 descriptors that had been successfully used
in breast cancer diagnosis and categorized them into
four groups: intensity – including intensity statistics, his-
togram measures, Zernike moments and the Hu set of
invariant moments, texture – Haralick features and sets

of features computed from the gray-level-run-length and
the gray-level-difference matrices, multi-scale texture –
Gabor filter banks, wavelets and curvelets and spatial dis-
tribution of the gradient – HOG. Within the last group,
a novel descriptor was proposed, histograms of gradient
divergence (HGD), which is specially designed for round-
shaped objects, such as masses, and aims at describing the
regularity of their shape.

Remarks
There is very little documentation on the usage of neu-
ral networks for PET image analysis. Furthermore, neu-
ral networks in the field of medical imaging are usually
employed in registration, segmentation, edge detection,
detection and diagnosis of pathologies, and simulation
[29], and have not been used for treatment response
classification based on before- and after-treatment image
features. In addition, the potential advantage in combin-
ing the information of different descriptors or combining
descriptor information with other clinical information is
sometimes overlooked. This study intends to explore such
combinations.

Document outline
The remainder of this paper is organized as follows:
Section Methods outlines the methodological steps used
in this project concerning the four project phases: Data
collection, Data Preprocessing and Treatment Assess-
ment. Section Results and discussion reports the collected
results and, finally, Section Conclusions presents the con-
clusions and proposals for further studies.

Methods
The development of this project follows a traditional KDD
(Knowledge Discovery in Databases) approach [30]. The
following subsections provide a complete description of
all the phases.

Data collection
Data was collected at IPO-Porto by a medical team com-
posed of one nuclear medicine specialist and two physi-
cians. Clinical data from 63 patients, suffering from one
of two oncological diseases – neuroendocrine tumors (34)
and Hodgkyn disease (29) – was provided (Fig. 1 depicts
an attenuation-corrected PET image). Patient clinical data
included: pre- and post-treatment PET/CT exams, patient
age and tumor stage by the time of the first PET and
CT exams and patient weight before and after treat-
ment. In addition, the medical team provided the values
of the maximum SUV within the main lesion, the maxi-
mum SUV within a reference organ (spleen in the case of
neuroendocrine pathology and liver in Hodgkyn disease)
and the information of what type of treatment response
was observed in each patient. Cases were divided into
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Fig. 1 Example of a coronal slice of an attenuation-corrected PET
image of a patient suffering from paraganglioma, a neuroendocrine
tumor that affects head and neck (head in this particular case)

four classes of treatment response – negative (malig-
nancy increased), neutral (no response), positive incom-
plete (malignancy decreased but lesion did not disappear)
and positive complete (the lesion disappeared). The num-
ber of samples per class is: 2 samples of the negative class,
6 samples of the neutral class, 27 samples of the positive
(partial) class and 28 samples of the positive (complete)
class. In summary, each patient has 8 clinical variables and
two PET/CT exams associated. The 8 clinical parameters
were combined with before- and after-treatment image
features of the lesions computed from the PET and CT
images (corrected- and non-attenuation-corrected PET
images and CT images).
Before feature extraction, the images were normalized

to [0,1] intensity interval, and lesions were segmented
using a classical segmentation approach – 2D region
growing method with a fixed threshold empirically set to
40%. From each segmented region, several image descrip-
tors were computed and a set of image features were
extracted from their outputs. Six texture descriptors with
solid reputations in similar applications were selected.
Table 1 presents details on descriptor computation and
feature extraction.
Thus, 171 image features were computed for charac-

terizing each lesion. For each patient, a 350-sized feature

Table 1 Parameters used for descriptor computation and
number of features extracted from their outputs – N/A – not
applicable

Descriptor Parameters #Extracted features

Gray-level histogram N/A 4

GLCM directions={0,45,90,135} 22

distance = 1px

GLRL directions={0,45,90,135} 11

Wavelets #levels=2 28

type=Daubechies4

Gabor filters #scales=3 48

#orientations=4

LBP R = 8 58

block size= size of ROI

TOTAL = 171

vector was assembled, combining the 8 clinical variables
and the 171×2 pre- and post-treatment image features of
the main lesion. The final dataset is then composed of 63
instances of 350 features.

Data preprocessing
One is fast to notice two potentially problematic aspects of
the dataset: high dimensionality and high imbalancement.
In order to assess the effects of these characteristics in
the results, experiments were also run after applying PCA
for dimensionality reduction (reduction to two principal
components, since these preserved over 99% of total data
variance) and SMOTE (SyntheticMinority Over-sampling
Technique) [31] for synthetic data generation (6 synthetic
samples of each of the two most underrepresented classes
were generated. This number was chosen based on the
results of a set of preliminary experiments).

Treatment assessment
For classification, ANNswere selected based on their solid
reputation with regard to classification tasks. A few stan-
dard architectures – MLP, LVQNN, PNN and RBFNN –
were used. In addition, a baseline classifier – kNN – was
tested for comparison purposes.

Results and discussion
The classifier configurations in Table 2 were explored in
order to find the ones which optimized performance.
The selected sampling strategy was leave-one-out, so

as to assure that, in the experiments with the original
dataset, there would always be at least one sample of the
negative response class in the training set. The classifi-
cation accuracies regarding the 4 classes were computed.
In order to determine the appropriate settings of each
classifier, for each experiment, tested configurations were
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Table 2 Explored classifier architectures

Classifier Parameters Values

MLPI number of hidden layers 1

number of neurons in the hidden layer: even numbers in [6,28]

MLPII number of hidden layers 2

number of neurons:

– first hidden layer even numbers in [6,28]

– second hidden layer half the number of neurons of the first layer

LVQNN number of neurons in the hidden layer even numbers in [6,28]

RBFNN spread value powers of two with integer exponents in [-1,15]

PNN spread value powers of two with integer exponents in [-1,15]

k-NN number of neighbors integers in [1,15]

ranked by performance for each class, and the one with
the best average rank (over the 4 classes) would be the one
selected. The next step was to determine which classifiers
were the best for each experiment and the respective per-
formances. For classifier comparison, considering their
performances with respect to all classes, Friedman and
Bonferri-Dunn [32] tests were performed.
In this work, N = 4 (classes) and k = 6 (classifiers). The

6 classifiers were ranked for each of the 4 classes, based
on their scores. In the presence of ties, the involved ranks
were averaged. The Friedman statistic (T1) was com-
puted based on such ranks. By looking at F distribution
tables, F(5, 15) = 2.90. Table 3 shows the main results of
Friedman and Bonferri-Dunn tests for each experiment.
It can be observed that, in the experiment with the

original dataset, T1 < F(5, 15), so the null hypothesis
cannot be rejected, i.e., one cannot state that there is a
significant statistical difference among the performances
of the 6 classifiers. In the remaining experiments, T1 >

F(5, 15) – one can state that a significant statistical differ-
ence exists among the performances of the 6 classifiers.
For these experiments, the Bonferri-Dunn test was per-
formed, with the aim to compare the performances of the
different ANNs with the baseline classifier, kNN. The crit-
ical value (CD) was computed for a 5% significance level –
CD = 1.92. The average ranks of the classifiers were also
computed. Only those with an average rank better than
that of the baseline classifier by more than the CD value
can be considered to significantly outperform the baseline
classifier.
Looking at Table 3, one can conclude that:

1. In the experiment with the original dataset after
SMOTE, LVQNN and MLPII significantly
outperform kNN;

2. In the experiment with the original dataset after
PCA, LVQNN, MLPI and MLPII significantly
outperform kNN;

3. In the experiment with the original dataset after
SMOTE+PCA, LVQNN is the only classifier to
significantly outperform kNN.

Thus, in 3 out of 4 scenarios it was verified that the
selection of a more complex classifier than kNN, such
as LVQNN, MLPI or MLPII, pays off in terms of perfor-
mance. In the experiment with the original dataset, such
selection seems to be unjustified.
Taking a closer look at performance itself, one can draw

a few relevant conclusions:

1. The considered set of features allows for very high
classification performances, when data is properly
balanced;

2. In data imbalancement scenarios, performance is
clearly poorer – the introduction of SMOTE
markedly improves performance;

3. Dimensionality reduction to two components using
PCA does not seem to have significant effects on
performance. As such, dimensionality reduction is
advantageous for us, as it allows for a serious
reduction of computational load while preserving
performance.

As for time complexity, although it is not critical in this
project, as real-time is not required, an idea of its order
with respect to each of the adopted classifiers can be pro-
vided: the average kNN ran in 57 seconds, RBFNN and
PNN in the 1 hour range (1.4 h and 0.7 h), LVQNN and the
MLPs (the highest performing classifiers) ran in the 14,
14 and 20 hours respectively. It is also important to note
that for the PCA experiments, these times are reduced
drastically for the seconds and minutes range for all the
algorithms.

Conclusions
The analysis of the radiotracer fixation in PET/CT is a
rather complex task for nuclear clinicians, in their daily



Nogueira et al. BMCMedical Imaging  (2017) 17:13 Page 7 of 8

Table 3 Classifier accuracies (ranks) for each class, the Friedman statistic (T1) and average classifier rank, for the experiments with the 4
datasets

Dataset Classifier Negative Neutral Positive (partial) Positive (complete) Average rank

Original T1 = 1.956 kNN 0 (4.5) 0.167 (5.5) 0.741 (4) 0.893 (4) –

LVQNN 0 (4.5) 1.0 (1) 1.0 (1) 0.929 (2) –

MLPI 1.0 (1) 0.667 (2) 0.778 (3) 0.893 (4) –

MLPII 0.5 (2) 0.5 (3) 0.889 (2) 0.893 (4) –

RBFNN 0 (4.5) 0.167 (5.5) 0.444 (6) 0.964 (1) –

PNN 0 (4.5) 0.333 (4) 0.704 (5) 0.750 (6) –

SMOTE T1 = 12 kNN 0.125 (6) 0.417 (6) 0.630 (4.5) 0.893 (4) 5.125

LVQNN 1.0 (1.5) 1.0 (1) 1.0 (1) 1.0 (1) 1.125

MLPI 0.5 (3) 0.5 (5) 0.778 (3) 0.930 (2.5) 3.375

MLPII 1.0 (1.5) 0.917 (2) 0.852 (2) 0.930 (2.5) 2

RBFNN 0.25 (5) 0.667 (4) 0.444 (6) 0.393 (6) 5.25

PNN 0.375 (4) 0.889 (3) 0.630 (4.5) 0.679 (5) 4.125

PCA T1 = 4.241 kNN 0 (4.5) 0.167 (5.5) 0.741 (5) 0.893 (3.5) 4.625

LVQNN 0 (4.5) 1.0 (1) 1.0 (1) 0.929 (1.5) 2

MLPI 0.5 (1.5) 0.5 (2.5) 0.778 (3.5) 0.929 (1.5) 2.25

MLPII 0.5 (1.5) 0.5 (2.5) 0.889 (2) 0.893 (3.5) 2.375

RBFNN 0 (4.5) 0.333 (4) 0.667 (6) 0.464 (6) 5.125

PNN 0 (4.5) 0.167(5.5) 0.778 (3.5) 0.821 (5) 4.625

SMOTE+PCA T1 = 4.602 KNN 0.5 (3.5) 0.67 (4) 0.630 (5) 0.893 (4) 4.125

LVQNN 1.0 (1) 1.0 (1) 0.963 (1) 1.0 (1) 1.0

MLP 0.125 (6) 0.833 (2.5) 0.704 (4) 0.964 (2.5) 3.75

MLPII 0.5 (3.5) 0.833 (2.5) 0.815 (2) 0.964 (2.5) 2.625

RBFNN 0.375 (5) 0.417 (6) 0.741 (3) 0.714 (5) 4.75

PNN 0.625 (2) 0.583 (5) 0.556 (6) 0.679 (6) 4.75

practice. This issue is even more critical as worldwide-
accepted measures (e.g. SUV), that could constitute an
important bridge to reduce such complexity, can be largely
biased as result of multiple factors. However, the success-
ful automated analysis of such images, for instance in the
context of treatment response, could result in an increase
of the patient survival especially in oncological realities.
In this project, an approach to automatically evaluate

oncological treatment response using PET/CT images was
proposed. To achieve that, more than 300 features were
collected and different types of neural networks were
implemented. These features combine clinical informa-
tion such as patient weight or lesion SUVmax with a series
of image features including mainly textural information.
The results show that the considered set of fea-

tures allows for the achievement of very high classifi-
cation performances, especially when data is properly
balanced. After synthetic data generation and PCA-
based dimensionality reduction to only two components,
LVQNN assured classification accuracies of 100%, 100%,

96.3% and 100% regarding the 4 response-to-treatment
classes.
Regarding future directions, the next stage will be apply-

ing evolutionary approaches for obtaining a reliable evalu-
ation function of treatment response based on the features
collected in this work.Moreover, the intention is to extend
these works to other oncological diseases.
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