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An artificial neuron implemented on an actual quantum

processor
Francesco Tacchino 1, Chiara Macchiavello1,2,3, Dario Gerace1 and Daniele Bajoni4

Artificial neural networks are the heart of machine learning algorithms and artificial intelligence. Historically, the simplest
implementation of an artificial neuron traces back to the classical Rosenblatt’s “perceptron”, but its long term practical applications
may be hindered by the fast scaling up of computational complexity, especially relevant for the training of multilayered perceptron
networks. Here we introduce a quantum information-based algorithm implementing the quantum computer version of a binary-
valued perceptron, which shows exponential advantage in storage resources over alternative realizations. We experimentally test a
few qubits version of this model on an actual small-scale quantum processor, which gives answers consistent with the expected
results. We show that this quantum model of a perceptron can be trained in a hybrid quantum-classical scheme employing a
modified version of the perceptron update rule and used as an elementary nonlinear classifier of simple patterns, as a first step
towards practical quantum neural networks efficiently implemented on near-term quantum processing hardware.
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INTRODUCTION

Artificial neural networks are a class of computational models that
have proven to be highly successful at specific tasks like pattern
recognition, image classification, and decision making.1 They are
essentially made of a set of nodes, or neurons, and the
corresponding set of mutual connections, whose architecture is
naturally inspired by neural nodes and synaptic connections in
biological systems.1,2 In practical applications, artificial neural
networks are mostly run as classical algorithms on conventional
computers, but considerable interest has also been devoted to
physical neural networks, i.e., neural networks implemented on
dedicated hardware.3–6

Among the possible computing platforms, prospective quan-
tum computers seem particularly well suited for implementing
artificial neural networks.7 In fact, the intrinsic property of
Quantum Mechanics of representing and storing large complex
valued vectors and matrices, as well as performing linear
operations on such vectors, is believed to result in an exponential
increase either in memory storage or processing power for neural
networks directly implemented on quantum processors.8–18 The
simplest model of an artificial neuron, the so called “perceptron”,
was originally proposed by R. Rosenblatt in 1957,19 and is
schematically outlined in Fig. 1a. A real-valued vector, ~i, of
dimension m represents the input, and it is combined with a real-
valued weight vector, ~w. The perceptron output is evaluated as a
binary response function resulting from the inner product of the
two vectors, with a threshold value deciding for the “yes/no”
response. In the lowest level implementations,~i and ~w are binary
valued vectors themselves, as proposed by McCulloch and Pitts in
1943 as a simple model of a neuron.2,20

Perceptrons and McCulloch-Pitts neurons are limited in the
operations that they can perform, but they are still at the basis of
machine learning algorithms in more complex artificial neural

networks made of multilayered perceptron architectures. How-
ever, the computational complexity increases with increasing
number of nodes and interlayer connectivity and it is not clear
whether this could eventually call for a change in paradigm,
although different strategies can be put forward to optimize the
efficiency of classical algorithms.21 In this respect, several
proposals have been advanced in recent years to implement
perceptrons on quantum computers. The most largely investi-
gated concept is that of a “qubit neuron”, in which each qubit (the
computational unit in quantum computers) acts as an individual
neuron within the network. Most of the research effort has been
devoted to exploit the nonlinearity of the measurement process in
order to implement the threshold function.9

Here we introduce an alternative design that closely mimics a
binary valued Rosenblatt perceptron on a quantum computer.
First, the equivalent of m-dimensional classical input and weight
vectors is encoded on the quantum hardware by using N qubits,
where m= 2N. On one hand, this evidently allows to exploit the
exponential advantage of quantum information storage, as
already pointed out.10,13 On the other, we implement an original
procedure to generate multipartite entangled states based on
quantum information principles22 that allows to crucially scale
down the quantum computational resources to be employed. We
experimentally show the effectiveness of such an approach by
practically implementing a 2 qubits version of the algorithm on
the IBM quantum processor available for cloud quantum
computing. In this respect, the present work constitutes a key
step towards the efficient use of prospective quantum processing
devices for machine learning applications. In this simple case, we
show that the quantum perceptron model can be used to sort out
simple patterns, such as vertical or horizontal lines among all
possible inputs. In order to show the potential of our proposed
implementation of a quantum artificial neuron, we theoretically
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simulate a 4+ 1 qubits version using the IBM quantum simulator.
We show that this version of the algorithm already allows to
implement an elementary training scheme to recognize simple
patterns.

RESULTS

Quantum circuit modeling of a classical perceptron

A scheme of the quantum algorithm proposed in this work is
shown in Fig. 1b. The input and weight vectors are limited to
binary values, ij, wj ∈ {−1, 1}, as in McCulloch-Pitts neurons. Hence,
a m-dimensional input vector is encoded using the m coefficients
needed to define a general wavefunction |ψi〉 of N qubits. In

practice, given arbitrary input ð~iÞ and weight ð~wÞ vectors
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with ij, wj ∈ {−1, 1}, we define the two quantum states
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wjjji: (2)

The states |j〉 ∈ {|00…00〉, |00…01〉,…, |11…11〉} form the so-
called computational basis of the quantum processor, i.e., the
basis in the Hilbert space of N qubits, corresponding to all possible
states of the single qubits being either in |0〉 or |1〉. As usual, these
states are labeled with integers j ∈ {0, …, m− 1} arising from the
decimal representation of the respective binary string. Evidently, if
N qubits are used in the register, there are m = 2N basis states
labeled |j〉 and, as outlined in Eq. (2), we can use factors ±1 to
encode the m-dimensional classical vectors into a uniformly
weighted superposition of the full computational basis.
The first step of the algorithm prepares the state |ψi〉 by

encoding the input values in ~i. Assuming the qubits to be
initialized in the state |00…00〉 ≡ |0〉⊗N, we perform a unitary
transformation Ui such that

Ui j0i�N ¼ jψii: (3)

In principle, any m ×m unitary matrix having ~i in the first
column can be used to this purpose, and we will give explicit
examples in the following. Notice that, in a more general scenario,
the preparation of the input state starting from a blank register
might be replaced by a direct call to a quantum memory23 where
|ψi〉 was previously stored.
The second step computes the inner product between ~w and~i

using the quantum register. This task can be performed efficiently
by defining a unitary transformation, Uw, such that the weight
quantum state is rotated as

Uw jψwi ¼ j1i�N ¼ jm� 1i : (4)

As before, any m ×m unitary matrix having ~wT in the last row
satisfies this condition. If we apply Uw after Ui, the overall N-qubits
quantum state becomes

Uw jψii ¼
X

m�1

j¼0

cjjji � jϕi;wi: (5)

Using Eq. (4), the scalar product between the two quantum
states is

hψw jψii ¼ hψw jUy
wUw jψii

¼ hm� 1jϕi;wi ¼ cm�1;
(6)

and from the definitions in Eq. (2) it is easily seen that the scalar
product of input and weight vectors is ~w �~i ¼ mhψw jψii. Therefore,
the desired result is contained, up to a normalization factor, in the
coefficient cm−1 of the final state |ϕi,w〉. For an intuitive
geometrical interpretation see Supplementary Information, Sec. I.
In order to extract such an information, we propose to use an

ancilla qubit (a) initially set in the state |0〉. A multi-controlled NOT
gate between the N encoding qubits and the target a leads to:24

jϕi;wij0ia !
X

m�2

j¼0

cj jjij0ia þ cm�1jm� 1ij1ia (7)

The nonlinearity required by the threshold function at the
output of the perceptron is immediately obtained by performing a
quantum measurement: indeed, by measuring the state of the
ancilla qubit in the computational basis produces the output |1〉a

Fig. 1 Perceptron models. a Schematic outline of the classical

perceptron as a model of artificial neuron: An input array ~i is
processed with a weight vector ~w to produce a linear, binary-valued

output function. In its simplest realization, also the elements of~i and
~w are binary valued, the perceptron acting as a binary (linear)
classifier. b Scheme of the quantum algorithm for the implementa-
tion of the artificial neuron model on a quantum processor: From
the system initialized in its idle configuration, the first two unitary
operations prepare the input quantum state, |ψi〉, and implement
the Uw transformation, respectively. The final outcome is then
written on an ancilla qubit, which is eventually measured to evaluate
the activation state of the perceptron
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(i.e., an activated perceptron) with probability |cm−1|
2. As it will be

shown in the following, this choice proves simultaneously very
simple and effective in producing the correct result. However, it
should be noticed that refined threshold functions can be applied
once the inner product information is stored on the ancilla.25–27

We also notice that both parallel and anti-parallel~i � ~w vectors
produce an activation of the perceptron, while orthogonal vectors
always result in the ancilla being measured in the state |0〉a. This is
a direct consequence of the probability being a quadratic
function, i.e., |cm−1|

2 in the present case, at difference with
classical perceptrons that can only be employed as linear
classifiers in their simplest realizations. In fact, our quantum
perceptron model can be efficiently used as a pattern classifier, as
it will be shown below, since it allows to interpret a given pattern
and its negative on equivalent footing. Formally, this intrinsic
symmetry reflects the invariance of the encoding |ψi〉 and |ψw〉
states under addition of a global −1 factor.

Implementation of the unitary transformations

One of the most critical tasks to be practically solved when
implementing a quantum neural network model is the efficient
realization of unitary transformations. In machine learning
applications, this might eventually discriminate between algo-
rithms that show truly quantum advantage over their classical
counterparts.13 Here we discuss an original strategy for practically
implementing the preparation of the input state |ψi〉 and the
unitary transformation Uw on a quantum hardware. In particular,
we will first outline the most straightforward algorithm one might
think of employing, i.e., the “brute force” application of successive
sign flip blocks. Then, we will show an alternative and more
effective approach based on the generation of hypergraph states.
In the next Section, we will see that only the latter allows to
practically implement this quantum perceptron model on a real
quantum device.
As a first step we define a sign flip block, SFN,j, as the unitary

transformation acting on the computational basis of N qubits in
the following way:

SFN;jjj0i ¼
jj0i if j ≠ j0

�jj0i if j ¼ j0

�

: (8)

In general, SFN,j is equivalent to a multi-controlled quantum
operation between N qubits: for example, for any N, m= 2N, a
controlled Z operation between N qubits (CNZ) is a well-known
quantum gate24 realizing SFN,m−1, while a single qubit Z gate acts
as SF1,1. For a given input~i, the unitary Ui can be obtained by
combining simple single qubit rotations and sign flip blocks to
introduce the required −1 factors in front of |j〉 basis states in the
representation of the target |ψi〉 (see details in the Methods
section). As already anticipated, the whole problem is symmetric
under the addition of a global −1 factor (i.e., |ψi〉 and −|ψi〉 are

fully equivalent). Hence, there can be only at most m/2= 2N−1

independent −1 factors, and 2N−1 sign flip blocks are needed in
the worst case. A similar procedure can also lead to the other
unitary operation in the quantum perceptron algorithm, Uw.
Evidently, the above strategy is exponentially expensive in terms
of circuit depth as a function of the number of qubits, and requires
an exponential number of N-controlled gates.
A more efficient solution can be given after realizing that the

class of possible input- and weight-encoding states, Eq. (2),
coincides with the set of the so-called hypergraph states (see
Supplementary Information, Sec. II, available at https://doi.org/
10.1038/s41534-019-0140-4). The latter are ubiquitous ingredients
of many renown quantum algorithms, and have been extensively
studied and theoretically characterized.22,28 In particular, hyper-
graph states can be mapped into the vertices and hyperedges of
generalized graphs, and can be prepared by using single qubit
and (multi)-controlled Z gates, with at most a single N-controlled
CNZ and with the possibility of performing many p-controlled CpZ
gates (involving only p qubits, with p < N) in parallel. The design of
the sequence for Ui and Uw involves a series of iterative steps
described in the Methods section, and directly includes the
algorithmic generation of hypergraph states based on a procedure
that we will call the “hypergraph states generation subroutine”
(HSGS). An example of the full sequence for a specific N= 4 case is
shown in Fig. 2. Notice that our optimized algorithm involving
hypergraph states successfully reduces the required quantum
resources with respect to the brute force approach outlined in the
previous paragraph. However, it may still involve an exponential
cost in terms of circuit depth or clock cycles, i.e., of temporal steps
of the quantum circuit when all possible parallelization of
independent operations on the qubits is taken into account.
Indeed, the sign-flip algorithm described above requires O(2N) N-
controlled Z gates when running on N qubits, in the worst case.
Since any CNZ can be decomposed into poly(N) elementary single
and two-qubit gates,24 the overall scaling of the sign-flip approach
is O(poly(N)2N). On the other hand, the worst case for the HSGS,
namely the fully connected hypergraph with N vertices, corre-
sponds to applying once all the possible Z and CpZ operations for
2 ≤ p ≤ N. Since all these operations commute, they can be
arranged in such a way that all the qubits are always involved
either in a single-qubit operation or a multi-controlled one (e.g., a
Z on a certain qubit and the CN−1Z on the remaining ones can be
done in parallel), for any progressive clock cycle. The overall
number of clock cycles is still O(2N), as in the previous case, but
now at most one slice contains a N-qubit operation, while all other
slices with p < N can be decomposed into poly(p) elementary
operations. In this respect, the proposed HSGS optimizes the
number of multi-qubit operations. This may be a significant
advantage, e.g., in currently available superconducting quantum

Fig. 2 Quantum circuit of a N= 4 perceptron. An example of a typical quantum circuit for a perceptron model with N= 4 qubits (i.e., capable
of processing m= 24= 16 dimensional input vectors), which employs the algorithm for the generation of hypergraph states, including the
HSGS (see main text). In this example, the input vector has elements i0 = i1 = −1, and ij = 1 for j = 2,…,15, while the weight vector has
elements w2 = w3 = w4 = −1, and 1 in all other entries. Multi-controlled CpZ gates are denoted by vertical lines and black dots on the qubits
involved. The HSGS is realized inside the Ui block after the initial H⊗N gate, and in the Uw block before the final H⊗N and NOT⊗N operations

F. Tacchino et al.

3

Published in partnership with The University of New South Wales npj Quantum Information (2019)    26 

https://doi.org/10.1038/s41534-019-0140-4
https://doi.org/10.1038/s41534-019-0140-4


processors, in which multi-qubit operations are not natively
available.
Before proceeding, it is also worth pointing out the role of Uw in

this algorithm, which is essentially to cancel some of the
transformations performed to prepare |ψi〉, or even all of them if
the condition ~i ¼ ~w is satisfied. Further optimization of the
algorithm, lying beyond the scope of the present work, might,
therefore, be pursued at the compiling stage. However, notice that
the input and weight vectors can, in practical applications, remain
unknown or hidden until runtime.

Numerical results and quantum simulations

We implemented the algorithm for a single quantum perceptron
both on classical simulators working out the matrix algebra of the
circuit and on cloud-based quantum simulators, specifically the
IBM Quantum Experience real backends (https://
quantumexperience.ng.bluemix.net) using the Qiskit Python
development kit (https://qiskit.org/). Due to the constraints
imposed by the actual IBM hardware in terms of connectivity
between the different qubits, we limited the quantum simulation
on the actual quantum processor to the N = 2 case. Nevertheless,
even this small-scale example is already sufficient to show all the
distinctive features of our proposed set up, such as the
exponential growth of the analyzable problems dimension, as
well as the pattern recognition potential. In general, as already
mentioned, in this encoding scheme N qubits can store and
process 2N-dimensional input and weight vectors. Thus, 22

N

different input patterns can be analyzed, corresponding also to
the number of different ~w that could be defined. Moreover, all
binary inputs and weights can easily be converted into black and
white patterns, thus providing a visual interpretation of the
artificial neuron activity.
Going back to the case study with N = 2, 22= 4 binary images

can be managed, and thus 22
2 ¼ 16 different patterns could be

analyzed. The conversion between~i or ~w and 2 × 2 pixels visual
patterns is done as follows. As depicted in Fig. 3a, we label each

image by ordering the pixels left to right, top to bottom, and
assigning a value nj = 1(0) to a white (black) pixel. The
corresponding input or weight vector is then built by setting
ij ¼ ð�1Þnj , or wj ¼ ð�1Þnj . We can also univocally assign an
integer label ki (or kw) to any pattern by converting the binary
string n0n1n2n3 to its corresponding decimal number representa-
tion. Under this encoding scheme, e.g., numbers 3 and 12 are used
to label patterns with horizontal lines, while 5 and 10 denote
patterns with vertical lines, and 6 and 9 are used to label images
with checkerboard-like pattern. An example of the sequence of
operations performed on the IBM quantum computer using
hypergraph states is shown in Fig. 3c for~i corresponding to the
index ki = 11, and ~w corresponding to kw= 7.
The Hilbert space of 2 qubits is relatively small, with a total of 16

possible values for~i and ~w. Hence, the quantum perceptron model
could be experimentally tested on the IBM quantum computer for
all possible combinations of input and weights. The results of
these experiments, and the comparison with classical numerical
simulations, are shown in Fig. 3d–f. First, we plot the ideal
outcome of the quantum perceptron algorithm in Fig. 3d, where
both the global −1 factor and the input-weight symmetries are
immediately evident. In particular, for any given weight vector ~w,
the perceptron is able to single out from the 16 possible input
patterns only~i ¼ ~w and its negative (with output |cm−1|

2
= 1, i.e.,

the perfect activation of the neuron), while all other inputs give
outputs smaller than 0.25. If the inputs and weights are translated
into 2 × 2 black and white pixel grids, it is not difficult to see that a
single quantum perceptron can be used to recognize, e.g., vertical
lines, horizontal lines, or checkerboard patterns.
The actual experimental results are then shown in Fig. 3e, f,

where the same algorithm is run on the IBM Q 5 “Tenerife”
quantum processor.29 First, we show in panel 3e the results of the
non-optimized approach introduced in the previous Section,
which makes direct use of sign flip blocks. We deliberately did not
take into account the global sign symmetry, thus treating any |ψi〉
and −|ψi〉 as distinct input quantum states and using up to 2N sign

Fig. 3 Results for N= 2 quantum perceptron model. a The scheme used to label the 2 × 2 patterns and a few examples of patterns. b Scheme
of IBM Q-5 “Tenerife” backend quantum processor. c Example of the gate sequence for the N= 2 case, with input and weight vectors
corresponding to labels ki= 11 and kw= 7. d Ideal outcome of the quantum perceptron algorithm, simulated on a classical computer. e
Results from the Tenerife processor using the algorithm with multi-controlled sign flip blocks. f Results from the Tenerife processor using the
algorithm for the generation of hypergraph states. In e and f we explicitly indicate the corresponding average discrepancies calculated with
respect to the ideal case, as defined in the main text
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flip blocks. We notice that even in such an elementary example
the algorithm performs worse and worse with increasing number
of blocks. However, it should also be emphasized that the
underlying structure of the output is already quite evident, despite
the quantitative inaccuracy of the quantum simulated outputs:
indeed, a threshold of 0.5 applied to the measured output would
be sufficient to successfully complete all the classification tasks, i.e.
the simulated artificial neuron can correctly single out from all
possible inputs any given (precalculated) weight vector.
On the other hand, a remarkably better accuracy, also on the

quantitative side and with smaller errors, is obtained when using
the algorithm based on the hypergraph states formalism, whose
experimental results are shown in panel 3f and represent the main
result of this work. In this case, the global phase symmetry is
naturally embedded in the algorithm itself, and the results show
symmetric performances all over the range of possible inputs and
weights. All combinations of~i and ~w yield results either larger than
0.75 or smaller than 0.3, in good quantitative agreement with the
expected results plotted in panel 3d. Again, as it is also clear from
the appearance of the plots, all the classification tasks are correctly
carried out. In order to give a quantitative measure of the overall
agreement between the ideal (Fig. 3d), sign flips (Fig. 3e) and
hypergraph states (Fig. 3f) versions, we introduce the average
discrepancy as

D ¼
P

i;w Oði;wÞ � Oidealði;wÞj j
22Nþ1

(9)

where Oði;wÞ ¼ jPj ijwj j2 ¼ jcm�1j2 is the outcome of the artificial
neuron for a given pair of input and weights as obtained on a real
device, Oideal(i, w) is the corresponding ideal result and 22

Nþ1
is the

total number of possible~i � ~w pairs. As reported also in Fig. 3, we

find C ’ 0:2364 for the sign flips case, and D ’ 0:0598 for the
version involving hypergraph states. As a technical warning, we
finally notice that in all of the three cases shown in panels d-f of
Fig. 3, the CpZ operations were obtained by adding single qubit
Hadamard gates on the target qubit before and after the
corresponding CpNOT gate. For p= 1 this is a CNOT gate, which
is natively implemented on the IBM quantum hardware, while the
case p= 2 is known as the Toffoli gate, for which a standard
decomposition into 6 CNOTs and single qubit rotations is
known.24

Finally, in the spirit of showing the potential scalability and
usefulness of this quantum model of a classical perceptron for
classification purposes, we have applied the HSGS-based algo-
rithm to the N= 4 qubits case by using the circuit simulator
feature available in Qiskit (https://qiskit.org/ and https://qiskit.org/
terra). For N= 4, 232 possible combinations of~i and ~w vectors are
possible, far too many to explore the whole combinatorial space
as previously done for the 2 qubits in Fig. 3. To explicitly show a
few examples, we have chosen a single weight vector, ~wt ,
corresponding to a simple cross-shaped pattern when repre-
sented as a 4 × 4 pixels image (encoded along the same lines of
the N= 2 case, see first panel in Fig. 3), and weighted it against
several possible choices of input vectors. When a threshold O(i,
wt) > 0.5 is applied to the outcome of the artificial neuron, 274
over the total 216 possible inputs are selected as positive cases,
and they correspond to patterns differing from ~wt (or from its
negative) by at most two pixels. Geometrically speaking, the
vectors corresponding to positive cases all lie within a cone
around ~wt . Some results are reported in Fig. 4 for a selected choice
of input vectors, where the artificial neuron output is computed
both with standard linear algebra and with a quantum circuit on a
virtual and noise-free quantum simulator run on a classical
computer. A larger set of examples is also reported in the
Supplementary Information, Sec. IV.
Based on these results, we have implemented an elementary

hybrid quantum-classical training scheme, which is an adaptation
of the perceptron update rule30 to our algorithm. After preparing a
random training set containing a total of 3050 different inputs, of
which 50 positive and 3000 negative ones according to the
threshold defined above, the binary valued artificial neuron is
trained to recognize the targeted ~wt . This is obtained by using the
noiseless Qiskit simulator feature, in which the artificial neuron
output is computed through our proposed quantum algorithm,
and the optimization of the weight vector is performed by a
classical processor. We selected a random ~w0 vector to start with,
and then we let the artificial neuron process the training set
according to well-defined rules and learning rates lp and ln for
positive and negative cases, respectively, without ever conveying
explicit information about the target ~wt (see further details in the
Methods). An example of the trajectory of the system around the
configuration space of possible patterns is shown in Fig. 5a, in
which we computed the fidelity of the quantum state |ψw〉
encoding the trained ~w with respect to the target state jψwt

i. In
Fig. 5b, we report the average value of such fidelity over 500
realizations of the training scheme, all with the same initial pattern
~w0 and the same training set. As it can be seen, the quantum
artificial neuron effectively learns the targeted cross-shaped
pattern: an animated plot of a sample trajectory is also available
in the Supplementary Information (see animated gif online at
https://doi.org/10.1038/s41534-019-0140-4). Finally, we mention
that lp= 0.5 is found to be the optimal learning rate in our case,
with little effect produced by ln (which we also set to ln= 0.5 for
simplicity in the simulations reported here).

DISCUSSION

In summary, we have proposed a model for perceptrons to be
directly implemented on near-term quantum processing devices.

Fig. 4 Pattern recognition for N= 4. A possible choice of the weight
vector, ~wt , for the N= 4 case is represented in the first panel (top
left), and a small selection of different input vectors are then
simulated with the quantum model of perceptron. Above each
input pattern, the quantitative answers of the artificial neuron,
namely the values of |cm−1|

2, are reported as obtained either
through standard linear algebra (ideal ‘exact’ results) or resulting
from the simulation of the quantum algorithm (‘q. alg’, run on a
classical computer, averaged over nshots= 8192 repetitions). The two
versions agree within statistical error
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We have experimentally tested it on a 5-qubits IBM quantum
computer based on superconducting technology, and we have
proposed a possible hybrid quantum-classical training procedure.
In principle, our algorithm presents an exponential advantage in
terms of storage capabilities over classical perceptron models, as
we have explicitly shown by representing and classifying 4 bits
strings using 2 qubits, and 16 bits strings using only 4 qubits.
However, a more extended discussion is required on this point.
Indeed, generic quantum states or unitary transformations require
an exponentially large number of elementary gates to be
implemented, and this could somehow hinder the effective
advantages brought by quantum computers for machine learning
applications. This currently represents a general problem of most
quantum machine learning algorithms. Moreover, with increasing
N, severe issues can arise from the practical necessity to
decompose multiply controlled operations by only using single-
and two-qubit gates.31,32 The latter limitation strictly depends on
the effective constraints imposed by the given quantum
processor, and on the required degree of accuracy. In fact, it has
been shown that several classes of quantum states can be
efficiently approximated with arbitrary precision, with oracle
based approaches33–35 or by using a number of multi-controlled
rotations that is linear with the number of qubits.36 Using these
results, it might then be possible to design a version of our
proposed quantum perceptron algorithm working with approxi-
mated encoding quantum states instead of exact ones, which
would have the potential to scale exponentially better than any
classical algorithm implementing a perceptron model. In this
respect, it is also worth pointing out that our procedure is fully
general and could be implemented and run on any platform
capable of performing universal quantum computation. While we

have employed a quantum hardware that is based on super-
conducting technology and qubits, a very promising alternative is
the trapped-ion based quantum computer,37 in which multi-qubit
entangling gates might be readily available.38,39

As a further strategy for future developments, we notice that in
the present work we restricted the whole analysis to binary inputs
and weight vectors (the so-called “McCollough-Pitts” neuron
model), mainly for clarity and simplicity of implementation. A
possible improvement for the algorithm presented is obviously to
encode continuously valued vectors (equivalent to gray-scale
images), followed by a hybrid training scheme featuring e.g.
backpropagation. This could be achieved by using continuously
valued phase factors in |ψi〉 and |ψw〉.

10 Finally, a potentially very
exciting continuation of this work would be to connect multiple
layers of our quantum perceptrons to build a feedforward deep
neural network, which could be fully run on dedicated quantum
hardware. As such, our work thus constitutes a concrete first step
towards an actual application of near-term (i.e., with few tens of
non-error corrected qubits) quantum processors to be employed
as fast and efficient trained artificial quantum neural networks.

METHODS

Implementation of the sign flip algorithm
We can implement in practice the whole family of sign-flip blocks for N
qubits by using CNZ gates in combination with single qubit NOT gates (i.e.
single bit flip operations):

SFN;j ¼ Oj C
NZ

� �

Oj ; (10)

where

Oj ¼ �m�1
l¼0 ðNOTlÞ1�jl : (11)

In the expression above, NOTl means that the bit flip is applied to the l-
th qubit and jl= 0(1) if the l-th qubit is in state |0〉(|1〉) in the computational
basis state |j〉. Alternatively, the same result can also be obtained by using
an extra ancillary qubit and multi-controlled NOT gates (CNNOT), i.e., bit flip
operations conditioned on the state of some control qubits (more details
and circuit identities can be found in the Supplementary Information, Sec.
III, available at https://doi.org/10.1038/s41534-019-0140-4). We explicitly
point out that, as it is easily understood from the definition in Eq. (8), any
SFN,j is the inverse of itself. The full sequence to implement Ui can then be
summarized as follows: starting from the initialized register |0〉⊗N, parallel
Hadamard (H) gates are applied to create an equal superposition of all the
elements of the computational basis:

j0i�N �!H
�N 1

ffiffiffiffi

m
p

X

m�1

j¼0

jji � jψ0i; (12)

where we remind that24

Hj0i ¼ j0i þ j1i
ffiffiffi

2
p ;Hj1i ¼ j0i � j1i

ffiffiffi

2
p : (13)

Then, the SFN,j blocks are applied one by one whenever there is a −1
factor in front of |j〉, in the representation of the target |ψi〉. Notice that any
SFN,j only affects a single element of the computational basis while leaving
all others unchanged. Moreover, all SFN,j blocks commute with each other,
so they can actually be performed in any order. The unitary Uw encoding
the weight vector can be designed along the same lines. Indeed, applying
first the SFN,j blocks that would be needed to flip all the −1 signs in front of
the computational basis elements in the associated |ψw〉 leads to the
balanced superposition |ψw〉→ |ψ0〉. This quantum state can then be
brought into the desired |11…11〉 ≡ |1〉⊗N state by applying parallel
Hadamard and NOT gates:

jψ0i�!
H�N

j0i�N �!NOT�N

j1i�N
: (14)

HSGS based algorithm
Given a target input vector~i, the unitary Ui can be obtained starting from
initial H⊗N gate (see Eq. (12)). Then, the algorithm takes a series of iterative
steps22 that are described below. First, we check whether there is any
component with only one qubit in state |1〉 (i.e. of the form |0…010…0〉)

Fig. 5 Training scheme for pattern recognition in the N= 4 case. a A
sample learning trajectory from the initial pattern ~w0 , reaching the
target cross-shaped ~wt , with some of the intermediate steps. b
Average fidelity of the quantum state encoding the learned pattern
with respect to the target one, obtained by repeating the learning
procedure 500 times on the same training set. In both panels,
simulations are performed with lp= ln = 0.5
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requiring a −1 factor, in the representation of |ψi〉 on the computational
basis. If so, the corresponding single qubit Z gate is applied by targeting the
only qubit in state |1〉. Notice that this might introduce additional −1
factors in front of states with more than one qubit in state |1〉. Then, for p =
2, …, N, we consider the components of the computational basis with
exactly p qubits in state |1〉. For each of them, an additional −1 sign is
introduced in front of its current amplitude (if it is needed and it was not
previously introduced) by applying the corresponding CpZ between the p
qubits in state |1〉. Similarly, if an unwanted sign is already present due to a
previous step, this can be easily removed by applying the same CpZ. Since
CpZ acts non trivially only on the manifold with p or more qubits being in
state |1〉, the signs of all the elements with a lower number of |1〉
components are left unchanged. As a consequence, when p= N all the
signs are the desired ones. As in the sign flip case, Uw can be obtained by
slightly modifying the sequence of gates that would be used to generate
|ψw〉. Indeed, one can start by first performing the HSGS tailored according
to the ±1 factors in |ψw〉. Since all the gates involved in HSGS are the inverse
of themselves and commute with each other, this step is equivalent to the
unitary transformation bringing |ψw〉 back to the equally balanced
superposition of the computational basis states |ψ0〉. The desired
transformation Uw is finally completed by adding parallel H⊗N and NOT⊗N

gates (see Eq. (14)).

Training procedure of the artificial neuron
Starting from the initial ~w0 , the current state of the artificial neuron, ~w, is
updated during a training session as follows: whenever the outcome for a
given~i in the training set and the current ~w, O(i, w), is correctly above or
below the threshold fixed at the beginning ~w is left unchanged, while it is
updated when the input is wrongly classified. In particular, if the artificial
neuron classifies an input~i as a positive case (O(i, w) > 0.5 here) while it is
actually labeled as a negative case in the precalculated training set, ~w is
moved farther apart from ~i by flipping a fraction ln of the ±1 signs,
randomly selected among those positions where the components of~i and
~w coincide. On the other hand, whenever a positive input~i is wrongly
recognized as a negative one, ~w is moved closer to~i by flipping a fraction
lp of the ± 1 signs in ~w randomly chosen among those positions where the
components of~i and ~w differ from each other. Here, ln and lp play the role
of learning rates for the positive and negative cases, and the classical part
of the training is performed within a single geometrical m-dimensional
hemisphere, thus avoiding confusion between a pattern and its negative.
Notice that this distinction is unnecessary in the quantum algorithm. It is
also worth pointing out that the fidelity with respect to the target state |ψt〉

is offered in Fig. 5 as a convenient way of conveying to the reader the
convergence of the training method. However, such fidelity is never used
as a figure of merit during the training procedure: no information about
the target ~wt is provided to the artificial neuron during training, but only
the set of inputs labeled as positive and negative.

IBM-Q experiments
The experimental tests performed on real quantum hardware and reported
in the main text were obtained by remotely accessing the IBM Quantum
Experience platform (https://quantumexperience.ng.bluemix.net). All of the
available IBM quantum processors are based on superconducting
technology, with transmon qubits pairwise connected through coplanar
waveguide (CPW) resonators. Additional CPWs are coupled to each qubit
for microwave control and readout. For the proof-of-principle realization of
our scheme with N= 2 we used three qubits (two of them encoding the
artificial neuron inputs and weights, and the other one used as ancilla) on
the IBM Q-5 “Tenerife” backend,29 according to the scheme reported in Fig.
3. Typical, average values for the device parameters are the following:
qubit frequency 5.25 GHz, T1= 49.70 μs, T2= 40.60 μs, gate error 0.86 ⋅
10−3, readout error 7.00 ⋅ 10−2. We notice that these values may have
changed during calibrations of the hardware following our simulations, see
https://quantumexperience.ng.bluemix.net/qx/devices.
Each sequence of quantum gates was designed using the Qiskit python

library (https://qiskit.org/), and then run on the quantum processor nshots =
8192 times (the maximum allowed on IBM-Q experience) in order to
reconstruct the measurement statistics with sufficient accuracy. It is worth
pointing out that the real IBM processors natively implement a universal
set of quantum gates that contains only general single-qubit Bloch sphere
rotations and CNOT gates between selected pairs of qubits, and therefore
any unitary operation is decomposed into elementary ones belonging to

this set. A reduced version of this work appeared as a preprint on arxiv
with reference number arXiv:1811.02266.
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