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Abstract

Artificial Potential Filed (APF) is the most well-known method that is used in mobile

robot path planning, however, the shortcoming is that the local minima. To overcome this

issue, we present a deadlock free APF based path planning algorithm for mobile robot

navigation. The Proposed-APF (P-APF) algorithm searches the goal point in unknown

2D environments. This method is capable of escaping from deadlock and non-reachability

problems of mobile robot navigation. In this method, the effective front-face obstacle in-

formation associated with the velocity direction is used to modify the Traditional APF

(T-APF) algorithm. This modification solves the deadlock problem that the T-APF algo-

rithm often converges to local minima. The proposed algorithm is explained in details

and to show the effectiveness of the proposed approach, the simulation experiments were

carried out in the MATLAB environment. Furthermore, the numerical analysis of the

proposed approach is given to prove a deadlock free motion of the mobile robot.

1 Introduction

Path planning and obstacle avoidance for mo-

bile robot navigation are challenging topics; and ef-

ficient and simple but precise algorithm is important

in path planning. Both preventing any of the robot

obstacle collision and guaranteeing that the robot

reaches the goal are important facts when getting

the robot to seek the goal.

Hwang Y.K et.al. [1] classified the path plan-

ning problems as static and dynamic depending on

the environmental information available. In static

problems, all the environmental information (obsta-

cles) is known a priori the motion with no changes.

In dynamic problems, no a priori environmental in-

formation is given or known partially, i.e. the visi-

ble parts of the obstacles.

In mobile robot path planning problems, vari-

ous approaches such as; Visibility Graph (VG) [2],

Voronoi Diagram (VD) [3, 4], Artificial Potential

Field (APF) [5-9], Virtual Force Field (VFF) [10],

Virtual Force Histogram (VFH) [11-14], classi-

cal Wall-Following (WF) [15-18], Neural Network-

based approach (NN) [19, 20], Fuzzy Logic (FL)

[21, 22] etc. are proposed in literature. These

path planning algorithms can be categorized into

two based on the two aspects of completeness and

the scope [1, 23-28]. From the completeness point

of view, algorithms can be categorized as classi-

cal or heuristic. Classical algorithms aim to find

an optimal path if exists or prove that there is no

solution. Heuristic algorithms try to find a better

path in a short time but do not guarantee to find

a solution always [1, 29]. However, the most of

the classical methods are computationally expen-

sive and heuristic methods can fail in complex en-

vironments. Depending on the scope, path planning

algorithms are classified into two broad categories
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Figure 1. Taxonomy of mobile robot path planning algorithms

as global path planning (deliberative paradigm) and

local path planning (reactive paradigm) [1, 23-27].

A basic hierarchical classification of the path plan-

ning algorithms is given in Figure 1. The algorithms

listed in Figure 1 are not tightly stick to the classifi-

cation because this provides a basic categorization

only; e.g. APF can also be categorized as a global

path planning method. A fundamental comparison

of some of the path planning methods is given in the

Table 1.

Global path planning usually generates a hazard

free path for the robot based on a previously known

map. These methods have the completeness prop-

erty which means that they are capable to find a path

if it exists. Most of these methods are convergent in

static environments. However, they can lose the ef-

fectiveness if an unpredicted obstacle appears in the

path as a result of not including the obstacle infor-

mation in the known map. Hence there is no guar-

antee for a collision free motion. When an unfore-

seen obstacle blocks the planned path, re-planning

is required and it results a computationally taxing

specially in unknown or dynamic environments. In

addition, the complexity of the environment leads

the increase of computational time of global path

planning algorithms.

On the other hand, local path planning meth-

ods directly use local sensory and their basic as-

sumption is that the robot has no a priori knowl-

edge about the environment or partial information.

Since the map of the environment is not available

the entire control actions are tightly based on the

perception of the robot’s surrounding environment.

These algorithms demand low computational effort

and also the mobile robot can perceive the environ-

mental change and decides the path in real time. Lo-

cal methods are sometimes used as a component of

the global planning methods or as a safety feature to

avoid collision from unexpected obstacles. One dis-

advantage associated with the local path planning is

the completeness problem.

In recent years, robotic applications have been

shifting from industrial environments into some

challenging scenarios like domestic applications

and space/deep-sea exploration. In these settings,

it is not possible to identify all the obstacles in the

environment a priori to apply global path planner.

Therefore, the global path planning methods are not

suitable for this kind of applications. Instead, it is

necessary to establish path planning methods which

can handle both the discovery of new obstacle infor-

mation in real-time and being fast enough to pro-

cess this information to compute the path online. In

contrast to any other local path planning methods,

robot path planning using APF is able to consider

the problem of obstacle avoidance and path plan-

ning simultaneously.

Reach to the goal while avoiding collision with

the obstacles in known or unknown environments

is the task of the path planning algorithm of mo-

bile robot navigation. In that sense, in addition

to the above mentioned capabilities of simultane-

ous path planning and obstacle avoidance, the at-

tractive mathematical representation and concep-

Robot Path Planning(RPP) Problem
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tual simplicity has made APF popular in path plan-

ning. However the APF based path planning algo-

rithm exhibits inherit local minima problem where

the robot can trap in another position away from its

goal. Some methods are introduced in order to over-

come this problem associated with the APF based

path planning [9, 32-48].

The primary motivation behind this work is to

propose a new APF based algorithm to eliminate the

shortcomings of the T-APF algorithm in robot path

planning. The proposed method consists of insert-

ing the robot’s motion direction and the front-face

obstacle information into the APF algorithm. This

creates an additional control for the robot and that

will help robot to prevent from the deadlock issue.

The remainder of this paper is organized as fol-

lows. In Section 2, related work on path planning

with APF is discussed. The proposed path plan-

ning method is explained in Section 3. In this sec-

tion, the basic conceptual and mathematical dis-

cussion of the T-APF and P-APF methods are ex-

plained. In Section 4, simulation experiments are

discussed to show the effectiveness of the proposed

algorithm over conventional method together with

the results analysis and discussion. Numerical anal-

ysis to prove the deadlock escaping capability of

proposed method is given in Section 5 and the con-

clusion in the Section 6.

2 Related Work

Path planning is such an important component

in any mobile robot system; it is not surprising that

many different approaches have been suggested in

literature. In this section, we discuss briefly the

APF-based path planning techniques which are pro-

posed to solve the path planning problem.

After the APF method was being introduced by

Khatib [5], many researchers made through study

and a number of improved methods have been pro-

posed to overcome its inherit shortcomings such as

the local minima. There exist a large number of

attempts for solving this issue. We can basically

divide them into two prevailing categories of ap-

proaches depending on the technical concepts: the

first is looking for better potential field instead of

the T-APF by modifying or deriving new potential

function (Modified/new APF approach); the second

is the combined approach of APF with other tech-

niques (Combined APF approach).

2.1 Modified/New APF Approach

One of the ideas is to modify the T-APF in order

to escape from local minima problem and the other

is to introduce a new potential function for the robot

navigation.

S. S. Ge et al. [9] presented a modified repul-

sive potential function for path planning by taking

into account the relative distance between the robot

and the goal. The new repulsive force component

attracts the robot towards the goal while the other

component repulses the robot away from the obsta-

cle. This work has confined the attention to solve

the goal non-reachability due to obstacle nearby

(GNRON) problems only.

Chen L. [31] introduced a virtual obstacle based

improved APF for path planning of UUV (Un-

manned Underwater Vehicle). First they deter-

mined that the UUV is trapped in local minima

range, and then a virtual obstacle point was intro-

duced. This virtual obstacle helps to change the

magnitude and the direction of the artificial force

and hence to escape from the local minima.

An information potential method for integrated

path planning and control has been proposed by

Wenjie L. et al. [32]. Their new approach uses in-

formation roadmap to escape from the local minima

while increasing the probability of obtaining sensor

measurements, subjected to the robot kinematics.

Doria et al. [33] reported a method inspired

by the Deterministic Annealing (DA) approach to

avoid local minima in APF and they have intro-

duced a temperature parameter (T) into the cost

function of T-APF. The insertion of the T into the

cost function causes an increase of repulsion area of

the obstacle and a reduction of the attraction area of

the goal. DA approach is employed to avoid the ran-

dom movement over the cost function surface un-

like simulated annealing approach. When the robot

gets stuck at a local minima point the value of the T

started to increase until robot escapes from the local

minima point.

An improved APF based on regression search

method to solve the local minima and oscillations

in completely known environments has been dis-

cussed by Guanghui et al. [34]. At the same time,
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Table 1. Comparison of mobile robot path planning algorithms

algorithm finds the optimal path for the robot by

connecting the sequential way points on straight

lines. Local target points are introduced in order

to avoid from oscillations.

An online deadlock avoidance method was pre-

sented by Chang et al. [35] for wheeled mobile

robot with the presence of boxlike obstacles esti-

mated using Hough transformation. By redefin-

ing the repulsive potential field, the local minima

problem has been solved. They introduced multi-

obstacles into one big obstacle that cause the dead-

lock. This provides robot to escape from the dead-

lock.

An obstacle avoidance algorithm in an unknown

static environment using APF has been proposed by

Chunshu et al. [36]. This method was devised by

combining APF with grid method and used to solve

local minima problem and oscillations in static en-

vironment. The algorithm proposed herein com-

putes the potential function value for each cell sur-

rounding the robot cell and selects the cell with

minimal value. When the robot is in the minimal

value, the value of the cell is increased to escape

from local minima.

Razaee H. et al. [37] introduced an adaptive

APF approach for obstacle avoidance of unmanned

aircrafts. The proposed potential field depends on

the attitude of the aircraft and its relative posi-

tion to the obstacle. They used a rotating poten-

tial field around the obstacle and simulation results

were shown to prove the feasibility of the proposed

method.

Random force based algorithm for local minima

escape of APF approach was proposed by Lee et

al. [38]. They addressed the symmetrically aligned

robot-obstacle-goal situation where the deadlock

takes place. When the robot is trapped at the lo-

cal minima; the random force algorithm was used

to escape from it.

A path planning algorithm based on the fluid

mechanics was presented by Gingras D. et al. [39].

This algorithm uses the finite element method to

compute a velocity potential function free from lo-

cal minima. Several streamlines were computed as

a road map and the optimal path was selected.

2.2 Combined APF Approach

Researchers have put the effort to propose ver-

ity of improvements by combining techniques for

the imperfections of the T-APF algorithm.

Song et al. [40] proposed a modified potential

field integrating the fuzzy control to overcome the

shortcomings of the T-APF based algorithms. Re-

pulsive force has been modified with two regulatory

factors where one is affected by the distance and

second is affected by the speed of the robot. Fuzzy

control method was utilized to achieve the regula-

tory factor adjustment. One issue associated with

this method is the computational time.

An Evolutionary APF combined with genetic

algorithm for optimum path planning and an

escape-force algorithm to escape from local min-

ima was proposed by Vadakkepat P. et al. [41] for

real time mobile robot path planning. When a lo-

cal minimum is identified under certain conditions

potential function (Modified/new APF 
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Table 1: Comparison of mobile robot path planning algorithms 
Algorithm Advantage Disadvantage 

APF Real-time, 2D or 3D, point/ rigid robot Not-complete, non-optimal, local minima 

CD Complete, sound, 2D and 3D, point or rigid 

robot 

Non-optimal, Heavy computation, time 

ECD Complete, 2D, point robot Non-optimal, Heavy computation, time 

ACD Low computation, 2D, point robot Not-optimal, not-complete 

VG Complete, optimal length path, 2D or 3D, 

point robot, static environment 

Non-optimal, heavy computation, time 

complexity, path closer to obstacles 

VD Complete, safer path, 2D or arbitrary, point 

robot 

Non-optimal, long range sensor for local path 

planning. 

Bug Complete, 2D, point robot Non-optimal, long path, time complexity 

Heuristic Less time, parallel search, point robot Not-complete, not sound 
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defined herein, an additional escape force was in-

troduced for the algorithm.

A new real-time navigation approach by com-

bining APF with interval type-2 Fuzzy logic system

has been proposed by Melingui et al. [42]. In their

work, orientation angle relative to the goal was con-

sidered to determine the probability of encountering

the local minima. When the robot finds a trapping

situation, fuzzy logic was used to escape from it.

Ji-Wung [43] suggested a potential field called

bug potential filed which is a combination of the

potential field with bug algorithm to overcome the

local minima and path inefficiency problem in path

planning in known environments. In this method

the direction of the virtual forces to guide the robot

along the path boundaries of the obstacles are de-

termined by applying the visibility graph and the

collision cone. Curvature weighted Dijkstra’s short-

est path algorithm was run on the visibility graph to

find the optimum path.

An improved tangent bug (ITB) algorithm in-

tegrated with a potential filed to avoid from local

minima issue encountered in T-APF based real-time

path planning was proposed by Mohamed E.F. et al.

[44]. In their method, they have introduced switch-

ing and merging conditions to guarantee a dead-

lock free motion. The behavior of their algorithm

is classified into two modes, namely, direct motion

towards the goal using APF and boundary follow-

ing mode using ITB algorithm to avoid static obsta-

cles. Switching mechanism introduced was used to

overcome the local minima problem and to find the

shortest path in the motion.

3 The Proposed Path Planning Al-

gorithm

Aiming to the shortcoming of the T-APF

method, an algorithm has been proposed by inte-

grating more information into it. In this paper, we

propose an APF based path planning method which

helps the robot to perform a dead-lock free motion.

3.1 Overview of the Traditional APF (T-

APF)

The APF is commonly used in path planning

algorithms for autonomous mobile robots and the

APF can be treated as a landscape with several

mountains generated by the obstacles and valleys

where the lowest valley point represents the goal

point. In the domain of robot path planning, robot

is considered as a particle that moves from a high

potential point via low potentials towards the goal.

APF consists of two fields: attractive field gen-

erated by the goal and repulsive field by each of the

obstacles. When the robot immersed in the poten-

tial field, attractive force and repulsive force guide

the robot towards the goal point. This combination

of two forces is dedicated to control the motion of

the robot in a safer path while keeping it away from

the obstacles. Figure 2 represents the attractive po-

tential and repulsive potential force distribution on

the robot for a single obstacle existing in the envi-

ronment.

3.1.1 Attractive Force

To simplify the path planning problem, the

robot is often viewed as a mass point. The position

of the robot and the goal can be expressed as vec-

tors of pr = [xr,yr]
T

and pg = [xg,yg]
T

respectively.

Attractive force that is produced by the goal can be

expressed using the Gaussian function as in Eq. (1).

Fatt = ag

[

1− exp
(

−bg ·d
2
g

)]

· eg (1)

Figure 2. Force distribution of T-APF.

Where agis the maximum value of the attractive

force Fatt at any instance and bg is a constant that

represents the width of the distribution. The param-

eter dg =
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2
is the Euclidean
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the unit vector towards the goal point, and it can be

expressed as in Eq. (2).

eg =
1

dg

(∆xgi+∆ygj) (2)

Where ∆xg = xg − xrand ∆yg = yg − yr.

3.1.2 Repulsive Force

The repulsive potential force generated by the

kth obstacle can be described as in Eq. (3).

kFrep =

{

ao

[

exp
(

−bo ·
kd2

o

)]

· keg i f kdo ≤ dd

0 else

(3)

Where ao is defined as the maximum value of

the repulsive force kFrep generated by the kth obsta-

cle and bo is a constant that represents the width of

the distribution. The parameter kdo is the Euclidean

distance between the robot and each detected ob-

stacle points, and dd is defined as the influence dis-

tance around the robot. eo is the unit vector towards

the robot from the kth obstacle and it can be ex-

pressed as in Eq. (4).

keo =
1

kdo

(

∆kxoi+∆kyoj
)

(4)

Where∆kxo = xr −
kxoand ∆kyo = yr −

kyo.

In fact, the total repulsive force can be defined

as a result of the superposition of all the individual

repulsive forces generated by the obstacles as in Eq.

(6).

Ftot = Fatt +∑
k

kFrep (5)

Although the APF can perform its behavior well

in path planning, it has some fatal problems. One of

the main issues associated with this APF is the lo-

cal minima problem which is in real called as dead-

lock. This happens when the total potential force

becomes zero before its goal position. Therefore,

this causes trapping the robot at local minima away

from the goal. Deadlock can happen with the T-

APF (a) collinear alignment of robot-obstacle-goal,

(b) symmetrical distribution of the obstacle around

the robot-goal line and (c) obstacle nearby the goal;

for example.

3.2 Proposed APF Algorithm (P-APF)

In order to prevent from the deadlock issue as-

sociated with the T-APF based path planning algo-

rithm a new approach is proposed. The modifica-

tion is done for the repulsive force taking into ac-

count the front-face obstacle-velocity information

of the robot. The new information added gener-

ates an additional controlling repulsive force to the

path planning algorithm which is called obstacle-

velocity repulsive force, kFrep new (from the kth ob-

stacle). The basic overview of the force distribution

of proposed modification for a single obstacle case

is explained in the Figure 3.

The obstacle-velocity repulsive force has a di-

rect relationship to the angle δ between the line

connects the robot-obstacle and the velocity vec-

tor, besides the distance to the obstacles. This acts

perpendicular to the original repulsive force and its

magnitude varies with the angle of δ (see Figure

3). When the robot detects an obstacle within its

sensory range, a new repulsive force (kFrep new) ap-

pears in addition to the primary force. The new re-

pulsive force component behaves to turn the robot

smoothly away from the obstacles in addition to the

characteristics of the original repulsive force. This

behavior always leads the robot towards the goal di-

rection only.

Figure 3. Overview phenomena of the P-APF and

force distribution.

This characteristic of the new repulsive force al-

ways assists the robot to escape from the deadlock

positions (local minima) in the motion. New repul-

sive force kFrep new by the kth obstacle is defined

as in Eq. (6) and kFrep as same as in Eq. (3). The

new repulsive force consists of obstacle-velocity in-
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formation K (δ), robot turning direction towards the

goal by eFV and the information of the basic obsta-

cle distance. The unit vector eFV defined as in Eq.

(7) represents the relationship between the attrac-

tive force and the robot’s velocity. This will deter-

mine the direction for kFrep new to appear either left

or right side of the robot.

kFrep new = K (δ) ·
(

eFV × kFrep

)

(6)

eFV =
Fatt ×Vr

∥Fatt∥∥Vr∥sinθ
(7)

K (δ) =
kmax

[

1+ exp
(

δ
/

τ

)] (8)

The magnitude of the new repulsive force varies

not only with the distance to the obstacles, but

also with the angle δ. The governing mathematical

equation of the obstacle-velocity information K (δ)
can be expressed as in Eq. (8). The variation of

K (δ) with the angle δ is shown in Figure 4. The

maximum value of the angle δ can be pre-defined

according to our definition of the information range.

As the value of δ is zero, the value of the function

K (δ) has its maximum value. When δ increases, in

other words, as the robot is heading away from the

obstacles, the value of the K (δ) decreases exponen-

tially and it reaches zero when δ=δmax which is a

pre-defined value (=120 in this experiment). The

characteristics of the function K (δ) depend on the

parameter values of kmax, τ and δ. Those values

should be properly defined in order to get the proper

functionality of K (δ).

The P-APF algorithm also has the integrated ca-

pability to guide the robot properly towards the goal

when there is an obstacle closer to it. As shown in

the Eq. (9), when the robot-goal distance dg is less

than the robot-obstacle distance do within the ob-

stacle detecting range dd , robot considers only the

attractive force for its motion.

Figure 4. Variation of K (δ) with the angle δ.

Ftot =

{

Fatt +∑k
kFrep i f

(

kdo ≤ dg&kdo ≤ dd

)

Fatt elsei f
(

kdo > dg

)

(9)

3.2.1 New Repulsive Force for Solving Dead-

lock Issue

With the additional repulsive force component,

the total behavior of the robot is changed. In the

situation as explained in Figure 5, it is clear that

the effect of the new force component makes a ro-

tational force around the obstacle but not a radial

force like in the traditional method.

Figure 5(a) shows the variation of the new re-

pulsive force and the total repulsive force for dif-

ferent heading angles of the robot. When the head-

ing direction goes away from the line connects the

goal-obstacle-robot, the effect of the new repulsive

force component becomes low. Similarly, for dif-

ferent sight angles to the obstacle, total repulsive

force shows rotational characteristics as shown in

Figure 5(b). As a result, new repulsive force com-

ponent helps the robot to escape from the deadlock

position with a smooth rotation around the obstacle.

Symmetrical distribution of the obstacles

around the robot-goal line is shown in Figure 6

with force components for two different positions

of the robot. As the robot moves towards the goal,

the effect of the new repulsive force increases posi-

tively and keep on increasing its amplitude and be-

ing closer to the attractive force. This will help

robot to reach the goal without deadlocking. But

in contrast, T-APF based approach may fail when

the robot passes through between the obstacles.
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Figure 5. Rotating potential field (a) Collinear

with different heading angles, (b) With different

sight angles.

Figure 6. Symmetrical distribution of the obstacles

around the robot-goal line.

4 Simulation Experiments

The proposed P-APF based algorithm was

mathematically modeled in the MATLAB simula-

tion environment. In order to realize the behavior

of the proposed method, simulations were studied

in both the static and dynamic environments under

different conditions. For a better comparison of the

performance of the proposed method with that of

the traditional method, same parameter values of

ag, ao, bg and bo for APF models were used. The

parameters used in the attractive force and the re-

pulsive force ag and ao as in Eq. (1) and Eq. (3)

were chosen as 5 and 8 respectively for each simu-

lation study. The parameter bg and bo were selected

to be equal to 0.4, in order to maintain a similar dis-

tribution for attractive and repulsive potential fields

which vanished over 4m distance. The robot was

considered as an omni-directional point-robot and

the speed of it was chosen to be 0.05 m/sec. In

dynamic environment, obstacles are rotating on the

circles (radius = 4 m) at the speed of 0.07 m/sec in

clockwise and counter clockwise and 0.05 m/sec if

it has a linear motion. For the simulation, it was

assumed that there is a virtual LRF mounted on the

robot with maximum detectable range of 4m and

the scanning range of 240.

4.1 Simulation with T-APF Algorithm

For easy and clear explanation, at first, in both

the environments the deadlock problem was stud-

ied with a single obstacle which is collinear with

the goal and the robot as shown in Figure 7(a). This

shows the dead-lock occurrence when an obstacle

is in between the goal and the robot. For this sim-

ulation study, initially robot started to move from

the point (5, 1), the goal is located at (5, 14) and

there is an obstacle at (5, 8) on the line connects the

robot and the goal. The algorithm determines the

way-points of the robot’s path at each step. Simu-

lation shows that the robot is trapped around (5, 7)

closer to the obstacle. This happens when the total

potential force become zero; hence no command is

generated to move the robot towards the goal which

is called deadlock. Figure 7(b) explains the total po-

tential force variation with the travelling distance of

the robot in the Y-direction. It shows that the total

potential force has converged to zero near a distance

of 7m in Y-direction.

Simulation study done for a single dynamic ob-

stacle moving towards the robot is shown in Figure

8. Initially, robot starts to move towards the goal.

As the obstacle reaches the robot, it starts to move

back away from the goal with oscillations. In this

unexpected motion, robot has first come to a local

minimum position and since the obstacle is further

moving towards the robot, the total potential force

appeares and it forces the robot to move backward.

As shown in Figure 8(b), total potential force be-

come zero for a moment and as the obstacle come

closer to the robot total potential force shows an os-

cillation near zero. This variation of total poten-

tial force towards the negative direction results the

backward motion of the robot in Y-direction away

from the goal. Therefore the robot never reached
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its goal position until the path of the obstacle is

changed.

Another possible situation where the deadlock

can happen is explained in Figure 9, which de-

scribes the symmetrical distribution of the obstacle

around the robot-goal line. This takes place when

the total potential force becomes zero before robot

passes the obstacles. Robot has stopped around (5,

7) because the total force has reached zero as shown

in Figure 9(b).

Figure 7. Deadlock issue of T-APF method for a

static obstacle: (a) Simulation snapshot, (b) Ftot

variation with distance Y.

Figure 8. GNR problem of T-APF method with a

moving obstacle: (a) Snapshot of the simulation,

(b) Ftot variation.

Figure 9. Deadlock issue of T-APF with

symmetrical static obstacle distribution (a)

Simulation snapshot, (b) Ftot variation with

distance Y.

4.2 Simulation with P-APF Algorithm

To deal with such kind of motion in dynamic

environments and dead-lock problem in static en-

vironments, the P-APF algorithm gives a better so-

lution. In order to verify the effect of the P-APF,

simulation was first done in a static environment

with a single obstacle and the simulation result is

shown in Figure 10. The motion of the robot as

in Figure 10(a) shows how it avoids the obstacle

without deadlocking. Indeed with the P-APF based

path planning algorithm, there is no local minimum

where the total potential force becomes zero ex-

cept at the goal point which causes deadlock prob-

lem. Around the point at the distance of 6m in Y-

direction, as in Figure 10(b), total force has reached

its minimum value near but behind the obstacle be-

fore starting to increase as the robot moves further

towards the obstacle. At this point, the secondary

repulsive force component is acting perpendicular

to the original repulsive force; hence the direction

of the total potential force changes and robot starts

to turn.

Figure 11 shows the simulation result carried

out for a single dynamic obstacle using P-APF

method. Initially, the obstacle is placed at (5, 8)

in between the robot and the goal and its velocity

towards the robot is (0, -0.05) m/sec. Robot starts

to move towards the goal while the obstacle moves

towards the robot. When the robot detects the ob-

stacle, new repulsive force component helps it to go

away from the direction of the obstacle and robot

passes the obstacle safely and reaches the goal. As

shown in the Figure 11(b), total potential force of

the P-APF does not come to zero unless at the goal

point.

To overcome the deadlock problem with sym-

metrical obstacle distribution, simulation was car-

ried out and results are shown in Figure 12. It

clearly shows the comparative advantage of P-APF

over the traditional method. As the robot moves

closer to the obstacles, total potential force starts

to decrease but before reaching zero starts to in-

crease because of the new repulsive force compo-

nent. This happens in any condition because the

new force component is acting to create a rotational

force towards the goal direction only, and increas-

ing until robot passes the obstacle (see Figure 5 (b)).

 

 

 
Figure 9: Deadlock issue of T-APF with 



198 Tharindu Weerakoon, Kazuo Ishii and Amir Ali Forough Nassiraei

Figure 10. Simulation result of P-APF with a

static obstacle.

Figure 11. Simulation result of P-APF with a

moving obstacle

Figure 12. Simulation result of P-APF with

symmetrical static obstacle distribution

4.3 Simulation with Multi-Obstacles for P-

APF and T-APF

Furthermore, for better realization of the path

planning algorithm in static and dynamic multi-

obstacle environments, both the T-APF and P-APF

algorithms were studied by performing the simu-

lations. In both the environments, robot starts to

move from the point (5, 1) to its goal point at (5,

14) for all the simulations. Figure 13(a) shows the

navigation of the robot using P-APF in a static envi-

ronment with many obstacles. The variation of the

total potential force with respect to the distance in

Y-direction is explained in Figure 13(b). Total po-

tential force variation shows that its value becomes

zero at the goal point.

Simulation study was performed for both the T-

APF and P-APF in multi-obstacle dynamic environ-

ments. This study was done to verify the capability

of usage of the proposed method in dynamic situa-

tion too. Figure 14 explains the simulation results

for T-APF algorithm and Figure 15 explains the

simulation for P-APF algorithm. Additionally, this

study verifies that both the proposed and T-APFs

have the capability of reaching the goal since no

situation where the deadlock can happenes. How-

ever, the evaluation parameters defined to compare

and evaluate the performances of the P-APF shows

good performance over the traditional method (see

Section 4.4).

Figure 13. Simulation of P-APF method in a static

environment with few obstacles.

Figure 14. Simulation of T-APF method in a

dynamic environment.

Figure 15. Simulation of P-APF method in a

dynamic environment.

(b)). 

 

  

 
 

Figure 14:  Simulation of T-APF method in a 

dynamic environment. 

 
Figure 15:  Simulation of P-APF method in a 

 

Figure 11: Simulation result of P-APF with a 

moving obstacle 

 

Figure 12: Simulation result of P-APF with 
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4.4 Results and Discussion

Simulation was carried out in different environ-

mental settings to evaluate the performance of the

proposed (P-APF) path planning algorithm. Evalu-

ation was done by comparing three parameters:

1 Edg: Goal reachability distance error

2 Dmin: Minimum clearance distance to obstacle

3 Dtrav: Total traveling distance

The Table 2 shows the result of the simula-

tion for both the T-APF and P-APF in a static en-

vironment. Simulations were carried out for sin-

gle obstacle environment in a situation where the

robot-obstacle-goal is aligned and for the two obsta-

cles symmetrically distributed around the line con-

nects the goal and the robot. But in multi-obstacles

case their positions were chosen randomly. It is

shown that, in single obstacle case, the robot has

not reached the goal (Edg = 9.05) with T-APF while

it was able to reach the goal with P-APF. Further,

navigation using P-APF has kept a considerably a

large robot-to-obstacle clearance (Dmin) in both the

environments. And, it has shown that the P-APF

minimizes the travelling distance too in both the

static and dynamic environments. With two obsta-

cles distributed symmetrically around the robot goal

axis was also considered and evaluation parameters

show that the robot has not reached the goal for

T-APF. But in contrast, P-APF has prevented the

deadlock and guides robot towards goal.

A comparative analysis for the evaluation pa-

rameters of the simulation for dynamic environment

is given in Table 3. In both the environments, in

addition to solve the deadlock issue, P-APF has

maintained a considerably more Dmin than in T-APF

and minimum Dtrav all the time. By comparing the

performance of both the APF approaches, P-APF

shows the best performance over the traditional ap-

proach in static environments as well as in the dy-

namic environments.

5 Numerical Analysis of the Pro-

posed Approach

The proposed path planning algorithm (P-APF

algorithm) does not consist of local minimum

which causes deadlock problem for the mobile

robot path planning. Simply, local minimum

point exists when collinear alignment of the robot-

obstacle-goal or a symmetrical distribution of the

obstacles around the line which connects the robot

and the goal. In those situations there is a proba-

bility to happen deadlock as the total potential be-

comes zero.

The T-APF and P-APF algorithms are consid-

ered to describe the deadlock scenario and the so-

lution given by the P-APF is analyzed numerically.

This analysis was done for the most critical situa-

tion of symmetrical distribution of obstacle around

the robot-goal axis as shown in Figure 16. In this

study, two parameters which do effect directly on

deadlocking, bg and bo as in Eq. (1) and Eq. (3) and

the distance between the two symmetrically dis-

tributed obstacles (obstacle gap) were considered as

the variable parameters. Initially robot was placed

at (0, 0) while the goal was at (0, 10). Obstacles

were placed at (5, 0) and (-5, 5). By changing the

gap of the obstacles symmetrically about the robot-

goal line along the Y-axis, the gap was maintained

in the range of [0.2, 10]. Variation of the total re-

pulsive force (FTot) for both the T-APF and P-APF

are shown in Figure 17. It clearly shows that the

FTot never goes to zero except the goal point for

P-APF unlike for T-APF. In some situations where

the obstacles are very closely separated, FTot of T-

APF goes to negative which implies the occurrence

of deadlock.

Figure 16. Simulation environment for the

numerical study

The second fact of parameters bg and bo of the

potential functions in Eq. (1) and Eq. (3) defines
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Table 2. Results of the simulations in static environment

Single Obstacle Multi Obstacles

Edg Dmin Dtrav Edg Dmin Dtrav

T-APF 9.05 1.05 N/A ˜ 0 1.37 15.40

P-APF ˜ 0 1.28 17.78 ˜ 0 1.41 15.35

Two Obstacles

Edg Dmin Dtrav

T-APF 9.00 1.41 N/A

P-APF ˜ 0 1.00 17.00

Table 3. Results of the simulations in dynamic environment

Single Obstacle Multi Obstacles

Edg Dmin Dtrav Edg Dmin Dtrav

T-APF ˜ ∞ 0.90 ˜ ∞ ˜ 0 0.91 17.10

P-APF ˜ 0 1.00 17.75 ˜ 0 0.93 17.47

the potential distribution. Value of bg and bo were

changed equally from 0.1 to 1 and variation FTot

for both methods is shown in Figure 18. For this

study the obstacles were placed at the positions of

(1, 5) and (-1, 5). It shows that for some values

of bg and bo, total potential force FTot has reached

zero (blue lines) where the deadlock happenes with

T-APF. But, in contrast P-APF shows (red lines) no

such behavior for any situation.

Figure 17. Variation of FTot for different obstacle

gap values

Figure 18. Variation of FTot for different bg (=bo)

values

In an unstructured environment, P-APF can be

used without any difficulty considering the geomet-

rical parameters of the environment such as the gap

between the obstacles, width of the corrido, etc. At-

tention is only given to the size of the robot, stan-

dard deviation of the expected potential distribution

(included into the bg and bo) and the safety distance.

Overall analysis depicts that the performance of P-

APF is better than that of T-APF.

6 Conclusion

An intelligent APF based path planning algo-

rithm (P-APF) for mobile robot has been presented

in this paper. It has the capability of escaping the lo-

𝑏𝑏𝑔𝑔 𝑏𝑏𝑜𝑜𝑭𝑭𝑻𝑻𝑻𝑻𝑻𝑻

 𝑭𝑭𝑻𝑻𝑻𝑻𝑻𝑻
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𝑏𝑏𝑔𝑔 𝑏𝑏𝑜𝑜

𝑏𝑏𝑔𝑔 𝑏𝑏𝑜𝑜𝑭𝑭𝑻𝑻𝑻𝑻𝑻𝑻

𝑭𝑭𝑻𝑻𝑻𝑻𝑻𝑻
obstacle gap values. 

𝑭𝑭𝑻𝑻𝑻𝑻𝑻𝑻 𝑏𝑏𝑔𝑔𝑏𝑏𝑜𝑜

𝑏𝑏𝑔𝑔 𝑏𝑏𝑜𝑜
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cal minima positions where deadlock happens. This

study shows an efficient path planning algorithm re-

lying only on local obstacle information, detected

by LRF placed on the robot.

Comparisons have been carried out through the

simulations, between this P-APF method and the T-

APF method. The P-APF algorithm has proved a

significant improvement on the T-APF by solving

the deadlock problem well. It also produces con-

siderable reduction of the travelling distance, maxi-

mizing the robot-obstacle clearance gap in compar-

ison to the traditional approach. Moreover, the pro-

posed approach provides an easy parameter calcu-

lation for the potential field distributions.
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